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Abstract

In this paper we review network related performance issues for cur-

rent Massively Parallel Processors (MPPs) in the context of some

important basic operations in scienti�c and engineering computation.

The communication system is one of the most performance critical

architectural components of MPPs. In particular, understanding the

demand posed by collective communication is critical in architec-

tural design and system software implementation. We discuss collec-

tive communication and some implementation techniques therefore

on electronic networks. Finally, we give an example of a novel gen-

eral routing technique that exhibits good scalability, e�ciency and

simplicity in electronic networks.

1 Introduction

Massively Parallel Processors (MPPs) are a critical resource for large{scale compu-

tation in science and engineering. Accurate modeling require large data sets. For

most applications, there is an inherent high degree of �ne grain parallelism (data

parallelism) in those data sets. Many applications also exhibit a course grain par-

allelism (control parallelism) arising from di�erent functions being applied to the

data set in succession, or to di�erent parts of the data set. Evaluating technologies

and di�erent architectural options for e�cient large scale computation requires an

understanding of the computational requirements as determined by problem repre-

sentation, algorithms used for the solution, and implementation techniques. This

paper reviews the data motion requirements of some typical operations in large{scale

computations and some of the techniques available for e�cient management of data

references. The techniques are developed for systems with electronic interconnect

with an aim towards reducing communication needs and network contention.

From an applications/mathematical perspective, the functional software architec-

ture for the solution of scienti�c and engineering problems on highly parallel archi-

tectures has so far remained the same as on uniprocessors. The changes that have

taken place are in the software engineering domain. Many application codes use

a set of matrix operations as low level primitives in constructing equation solvers,

either direct or iterative. Solvers for partial di�erential equations are then con-

structed either directly from the matrix primitives, or the equation solvers, or by

using various transforms or convolution. Optimization methods also require matrix
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Local storage (words)

Operation Processor Chip Board/Machine

Reg. 1k 32k 1M 32M 1G

Matrix Mult. 1 16 90 512 2896 16384

3D{Relaxation 2 19 32 77 307 1024

FFT 1 20 32 45 57 70

Table 1: Number of local operations per remote reference. 3D{Relaxation: 7{point

stencil, vector{length 8 (� = 8, � = 96).

primitives and possibly also equation solvers. An important collection of matrix

primitives are the BLAS [7, 8, 43] (Basic Linear Algebra Subroutines) targeted for

dense and banded matrix operations. For problems originating from discretized geo-

metric domains as well as for network problems, the commonmatrix representation

of the relationship between variables yield so{called sparse matrices. These matrices

reect the network topology, but are not uniquely determined by it. Whereas the

BLAS for dense and banded matrices form a defacto standard, there is no consensus

on BLAS for so{called sparse matrices. Nevertheless, sparse matrix operations are

used very frequently in scienti�c and engineering problem solving.

The reduction in communication bandwidth requirement o�ered by exploiting local-

ity of reference for three typical computations are quanti�ed in Table 1 [24]. It shows

the number of operations (and local references) per remote reference per processor

for a few local memory sizes, assuming optimal locality of reference. For matrix

multiplication block algorithms are optimal [20]. With a block size of 100 � 100

(local storage 32k words) per processor, the reduction in the need for memory or

communications bandwidth is a factor of 100 compared to no locality of reference.

The table entries for 3{D relaxation assume that the ratio of operations to remote

references follow the rule

1

�

(

M

�

)

1



for suitable values of �, �, and  andM being the

local memory size. Exploiting locality reduces the required communication band-

width by a factor of 8{100 at the chip boundary for these computations, by a factor

of 80{5000 at the board level, and by at least a factor of 125 at the I/O interface.

For the FFT, the reduction in required interprocessor communication bandwidth is

a factor of 14 for a data distribution allowing a radix-16k algorithm, compared to a

data distribution with no locality of reference. The proof of optimality of an algo-

rithm with a radix equal to the local memory size can be found in [20]. Gentlemen

and Sande [16] made this observation soon after the discovery of the FFT, but did

not provide a formal proof of optimality. Sorting behaves like the FFT with respect

to the optimal required bandwidth as a function of the local memory size [20].

The 3{D regular grid relaxation example is typical for explicit solvers for partial

di�erential equations based on �nite di�erences. The stated numbers for the rel-

ative frequencies of remote and local references reects the well{known notion of

minimal surface{to{volume ratio. This ratio is easy to determine for regular grids.

Though much more di�cult to determine, it is expected that the minimal surface{

to{volume ratio for localized nonuniform grids, such as tetrahedral grids for many

uid dynamics problems, exhibit a similar behavior. For nonlocalized grids, the

average number of local references per remote reference may be O(1). Partitioning
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of nonuniform grids such that the processing nodes receive approximately equal

sized subgrids while minimizing communication is an active area of research. We

will discuss con�guring the address space in the context of a few applications in the

next few sections, then discuss a few important collective communication primitives

followed by a brief discussion of general routing techniques for electronic networks.

2 Address space { data allocation

Traditional languages have a one{dimensional or linear storage model. Multidi-

mensional data arrays are linearized by either using a row major or a column major

ordering of data array axes. However, memory systems are not truly random access

in that the access time to di�erent parts of the memory is not the same. Techniques

for memory contention in banked and interleaved memories have been studied ex-

tensively, with the work on the Burroughs Scienti�c Processor [5, 40, 41, 42] and the

Prime Memory System [42] providing early and novel examples. These techniques

all assume that the network bandwidth is su�ciently high to support the full band-

width of the memory system. However, in massively parallel processors (MPP) with

electronic interconnect, the bandwidth between a processor and its local memory is

often (considerably) higher than the bandwidth to remote memory. In fact, to a sig-

ni�cant degree the ideal data distribution objectives for MPPs is exactly opposite to

those for interleaved or banked memory systems. For instance, in our introductory

discussion of locality of reference we showed the bene�t of block algorithms with

respect to communication bandwidth requirements. A block data allocation implies

a multidimensional address space as opposed to the one{dimensional address space

with cyclic data allocation. Issues to be addressed are the dimensionality of the

address space, its shape, how elements are aggregated into subsets for the processor

memories, and how the subsets are distributed among the processor memories.

2.1 The shape of the multidimensional address space

For a d{dimensional data array with equally frequent local data references along all

axes, and the same reference pattern for each array element, it is well known that

the number of remote references is minimized when the lengths of the segments of

all axes mapped to a memory unit are the same [14, 24]. Thus, for two{dimensional

arrays, the local subarray should be a square for minimum communication needs,

and for three{dimensional arrays the local data set should be a cube, and so on.

Consider matrix multiplication: C  A�B. The index space for the computation

is three{dimensional and for A of shape P � Q and B of shape Q � R, the index

space is of shape P � Q � R as shown in Figure 1, even though the index space

for each of the operands is two{dimensional. For the computations, the optimal

shape of the address space may be one{dimensional, two{dimensional, or three{

dimensional depending upon the relative sizes and shapes of the three operands

[27]. The fact that a three{dimensional address space is desirable when there is

many more processing nodes than matrix elements is well known. However, a three{

dimensional address space may also be bene�cial with respect to performance when

there are many more matrix elements than processing nodes [28, 27].
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Figure 1: The index space for matrix multiplication.

We illustrate the signi�cance with respect to performance of the shape of a two{

dimensional address space in Figures 2 and 3. With the strategy of keeping the

matrix with the largest number of elements stationary [27, 50] and moving the

other operands as required (in order to minimize data motion), the ideal shape of

the address space is such that the stationary matrix has square submatrices in each

node [27, 50]. Figure 2 con�rms that the optimal nodal array shape is square for

square matrices. For the matrix shapes used in this experiment, a one{dimensional

nodal array aligned with either the row or column axis, requires about a factor of

six higher execution time than the ideal two{dimensional nodal array shape.

Figure 3 is more interesting in that all three operands have di�erent shapes. The

aspect ratio for the product matrix is four, while the aspect ratios for the multiplier

and the multiplicand were varied by a ratio of up to 16. With a 256 node system,

and an algorithm that keep the product matrix stationary, the results show that

making the submatrices of the product matrix square tends to yield the best per-

formance. Deviations from the predicted optimal shape is due to some restrictions

in permissible data allocations on the Connection Machine system CM{2/200. For

the rectangular matrices in our example, the best to worst performance ratio as a

function of the nodal array shape was nearly 20.

Computations such as LU and QR factorization and the solution of triangular sys-

tems of equations, require global communication operations for selecting pivots,

distributing pivot rows and columns, and related operations. No nearest neighbor

operations in a Cartesian space is required. The ideal shape of the address space

for the factorization is such that the subarrays are close to a square [47] (the pivot

selection makes the communication along the two axes unbalanced).

For the Alternating Direction Implicit (ADI) methods, which are based on the

solution of sets of tridiagonal systems of equations in alternating directions along
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array axes, the ideal shape of the address space is such that the shape of the local

subarrays have axes' of equal length [30, 36].

The implementation of matrix multiplication used in the above examples reects

the characteristics of a node limited architecture. In such an architecture, the nodal

communications bandwidth is independent of the message destinations and the mes-

sage routing. The Connection Machine CM{5 is an example of such an architecture.

In link limited architectures [64, 65], the rate at which a node can send and receive

data is dependent upon the destination of the messages, in that the number of

channels per node that can be used e�ectively is a function of the destinations. The

Connection Machine CM{2/200 is an example of the latter type of architecture.

The matrix multiplication algorithm can be restructured such that it in fact is link

limited [27, 28].

As an illustration of the performance characteristics of a link limited architecture

with a suitable algorithm we use an implementation of the Cooley{Tukey FFT

algorithm with pipelining of the successive buttery stages on a binary cube net-

work. From a computational point of view, the data set of size M = 2

m

for a

one{dimensional FFT is best viewed as an m{dimensional data set with each axis

of length two. For a link limited architecture using a binary cube network inter-

connect of N = 2

n

nodes, each node contains 2

m�n

data elements, n � m. There

are m� n local dimensions and n nonlocal dimensions. The data set is bisected for

each of the nonlocal dimensions, and the surface area exposed by the bisections is

2

m�n

. The same amount of data must be communicated along all dimensions. For

a multidimensional data array making the axes subject to transformation entirely

local clearly minimizes the communication. When that is not possible, minimizing

the surface area exposed to one link is su�cient for a minimal number of element

transfers in sequence in a link limited model, whereas minimizing the surface area

for all links is necessary for a node limited model. In the link limited model, it

is immaterial with respect to the number of elements being transferred how the n

processor dimensions are distributed among the array dimensions. Figures 4 and 5

illustrate these facts.

2.2 Aggregation

In the above discussion of the shape of the address space it was implicitlyunderstood

that data aggregation was of the consecutive [23] (block) type in which a set of

successive elements along an axis are mapped to the same node. Another apparent

form of aggregation is cyclic [23] (wrap) allocation in which element i along an axis

is mapped to node i mod P , where P is the number of nodes along the axis. The

two forms of data aggregation are illustrated in Figure 6. Both block and cyclic

data allocation are supported in High Performance Fortran [13] through compiler

directives.

The data layout may have an impact on both load{balance and total communication

needs. For the FFT it can be shown that cyclic data allocation requires half as

many element moves in sequence for unordered FFT as a block allocation would

require [33] in a link limited model. For computations with a nonuniform use of the

address space, such as factorization of dense matrices and triangular system solvers,
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Figure 6: Consecutive and cyclic data allocation of 32 elements to 8 processors.

load{balance is a�ected by the data aggregation. A cyclic data allocation is often

promoted as the only way of achieving good load{balance, whereas in fact good

load{balance can be achieved for either form of data allocation by simply matching

the order of the traversal of the address space with the data allocation scheme [47].

This point is very important. It illustrates that scheduling and data allocation must

be considered together in that data reallocation may be avoided by adjusting the

scheduling of operations.

2.3 Sparse matrices { regular grids

The purpose of sparse matrix techniques is to take advantage of the zero/nonzero

structure of a matrix to reduce both storage and arithmetic needs. For highly

regular sparse matrices, storage schemes and address calculations can be much sim-

pli�ed compared to arbitrary sparse matrices. Scheduling of operations for e�cient

use of memory hierarchies is also much simpli�ed for highly regular sparse matri-

ces. Therefore, the data representation and the algorithms for sparse matrices with

a "stripe structure", i.e., a structure with nonzeroes appearing on diagonals that

are not necessarily adjacent, are typically di�erent from those for arbitrary sparse

matrices. On MPPs, it is advantageous to maintain this di�erence, but suitable

representations di�er from those for sequential machines. We refer to sparse ma-

trices originating from di�erence approximations on regular domain discretizations

as grid sparse matrices. Matrices capturing relationships on unstructured grids are

referred to as arbitrary sparse matrices. In either case, the matrix entries may be

single elements, vectors, or small matrices.

It is common to represent grid sparse matrices as a collection of one{dimensional

arrays, or as a dense matrix with the number of columns (or rows) equal to the num-

ber of nonzero diagonals [62]. Each array, or each column in the two{dimensional

representation, represents a linear ordering of all grid points. If the sparse matrix
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entries are vectors or matrices, then the dimensionality of the arrays is increased

by one or two dimensions. Representing grid sparse matrices in this traditional

manner is not suitable for distributed memory architectures. Relaxation methods

for linear system solution and explicit methods for partial di�erential equations

typically access data in some local neighborhood of the grid point to be updated.

The task of preserving locality of reference is much simpli�ed if the adjacency in the

grid is preserved in the data representation. By representing grid sparse matrices

as dense arrays of the same shape as the grid they represent, the techniques for

preserving proximity in mapping dense arrays to processing nodes can be employed

also for grid sparse matrices. For instance, the common three{point stencil in one

dimension yields a tridiagonal matrix, a �ve{point stencil in two dimensions yields a

matrix with �ve nonzero diagonals with a row or column ordering of the grid points.

The main diagonal and its two adjacent diagonals are nonzero. The remaining two

nonzero diagonals are separated from the main diagonal by M columns or rows for

a grid where the axes of stride one has extent M . Similarly, a seven{point stencil

in three dimensions yields a matrix with seven nonzero diagonals.

2.4 Sparse matrices { irregular grids

For computations involving arbitrary sparse matrices and irregular grids, taking

advantage of locality of reference is a much more di�cult problem than for grid

sparse matrices. The basic idea is still the same: assign variables and elements

of the sparse matrix, or the grid, to processing nodes based on a partitioning of

the underlying graph. However, the representations of the matrix and the nodal

variables are quite di�erent from the grid sparse case, and so are the partitioning

techniques. As was the case for grid sparse problems, partitioning based on subdo-

mains preserve locality of reference when the computations use data with indices in

some local neighborhood of the data being updated. This property holds for most

iterative methods for the solution of sparse systems of equations, and for explicit

methods for the solution of partial di�erential equations.

Two general partitioning techniques of signi�cant recent interest are the recursive

spectral bisection (RSB) technique proposed by Pothen et. al. [59] and the geomet-

ric approach proposed by Miller et. al. [53, 54, 69]. The RSB technique has been

used successfully by Simon [63] for partitioning of �nite volume and �nite element

meshes. A parallel implementation of this technique has been made by Johan [21].

The spectral partitioning technique is based on the eigenvector corresponding to the

smallest, absolute, nonzero eigenvalue of the Laplacian matrix associated with the

graph to be partitioned. The Laplacian matrix is constructed such that the smallest

eigenvalue is zero and its corresponding eigenvector consists of all ones. The eigen-

vector associated with the smallest nonzero eigenvalue is called the Fiedler vector

[10, 11, 12]. Grid partitioning for �nite volume and �nite element methods is often

based on a dual mesh representing �nite volumes or elements and their adjacencies

(or some approximation thereof) rather than the graph of nodal points. The reason

for using a volume or element based graph is that the computations are naturally

organized as volume or elementwise computations. These computations exhibit lo-

cality of reference within the volumes or elements and can often be performed as

a (large) collection of dense matrix operations. Communication is required when

9



passing data between the global representation, and the representation of the col-

lection of local elements [35, 52]. The purpose of the partitioning is to minimize

this communication.

For �nite element computations, the dual graph subject to partitioning typically

is formed by only modeling adjacencies between elements that share faces. This

adjacency accurately represents the communication requirements for face centered

schemes, such as �nite volume methods. However, in �nite element methods, com-

munication is also required between elements sharing edges and corners. Based on

the partitioning of the dual graph a partitioning of the set of nodal values is carried

out. Nodal points internal to a partition are mapped to the processing node to

which the partition is assigned. Boundary nodes must be assigned to one of the

partitions among which they are shared, or replicated among the partitions among

which they are shared. Only boundary nodes require communication.

One advantage of the spectral bisection technique is that it is based on the topology

of the graph underlying the sparse matrix. It requires no geometric information.

However, it is computationally quite demanding. The geometric partitioning tech-

nique by Miller et. al. holds promise to be computationally less demanding than

the spectral decomposition technique, but relies on geometric information and geo-

metric properties of the graph [55, 56]. Geometric information is typically available

for meshes generated for the solution of partial di�erential equations, but may not

be present in other applications.

The RSB technique has been used to partition the following �ve tetrahedral meshes

on �ve CM{5 systems of di�erent sizes [22]:

{ A mesh with 109;914 elements around a Falcon Jet airplane, Figure 7, partitioned

on a 32{node CM{5.

{ A mesh with 266;556 elements around an ONERA M6 wing, Figure 8, partitioned

on a 64{node CM{5.

{ A mesh with 575;986 elements around a generic commercial airplane, Figure 10,

partitioned on a 128{node CM{5.

{ A mesh with 1;010;174 elements around an F{18 �ghter jet, Figure 11, partitioned

on a 256{node CM{5.

{ A mesh with 2;132;448 elements around an ONERA M6 wing partitioned on a

512{node CM{5. This is a re�ned version of the 266;556 element mesh above.

The number of nodes, number of elements and number of graph edges for each

problem are summarized in Table 2. The number of elements per processor is not

constant over those problems, but its variations are relatively small, thus allowing

a useful evaluation of the RSB technique. Table 3 presents the partitioning timings

on the CM{5, the number of Lanczos iterations required for each problem, and the

number of edge cuts generated by the RSB algorithm. Figure 9 shows a partitioning

of the M6 Wing. Figure 12 shows the scalability of the parallel RSB implementation

by giving the partitioning time as a function of the number of partitions for the �ve

meshes we consider. The increase in the partitioning time is modest despite the

signi�cant increase in problem size, number of partitions and Lanczos iterations.
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Example No. of nodes No. of elements No. of graph edges

Falcon Jet 19,417 109,914 217,669

M6 wing 48,011 266,556 527,966

Airliner 106,064 575,986 1,136,029

F-18 182,055 1,010,174 1,999,646

M6 wing(�ne) 367,723 2,132,448 4,244,312

Table 2: Mesh characteristics of �ve partitioning examples.

Example Number of Number of No. of Lanczos Elapsed Number of

processors partitions iterations time (sec) edge cuts

Falcon Jet 128 128 1,156 44 22,926

M6 wing 256 256 1,413 76 57,063

Airliner 512 512 1,606 124 112,910

F{18 1,024 1,024 2,061 178 220,413

M6 wing (�ne) 2,048 2,047 2,419 201 481,359

Table 3: Partitioning statistics for �ve examples. Lanczos tolerance is 10

�3

.

Figure 7: Falcon Jet. View of surface mesh on the airplane.
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Figure 8: M6 wing. View of surface mesh on outer boundaries.

Figure 9: M6 wing. Decomposition into 16 subdomains.
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Figure 10: Commercial aircraft. View of surface mesh on the half{airplane.

Figure 11: F{18 �ghter jet. View of surface mesh.
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2.5 Allocation of aggregates

The consecutive and cyclic distribution schemes and the dimensionality of the ad-

dress space for regular and grid sparse arrays, and spectral or geometric partition-

ing for arbitrary sparse matrices and irregular grids, determines which elements are

grouped together for a node. The data reference pattern determines the communi-

cation needs of each node.

The total demand on the communication system is not only a�ected by how the

data is grouped together, but also how the groups are assigned to nodes. Ideally,

the groups of data are allocated to the nodes such that the contention is minimized.

To accomplish this task, both the data reference pattern and the network topology

must be taken into account, as well as the routing scheme. Optimal allocation

of data is a hard problem. Moreover, the allocation may need to be dynamic to

e�ciently accommodate di�erent phases of a computation. We will briey discuss

the mapping of groups of data below. Routing issues will be discussed in a later

section.

For irregular grids, mapping of groups of data to processing nodes such that com-

munication time is minimized under various load conditions is a much more di�cult

problem than the mapping of regular arrays. Instead of attempting to �nd the best

possible map, it may be more pro�table to search for a map that is guaranteed

to have an acceptable worst case behavior. A randomized data placement [60, 61]

reduces the risk for bottlenecks in the routing system. The randomized placement

of data achieves the same communication load characteristics in a single (determin-

istic) routing phase as randomized routing achieves in two phases [74, 75].

Figures 13 and 14 give examples of the performance improvements achieved on the

CM{2 through the use of randomized data allocation in a �nite element compu-
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Figure 13: Gather with binary and randomized addresses. 8K CM-2.

Problem Gather Scatter

std alloc. random alloc std alloc. random alloc

3200 20{node 75 50 124 55

brick elements

864 8{node 5.6 3.7 7.2 3.4

brick elements

Table 4: The e�ect of randomization on gather and scatter performance. Times in

msec on an 8K CM{200.

tation on an unstructured grid. The horizontal axis shows the number of degrees

of freedom and elements, while the vertical axis denotes the execution time. Each

element has 24 degrees of freedom. The performance improvement for the gather

instruction due to randomization is in the range 2.1 - 2.4. The improvement is in-

creasing with the problem size. Figure 14 shows the execution times for two meth-

ods of accumulating the product vector: using the combining features of the router,

and accumulation after the routing operation. Randomization of the addresses im-

proved the router combining time by about a factor of two, but performing the

routing without combining is even more e�ective. Table 4 gives the gather scatter

times with and without randomization for a solid mechanics application [52] on the

CM{200. The performance enhancement is a factor of 1.5 { 2.2, which in our expe-

rience is typical. It is rarely the case that randomization has caused a performance

degradation.
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Figure 14: Accumulation of vector elements. Binary and randomized addresses. 8K

CM-2.

3 Collective communications functions

The previous section demonstrated the value of data allocation with respect to

bandwidth requirements and some techniques for accomplishing locality of reference

in some important computations. In architectural design it is also important to

know what data reference patterns must be supported. Of particular interest are so{

called collective communications for which several communicationactions are known

and the path selection and scheduling can be chosen such that the communication

time is minimized. Important collective communication functions are

{ One{to{all reduction/copy

{ All{to{all reduction/copy

{ Gather/scatter

{ One{to{all personalized communication

{ All{to{all personalized communication

{ Dimension(index) permutation

{ Generalized shu�e permutations

{ Scan/parallel pre�x

{ Lattice emulation

{ Buttery emulation

{ Data manipulator network emulation (PM2I network emulation)

{ Pyramid network emulation

{ Bit{inversion

{ Index reversal (i N � i).

These functions are applied to complete data arrays, or segments thereof. Below, we

give a few examples of the use of some of the communication primitives above, and
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Figure 15: Broadcasting of a pivot row in LU{decomposition.

some techniques used to achieve high utilization of the communications bandwidth

in some networks.

3.1 Broadcast

A novel approach to the e�cient use of communications bandwidth for broadcast

in networks with several paths between the source and the destinations is the use

of multiple spanning trees [29]. Broadcast and reduction from a single source to

subsets of nodes, holding an entire row or column, are critical for the e�ciency of

computations such as LU and QR{factorization. In fact, many concurrent broadcast

(and reduction) operations are desired in these computations as illustrated in Figure

15. Whether or not these broadcast operations imply communication that interfere,

depends upon the network topology and how the index space is mapped to the nodes.

On a binary cube network, entire subcubes are often assigned to a data array axis.

In such a case, the broadcasts along the di�erent instances of an axis do not interfere

with each other, and the concurrent broadcasts degenerate to a number of broad-

casts within disjoint subsets of nodes. However, in other networks a data mapping

guaranteeing no interference between communication operations on disjoint subsets

of data may not be feasible, and the simultaneous broadcast from several sources

to distinct subsets of nodes may require a more complex routing for optimal band-

width utilization. For instance, on the Connection Machine system CM{5 which

uses a fat{tree interconnection network [45, 46], a two{dimensional array is either

mapped to the nodes in row or column major order. A row major ordering implies

that broadcast within rows can take place without interference between rows, since

they are mapped to separate subtrees. However, for broadcast within columns con-

tention occurs since the CM{5 fat{tree exhibits a reduction in bi{section width for

the �rst two levels of the fat{tree.

In implementing a broadcast algorithm it is important to exploit the bandwidth. A

simple spanning tree may not accomplish this task. Consider a binary cube network

(used in the CM{2 and CM{200). On an n{cube, using a binomial tree to broadcast
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Figure 16: Time in msec for broadcast of 16K 32{bit data elements on Connection

Machine system CM{200 as a function of the number of cube dimensions.

M elements from a node to all other nodes requires a time of nM with the commu-

nication restricted to one channel at a time. The time is proportional to M with

concurrent communication on all channels of every node, all{port communication.

However, the lower bounds for the two cases are M and

M

n

, respectively [29]. Thus,

the binomial tree algorithm is nonoptimal by a factor of n in both cases.

Multiple spanning trees rooted at the same node can be used to create lower bound

algorithms [29]. The basic idea is that the source node splits its data set into

M

n

disjoint subsets and sends each subset to a distinct neighbor. Then, each of these

neighbor nodes broadcasts the data set it received to all other nodes (except the

original source node) using spanning binomial trees. By a suitable construction

of the trees, the n binomial trees are edge{disjoint, and the full bandwidth of the

binary n{cube is used e�ectively.

The multiple spanning binomial tree algorithm is used for broadcasting on the

Connection Machine systems CM{2 and CM{200. The performance is illustrated

in Figure 16 [25]. As expected, the time to broadcast a given size data set decreases

with the number of nodes to which the set is broadcast. Thus, broadcast exhibits

a logarithmic speedup with respect to the number of nodes.

3.2 All{to{all broadcast/reduce

Another important communication primitive is the simultaneous broadcast from

each node in a set to every other node in the same set, all{to{all broadcast [29, 4, 51].

This communication is typical for so called direct N{body algorithms, but it is

also required in many dense matrix algorithms. In all{to{all reduction, reduction

operations are performed concurrently on di�erent data sets, each distributed over
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all nodes such that the results of the di�erent reductions are evenly distributed over

all nodes. Here we will illustrate their use in matrix{vector multiplication.

With the processing nodes con�gured as a two{dimensional nodal array for the ma-

trix, and as a one{dimensional nodal array for the vectors, both all{to{all broadcast

and all{to{all reduction are required in evaluating the matrix{vector product. Fig-

ure 17 illustrates the data allocation for both row major and column major ordering

of the matrix. For a matrix of shape P � Q, allocated to a two{dimensional nodal

array in column major order, an all{to{all broadcast [14, 29, 64, 65] is required

within the columns of the nodes for any shape of the nodal array and for any length

of the matrix Q{axis.

After the all{to{all broadcast, each node performs a local matrix{vector multiplica-

tion. After this operation, each node contains a segment of the result vector y. The

nodes in a row contain partial contributions to the same segment of y, while di�erent

rows of nodes contain contributions to di�erent segments of y. No communication

between rows of nodes is required for the computation of y. Communication within

the rows of the nodes su�ces. The di�erent segments of y can be computed by all{

to{all reduction within processor rows, resulting in a row major ordering of y. But,

the node labeling is in column major order, and a reordering from row to column

major ordering is required in order to establish the �nal allocation of y. Thus, for

a column major order of the matrix elements, matrix{vector multiplication can be

expressed as:

All{to{all broadcast of the input vector within columns of nodes

Local matrix{vector multiplication

All{to{all reduction within rows of nodes to accumulate

partial contributions to the result vector

Reordering of the result vector from row major to column major order.

All{to{all broadcast or reduction is required also when a one{dimensional nodal

array con�guration is used for the matrix [51].

As in the case of broadcast from a single source, all{to{all broadcast on an n{
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cube can be performed in a time proportional to the lower bound. With each node

initially holding M elements, a time of M (N � 1) is required for communication

restricted to a single port at a time, and a time of

M(N�1)

n

is required for all{

port communication [29]. A simple, yet optimal, all{port algorithm for all{to{

all broadcast uses n Hamiltonian paths for each node [29, 4, 51]. For all{to{all

broadcast, the Hamiltonian paths need not be edge{disjoint [4, 29].

3.3 Gather/Scatter

Gather and scatter operations on regular grid data represented as one{ or multidi-

mensional arrays, as well as irregular grid data, is critical for the performance of

many scienti�c and engineering applications. Many of these gather/scatter opera-

tions are related to stencil computations. The required data motion is preferably

supported through PSHIFT (for polyshift) [17], which allows the programmer to

specify concurrent shift operations in one or both directions of one axis or multiple

axes. PSHIFT is a generic communication primitive that can be optimized with

respect to communication and local data motion. An example of the call for a

seven{point stencil in three dimensions is shown below. In e�ect, PSHIFT provides

an e�ective means of emulating lattices on binary cubes. (A further level of op-

timization for stencil evaluation is provided by the so{called stencil compiler [3],

which in addition to maximizing the concurrency in internode communication (us-

ing PSHIFT), avoids unnecessary local memory moves and uses a highly optimized

register allocation in order to minimize the number of load and store operations

between local memory and the register �le in the oating{point unit.)

DIMENSION A(512,512,512), B(512,512,512), C(512,512,512), D(512,512,512),

E(512,512,512), F(512,512,512), G(512,512,512), X(512,512,512),

Y(512,512,512)

.

.

.

CALL GRID SPARSE MATRIX VECTOR MULT(ier, setup, y axes, coe� axes, x axes,

Y, X, A, B, C, D, E, F, G)

For gather and scatter operations on unstructured grid computations, it is generally

necessary to resort to the use of a general purpose router. A discussion of some

general routing techniques is given in the next section. Here we only mention

that one approach toward minimizing contention for gather/scatter operations is a

randomized data allocation that guarantees that the risk for severe contention is

low. Randomized data allocation is supported on the Connection Machine Cm{

2/200 systems. Table 5 [49] summarizes the e�ect of randomization of the data

allocation on the performance of gather/scatter operations on a few meshes. A

performance enhancement of 1.5 { 2.3 is typical.

20



Problem Gather Scatter

std alloc. random alloc std alloc. random alloc

3200 20{node 75 50 124 55

brick elements

864 8{node 5.6 3.7 7.2 3.4

brick elements

Table 5: The e�ect of randomization on gather and scatter performance. Times in

msec on an 8K CM{200.

3.4 Personalized communication

In one{to{all personalized communication, a node sends a unique piece of data

to every other node. An example is matrix computations where a node holds an

entire column, which may need to be redistributed evenly over all the nodes as

in some algorithms for matrix{vector multiplication [51]. In all{to{all personalized

communication, each node sends unique information to all other nodes. Personalized

communication is not limited to matrix transposition, but encompasses operations

such as bit{reversal, transposition or bit{reversal combined with a code change

(such as the conversion between binary code and binary{reected Gray code), and

bit{inversion. We now illustrate the signi�cance of personalized communication in

computing the FFT on a multiprocessor.

In computing the FFT on distributed data, one possibility is to exchange data

between nodes and have one of the nodes in a pair compute the \top" and the

other compute the \bottom" of the buttery requiring data from the two nodes.

This type of algorithm is used on the Connection Machine systems CM{2/200 [34].

When there are two or more elements per node, then an alternative is to perform

an exchange of data between nodes, such that each node in a pair computes one

complete buttery. The sequence of exchanges required for the FFT amounts to a

shu�e, as illustrated below, where the j separates node address bits to the left and

local memory address bits to the right:

Example 1.

Address Index

(54321j0) (a

5

a

4

a

3

a

2

a

1

jx

0

)

(04321j5) (x

0

a

4

a

3

a

2

a

1

ja

5

)

(05321j4) (a

4

x

0

a

3

a

2

a

1

ja

5

)

(05421j3) (a

4

a

3

x

0

a

2

a

1

ja

5

)

(05431j2) (a

4

a

3

a

2

x

0

a

1

ja

5

)

(05432j1) (a

4

a

3

a

2

a

1

x

0

ja

5

)

(15432j0) (a

4

a

3

a

2

a

1

a

5

jx

0

)
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Thus, the end result of the sequence of exchanges is a shu�e on the node address

�eld. Each step is equivalent to the transposition of a collection of 2� 2 matrices.

In practice, for a one{dimensional transform, there are typically several local mem-

ory bits. For performance, under many models for the communication system,

minimizing the number of exchange steps is desirable, i.e., instead of performing

bisections it is desirable to perform multisections including all local memory bits.

Thus, for instance, with two local memory bits, four{sectioning should be carried

out, as shown in Example 2.

Example 2.

Address Index

(65432j10) (a

6

a

5

a

4

a

3

a

2

j x

1

|{z}

j1

x

0

|{z}

j0

)

(10432j65) (x

1

x

0

|{z}

m

a

4

a

3

a

2

j a

6

a

5

|{z}

m

)

(10652j43) (a

4

a

3

|{z}

m

x

1

x

0

|{z}

m

| {z }

k�m

a

2

|{z}

n�k�m

j a

6

a

5

|{z}

)

(10654j23) (a

4

a

3

a

2

| {z }

n�m

x

0

|{z}

(k+1)m�n

| {z }

j0

x

1

|{z}

n�k�m

| {z }

j1

j a

6

a

5

|{z}

m

)

(23654j10) (a

4

a

3

a

2

| {z }

n�m

a

6

|{z}

(k+1)m�n

a

5

|{z}

n�k�m

jx

0

x

1

|{z}

m

)

(23654j10) (a

4

a

3

a

2

| {z }

n�m

a

6

|{z}

(k+1)m�n

a

5

|{z}

n�k�m

jx

1

x

0

|{z}

m

)

Example 2 was deliberately chosen such that the exchanges cannot simply be treated

as digit exchanges with increased radix for the digit, but must indeed be treated

as exchanges with digits of di�erent radices. Moreover, the last few exchange steps

were made such that the �nal order represents an m{step shu�e on the nodal

address bits, where m is the number of bits used to encode the �rst exchange.

This node address ordering requires a local memory shu�e to restore the original

local memory ordering. (In practice, it may, in fact, be preferable to avoid the

local memory reordering by performing the last exchange such that local memory is

normally ordered, which would leave the node addresses in an order corresponding

to two shu�es: one m{step shu�e on all n node address bits, one n modm shu�e

on the last m bits.)

In multidimensional FFT, all of local memory should be considered in performing

the multisectioning [26].

The FFT produces the results in bit{reversed order with respect to the indices.

Thus, establishing a normal index map in the output domain requires an unshu�e

with bit{reversal. Figure 18 [26] shows an example.

22



n � 2n � 1

0 1

�

p� n

�3

p� n

�2

p� n

�1

� �

n� 3

n

n+ 1

� � p� 2p� 1

? ?? ?

? ? ?

? ?

? ?

666

6

p� 1p� 2 � �

n+ 1

n

n� 1n� 2n� 3

� �

p� n

�1

p� n

�2

� �

1 0

Processor address Local memory address

Figure 18: Two step reordering after 4{section based radix{2 FFT. First step, bit{

exchange between nodes; second step, bit{exchange between local memory and node

addresses. p � 2n�m.

The lower bounds for all{to{all personalized communication depends upon the net-

work and communication system. For a binary n{cube with M data elements per

node, the lower bound is

nMN

2

for communication restricted to a single port per

node and

MN

2

for all{port communication [29]. Balanced spanning trees [19] provide

for optimal all{to{all personalized communication with all{port communication. A

balanced spanning tree has N=n nodes in each of the n subtrees of the root. The

use of n rotated spanning binomial trees rooted in each node also yields the desired

complexity [29].

In our FFT example above, several all{to{all personalized communications were

performed in succession. In such a case, it may be of interest to minimize the

time elements spend in transition from source to destination in order to minimize

pipeline delays. Algorithms with a minimal transition time are presented in [32].

Bit{reversal with an equal number of dimensions assigned to the node address �eld

and the local memory address �eld constitutes one form of all{to{all personalized

communication. The performance on various sizes of the CM{2 is shown in Figure

19 [25]. As expected, the execution time is almost independent of the machine size

for a �xed size data set MN . The increase in the execution time is largely due to

the fact that local memory operations cannot be performed in parallel. Thus, there

is a term proportional to n in addition to the constant term.
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Figure 19: All{to{all personalized communication on the Connection Machine.

3.5 Index reversal { bit{inversion

Index reversal is another important permutation used, for instance, in the com-

putation of real{to{complex FFT. For this computation, the standard algorithm

requires that data with indices i and N � i, 0 � i < N be operated upon in a pre-

processing or postprocessing step for the FFT [67, 68]. In binary{coded data, the

index reversal required for the FFT corresponds to a two's{complement subtraction

(bit{complement plus one).

However, in the case of the real{to{complex FFT on a one{dimensional array with

binary{coded data, the �rst step in one of the most common algorithms is to perform

a complex{to{complex FFT on the array viewed as a half{size, one{dimensional ar-

ray of complex data points. The result is shown in Figure 20. The Figure also shows

that the postprocessing matching indices i and N � i correspond to bit{inversion

in subcubes of the form 00 : : :01xx : : :x, with the inversion being performed on the

bits denoted by x.

If there are more than one complex data point per node, then the communication

requirements depend upon how the indices are aggregated to the nodes. In con-

secutive data allocation, the communication pattern between nodes is the same as

if there was only one element per node. In a cyclic data allocation, the communi-

cation for the �rst complex local memory location across all nodes is the same as

if there was a single element per node. The communication for the second and all

subsequent complex local memory locations is bit{complement on the entire node

address.

Bit{inversion also occurs in the alignment of the operands in matrix{matrix multi-

plication on three{dimensional nodal array con�gurations [27].

Concurrent communication for bit{inversion on binary cubes is straightforward.

For instance, multiple exchange sequences starting in di�erent dimensions and pro-

gressing through the dimensions in increasing (or decreasing) order cyclicly can be
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Figure 20: Postprocessing for real{to{complex FFT. Bit{inversion in subcubes.

used.

3.6 Shu�e operations on binary cube networks

Computing the FFT through multisectioning results in an m{step shu�e on the in-

dex space, where m is the number of bits encoding the �rst digit exchange. Restoring

the original index order corresponds to an unshu�e (except for the FFT which in

itself implements a bit{reversal). Reshaping the nodal array for a given data array

also represents a general shu�e operation. For instance, changing the allocation

(

a

3

y

2

a

2

y

1

m

2

y

0

a

1

x

3

a

0

x

2

m

1

x

1

m

0

x

0

)

to the allocation

(

m

2

y

2

m

1

y

1

m

0

y

0

a

3

x

3

a

2

x

2

a

1

x

1

a

0

x

0

);

where x

i

and y

i

denote bits encoding an x{axis and y{axis, respectively, and

a

i

denotes nodal address bits and m

i

local memory address bits, constitutes a

generalized shu�e, or dimension permutation. The dimension permutation is:

a

3

 a

1

 m

1

 a

2

 a

0

 m

0

 m

2

 a

3

. In this example, the reshap-

ing resulted in a single cycle on the dimensions. In general, the reshaping may

result in several cycles, just as the m{step shu�e in general can be decomposed

into several cycles.

A shu�e can be implemented as a sequence of successive pairwise dimension ex-

changes starting in any position. In a binary cube, such exchanges imply communi-
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cation in two cube dimensions for each step, when both dimensions in an exchange

are nodal address dimensions. However, it is also possible to use a �xed memory

dimension for each exchange. If the �rst exchange is repeated as a last exchange,

then the result is a shu�e on all bits but the �xed exchange dimension. For a shuf-

e on n bits, the �rst alternative requires n � 1 exchanges while the last requires

n + 1 exchanges. Thus, at the expense of two additional exchanges, each exchange

only involves one nodal address dimension. In [31] we present algorithms that are

nonoptimal by two exchanges at most, regardless of the number of cube dimensions

in the shu�e and the data elements per node. The algorithms use multiple ex-

change sequences (embeddings), exploiting the fact that a shu�e can be performed

as a sequence of exchanges starting at any bit and proceeding in order of decreasing

dimensions cyclicly.

4 Routing

Minimizing the potential for high congestion of communication links is an important

goal in the design of routing algorithms and networks. Minimizing network load by

using minimal algorithms is a sensible router design objective, though minimality

in routing does not guarantee a minimal routing time, particularly under heavy

load. In fact, non{minimal routing algorithms and data allocations which do not

preserve locality of reference may utilize more of the available network bandwidth

and decrease the congestion of communication links, without the corresponding

increase in demand for network bandwidth.

There are three common approaches to the message routing problem:

1. Oblivious { The path taken by a message depends only on the source and

destination of the message. The path is not inuenced by other messages.

2. Adaptive { The path taken by a message is inuenced by other messages,

usually in an attempt to minimize the total routing time.

3. Customized { Message routing is based on global knowledge of the problem.

Routing algorithms are also randomized or deterministic. In a randomized algo-

rithm the path selection, the scheduling of messages, or both, use randomization.

In a deterministic algorithm, the paths and schedules are determined without ran-

domization. The Intel Paragon, CalTech Mosaic, MIT J{Machine, Cray T3D, and

CMU iWarp all use deterministic, oblivious routing. Such routing is relatively easy

to implement and usually performs well, though performance may decay rapidly

under heavy load. For any N{node, degree{d network, there exist permutations

for which any deterministic, oblivious routing strategy requires time 
(

p

N=d) [37].

Matrix{transpose and bit{reversal exhibit worst{case behavior on the binary cube

for e{cube routing.

Two{phase randomized routing in which a random node is used as an intermedi-

ate destination [72, 73] can route any permutation on binary n{cubes and rank{n

buttery and related networks in about 2n steps [71] with high probability. The
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disadvantages of the algorithm are that all data locality is lost and bu�ers of size

O(n) are required in each node. However, variants with �xed size bu�ers have been

proposed [48, 71]. Randomization is employed in the �rst routing phase in the

fat{tree network [44] of the CM{5 [70].

An improvement of the routing time by approximately a factor of two can be

achieved by randomizing the allocation of the address space, as suggested by Ranade

et al. [60, 61]. This approach is being implemented by Abolhassan et al. [1]. Fixed

size bu�ers su�ce, but data locality is still lost. Some of the experience of ran-

domized data allocation on Connection Machine systems was discussed in Section

2.5.

Adaptive routers which do not employ randomization have been proposed by Dally

and Aoki [6], Duato [9], Konstantinidou [38], Ngai and Seitz [57], and Pifarr�e et

al. [58], among others. A survey of adaptive routing for binary cubes can be found

in [15]. Deterministic, adaptive routing is used on the CM{2/200 [18]. The Chaos

router [2, 39] is a randomized, adaptive router, which allows messages to follow

random shortest paths from source to destination, but will misroute messages when

congestion occurs.

ROMM (Randomized, Oblivious, Minimal, Multi{Phase) routing is a routing tech-

nique that combines minimality with randomization for contention minimization.

ROMM algorithms route each message from source to destination in k phases.

During each phase, a subset of the address dimensions that need to be routed are

traversed whenever k � n, where n is the number of dimensions in the address

space. The dimensions traversed in each phase are determined by randomly select-

ing, for each message, k� 1 intermediate nodes R

1

; R

2

; : : : ; R

k�1

, on some minimal

path between the source and destination with R

0

and R

k

being the source and

destination nodes, respectively. For hypercubes (multidimensional meshes), the in-

termediate destinations are chosen among the corner nodes of the minimal subcube

(mesh) that has the source and destination nodes as two of its corners. For a binary

cube network, the number of links traversed in the i

th

phase is simply the Ham-

ming distance from R

i�1

to R

i

. Within each phase, the e{cube algorithm [66] is

used for routing. e{cube, or dimension order routing, is a minimal algorithm which

traverses the dimensions that must be routed in descending order. Figure 21 shows

an example of ROMM routing on a binary cube network for k = 4.

If the number of phases exceeds the number of address dimensions to be routed,

then the extent that needs to be routed in some dimensions are divided among two

phases, for n < k � 2n. As k increases relative to n additional splittings of axes

extents are made.

Minimality ensures that the bandwidth demand on the network is minimized given

the data distribution. As k increases, more randomization becomes possible. This

results in more path choices for a message, reducing the likelihood of congestion for

many, but not all permutations. The scalability of ROMM routing is illustrated in

Figure 22 in which routing time is plotted against network size for matrix trans-

position and routing to a single random destination for all packets in a node. In

the �gure, the plots on the right are scaled by the network bisection width. As

predicted, the behavior observed on 256 node meshes scales, at least up to 1024

nodes.
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5 Summary

We have reviewed some of the techniques used for limiting the bandwidth demands

on interconnection networks, discussed some of the higher level communication

primitives known as collective communication, and presented some of the techniques

used for e�ective bandwidth utilization in electronic interconnection networks. The

techniques allow for a very high degree of utilization of the available bandwidth in

electronic networks. We believe that, despite the promise of considerably higher

bandwidth in systems with optimal interconnect, some of the ideas may also be

useful in such systems. The collective communication functions should be very

valuable also in evaluating the design of such systems.
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