DIGITAL ACCESS 10 —
SCHOLARSHIP s HARVARD e for Scnolry Communicaton

DASH.HARVARD.EDU

File Layout and File System Performance

Citation
Smith, Keith and Margo Seltzer. 1994. File Layout and File System Performance. Harvard
Computer Science Group Technical Report TR-35-94.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506455

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility


http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506455
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=File%20Layout%20and%20File%20System%20Performance&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=a566a6e840aa68d0820e500df13130ae&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

File Layout and File System Performance

Keith Smith
Margo Seltzer

Harvard University
TR-35-94

Abstract

Most contemporary implementations of the Berkeley Fast File System optimize file system throughput by
allocating logically sequential data to physically contiguous disk blocks. This clustering is effective when
there are many contiguous free blocks on the file system. But the repeated creation and deletion of files of
varying sizes that occurs over time on active file systems is likely to cause fragmentation of free space,
limiting the ability of the file system to allocate data contiguously and therefore degrading performance.

This paper presents empirical data and the analysis of allocation and fragmentation in the SunOS 4.1.3 file
system (a derivative of the Berkeley Fast File System). We have collected data from forty-eight file sys-
tems on four file servers over a period of ten months. Our data show that small files are more fragmented
than large files, with fewer than 35% of the blocks in two block files being allocated optimally, but more
than 80% of the blocks in files larger than 256 kilobytes being allocated optimally. Two factors are respon-
sible for this difference in fragmentation, an uneven distribution of free space within file system cylinder
groups and a disk allocation algorithm which frequently allocates the last block of a file discontiguously
from the rest of the file.

Performance measurements on replicas of active file systems show that they seldom perform as well as
comparable empty file systems but that this performance degradation is rarely more than 10-15%. This
decline in performance is directly correlated to the amount of fragmentation in the files used by the
benchmark programs. Both file system utilization and the amount of fragmentation in existing files on the
file system influence the amount of fragmentation in newly created files. Characteristics of the file system
workload also have a significant impact of file system fragmentation and performance, with typical news
server workloads causing extreme fragmentation.

1 Introduction

The single most important factor in determining the performance of a file system is the number of seeks
and rotational delays that it incurs. A file system that makes many seeks will spend a disproportionate
amount of time waiting for the disk head to reach its destination and correspondingly little time transfer-

ring data to or from the disk. This results in poor file system performance. Similarly, a system that per-

forms few seeks will spend a larger portion of its time transferring data to and from the disk and will have

correspondingly higher performance.

A common technique for reducing the number of seeks required by the file system is to increase the
amount of data transferred in each disk request. Assuming that a separate seek is required by each disk
request, a larger request size amortizes the latency of the seeks across more bytes of data. There are a
variety of methods for increasing the size of disk requests. The simplest is to increase the file system block
size, the minimum unit of allocation and transfer. This guarantees that all disk requests transfer more data,
but has the drawback of increasing internal fragmentation in the file system.

Another way to increase the amount of data transferred in each disk request is to cluster blocks from the
same file together on the disk. Using this technique, logically sequential data are allocated to physically
contiguous disk blocks. This technique has been applied to the UNIX System V file system [3], the

—1-



Berkeley Fast File System [2], and is used in many contemporary UNIX file system implementations (e.g.,
BSD 4.4 [5], Solaris, SVR4, et al.).

Performance analyses [2][5] have shown that this clustering technique can provide a substantial
improvement in file system performance. Intuitively, it seems that the performance of such systems must
vary according to the success of the disk allocation algorithm in clustering files on the disk. When the file
system is mostly empty, there should be large extents of free space, making it easier to perform optimal
allocation. Similarly, when the free space is highly fragmented, poor file layout should result.

This observation implies that there is a major drawback to file system performance measurements as they
are typically conducted. File system performance is usually not measured over the life of a file system. The
typical scenario for measuring the performance of a file system is to create a new file system on a free disk
partition and then to run the desired benchmark programs. This means that performance is typically
measured on a new (and empty) file system—the optimal conditions for achieving good file layout.

This paper examines the long term behavior of the SunOS implementation of the Berkeley Fast File
System (FFS). We examine file systems on several file servers that are in full-time use serving the needs of
a diverse set of users. We analyze trends in file layout and their impact on file system performance over
time.

The rest of this paper is structured as follows: Section 2 describes the implementation of FFS, focusing on
the disk allocation algorithm, Section 3 describes the data we have collected, Section 4 describes our
observations about file layout on the systems we examined, Section 5 studies the impact of file layout on
file system performance, and Section 6 provides a summary of our results.

2 Disk Allocation in FFS

The Berkeley Fast File System (FFS) [1] divides the physical disk into regions cditater groups A

cylinder group consists of one or more consecutive cylinders and contains a bitmap of its free space. Disk
space is managed in terms of three units: blocks, partial blocks, fraligdents and contiguous sets of

blocks callectlusters Each file is represented by an on-disk data structure calied@which contains
information about the file's owner, size, access permissions, etc.

The inode also contains a list of the blocks allocated to the file. In order to allow (nearly) unlimited file
sizes, several levels of indirection are used in the block list. The inode only contains space for fifteen block
addresses. The first twelve of these are used to point to the first twelve blocks of the file. The thirteenth
address points to andirect block a block which does not contain file data, but rather contains pointers to
additional data blocks. The final disk addresses in the inode poirddobde indirect bloclkand atriple

indirect block respectively. The double indirect block is a block of disk addresses, each of which points to
an indirect block. The triple indirect block extents this indirection one more level. Inodes are allocated
statically when the file system is created and are distributed evenly among the file system’s cylinder
groups.

Disk space is allocated to files one block at a time. To reduce internal fragmentation, a cluster of one or
more fragments may be used instead of the final block of a file. When allocating a new block to a file, FFS
first computes theleal blockto allocate. For the first block of a file, the ideal block is always the first data
block in the cylinder group in which the file's inode is located. For other blocks, the ideal block is selected
based on the location of the previous blocks of the file and the values of two file system parameters,
maxcontigand rotdelay maxcontigspecifies the maximum cluster size allowed by the file system and
rotdelayspecifies the minimum rotational gap to be placed between clusters.

If the ideal block is not free, FFS attempts to allocate a nearby block in the same cylinder group in order to
minimize the seek time required to reach the new block. First, FFS attempts to allocate a rotationally
equivalent block on a different platter of the cylinder group. A file system parameter aadié¢fbr



cylinders per cycle) specifies how many rotationally equivalent positions are considered. If no rotationally
equivalent blocks are available, FFS uses a brute force search to find a free block in the cylinder group,
first scanning from the position of the ideal block to the end of the cylinder group, then from the beginning
of the cylinder group to the ideal block. FFS allocates the first free block encountered during this search.

Indirect blocks (of any type) are allocated in a similar manner. Whenever a file grows large enough to
require an additional indirect block, FFS selects a new cylinder group for the file. The ideal block for the
indirect block is the first data block in this cylinder group. FFS follows the algorithm described above if
this block is already allocated. The data blocks referenced from an indirect block are allocated in the same
cylinder group as the indirect block. When the first data block is allocated, its ideal block is also the first
data block in the cylinder group. As subsequent blocks referenced by the indirect block are allocated, ideal
blocks are selected based on the valugsaxcontigandrotdelay

In older implementations of FFS [1], all I/O requests were for a single block of data. Since the disk
typically rotated at least one block between successive I/0O requests from the operatingrsgstemtig

was set to one, andtdelaywas set to the distance the disk rotated between successive disk requests. On
disks that had track buffers, higher read throughput could be attained by ssttelgyto zero, forcing

FFS to attempt to allocate files completely contiguously on the disk. In practice, this was seldom done
because of its high cost in write throughput. Write requests to successive disk blocks incurred a delay of a
full disk rotation.

Newer versions of FFS [2][5] have been modified to opportunistically cluster adjacent disk blocks into a
single I/O operation during read-ahead and cache flushes. To maximize the opportunities for exploiting
clustering,maxcontigis set to the maximum transfer size permitted by the hardware. As in the non-
clustering implementations of FFS described abaw&jelay may be set to zero to optimize read
throughput. Successive write requests may still incur a full rotation of overhead. With clustering, however,
each write request writes many disk blocks amortizing this cost across more data, and in practice many
clustering FFSs are tuned this way.

To demonstrate the way the block allocation algorithm works, we present two examples. First, consider a
forty block file that is being created on an empty disk witxcontigset to eight andtdelayset to one.
Because the disk is empty, FFS will always be able to allocate the ideal block. For the first block of the file,
the ideal block will be the first block of the file’s cylinder group. As subsequent blocks are allocated, FFS
looks at the number of blocks that have been allocated contiguously prior to the block that is being
allocated. If this number is less theaxcontig(eight), then the ideal block is one block after the last block

of the file. Otherwise the ideal block is computed by skippitdelay blocks after the previous block of

the fileh. Following this algorithm, the first eight blocks of the file will be allocated in a single cluster,
occupying the first eight data blocks of the cylinder group. When the ninth block is allocated, FFS notes
that the previous eight blocks are contiguous, and therefore inserts a rotational gap before the new block.
Sincerotdelayis one, the ideal block for the ninth block will be two blocks after the eight block of the file.
FFS would normally allocate the next seven blocks contiguously, in one cluster. Because only twelve
blocks are directly referenced from the inode, however, the thirteenth block will require the allocation of
an indirect block. This block, and the data blocks it references, is allocated in a different cylinder group.
The indirect block is allocated in the first data block of new cylinder group. The thirteenth block of the file
occupies the next block. FFS continues allocating subsequent blocksnasiogntigandrotdelay Thus,

blocks 13-20 of the file comprise a full cluster, as do blocks 21—-28 and blocks 29-36. The final four blocks
of the file form another cluster. Each of these clusters is separated by a single block as specified by
rotdelay

1. Therotdelayparameter is actually specified in milliseconds, rather than in disk blocks. This specifies the expected latency
between disk requests. When computing the address of the ideal block, this latency is converted to disk blocks based on the
block size and the rotational speed of the disk.



We now consider a similar file allocated on a similar file system that is not empty. In this case, the results
of a file allocation are far less predictable. Since it is impossible to specify exactly which blocks will be
allocated to the file without providing the free space bitmaps for our hypothetical file system, we will make
some generalizations about the resulting file layout. The ideal block for the first block of the file will again
be the first data block of the cylinder group. However, since this is the ideal block for the first block of
every file in the cylinder group, it is probably already allocated. In this case FFS tries to find a nearby
alternate block, first attempting to allocate a rotationally equivalent block on a different platter in the same
cylinder. Again, because all file in the cylinder group attempt to allocate the same block as their first block,
all of the rotationally equivalent blocks have probably been allocated. So FFS scans the cylinder group,
starting at the location of the ideal block, and allocates the first free block that it finds. Thus, every time a
new file is created, there is a high probability that the first free block in the cylinder group will be allocated
as the file’s first block. Note that whenever the idea block is unavailable, we hope that the alternate block
selected by FFS is part of a cluster of free space, so that several blocks can be allocated contiguously on
the disk.

Subsequent blocks of the file are allocated in a similar manner. This means that the first few blocks (or
more) of a file are likely to be allocated in the first cylinder of the cylinder group. Since the ideal block is
always close to the previous block of the file, it is likely to be in the same cylinder. If it is not available, a
rotationally equivalent block (also in the same cylinder) is allocated. If no such blocks are available, the
next free block in the cylinder group is allocated. Depending on the location of the ideal block, and the
distribution of free space, there is a chance that this too will be in the same cylinder. When a block is
eventually allocated in the second cylinder of the cylinder group, this same allocation pattern will take
place in that cylinder. This continues as the file grows into subsequent cylinders of the cylinder group. This
same allocation behavior will occur when the file requires an indirect block and switches cylinder groups.

Thus, when allocating a file on a partially full disk, we expect the file to start at the beginning of a cylinder
group, and to extend towards the end of the cylinder group, with some blocks allocated from the first
cylinder of the cylinder group, followed by some blocks in the second cylinder, and so on.

3 Data Collection

To evaluate the success of the FFS disk allocation algorithm in allocating contiguous disk blocks, we col-
lected data form forty-eight file systems on four different file servers in the Harvard Division of Applied
Sciences. These systems are primarily used to satisfy the daily computing needs of computer science
researchers and graduate students in the Division. The file systems contained user home directories, news
and mail spools, source trees under active development, and a variety of installed software. All of the file
servers were SparcStations running SunOS 4.1.3.

The data consists of daily snapshots recorded for every file system under study. A snapshot is a summary
of a file system’s meta-data, including information about the size and configuration of the file system, the
age, size, and location of each file, and a map of the free blocks on the file system.

Examining a single file system snapshot provides information about the file system at a single point in time
and allows the file system to be reconstructed on a test machine for performance analysis in a controlled
environment. A succession of snapshots allows us to study changes in file layout and file system
performance over time.

Tables 1-4 describe the file systems on each of the four file servers in this study. All of the file systems
studied hadgnaxcontigset to seven andtdelayset to zero (i.e., they were optimized for read throughput).

All of the file systems had a block size of eight kilobytes except fardisspoohndservicedile systems

on das-newswhich had a block size of four kilobytes. Exact data about the ages of some of the file
systems were unavailable. In these cases, the age was estimated by using the oldest modification time for
any inode on the file system.



DAS-NEWS FILE SYSTEMS
Ei;qseysmm (S,\iﬂzg) ?rﬁgn ths) NCG BPG Description
/ 11 36 3 720 Server’s root file system.
cnews 565 34 50 1539 News articles.
export 108 36 21 720 Root file system used by diskless client
newsspool 898 15 141 1729 News articles and news software.
services 900 15 142 1729 WWW pages and software.
staff 353 32 32 1539 Accounts for system administrators.
usr 90 36 18 720 UNIX utilities and libraries.
usrls 240 27 22 1539 Sources for miscellaneous utilities.
var 13 36 3 720 System configuration and log files.

Table 1: das-news File Systemdhis table summarizes the file systems on the file sela®inewsThe name is the loc
name used for the file system. The size specifies the total capacity of the file system in megabytes. The age is the
age of the file system in months as of December 1, 1994. Subtract ten months to obtain the age at the beginning
NCG is the number of cylinder groups used by the file system, and BPG is the number of eight kilobyte blocks p«
group. A brief description explains how each file system is used.

SPEED FILE SYSTEMS
Ei;emiystem (S,\i/lzBe) '(A‘rgg nths) NCG BPG Description
/ 15 19 3 720 Server’s root file system.
bespin-new 823 15 74 1520 On-line Sun documentation.
local 953 17 86 1520 Locally installed software.
speed 574 5 52 1520 Scratch area used for installations.
usr 220 19 42 720 UNIX utilities and libraries.
usr3 953 18 86 1520 Experimental source code managemer
system.
usrd 953 18 86 1520 Accounts for students and faculty.
usrb 953 18 86 1520 Accounts for post-docs.
usri2 953 18 86 1520 Graduate student accounts.
usrleé 509 15 46 1520 xterm support utilities.
var 29 19 6 720 System configuration and log files.

Table 2: speed File SystemJhis table summarizes the file systems on the file sepe=rd The name is the local name u
for the file system. The size specifies the total capacity of the file system in megabytes. The age is the approximai
file system in months as of December 1, 1994. Subtract ten months to obtain the age at the beginning of the study
number of cylinder groups used by the file system, and BPG is the number of eight kilobyte blocks per cylinder groi
description explains how each file system is used.



ENDOR FILE SYSTEMS

Ei;iystem (S'\i/lzBe) '(An?g nths) NCG BPG Description

/ 15 15 2 1360 Server’s root file system.

adm 90 15 9 1360 Administrative files.

backupdatabase 1907 15 171 1520 Database for backup system.

ftp 90 15 9 1360 Files available for anonymous ftp.

local 953 15 86 1520 Locally installed software.

mail 180 15 18 1360 Mail files.

rabin 450 15 41 1520 Accounts for faculty and grad. students
Sun-3 binaries.

root 15 15 2 1360 Backup dfiile system.

software 953 15 86 1520 Commercial software packages.

software2 1006 15 91 1520 Commercial software packages.

tmp 90 15 9 1360 Storage for temporary files.

usr 224 15 23 1360 UNIX utilities, libraries, and man pagesg

usr0 224 9 23 1360 Backup afr file system

usrl 620 15 63 1520 Accounts for administrative staff.

usr2 509 15 51 1520 Accounts for engineering students and
faculty.

usré 953 15 86 1520 Accounts for computer science course
and first year graduate students.

usr8 953 15 86 1520 Undergraduate accounts.

var 68 15 7 1360 System configuration and log files.

var/tmp 90 15 9 1360 Storage for temporary files.

white 450 15 41 1520 User accounts for CS theory faculty an|
students.

Table 3: endor File SystemsThis table summarizes the file systems on the file sendwr The name is the local name u
for the file system. The size specifies the total capacity of the file system in megabytes. The age is the approximai
file system in months as of December 1, 1994. Subtract ten months to obtain the age at the beginning of the study
number of cylinder groups used by the file system, and BPG is the number of eight kilobyte blocks per cylinder groi
description explains how each file system is used.



VIRTUAL12 FILE SYSTEMS

File System Size Age _

Name (MB) (months) NCG BPG Description

/ 20 26 6 456 Server’s root file system.

glan5 1704 25 90 2596 Commercial and locally installed soft-
ware packages.

glan6 502 19 27 2596 Accounts for systems students and fag:
ulty.

glan7 401 19 21 2596 Accounts for systems students.

glan8 401 19 21 2596 Accounts for systems students and fag-
ulty.

glan9 401 19 21 2596 Accounts for systems students and fag-
ulty.

usr 84 26 26 456 UNIX utilities and libraries.

var 66 26 20 456 System configuration and log files.

Table 4: virtuall2 File Systems.This table summarizes the file systems on the file server virtuall2. The name is 1
name used for the file system. The size specifies the total capacity of the file system in megabytes. The age is the
age of the file system in months as of December 1, 1994. Subtract ten months to obtain the age at the beginning
NCG is the number of cylinder groups used by the file system, and BPG is the number of eight kilobyte blocks pt
group. A brief description explains how each file system is used.

4 Characteristics of File Layout

It has been shown that any allocation scheme that allocates variable-sized pieces of memory, and does not
relocate allocated memory, cannot be guaranteed to use memory efficiently [4]. In such a system, memory
will become fragmented, and it is possible that a request for less than the total amount of free memory will
not be satisfiable because there is not a free piece of memory of the desired size. This result applies even if
there are a limited number of sizes that can be allocated.

This is the problem faced by a clustering file system such as FFS. FFS attempts to allocate disk space in
clusters ofmaxcontigblocks. When contiguous blocks are not available, discontiguous ones are allocated
instead, resulting in a fragmented file that takes longer to read and write. This problem is compounded by
FFS’s disk allocation algorithm, a simple heuristic that is not guaranteed to find the appropriate number of
contiguous disk blocks, even if they are available.

The clustering enhancements to FFS have been shown to offer significantly improved file system
performance [2][5] for empty file systems where it is easy to allocate clusters of contiguous disk blocks.
The amount of fragmentation that occurs in a file system determines whether these performance gains can
be maintained over the life of the file system. We use the data described in Section 3 to examine the types
of fragmentation that occur on active file systems.

4.1 Free Space Distribution

When a new file is created on an FFS, its layout is determined by the availability of free space on the file
system. If the free space in the file’s cylinder group is clustered together in one place, then the FFS block
allocation algorithm will generate a good file layout. If the free space is scattered throughout the cylinder

group, then it will be impossible for FFS to achieve a good layout, and a fragmented file will result.



100

T T T T
Ila”ll

—_ "glan7" -
S “news-usr* -
= 80 "usre" o
) "white" -~
<5} . :
L 60 | ST
X 9 / ; ;
&)
=] v
s}
IS 40 r i
()]
s
3] 20 | 1
[
o

0 ol ] I B I

0 20 40 60 80 100

Percentage of Cylinder Group

Figure 1: Distribution of free space within cylinder groups. This graph plots the cumulative percentage of a fi
system'’s free space as a function of position within the cylinder groups. The curve labeled “all” uses the combin
from all of the file systems in the study, with each file system weighted equally. The other curves provide data
selection of individual file systems. “news-usr” is tgr file system fromdas-newsAll data in this chart is from file

system snapshots taken on October 15, 1994. Data from other dates is similar.

To examine the distribution of free space in an FFS snapshot, we divided the cylinder groups into ten
equal-sized pieces callsggmentsThe data for the first segment of each cylinder group were summed
together to derive statistics for the free space usage in the first 10% of all cylinder groups. The statistics for
other segment positions were similarly totaled.

Figure 1 shows the distribution of free space within a file system’s cylinder groups. On a typical file system
almost 50% of the free blocks are located within the last 20% of the cylinder groups. This skewed
distribution of free space within a file system’s cylinder groups is the direct result of the disk allocation
algorithm. Recall that the basic pattern of allocation is for a file to start a the beginning of a cylinder group,
and to extend towards the end of the cylinder group. Thus, every file will allocate some space at the
beginning of the cylinder group, but only the larger files will allocate space from later in the cylinder
group. The result is that the space at the beginning of a cylinder group is consumed more rapidly than the
space at the end.

The sample file systems shown in Figure 1 exhibit a range of free space distrilglioAsindusr6 are

typical of most file systems, with most of their free space skewed toward the ends of cylindengritaps.
andnews-ust(theusr file system frondas-newprepresent the extremes seen in our file systems. The free
space distribution in the news-usr file system is especially strongly skewed, with almost all of the free
space located in the last 80% of the cylinder groups. This file system contains various UNIX binaries and
libraries, and is probably unchanged from the day it was first installed. Recall that each newly created file
starts at the beginning of its cylinder group, extending towards the end of the group as it grows. If many
files have been created, but none removed (as we would expect on this file system) we would expect all
free space at the beginning of the cylinder groups to be used, but little from the end of the cylinder groups.



100

|'10\]u|94n -
~ "15Jul94”
=} "150c¢ct94" - /,«/;’/,’/
IS 80 _
3 R
A=) |
(D .
2 //1,//
LL 60 / |
0
X "/
(6]
o
m //
5 40 |
:
(@]
o]
5
2 20 | _
]
o
0 ——— | I I
0 20 40 60 ” )

Percentage of Cylinder Group

Figure 2: Distribution of free space onwhite. This graph plots the cumulative percentage of free space aevhitefile
system as a function of position within the file system’s cylinder groups. The curves labeled “10Jul94” and “15.
provide data from before and after 290 megabytes of data were removed from the file system. “150c¢t94” is the dist
of free space on October 15, 1994, also shown in Figure 1.

The white file system, in contrast, has an extremely even distribution of free space. This is the result of
some housecleaning that was performed on the file system three months prior to this snapshot. On July 13,
1994, a large amount of data was removed frdrite, and it went from 90% full to 25% full. The removed

data was fairly evenly distributed acrasBites cylinder groups, resulting in an even distribution of free
space afterwards. By October 15, 1994, the date of the snapshot used in Ridnitevias still only 36%

utilized. Figure 2 demonstrates this effect by comparing the free space distributidnit@hoth before

and after this “housecleaning.”

The skewed distribution of free space exhibited by most file systems may have a significant impact of the
layout of newly created files. Blocks are allocated to a new file starting from the beginning of the file’s
cylinder group. Since there is very little free space at the beginning of cylinder groups, FFS's clustering
algorithm will often allocate poorly clustered blocks to new files, despite the fact that there may be large
clusters of free space available at the end of the cylinder group. This issue is examined in more depth in the
next section.

4.2 File Layout

We define dayout scoreto quantify the fragmentation of individual files. This score is defined to be the
percentage of blocks in the file that are optimally allocated. A block is optimally allocated if there is no gap
between it and the previous block of the same file. The first block of a file is not included in this calculation
since it is impossible for it to have a “previous block.” To illustrate the calculation of a file's layout score,
consider a three block file occupying blocks 100, 101, and 200 on the disk. Since the first block is ignored,
there are only two blocks that are considered in computing the layout score. The second block of the file
(block 101) is contiguous with its predecessor (block 100). The third block (block 200) is not. Thus the
layout score for this file is 0.5, indicating that half of the blocks in the file are located optimally on the disk.



(<&
g
n
=,
o
- "allt ——
03 F “news-usr" 1
e "newsspool”
0.2 | "usr3" o A
"white" ----
01 r "usré" ----
0 1 1 1 1 1
4 16 64 256 1024 4096

File Size (in blocks)

Figure 3: Layout score as a function of file sizeThis chart plots layout score as a function of file size (expressec
blocks). The files on each file system are grouped according to the number of blocks they use. The group bound
powers of two. A file is assigned to a group by rounding its size (in blocks) up to the nearest power of two. The layol
for a group is computed as the percentage of blocks, for all files in the group, that are optimally allocated. The curve
“all” uses the combined data from all of the file systems studied. Other curves are data from representative file <
“news-usr” is theusr file system ordas-newsThe data in this chart is from file system snapshots taken on Octobet
1994.

A layout score of 1.0 indicates that a file's layout is completely contiguous. Similarly, a layout score of 0.0
indicates that no two successive blocks of the file are contiguous on the disk. On file systems with a non-
zerorotdelay it is impossible for large files to achieve a layout score of 1.0, mitielayforces the disk
allocation algorithm to leave gaps in the file. In all of the file systems used in this studydilay
parameter is zero, theoretically allowing perfect layout scores.

In order to characterize the types of files that achieve good layout we analyzed the effect of file size and file
system age on file layout. In Section 5 we also consider the effect of file system utilization. Figure 3 shows
the relation between file size and file layout. The general trend on all file systems is that small files are
more fragmented (i.e., have lower layout scores) than large files. Across all of the file systems that we
studied, two block files have an average layout score of 0.327. In other words, only 32.7% of the two block
files (files between 8193 and 16384 bytes) are laid out on two contiguous disk blocks. Larger files, in
contrast, have better layout scores. Files with 33—64 blocks (256KB-512KB) have an average layout score
of 0.826. In other words, slightly less than one seek is required for every five blocks read from these files.
Larger files have higher layout scores.

The sample file systems shown in Figure 3 exhibit the range of relationships between file size and layout
score seen in the file systems studied. The cumulative numbers across all file systems are indicative of
most file systems, such asr3andwhite usréand thenews-usi(theusr file system frondas-newyare at

the extremes seen for most file systems. As discussed eaelies;usris a static file system, which has

barely changed since the day it was first installed. With no file turn over, there is little opportunity for file
fragmentation to occur. In contrasisr the home to accounts of first year graduate students and the
course accounts used by instructors and teaching fellows in computer science, is heavily used and exhibits

—10 -



Layout Score

0 1 1 1 1 1
4 16 64 256 1024 4096

File Size (in blocks)

Figure 4: Effect of fragments on layout scoreThis graph plots layout score as a function of file size (expressec
blocks). Both lines are computed using data from all of the file systems studied. For the “frag” line, layout sc
computed as the percentage of blocks that are optimally allocated. The “nofrag” line is computed the same way, ex
a fragment at the end of a file is always considered to be optimally allocated, regardless of its location on the disk.
is from file system snapshots taken on October 15, 1994. Data from other dates is similar.

greater fragmentation than most other file systems.nEwesspoofile system is a unique outlier. As a
repository for net-news articles, it is subjected to a load consisting of the frequent creation and deletion of
many small files, resulting in the extreme fragmentation shown in Figure 3. The other news file system in
the study ¢new$ exhibits similar fragmentation.

The lower layout scores exhibited by smaller files are the result of several factors. Recall from Section 4.1
that free space is skewed towards the end of a file system’s cylinder groups. Regardless of this, the
allocation of every file starts at the beginning of the file’s cylinder group. Thus, small files are allocated
near the beginning of a cylinder group where free space is unlikely to be well clustered. Large files are also
allocated starting at the beginning of their cylinder group, but as a large file grows, it uses well-clustered
free space from later in the cylinder group, raising the file’s layout score.

Another factor which lowers the layout scores for small files is the allocation of the fragments at the end of
the files. A different algorithm is used to allocate fragments than is used to allocate full blocks. As a result,
the final fragment of a file is seldom allocated contiguously with the previous full block of the file. Because
layout score is weighted by the size of a file, this extra seek has a much bigger impact on the layout scores
of small files than on the layout scores of larger files. Figure 4 demonstrates this effect by recomputing the
layout scores ignoring a seek required to reach the final block of a file when that block is a fragment. For
large files, the extra seek required by the final fragment has no discernible effect on layout score. For small
files, however, a final fragment can have a large impact on layout score.

—-11 -



4.3 File Layout Over Time

Intuitively, we expect that over time, an active file system will become increasingly fragmented. As a sim-
ple test of this intuition, we examined file fragmentation on the test file systems as a function of time. Fig-
ure 5 shows the combined fragmentation of all file systems at four month intervals during the period of the
study. There is a small, but noticeable downward trend in layout scores over time.

To gain a better understanding of the change in file fragmentation over time, we modified the layout score
metric to express the amount of fragmentation in an entire file system. The layout score for a file system is
the percentage of file data blocks in the file system that are optimally allocated. The total layout score was
computed daily for each file system in the study (static file systems, suchues fife system ordas-

news discussed above, were ignored.), and a linear regression analysis was performed to determine
whether age can be used to predict the amount of fragmentation for a given file system. Table 5 shows the
correlation between age and layout score on a variety of active file systems. In this data we see that many
file systems display the expected inverse relationship between layout score and file system age (as the file
systems get older, the layout score decreases and fragmentation increases). There are also some file
systems (e.ggnhews glan?, usr3 usr8 that show little correlation between age and layout score, and a

few file systems (e.ghespin-nevandmail) that exhibit a positive correlation.

Combining the data from the file systems in Table 5, we find that there is not statistical evidence to support
a generalized statement about the relationship between age and layout score. (The resulting correlation
coefficient is —0.0426.) This is explained by the different types of correlation between age and layout score
found in the various file systems studied and by the fact that different file systems age at substantially
different rates. Thausr6 file system, for example, is the home for twenty different user accounts. In
contrastusrl? a file system of comparable size, has half as many users.

5 File System Performance

We have seen that file fragmentation frequently occurs in real world instances of FFS. This fragmentation
may degrade the performance of an FFS. To assess this risk, we performed benchmarks on the file systems
using the snapshots to reproduce the source file systems on a test machine. Because the snapshots span
many months, we were able to examine changes in performance as the source file systems aged. The per-
formance of these facsimile file systems was compared to the performance of comparable empty file sys-
tems to determine the amount of performance degradation experience by real file systems.

5.1 Performance Tests

Because the SunOS file systems we studied were in active use, it was not feasible to run benchmarks on
them. Instead, the meta-data in the snapshots were used to reconstruct the file systems on the disk of a test
machine. This not only allowed the file systems to be analyzed in an otherwise quiescent environment, but
also made it easier to study the performance of comparable empty file systems. In the following discussion,
the term “original file system” is used to refer to the actual file systems on the Division of Applied Sci-
ences file servers, and “test file system” or “copied file system” is used for the facsimile file systems pro-
duced on the test machine. The benchmarks described in this section were run on a SparcStation | with 32
megabytes of memory, running 4.4BSD. Note that both SunOS 4.1.3, which is run on the servers where the
shapshot data were collected, and 4.4.BSD implement a clustering FFS. Because both file systems use the
same disk allocation algorithm, as described in Section 2, the change in operating system does not effect
our results. Details of the test system are summarized in Table 6.

In order to approximate the original file systems’ configurations as closely as possible, the test file systems
were created using the same valuemakcontigandrotdelay The test file systems were also configured

with the same number of cylinder groups as the corresponding original file systems. When different sized
cylinders on the original and test disks made it impossible to precisely duplicate the size of the cylinder

groups, slightly larger cylinder groups were created on the test file system. The extra blocks in each

- 12 —



Layout Score

1 .

"26Feb94" —— :
"16Jul94” .
08 | 150ct94" - |
0.6 |
0.4 |
0.2 r |
0 . . | | |

16

64

256
File Size (in blocks)

1024

4096

Figure 5: Change in layout scores over timeThis chart plots the layout score versus the file size for all of the f
systems in the study at three different dates over an eight month period.

File System gggfﬁlgg?]? P-value File System gggf?ilgté%? P-value

bespin-new 0.8297 0.0000 newsspool -0.2137 0.00(
cnews —0.0252 0.0000 services 0.2986 0.00d
ftp —-0.8873 0.0000 software 0.1995 0.0058
glan5 -0.7166 0.0000 staff —0.9059 0.000¢
glan6 —0.5206 0.0000 usr3 0.0885 0.000(¢
glan7 —0.0933 0.0194 usr4 -0.4479 0.000(
glan8 -0.7829 0.0000 usré -0.6077 0.000(
glan9 —0.5658 0.0000 usr8 0.0753 0.057¢
local (endor) —-0.9541 0.0000 usri2 -0.9734 0.000
mail 0.6419 0.0000 white -0.7620 0.000¢

Table 5: Correlation between file system age and file system layout scoFéis table presents the correlation betweet
age and file system layout score for twenty active file systems over the duration of the study. The correlation
indicates the strength of the relationship for each file system. The square of this coefficient is the proportion of the
layout score that can be explained by a linear relationship to the date. Negative values indicate an inverse relation
value expresses the probability that there is no relationship.

— 13—



CPU Parameters

CPU SparcStation |
Mhz 20

Disk Parameters

Disk Type Fujitsu M2694EXA
RPM 5400

Sector Size 512 bytes
Sectors per Track 68-111
Cylinders 1818

Tracks per Cylinder 15

Track Buffer 512 KB
Average Seek 9.5ms

Table 6: Benchmark Hardware Configuration
cylinder group were marked as allocated, so the test file system could not use them. Because the test disk
has variable sized cylinders, FFS’s notion of rotationally equivalent blocks is meaningless (FFS assumes
all cylinder are the same size), arppt was set to zero on all test file systems. With bottielayandcpc
set to zero (all of the original file systems hadtdelayof zero), FFS allocates disk blocks in a simple and
predictable manner. When a new file is created, its first block will use the first free block in the file’s
cylinder group; its next block will use the next free block in the cylinder group, and so on.

Because all of our file system benchmarks rely on the creation and use of new files, the most important
characteristic of the original file systems to reproduce is the arrangement of free space. Other details, such
as the precise mapping of allocated blocks to files and the directory hierarchy, are less important because
they have little or no impact on the layout or performance of newly created files. Therefore the only meta-
data copied from the snapshots of the original file systems were the free space bitmaps. The resulting test
file system contained an empty root directory and no other data but could only utilize the same free blocks
as the original file system.

We compared the test file systems using a benchmark of sequential read and write performance. The data
set consisted of 32 megabytes of data, decomposed into the appropriate number of files for the file size
being measured. Because FFS allocates all of the files in a single directory in the same cylinder group, the
data was divided into subdirectories, each containing no more than twenty-five files. This allowed the
benchmark to use most of the cylinder groups on the test file systems. There were two phases to this
benchmark:

1. Create/write: All of the files are created by issuing singldgte system call for all of the data
in the file.

2. Read: The files are read in the same order in which they were created. A rgiadigystem
call is issued to read all of the data in each file.

Performance was measured for a range of file sizes from eight kilobytes to one megabyte from test file
systems reproduced from dates at four intervals evenly spread over the data collection period. Nine
different file systems were used for these measurements. Active file systems used for a variety of purposes
(user accounts, news, serving binaries) were selected.

5.2 Test Results

For each file size tested, the throughput for reading and writing on the copied file systems was compared to
the throughput for the corresponding empty file system. Figure 6 and Figure 7 show the performance of
each of the test file systems as a percentage of the throughput of the corresponding empty file system.

—14 -



usr4 usré
. . . . . .

1
8 0.8 3 0.8
o o
@ a
£ E
e 06 2 06
(5] [5)
o o
3] [
= " " 2 " "
g 0.4 r read-8K" —— G 0.4 r read-8K" ——
T "read-64K" ----- © "read-64K" -----
o “read-1024K" - 12 "read-1024K" -
02| "write-8K" | 02 | "write-8K"
! "write-64K" ---- : "write-64K" ----
"write-1024K" ---- "write-1024K" ----
O L L L L L L L L O L L L L L L L L
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Date Date

Q

o

=

]

E

£ 0.6

[

o

Qo

>

g 0.4 - "read-8K" —
T "read-64K" -
x “read-1024K" -

02 | "write-8K"

"write-64K" ----
"write-1024K" -

0Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Date
Figure 7: Relative File System Performance (Il)Relative performance is the file system throughput measured o
copied file system and expressed as a fraction of the throughput on a comparable empty file system. For each fil¢
relative performance was measured reading and writing files of three different sizes, 8 KB, 64 KB, and 1024 KB,
plotted as a function of time. Tests were performed on copied file systems from four dates, the 26th of January, Ap
and October of 1994.

These graphs indicate that there are performance differences for the different file sizes tested. Many of the
largest differences between the copied file systems and the empty file systems occur in the 64 KB test.

For each of the nine file systems, we ran read and create tests for each of three file sizes on four different
dates for a total of 216 tests. Of the seventy-two tests that used a 1024 KB file size, only two performed at
less than 85% of the corresponding empty file system’s bandwidth. These two points were for January on
the cnewsfile system. Excluding the January testscapws which were generally worse than any other

test (for reasons we shall come to), of the seventy tests that used a file size of 8 KB, there was only one test
case that achieved less than 85% performance (the April write tgirds 84.2%). Of the seventy-two

tests using 64 KB files, fifteen performed at less than 85% of the empty file system’s throughput. Of the
remaining fifty-seven tests using 64 KB files, forty-one of them were over 90%.

There are a variety of reasons for the performance differences among the different file sizes. All of the file
sizes suffer from the increased fragmentation of free space on the copied file systems. This is most
noticeable in the 64 KB files because of ameliorating circumstances in the 8 KB and 1024 KB tests.

Recall that when FFS allocates an indirect block, it switches to a new cylinder group. Since the first
indirect block is required for the thirteenth data block of a file, all of the files in the 1024 KB tests use

— 15—



Relative Performance Relative Performance

Relative Performance

chews glan5
T Tttt . B
8 0.8 1
j
I
E
0.6 — £ 0.6 1
[
o
g
0.4 r "read-8K" — S 0.4 "read-8K" —
"read-64K" - K] "read-64K"
"read-1024K" - o "read-1024K" -
02| "write-8K" ] 0.2 "write-8K" |
! "write-64K" - : "write-64K" -
"write-1024K" ---- "write-1024K" ----
O L L L L L L L L O L L L L L L L L
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Date Date
glan7 glan8
1r 1 1 1
0.8 T ) 4 8 0.8 | T T T T T T T i
C
I
E
0.6 1 £ 0.6 1
[
o
2
0.4 "read-8K" — A = 0.4 "read-8K" — A
"read-64K" - ° "read-64K" -
"read-1024K" - "4 "read-1024K"
02t "write-8K" | 0.2 "write-8K" ]
: "write-64K" ---- : "write-64K" ----
"write-1024K" - "write-1024K" -
0 . . . . . . . . 0 . . . . . . . .
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Date Date
staff usr3
1
3 0.8 ]
o
I
£
0.6 — £ 0.6 1
[
%
g
0.4 "read-8K" —— A kS 0.4 "read-8K" — A
"read-64K" --—----- K] "read-64K"
"read-1024K" - 14 "read-1024K" -
02| "write-8K" ] 0.2 "write-8K" |
: "write-64K" - : "write-64K" -
"write-1024K" ---- "write-1024K" ----
0 L L L L L L L L O L L L L L L L L
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Date Date

Figure 6: Relative File System Performance (I)Relative performance is the throughput measured on a copied
system and expressed as a fraction of the throughput on a comparable empty file system. For each file system
performance was measured reading and writing files of three different sizes, 8 KB, 64 KB, and 1024 KB, and is plot
function of time. Tests were performed on copied file systems from four dates, the 26th of January, April, July, and (
of 1994. The final test datmewsandstaffwas October 20, 1994.

— 16 —



indirect blocks. The result is that reading or writing each of these files involves at least two long seeks (i.e.,
between cylinder groups). One seek is required to get to the cylinder group containing the indirect block
and the data blocks that it references; another is required to return to the original cylinder group to read or
write the next file. Because the benchmarks that use smaller file sizes do not incur these long seeks,
performance differences caused by fragmentation within a cylinder group have a larger impact on the
relative performance than they do in the 1024 KB tests.

The fragmentation of free space has little impact in the 8 KB test case. The benchmark creates directories
containing twenty-five files. Each directory is placed in a different cylinder group. Since the block size is 8
KB for all of the file systems, the 8 KB test case will read or write twenty-five blocks of data to one
cylinder group, then seek to a different cylinder group to start the next directory. Thus, the 8 KB test
spends a larger portion of its time performing seeks than either of the other test sizes. Increased
fragmentation in the copied file systems means that the files in a given directory are typically spread out
more than on an empty file system. Because of the large number of seeks between cylinder groups,
however, the amount of overhead introduced by this fragmentation has a smaller impact on overall
performance than in the 64 KB test case.

In general, the write tests performed worse than the corresponding read tests. In the 64 KB tests, fourteen
of the fifteen tests cases that had a relative performance of less than 85% were write tests. (The sole read
test was for January amews) The lower relative performance for writing than for reading was caused by

the overhead of meta-data updates. When a file is created, its inode and directory must be updated. The
inodes are located at or near the beginning of the cylinder group. Because the directory is small (one block)
and created before the files, it is likely to occur one of the first free blocks in the cylinder group. When
each file is created, FFS must allocate an inode and update the directory. These operations are
synchronous, and require a seek from the data blocks of the previously written file to the beginning of the
cylinder group. In the test file systems, which suffer from fragmentation, and in which little free space is
available early in the cylinder groups, the file data tends to be allocated later in the cylinder groups than it

is on empty file systems. Thus, these seeks are longer on the test file system than on the empty file system.
During the read tests, the directory and an inode must be read for each file accessed, but most of the seeks
issued in the write tests are avoided because the inodes are read of the disk a block at a time and cached in
memoary, as is the directory.

5.3 Fragmentation and Performance

An important factor in the performance of these benchmarks is the layout of the test files. Files that are laid
out contiguously on the disk can be read and written quickly. In contrast, files whose blocks are scattered
across the disk do not perform as well.

To validate the usefulness of the layout score as a predictor of performance we examined the correlation
between the layout score of the test files and the throughput measured in the corresponding test. The results
are presented in Table 7. In general there is a strong correlation between the layout score and performance.
This correlation is better for 1024 KB files than for 64 KB files, and better for read performance than for
write performance. In both cases, the stronger relationship is the result of meta-data overhead. In the 1024
KB tests, there is less meta-data to be read/written relative to the file data, so intra-file seeks, which are
measured by layout score, play a larger role in determining performance than they do for smaller file sizes.
Similarly, in the write tests, meta-data must be synchronously updated, whereas in the corresponding read
tests, most meta-data requests can be satisfied out of the cache. As a result, more meta-data related seeks
are required by the write tests, and the intra-file seeks measured by layout score have a smaller effect on
total performance.

Achieving optimal file layout requires contiguous free space on the file system. Thus, anything that causes
free space to become fragmented will degrade the performance of a file system. To better understand the
causes of fragmentation we examined the layout of the file systems and of the files used in the performance

17 -



Tests ggrergilgt:r)]r: P-value

All 64 KB Tests 0.4871 0.0000

64 KB Read Tests 0.5117 0.0014
64 KB Write Tests 0.6821 0.0000

Table 8: Correlation between Relative Performance and File System Free Spagéis table shows the correlation betw
the fraction of disk space free and the relative performance of the test file systems for the 64 KB tests on the file
Figures 8 and 9. The correlation coefficient indicates the strength of the relationship; the square of this coefficient is
of the variation in relative performance that can be explained by a linear relationship with the fraction of the file sys

free. The P-value expresses the probability that there is no relationship. .
tests, focusing on the 64 KB test cases. For each test the layout scores of the files created by the benchmark

were computed, as were the aggregate layout scores of the original file systems and the fraction of file
system blocks that were free in each test. Figure 8 and Figure 9 present this data.

File system utilization, the amount of space that is used on a file system, may have an effect of file layout.
A highly utilized file system has few free blocks. Not only may these be poorly clustered, but it is possible
that they will be widely scattered on the disk, imposing longer seek times on fragmented files. In several of
the file systems in Figures 8 and 9 there is a clear relationship between changes in relative performance and
changes in utilization. In bottnewsandwhite this is especially apparent. Table 8 shows the results of a
linear regression analysis of the data from tests on all nine of the file systems. Note that the correlation is
strongest for the write tests. This reflects the overhead imposed by the synchronous meta-data writes that
occur when a file is created (see Section 5.2). Given the skewed distribution of free space on active FFSs,
it is likely that many of the files created by the benchmark will be allocated in the later portions of cylinder
groups, farther from the locations of the meta-data which must be modified. On highly utilized file
systems, these distances are likely to be greater, requiring longer seeks, and thus decreasing the
performance of the benchmark.

Another condition that may effect the performance of an FFS is the amount of fragmentation in existing
files. Most, if not all, of the free space in an FFS was once part of a file. When a file is removed, it creates
new free space that has the same fragmentation as the file. Because the total free space in an FFS is the
aggregation of many removed files, it may not be as fragmented as the individual files. Nevertheless, the
fragmentation of existing files may be useful as a predictor of the fragmentation of free space, and hence of
the performance of newly created files. Table 9 shows the results of a statistical analysis of the relationship
between the aggregate layout score of a test file system, and the relative performance of the benchmark on
that file system. The correlation, although weak, does suggest that there is a some relationship between
these elements. The relative performance of the read tests shows a stronger correlation to aggregate layout
score than the relative performance of the write tests. This is because of the additional overhead of
synchronous meta-data updates incurred by the write tests (as explained at the end of Section 5.2), a factor
that is unrelated to the fragmentation of a particular file.

Characterizing the workload on a file system is a much more complex task than computing its free space.
Two basic characteristics of a file system’s workload are the size of files that get created and deleted, the
frequency with which these operations occur. Most of the file systems in this study have very similar
workloads, since they primarily serve the home directories of various users. Other files systems, such as
the/ andusr partitions on each machine, seldom change, and therefore do not present a workload that will
cause fragmentation to change over the lifetime of the file system.

—18 —



Score / Performance / Free Space Score / Performance / Free Space

Score / Performance / Free Space

cnews

1 T :
Q
Q
I
Q.
(7]
[
- <
ST w
0.6 B, 1 3 0.6 1
e - =T Q
. . 3 "read-64K" —
R £ "write-64K"
0.4 1 S 04 "score-64K" -
4 . . 5] "score.total"
read-64K" — a "free space” -
- "write-64K" P S
0.2 f "score-64K" - 1 5 02 F T S R e R
“score.total" 8 B
"free space" ----
O L L L L L L L L O L L L L L L L L
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Date Date

Q
Q
@
joR
(7]
[
o
w
06 r "read-64K" —— 1 > 06 r 1
"write-64K" = 5 . .
"score-64K" - g “Tead-64K" —
o4l "score.total" | £ o4l Jrite-B4K" - |
) "free space" ---- £ : "score-64K"
9} score.total
o "free space" -
02} - 2 0.2 prommmTTTT T
O
(7]
0 . . . . . . . . 0 . . . . . . . .
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Date Date
staff usr3
1 T T
Q
g
& 0.8 1
[
L
I
0.6 1 % 06 . 1
"read-64K" — o I
"write-64K" - =7 — - S
"score-64K' E B
0.4 r  "score.total ] £ 04 1
of .o =
‘ ree space' 2 "read-64K" ——
> "write-64K" -~
02t 1 5 0.2 r "score-64K" 1
T 8 "score.total"
"free space" ----
O L L L L L L L L O L L L L L L L L
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Date Date

Figure 8: File Fragmentation and Performance (I).For each file system, the relative performance of the 64 KB read :
write tests are plotted (“read-64K” and “write-64K”) along with the layout score of the files created by the benct
program (“score-64K”), the aggregate layout score for the entire file system (“score.total”) and the fraction of tl
system blocks that are free in the original file systems (“free space”). Relative performance is the ratio of throughpu
copied file systems to throughput on comparable empty file systems. Tests were performed on copied file systems f
dates, the 26th of January, April, July, and October of 1994. The final test datavi@andstaffwas October 20, 1994.

—19 —



Score / Performance / Free Space

0.8 =
"read-64K" ——
0.6 - "write-64K" - b
"score-64K" -
"score.total"
04l ree space ]
0.2 - ]
O L L L L L L L L
Jan Feb Mar Apr May Jun Jul Aug Sep

Date

Oct

o
S | e
& °8 ...
[}
o
i
% 0.6 "read-64K" — -
S "write-64K" -------
g "score-64K" -
E "score.total"
S 04 "free space” ----
5 e —
g .
[}
5 0.2
O
(7]

O L L L L L L L L

Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Date

white

0.6 -

04 r

0.2 r

Score / Performance / Free Space

"read-64K" ——
"write-64K"
"score-64K" -
"score.total"

"free space" ----

0 .
Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Date

Figure 9: Fragmentation and Performance (Il). For each file system, the relative performance of the 64 KB read i
write tests are plotted (“read-64K” and “write-64K”) along with the layout score of the files created by the benct
program (“score-64K”), the aggregate layout score for the entire file system (“score.total”) and the fraction of tl
system blocks that are free in the original file systems (“free space”). Relative performance is the ratio of throughpu
copied file systems to throughput on comparable empty file systems. Tests were performed on copied file systems f
dates, the 26th of January, April, July, and October of 1994.

Test Set ggrerf?ilgteicr)]r; P-value Test Set gggf?ilgi?]? P-value

All Tests 0.7901 0.0000 64 KB Reads 0.8990 0.0000
64 KB Tests 0.7554 0.0000 64 KB Writes 0.8137 0.0000
1024 KB Tests 0.8490 0.0000 1024 KB Reads 0.9094 0.000¢
Read Tests 0.9013 0.000¢ 1024 KB Writes 0.8989 0.0000
Write Tests 0.8357 0.0000

—20 -

Table 7: Correlation between Layout Score and ThroughputThis table shows the correlation between the layout sc
the files created by the tests discussed in Section 5.1 and the throughput measured by the same tests. Correlation
for all test cases, and for various subsets of the tests cases, as described in the “Test Set” column. The correlatic
indicates the strength of the relationship for each set of tests. The square of this coefficient is the portion of the
throughput that can be explained by a linear relationship to the layout score. The P-value expresses the probability
no relationship.



Correlation

Tests Coefficient P-value

All 64 KB Tests 0.4682 0.0000
64 KB Read Tests 0.6435 0.0000
64 KB Write Tests 0.5118 0.0012

Table 9: Correlation between Relative Performance and Aggregate File System Layout Scofiéhis table shows tt
correlation between the aggregate layout score of all of the files on a test file systems and the relative performanc
system. This analysis was performed using data from the 64 KB tests on the files systems in Figures 8 and 9. The
coefficient indicates the strength of the relationship; the square of this coefficient is the portion of the variation |
performance that can be explained by a linear relationship with the aggregate layout score. The P-value ex
probability that there is no relationship.

Among the file systems used in the performance tesésysis an example of a file system with unique

usage pattern. As a repository for net-news articles most of the files on this file system are extremely small,
and there is a high rate of file turnover. This should cause its free space to rapidly become fragmented. In
the snapshot of this file system from January 26, 1994, the file system had an aggregate layout score of
0.308. During the weeks following this snapshot, the layout scoceefsdropped to 0.201, at which

point (February 8, 1994)newsreported that it was out if disk space. An examination of the file system
showed that although there were no free blocks, there were 92 megabytes of free space (sixteen percent of
the file system)—all of it in fragments.

Not surprisingly, the January tests amewsexhibited the greatest performance differences of any of the

file systems. The single greatest performance difference in all of the tests was in the 64 KB write test on

cnews. This test achieved only 71% of the empty file system performance. In February, after cnews ran out
of disk space, a large amount of data was removed from it—hence the increase in free space (and the
corresponding increase in layout score) on the later test dates.

The only other file system that had layout scores as |lmmesswas the other news partitiomewsspool

No other file system ever had a layout score lower than 0.6. It is reasonable to infer that the combination of
high file turnover and small file size in the workloads on these two file systems causes this extreme
fragmentation.

In contrastglan5is a file system with very little file turnover. It is used to store the sources and binaries for
various software packages. Files on this file system are created or deleted only when new software is
installed or when existing software is upgraded. Not surprisiggps performed better than the other file
systems. Fifteen of the twenty-four tests on copiggarf5 achieved 95-100% of the performance of the
emptyglan5file system.

5.4 Benchmark Shortcomings

Our benchmark program, like all other file system benchmarks, suffers from a variety of imperfections [6].
Consider the sequence of events when twenty-five eight block (64 kilobyte) files are allocated in the same
directory. The first file will be allocated the first eight free blocks in the directory’s cylinder group. The
next file will be allocated the next eight free blocks, and so on. The net result is that the layout of these files
will be the same as the layout of one 200 block file allocated in the same cylinder group.

A more “realistic” benchmark might intermingle file delete operations among the file creates, possible

causing the newly created files to be more fragmented, as they fill in the holes left by deleted files instead
of consuming less fragmented free space later in the cylinder group. It would certainly be possible to create
an artificial benchmark that behaves in this manner. Such a benchmark could cause newly created files to

- 21 -



by laid out as well, or as poorly as the designer wished. As there is not sufficient information about what
the “right” amount of fragmentation would be, we felt that following this course would lead to a more
complex benchmark that would not add a significant amount of verisimilitude to the testing.

Another approach to creating a more realistic benchmark would be to use the file system snapshots to more
accurately reproduce the original file system. Instead of simply copying the free space bitmaps into each
cylinder group, each file could have been reproduced, with the same blocks allocated to it as on the original
file system. Performance could then be measured by reading and writing a selection of pre-existing files
from the file system instead of creating new ones. There are a variety of complications in this approach.
Which set of files would represent a realistic work load? How would a comparable set of file be selected on
different file systems (or even from different snapshots of the same file system)? Even if a comparable set
of files could be selected, what order would they be read in so that different inter-file seek distances would
not dominate the performance differences caused by file fragmentation which we hoped to measure? Given
these difficulties, we decided that this approach would add too much complexity without a compensating
improvement in realism.

One useful aspect of our benchmark arises from the fact that the test file systems did not have any of their
inodes allocated (except for the root directory’'s inode). An empty FFS has exactly the same inodes
allocated. Since the number of free inodes in a cylinder group is the major factor determining which
cylinder group will be used for a new directory, both the empty file systems and the new file systems
allocated directories in the same sequence of cylinder groups. Thus all tests on a given file system, whether
empty or full, had a comparable set of seeks between cylinder groups, eliminating a possible source of
unwanted performance difference.

We hope that in the future better technology will be available for performing file system benchmarks.

6 Summary

We have used data collected from FFSs that are in daily use to study the real world behavior of this widely
used file system. We have made several observations about the layout of these file systems:

» The distribution of free space within cylinder groups is skewed towards the end of the cylinder
groups.

» Small files are more fragmented than large files.

» Although some file systems show a tendency to become increasingly fragmented with the
passage of time, there were a number of active file systems in our study which did not exhibit
this increase in fragmentation, and some where fragmentation actually improved over time.

Studies of the performance on the file systems in our study indicate that performance is closely related to
the fragmentation of the files being read and/or written. Both the amount of free space in a file system, and
the fragmentation of other files in the file system have some value as predictors of the layout, and hence the
performance, of newly created files.

Over the past ten months, we have collected a large amount of snapshot data from our file systems. This
paper has presented a few simple conclusions and observations based on the analysis of that data. In the
future we hope to conduct more extensive performance measurements and to examine a variety of other
guestions about file system layout.

7 References

[1] Marshall Kirk McKusick, William Joy, Sam Leffler, and R. S. Fabry, “A Fast File System for
UNIX,” ACM Transactions on Computer Systexww, 2, No. 3, August 1984, pp. 181-197.

— 22—



(2]

[3]

[4]

[5]

[6]

L. W. McVoy and S. R. Kleiman, “Extent-like Performance from a UNIX File Syst@&mteedings
of the 1991 Winter Usenix ConferenBallas, TX, January 1991, pp. 33-44.

J. Kent Peacock, “The Counterpoint Fast File SystdPngteedings of the 1988 Winter Usenix
ConferencepPallas, TX, February 1988, pp. 243-249.

J.M. Robson, “An Estimate of the Store Size Necessary for Dynamic Storage Allocation,” Journal of
the ACM, Vol. 18, No. 3, July 1971, pp. 416-423.

Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Staelin, “An Implementation of a
Log-Structured File System for UNIXProceedings of the 1993 Winter Usenix ConfereSes
Diego, CA, January 1993, pp. 307-326.

Diane Tang and Margo Seltzer, “Lies, Damned Lies, and File System BenchmaNXBYOnThe
1994 Fall HarvestHarvard Division of Applied Sciences Technical Report tr-34-94, 1994,

—23-—



