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Abstract

We present a simple method for developing parallel and systolic programs from data depen-

dence. We derive sequences of parallel computations and communications based on data

dependence and communication delays, and minimize the communication delays and proces-

sor idle time. The potential applications for this method include supercompiling, automatic

development of parallel programs, and systolic array design.

1 Introduction

Given a sequential program consisting of a loop, or a set of equations that recursively de�ne

an array, we want to develop a parallel program for a shared or distributed memory parallel

computer. There are two problems here. First we have to reveal the parallelism and �nd

the sequences of parallel computations. Second, for distributed memory parallel computers,

we want to schedule the computations and communications at compile time so that all data

needed arrive before a computation is scheduled to start, and minimize processor idle time

and overall communications. Given enough parallel processors, parallelism is limited by two

factors. The �rst is the data dependence. The second is the delays in the arrival of dependent

data, which we call communication delays. We will introduce simple ways to

� reveal the parallelism by �nding the sequences of parallel computations allowed by

data dependence;

� minimize communication delays and make possible systolic data movements;

� produce systolic programs by combining the computation sequences and communica-

tion delays.

F. Irigoin and R. Triolet [8] showed how to �nd the sequences of parallel computations

allowed by a data dependence using a hyperplane method. Their method reduces the problem

to that of solving a set of linear inequalities. The solution of the set of inequalities reveals
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all possible parallel sequences that the data dependence allows. We [4, page 16] showed that

it is not obvious to �nd the best sequence from the solution set of an inequality. By going

after all solutions, the best sequence is clouded by an in�nite number of absolutely useless

ones, making this method ine�cient for very simple parallelization problems. Our method

does not reveal all the sequences allowed by a data dependence. Neither do we guarantee

maximum parallelism. The sequences we produce are the most obvious and natural ones,

which often give maximum parallelism. In return, we get a much simpler and cost e�ective

method.

The communication delays are based on very simple and straight forward data to proces-

sor mappings. We assume a network topology that is natural to the problem being solved,

and show that the communication delays can be combined to the computation sequences

to easily produce systolic algorithms. We will use our method to produce the classic sys-

tolic program for matrix multiplication, and also produce a very e�cient systolic program

for the shortest path problem that is very hard to write by hand. We make no restriction

on either network topology of the parallel machine or number of processors here. Di�erent

systolic algorithms may result if we add more restrictions on the parallel machine or change

the mapping. While it may be interesting to experiment with those, our focus here is to

expose the maximum parallelism allowed by data dependence while minimize the overall

communication required by the problem.

There are many related works in the area of automatically producing parallel and systolic

programs. Tseng [12] has described a systolic array parallelizing compiler which compiles

programs in the sequential language AL into systolic programs for the ten cell linear systolic

array Warp. Fortes and Moldovan [6] proposed some index transformation techniques called

time and space transformations which compute the computation sequences and processor

allocations that may result in systolic algorithms, and some techniques to �nd computation

sequences for limited class of data dependencies. The basic idea of time and space transfor-

mations is to reshape the indices for the computations such that one coordinate represents

the computation sequences, which is the time transformation, and the rest of the coordinates

index the corresponding processor, which is the space transformation. Time transformation

is based solely on data dependencies while space transformation is based both on data de-

pendencies and parallel processor topologies.

Many results in the area of parallelization are developed from supercompilers that par-

allelize Fortran programs for shared memory parallel computers by Kuck et al. [9,10] and

Kennedy et al. [1,2]. The basic idea is to replace sequential loops with semantically equiva-

lent vector and array operations wherever it is determined that no data dependencies exist

there. There are also some compiling systems [13] that target distributed memory parallel

computers. ParaScope[3] is such a system that takes some extension of Fortran programs

which allows programmers to specify the parallel features.

Sequential program parallelizing techniques are usually not directly applicable to recur-

sive equations because they are based on pre-existing explicit computation sequences which

do not exist in recursive equations. Most existing equational languages require the program-

mers to specify the sequences of computations and communications one way or the other.

In the recursive equational language Crystal [5] implemented at Yale University, the pro-

grammer has to provide the compiler with domain morphism, which is in essence sequence

of parallel computations and data layout. In the equational programming language EPL
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[11] implemented at Rensselaer Polytechnic Institute, iterations are implied in the recursive

equations. So the recursive equations are actually equivalent to the sequential loops, and the

parallelization techniques such as those for Fortran parallelizing compilers can be applied.

There are also some functional languages with extended parallel meta-language features [7]

making it partly programmer's responsibility to specify the parallel behaviors.

Our method could potentially �ll the need for automatically producing the sequences

of parallel computations and communications for the equational languages. Our system

consists of two parts. The �rst part uses sequence constraints to �nd the sequences of par-

allel computations based on data dependence. The second part combines the computation

sequences with communication sequences to minimize the overall communication and com-

putation time. Since our algorithm is only based on data dependence, it can be applied to

recursive equations with no control sequences, sequential programs with loops, or programs

in other forms as long as data dependence can be extracted.

2 Sequence Constraints and Computation Sequences

First we need to clarify what a computation is. When we talk about a computation here,

it corresponds to an instance of a statement, either in a loop or in a set of equations. In

a sequential loop, each iteration of a statement corresponds to a unique computation. In

a recursive equation, each instance of the equation corresponds to a unique computation.

We are interested in parallelism in the statement level, parallelism between instances of a

statement or di�erent statements.

Suppose S represents a statement or an equation, (i

1

; : : : ; i

n

) represents an iteration

in a loop or an instance of a recursive equation, then S

i

1

;:::;i

n

represents a computation.

The sequences of parallel computations for S are limited by the recurrent data dependence

between them.

Suppose we have a data dependence relation:

S

i

1

;:::;i

n

 S

i

11

;:::;i

1n

; : : : ; S

i

m1

;:::;i

mn

; l

1

� i

1

� u

1

^ : : : ^ l

n

� i

n

� u

n

where each computation on the left side is dependent on the computations on the right side.

We want to �nd a parallel program in the following form:

for s = L to U

compute S

i

1

;:::;i

n

;

forall l

1

� i

1

� u

1

^ : : : ^ l

n

� i

n

� u

n

such that bds(i

1

; : : : ; i

n

)c = s

The program computes S in U � L + 1 steps. We can see from the program that the value

of ds(i

1

; : : : ; i

n

) determines which step S

i

1

;:::;i

n

is to be computed. It maps an index to a

step. So the sequence of parallel computations in the program is de�ned by the function

ds. We call this function sequence function, or dependence sequence. And we say that the

computation can be sequenced by the function ds. We limit ds to linear functions.

In order to satisfy the data dependence, we have to make sure that

8k 2 (1;m) : ds(i

k1

; : : : ; i

kn

)� ds(i

1

; : : : ; i

n

) � 1

3



h h h h

h

h h h

h h

h

h

h h h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h h

h

h

h h

h

h

h

h

h

h

h

!

!

!

P

P

Pq

!

!

!

P

P

Pq

!

!

!

P

P

Pq

!

!

!

P

P

Pq

a

a

a�

�

�1

a

a

a�

�

�1

a

a

a�

�

�1

a

a

a�

�

�1

�

�

�

B

B

BM

L

L

L

�

�

��

L

L

L

�

�

��

�

�

�

B

B

BM

L

L

L

�

�

��

�

�

�

B

B

BM

L

L

L

�

�

��

�

�

�

B

B

BM

!

!

!

!

�

�

�

��

!

!

!

!

�

�

�

��

!

!

!

!

�

�

�

��

!

!

!

!

�

�

�

��

S

i;j

 S

i;j�2

; 0 � i; j � n S

i;j

 S

i+2;j

; 0 � i; j � n S

i;j

 S

i+2;j�2

; 0 � i; j � n

Figure 1: One to One Dependence

i.e., the computations on the right side of the data dependence must be completed at least

one step ahead that of the left side.

To �nd the sequence functions, we start from the simple data dependencies in �gure 1,

where circles represent computations and arrows point to the ows of data dependencies.

Based on the �rst data dependence, the computations can go column by column, two columns

at a time, from left to right. The sequence function for this is:

ds1(i; j) =

j

2

With the second dependence, the computations can go row by row, two rows at a time, from

bottom to top. The sequence function for this is:

ds2(i; j) =

i

�2

With the third dependence, the computations can go both ways. Therefore, it can use either

one of these sequence functions. Of course there are many other sequence functions that

would work based on these data dependencies. One example is:

ds3(i; j) =

i

�2

+

j

2

which starts the computation from lower left, going diagonally up to upper right, two diagonal

lines at a time. It is easy to check that ds3 works for all three dependences. But ds1 and ds2

are simpler, and more e�cient considering the numbers of steps and processors required.

We found the sequence functions ds1 and ds2 by looking at the data dependence along

each dimension. Along each dimension, the direction of the data dependence gives an indica-

tion of the direction of the sequence of parallel computations. And the dependence distance

gives an upper bound of the amount of parallel computations in each step. The dependence

direction and the dependence distance can be represented by the sign and the value of a

number. This number summarizes the constraints imposed by the data dependence on the

sequence of parallel computations along the dimension. For the �rst dependence, 2 summa-

rizes the parallelism allowed along j, i.e., the computation can go in increase direction along

j, with a parallel distance of 2. For the second dependence, -2 summarizes the parallelism

allowed along i, i.e., the computation can go in decrease direction along i, with a parallel
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Figure 2: One to Many Dependence

distance 2. For the third dependence, 2 summarizes the parallelism allowed along j, and

-2 summarizes the parallelism allowed along i. We call these numbers sequence constraints

along the indices, written as (i;�2) and (j; 2).

When there is more than one computation on the right side of the dependence relation,

we can �nd the constraints from each dependence and combine the results. Let us look at

the data dependence in �gure 2. From the dependence on S

i;j�1

, we know the computations

can go column by column from left to right, with sequence constraint (j; 1) and sequence

function j. From the dependence on S

i+1;j

, we know the computations can go row by row

from bottom to top, with sequence constraint (i;�1) and sequence function �i. We combine

the above sequence constraints and represent it as (i;�1)

b

^(j; 1) (

b

^ reads as \and"). It

corresponds to the sequence function:

ds4 = �i+ j

which is exactly the same as adding the two sequence functions together. As we can verify,

ds4 starts the computations from lower left, going up diagonally to upper right, one diagonal

line at a time. It is the natural sequence we would come up by looking at the dependence

graph.

When two dependence fall in the same direction, such as

S

i;j

 S

i�1;j

; S

i�2;j

; 0 � i; j;� n

the two dependence give the sequence constraints (i; 1) and (i; 2) respectively. Combining

them, we have

(i; 1)

b

^(i; 2) = (i;min(1; 2)) = (i; 1)

And the sequence function is ds(i; j) = i.

It does not always work to just combine the sequence constraints to obtain the sequence

functions. When we have a data dependence relation that \spreads out", then the above

simple approach does not work. Figure 3 is an example of this. We show on the left the data

dependence and its graph. Now if we focus on the dependence for one particular element, as

shown on the right, we will notice that the two dependences do not fall into the same corner.

If we project the data dependence onto index variable j, the two dependences are in opposite
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directions, which is the red ag. Looking back at the sequence constraints, dependence on

S

i;j�1

provides the constraint (j; 1) and and sequence function j. Dependence on S

i�1;j+1

provides the constraints (i; 1) or (j;�1), and sequence functions i or �j. Combining the

constraints (j; 1) with (i; 1) produces a function i+ j, which is wrong since it places S

i;j

and

S

i�1;j+1

in the same step. The constraints (j; 1) and (j;�1) are in fact conict and cannot

be combined.

This problem can be solved by index transformations. With the new index variables i

0

; j

0

where i

0

= i; j

0

= i + j, the dependence and its graph of �gure 3 become that in �gure 4.

With this dependence, the constraints are (j

0

; 1) and (i

0

; 1). And the sequence functions

are j

0

and i

0

respectively. Combined constraint and sequence function are (i

0

; 1)

b

^(j

0

; 1) and

i

0

+ j

0

. Now we can transform the index back and get the sequence function 2i + j, which

gives the maximal parallelism for the above dependence.

In general, if conict occurs when we project a data dependence onto an index variable,

say j, we can adjust j against another index variable, say i, where

i

0

= i

j

0

= ci+ j

such that no conict occurs in the new index. The direction or amount of this adjustment,
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or index transformation, can be controlled by c. The sign of c decides the direction of the

transformation, while the value decides the amount.

When there is no conict along any dimension, i.e., all the right hand elements fall on

the same corner in the dependence graph, we can be sure that the sequence functions from

the combined sequence constraints give the right sequences of parallel computations.

3 Communication Delays and Data movements

In a distributed memory parallel computer with message passing, we have to take into

consideration data movements and communication delays in scheduling the computations,

which depend on the communication network of the parallel processors, the mapping from

data to processors, and the data distances.

We assume the communication network is a multidimensional grid, since the index of

S

i

1

;:::;i

n

forms an n dimensional grid. With similar computation and parallel machine struc-

tures, we can focus on the kind of data mappings and movements that brings e�cient systolic

algorithms. And we will only use nearest neighbor communications in the output programs.

Given the data dependence

S

i

1

;:::;i

n

 S

i

11

;:::;i

1n

; : : : ; S

i

m1

;:::;i

mn

; A

(1)

j

11

;:::;j

1n

1

; : : : ; A

(k)

j

k1

;:::;j

kn

k

;

l

1

� i

1

� u

1

^ � � � ^ l

n

� i

n

� u

n

where S

i

1

;:::;i

n

refers to speci�c instances of statement S as before, and A

(y)

j

y1

;:::;j

yn

y

is a prede-

�ned data element with the restriction that (j

y1

; : : : ; j

yn

y

) is a subset of (i

1

; : : : ; i

n

).

We need to map S

i

1

;:::;i

n

to the parallel processors for their computations, map any pre-

de�ned data to the appropriate processors, and arrange necessary data movements.

3.1 Data to Processor Mapping

Based on the recurrent data dependence part, we can �nd a sequence function according to

the previous section, which slices the index space of S

i

1

;:::;i

n

into pieces. All the computations

on the same piece can be computed in parallel, while di�erent pieces have to be computed

in sequence. For example, the sequence functions k and i+ j slice the index space S

i;j;k

into

pieces as shown in �gure 5. In both cases, we have to do the computations one piece at a

time in sequence. Therefore, we can project all the pieces onto an n� 1 dimensional grid of

parallel processors.

In other words, we �rst �nd a dimension where every elements on it belong to di�erent

pieces and have to be computed in sequence. It is k in the �rst example and i or j in the

second example. We then map all the elements on that dimension onto a single processor.

For the �rst example, we map S

i;j;k

to processor (i; j). For the second example, we can

choose the mappings S

i;j;k

! (j; k) or S

i;j;k

! (i; k). All three mappings are clearly shown

by the arrows in �gure 5. Generally speaking, if i

t

appears in the sequence function, then

for all i

t

, S

c

1

;:::;c

t�1

;i

t

;c

t+1

;:::;c

n

have to be computed in sequence. We can map them onto

processor (c

1

; : : : ; c

t�1

; c

t+1

; : : : ; c

n

), which does the computations in sequence according to

the sequence function.
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Figure 5: Index Spaces Divided by Sequence Functions

More interesting is the mapping for A

(y)

j

y1

;:::;j

yn

y

. If there is only one processor that needs

A

(y)

j

y1

;:::;j

yn

y

, then we want to map it to that processor. If there is a group of processors that

need it, then we want to map it to the edge or corner of that group so that A

(y)

j

y1

;:::;j

yn

y

can be

spread to the whole group one step at a time during the computations. So we map A

(y)

j

y1

;:::;j

yn

y

to

(p

1

; : : : ; p

t�1

; p

t+1

; : : : ; p

n

)

where p

x

= i

x

if i

x

appears in (j

y1

; : : : ; j

yn

y

), or p

x

is an edge of i

x

if i

x

does not appear in

(j

y1

; : : : ; j

yn

y

), which means p

x

= min(i

x

) or p

x

= max(i

x

).

The mappings we describe are actually very natural ones that we would use when writing

parallel programs by hand. For the matrix multiplication problem

c

(0)

ij

= 0; 1 � i; j � n

c

(k)

ij

= c

(k�1)

ij

+ a

ik

b

kj

; 1 � i; j; k � n

The mappings can be

c

(k)

ij

! (i; j); a

ik

! (i; 1); b

kj

! (1; j)

which is shown in �gure 6.

Our mappings make the data close to where they are needed, thus minimize the total

communications.
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3.2 Data Movement

We can envision an ordering among the processors along the dimensions A

(y)

j

y1

;:::;j

yn

y

will

traverse. The closer a processor is to where A

(y)

j

y1

;:::;j

yn

y

is placed initially, the earlier it starts

its computations. We call such orderings communication delays or communication sequences.

Suppose A

(y)

j

y1

;:::;j

yn

y

is place on lower edge of i

x

, then the communication sequence can be

characterized as i

x

, since the processor with smaller i

x

will receive A

(y)

j

y1

;:::;j

yn

y

�rst and thus

start its computations �rst. Similarly, if A

(y)

j

y1

;:::;j

yn

y

is placed on upper edge of i

x

, the the

communication sequence can be characterized as �i

x

. We get the total communication

sequence cs(i

1

; : : : ; i

n

) by adding the communication sequences for each dimension caused by

the right hand side elements in the dependence relation. For matrix multiplication, with the

mapping we chose above, it is j caused by a

ik

and i caused by b

kj

. And the communication

sequence is i+ j.

Because of the mapping we use for A

(y)

j

y1

;:::;j

yn

y

, it will only move in one direction along

any dimension, either in ascending direction or descending direction. So we have very simple

representation of communication sequences for it. However, if the result of S

i

y1

;:::;i

yn

is needed

by a group of processors, then it may need to move in both directions. For example, in the

case of shortest path problem:

d

(k)

ij

= min(d

(k�1)

ij

; d

(k�1)

ik

+ d

(k�1)

kj

); 1 � i; j; k � n

the data dependence is:

S

i;j;k

 S

i;j;k�1

; S

i;k;k�1

; S

k;j;k�1

; 1 � i; j; k � n

With the mapping

S

i;j;k

! (i; j)

S

i;k;k�1

at processor (i; k) has to move to S

i;j;k

at processor (i; j) for all 1 � j � n. This means

S

i;k;k�1

has to move from (i; k) to (i; k+1); (i; k+2); : : : as well as to (i; k� 1); (i; k� 2); : : :.

In this case, the delay caused by S

i;k;k�1

is
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the distance between S

i;j;k

and S

i;k;k�1

plus

the delay for S

i;k;k�1

to become available

The closer S

i;j;k

is to S

i;k;k�1

, the earlier it will be computed. We can think of S

i;k;k�1

as

causing a wave of computations along the second dimension, with itself being in the center

of the wave. This is actually the case as we will show later. The function s(i; j; k) = k gives

the series of centers of the waves along the second dimension. The delay for S

i;k;k�1

to be

available is s(i; j; k) if s(i; j; k) � s(i; k; k � 1) or �s(i; j; k) if s(i; j; k) < s(i; k; k � 1). This

condition is necessary since all waves must occur in the right order. So the communication

sequence from S

i;k;k�1

is

jj � kj+ k

From the dependence and communication sequences, we can easily produce systolic pro-

grams.

4 Systolic Programs

Given the data dependence

S

i

1

;:::;i

n

 S

i

11

;:::;i

1n

; : : : ; S

i

m1

;:::;i

mn

; A

(1)

j

11

;:::;j

1n

1

; : : : ; A

(k)

j

k1

;:::;j

kn

k

;

l

1

� i

1

� u

1

^ � � � ^ l

n

� i

n

� u

n

We can obtain a sequence constraint

CS = (i

x

1

; d

x

1

)

b

^ : : :

b

^(i

x

r

; d

x

r

)

by choosing a sequence constraint from each of the S on the right side of the dependence

and combining them. The dependence sequence from the sequence constraint is

ds(i

1

; : : : ; i

n

) =

n

X

y=1

c

y

i

y

where

c

y

=

(

0 if i

y

does not appear in CS

1=d

y

if (i

y

; d

y

) appears in CS

We can then produce a mapping according to any index variable that appears in ds(i

1

; : : : ; i

n

).

Let us call this index variable i

t

. The mapping is

S

i

1

;:::;i

n

! (i

1

; : : : ; i

t�1

; i

t+1

; : : : ; i

n

)

A

(y)

j

y1

;:::;j

yn

y

! (p

y1

; : : : ; p

y t�1

; p

y t+1

; : : : ; p

yn

)

where

p

yx

=

(

i

x

if i

x

appears in (j

y1

; : : : ; j

yn

y

)

min(i

x

) or max(i

x

) otherwise

10



According to the mapping, we can then �nd the communication sequences

cs(i

1

; : : : ; i

n

) =

n

X

y=1

q

y

where

q

y

=

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

0 y = t or there is no movement along i

y

i

y

data move from lower edge to the upper edge

�i

y

data move from upper edge to the lower edge

ji

y

� s(i

1

; : : : ; i

n

)j+ s(i

1

; : : : ; i

n

) data move away from s(i

1

; : : : ; i

n

) and

8x 2 (1;m) : s(i

1

; : : : ; i

n

) � s(i

x1

; : : : ; i

xn

)

ji

y

� s(i

1

; : : : ; i

n

)j � s(i

1

; : : : ; i

n

) data move away from s(i

1

; : : : ; i

n

) and

8x 2 (1;m) : s(i

1

; : : : ; i

n

) < s(i

x1

; : : : ; i

xn

)

We can then produce a systolic program

map(S

i

1

;:::;i

n

),

map(A

(y)

j

y1

;:::;j

yn

y

)

forall 1 � y � k

for s = min(bfs(i

1

; : : : ; i

n

)c) to max(bfs(i

1

; : : : ; i

n

)c)

data movements for A

(1)

j

11

;:::;j

1n

1

; : : : ; A

(k)

j

k1

;:::;j

kn

k

;

data movements for S

i

11

;:::;i

1n

; : : : ; S

i

m1

;:::;i

mn

;

compute S

i

1

;:::;i

n

;

forall l

1

� i

1

� u

1

^ : : : ^ l

n

� i

n

� u

n

such that bfs(i

1

; : : : ; i

n

)c = s

where fs(i

1

; : : : ; i

n

) = ds(i

1

; : : : ; i

n

) + cs(i

1

; : : : ; i

n

). All the movements and computations

in the same parallel step can be done in parallel. The data move one processor each step

towards their destinations. We have proofs [4] that the program satis�es the data dependence

and all data arrive right before the computation is scheduled to start. We will show how

this works in the following examples.

5 Examples

Matrix Multiplication

The recursive de�nition for the matrix multiplication problem is:

c

(0)

ij

= 0; 1 � i; j � n

c

(k)

ij

= c

(k�1)

ij

+ a

ik

b

kj

; 1 � i; j; k � n

Let us call the second equation S. Its data dependence is:

S

i;j;k

 S

i;j;k�1

; a

ik

; b

kj

; 1 � i; j; k � n

From the recursive dependence part, we can easily get the sequence constraint

(k; 1)

11



and the dependence sequence function based on data dependence:

ds(i; j; k) = k

We can map S

i;j;k

to processor (i; j). a

ik

can be mapped to processor (i; 1) or (i; n) since j

does not appear in the index. And b

kj

can be mapped to processor (1; j) or (n; j). Suppose

we choose the mapping:

S

i;j;k

! (i; j); a

ik

! (i; 1); b

kj

! (1; j)

Then the communication sequence is:

cs(i; j; k) = i+ j

Combining the dependence sequence and communication sequence, we get the �nal sequence:

fs(i; j; k) = ds(i; j; k) + cs(i; j; k) = i+ j + k

We use c

(k)

ij

(i; j) for c

(k�1)

ij

at processor (i; j), the corresponding parallel program is

c

(k)

ij

! (i; j); a

ik

! (i; 1); b

kj

! (1; j)

forall 1 � i; j; k � n

for s = 3 to 3n � 1

c

(k)

ij

(i; j) = c

(k�1)

ij

+ a

ik

� b

kj

;

a

ik

(i; j)! (i; j + 1);

b

kj

(i; j)! (i+ 1; j);

forall 1 � i; j; k � n such that i+ j + k = s

Figure 7 shows step by step the data layout of running this program for n = 3. In the �rst

step, a

11

and b

11

are available to c

(1)

11

and c

(1)

11

is computed. The data move one processor at

each step. In the sth step, for all i; j; k such that i + j + k = s, a

ik

and b

kj

are available

to c

(k)

ij

and c

(k)

ij

is computed. The data move like a wave starting from the upper left of the

processor array towards the lower right. In each processor, the computations start as the

data wave arrives and �nishes as the wave leaves. For processor (i; j), data arrive in the

sequence (a

i1

; b

1j

); (a

i2

; b

2j

); (a

i3

; b

3j

), and the sequence of the computation is

c

(1)

ij

= c

(0)

ij

+ a

i1

b

1j

; c

(2)

ij

= c

(1)

ij

+ a

i2

b

2j

; c

(3)

ij

= c

(2)

ij

+ a

i3

b

3j

Shortest Path Problem

A systolic program for shortest path problem is not obvious to write. Through the com-

bination of computation sequence and data distance, we can obtained a very e�cient one

automatically. Its recursive speci�cation is:

S : d

(k)

ij

= min(d

(k�1)

ij

; d

(k�1)

ik

+ d

(k�1)

kj

); 1 � i; j; k � n

where d

(0)

ij

is the length of the direct path between i and j, and d

(n)

ij

is the shortest path

between i and j. The data dependence is:

S

i;j;k

 S

i;j;k�1

; S

i;k;k�1

; S

k;j;k�1

; 1 � i; j; k � n
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Figure 7: Data movements for 3 by 3 matrix multiplications
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k=1
k=2

k=3

k=4
k=5

Figure 8: Computation Waves for 5 Node Shortest Path

The sequence constraint and the dependence sequence are (k; 1) and k, since all three de-

pendent elements agree on them. The mapping is S

i;j;k

! (i; j).

The data movements are as follow:

d

i;j;k�1

has no movement.

d

i;k;k�1

moves from (i; k) to (i; k � 1); (i; k � 2); : : : ; (i; 1) and (i; k + 1); (i; k + 2); : : : ; (i; n).

d

k;j;k�1

moves from (k; j) to (k�1; j); (k�2; j); : : : ; (1; j) and (k+1; j); (k+2; j); : : : ; (n; j).

The communication delay is

ji� kj+ k + jj � kj+ k

The �nal sequence is

ji� kj+ jj � kj+ 3k

The parallel program is

d

(k)

i;j

! (i; j); forall 1 � i; j; k � n

for K = 3 to 5n � 2

d

(k)

ij

= min(d

(k�1)

ij

; d

(k�1)

ik

+ d

(k�1)

kj

),

forall 1 � i; j; k � n such that ji� kj+ jj � kj+ 3k = K

d

(k�1)

ik

(i; j)! (i; j + 1);

forall 1 � i; k � n ^ k < j < n such that ji� kj+ jj � kj+ 3k = K

d

(k�1)

ik

(i; j)! (i; j � 1);

forall 1 � i; k � n ^ 1 < j < k such that ji� kj+ jj � kj+ 3k = K

d

(k�1)

kj

(i; j)! (i+ 1; j);

forall 1 � j; k � n ^ k < i < n such that ji� kj+ jj � kj+ 3k = K

d

(k�1)

kj

(i; j)! (i� 1; j);

forall 1 � j; k � n ^ 1 < i < k such that ji� kj+ jj � kj+ 3k = K

Figure 8 show the waves of computations for n = 5. There are �ve waves as shown, each

starting where the black dot is. Each wave starts as soon as the previous wave clears out

of the way, which is exactly 3 steps after the previous wave starts. So it takes a total of

3� (n� 1) + 2n� 1 = 5n � 4 steps to complete the computations.
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6 Conclusion

We have presented a method for �nding the sequences of parallel computations and com-

munications based on data dependence. We have focused on parallelizing one statement. If

there is more than one statement, we can simply �nd the sequences of parallel computations

and communications for each statement and merge them according to their interdependence.

For a subclass of problems where the recursive speci�cations satisfy certain condition, we

can produce optimal programs with minimal communications and maximal processor uti-

lizations. These are treated in elsewhere [2].

Because the method is only based on data dependence, it can be used to produce parallel

and systolic programs from equational programs or sequential loop programs. The method

allow programmers to write simple and elegant programs in equational form and produce

e�cient parallel and systolic programs automatically. A system based on this method is

being developed.
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