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Abstract

Preservation of locality of reference is the most crit-

ical issue for performance in high performance archi-

tectures, especially scalable architectures with elec-

tronic interconnection networks. We briey discuss

some of the issues in this paper and give results from

the use of spectral bisection on irregular grid compu-

tations on the Connection Machine systems.

1 Introduction

Preserving locality of reference in memory hierar-

chies is the most critical issue with respect to per-

formance in most computer systems and is becoming

even more important for technological reasons. MOS

memory chips, by way of the technology and standard

designs, are considerably slower than processor chips.

The improvement in memory speed is on the order

of 5 { 10 % per year, while the improvement in pro-

cessor speed is about one order of magnitude every

18 months. The architectural solutions to diminish

the performance impact of this disparity in speed be-

tween memory chips and processors are banked and

interleaved memories combined with one or more lev-

els of cache. Whereas the di�erence in speed between

typical processors and memory chips today may be a

factor of two to �ve, this factor will increase rapidly

over the next few years. For scalable architectures, the

interconnection network represents a major expense

and often a potential performance bottleneck. The

network bandwidth per node in many current designs

are one order of magnitude or more lower than the

peak local memory bandwidth. Hence, the allocation

of the address space to the memory, and the scheduling

of operations are particularly critical for the achieved

performance in scalable architectures, but signi�cant

for any high performance architecture.

For many architectures and applications, the op-

timum allocation and scheduling of operations may

reduce the communications bandwidth requirement

compared to a naive allocation by more than two or-

ders of magnitude for common operations and granu-

larities of systems. The average number of local refer-

ences for each remote reference is shown in Table 1 for

a few typical regular computations. For a random al-

location of data array elements to the memory address

space, there are at best only a few local data references

for each remote reference. In addition to the di�erence

Local storage (words)

Operation Processor Chip Board/Machine

Reg. 1k 32k 1M 32M 1G

Matrix Mult. 1 16 90 512 2896 16384

3D-Relaxation 2 19 32 77 307 1024

FFT 1 20 32 45 57 70

Table 1: Number of local operations per remote refer-

ence. 3D-Relaxation: 7-point stencil, vector-length 8

(� = 8, � = 96).

in the nodal bandwidth requirement, the placement

of data aggregates among the processing nodes may

also a�ect the congestion for many network topologies.

Various routing strategies, such as adaptive techniques

[2, 3, 4, 7, 8] or ROMM routing [26, 27] can be used to

reduce the impact of congestion, but even when such

routing techniques are employed some degradation of

performance may still prevail compared to placement

that inherently o�ers a low congestion.

For small to modest memory sizes per node, we

have observed on the Connection Machine systems

CM{2/200 and CM{5 communication performance

improvements by over one order of magnitude for

irregular grid computations by using techniques for

maximizing the number of references local to a node,

and local sharing of gathered remote data.

Though the discussion in this paper mainly focus on

scalable architectures, the techniques can also be used

to enhance the performance of uniprocessor systems

with a memory hierarchy consisting of registers, one

or more levels of cache, main memory and secondary

storage, in particular if that has the form of a RAID

disc system.

Applications requiring large amounts of computer

time exist in, for instance, uid dynamics (solving

Navier{Stokes equations), in combustion, in electro-

magnetics, in structural mechanics (crash studies with

airbags), crack propagation studies, and in compu-

tational chemistry and fundamental physics. Many

of these problems require complex geometries to be

modeled, resulting in so{called unstructured meshes

for domain discretization, or in the case of hierar-

chical methods, unbalanced decomposition hierarchies



(trees). We will briey describe some of the data al-

location issues for both structured and unstructured

space decompositions in this paper.

2 Partitioning of Data Structures

2.1 Regular arrays

For many applications that make use of regular

arrays, the data reference pattern consists of a se-

quence of references local with respect to the index

space. Moreover, if the data references are uniform

with respect to the index space, i.e., the relative data

references for each point of the index space are the

same, then minimizing the surface area for the col-

lection of indices mapped to a processing node is an

e�ective mapping with respect to conserving the need

for communication bandwidth. Many BLAS opera-

tions [19, 5, 6] such as matrix{vector multiplication

and matrix{matrix multiplications fall in this cate-

gory, and so does the Fast Fourier Transform. Explicit

methods for the solution of partial di�erential equa-

tions on regular grids is another set of applications for

which minimizing the surface area for a given volume

often is very e�ective in optimizing the performance.

It has also been shown that this allocation strategy is

very e�ective for hierarchical methods [13, 35], such as

the fast N{body algorithms by Anderson's [1], Rohk-

lin and Greengard [12] and others.

However, far from all computations making use of

regular arrays as data structures make use of data ref-

erences that are uniform relative to each index in the

index space. A good example is direct solvers such as

LU and QR factorization and the associated triangu-

lar system solvers. Whenever the indices in the index

space are treated di�erently, load{balance becomes an

issue. A cyclic data allocation [17] as opposed to the

consecutive (block) mapping described above is often

suggested as a means to achieve load{balance. Though

the cyclic mapping does o�er load{balance for the di-

rect solvers, it may not be desirable for other computa-

tions on the same data structures. Fortunately, for the

factorization and triangular solvers, it is possible to

schedule the computations with respect to the indices

of the address space in such a way (cyclic) for a block

allocation, that the same load{balance is achieved as

for a cyclic data allocation [20].

Hence, we notice that though block allocation often

is very e�ective in conserving the demands on commu-

nications bandwidth, it may require a change of the

order in which indices are processed compared to the

conventional consecutive processing of indices. Which

such a change in the scheduling of computations, data

reallocations can be avoided without loss of e�ciency.

2.2 Irregular arrays

As is the case for regular array computations with

localized data references with respect to the index

space, a partitioning of the data structure into sub-

domains preserve locality of reference when the com-

putations use data with indices in some local neigh-

borhood of the data being updated. This property

holds for most iterative methods for the solution of

sparse systems of equations, and for explicit methods

for the solution of partial di�erential equations.

Two general partitioning techniques of signi�cant

recent interest are the recursive spectral bisection

technique proposed by Pothen et. al. [28] and the geo-

metric approach proposed by Miller et. al. [23, 22, 32].

The recursive spectral bisection technique has been

used successfully by Simon [31] for partitioning of �-

nite volume and �nite element meshes. A parallel im-

plementation of this technique has been made by Jo-

han [14].

The spectral partitioning technique is based on

the eigenvector corresponding to the smallest nonzero

eigenvalue of the Laplacian matrix associated with

the graph to be partitioned. The Laplacian matrix is

constructed such that the smallest eigenvalue is zero

and its corresponding eigenvector consists of all ones.

The eigenvector associated with the smallest nonzero

eigenvalue is called the Fiedler vector [9, 10, 11]. Grid

partitioning for �nite volume and �nite element meth-

ods is often based on a dual mesh representing �-

nite volumes or elements and their adjacencies (or

some approximation thereof) rather than the graph

of nodal points. The reason for using a volume or el-

ement based graph is that the computations are nat-

urally organized as volume or elementwise computa-

tions. These computations exhibit locality of refer-

ence within the volumes or elements and can often

be performed as a (large) collection of dense matrix

operations. Communication is required when passing

data between the global representation, and the rep-

resentation of the collection of local elements [18, 21].

The purpose of the partitioning is to minimize this

communication.

For �nite element computations, the adjacency in

applying the spectral bisection method has been ap-

proximated by elements that share faces. This ad-

jacency accurately represents the communication re-

quirements for �nite volume methods. However, in

�nite element methods, communication is also re-

quired between elements sharing edges and corners.

With nodes representing elements and edges connect-

ing elements that share faces, the spectral partition-

ing yields a partitioning of the elements. Finite ele-

ment nodal points internal to a partition are mapped

to the processing node to which the partition is as-

signed. Boundary nodes must be assigned to one of

the partitions among which they are shared, or repli-

cated among these processing nodes. In our imple-

mentations, we have used a random assignment. Only

boundary nodes require communication.

One advantage of the spectral bisection technique

is that it is based on the topology of the graph un-

derlying the sparse matrix. It requires no geomet-

ric information. However, it is computationally quite

demanding. The geometric partitioning technique by

Miller et. al. holds promise to be computationally less

demanding than the spectral decomposition technique

[24, 25]. Geometric information is typically available

for meshes generated for the solution of partial dif-

ferential equations, but may not be present in other

applications.

The results of applying the spectral bisection tech-

nique to two model problems are reported in [14, 15]

and shown in Tables 2 and 3. One of the model prob-



Number of Number of %of total Number of % of total

partitions shared edges shared nodes

8 188 0.8 195 2.4

16 381 1.6 396 4.8

32 752 3.1 773 9.3

64 1483 6.0 1479 17.8

128 2154 8.8 2101 25.3

Table 2: Partitioning of a planar mesh with inner

boundary in the form of a double ellipse.

Number of Number of %of total Number of % of total

partitions shared edges shared nodes

8 5186 2.4 2735 13.4

16 8005 3.7 4095 20.1

32 11553 5.3 5747 28.2

64 16055 7.3 7721 37.9

128 21502 9.8 9827 48.2

Table 3: Partitioning of a tetrahedral mesh between

concentric spheres.

lems consists of a planar triangular mesh between an

outer ellipse and an inner double ellipse. The other

problem is a grid of tetrahedra between concentric

cylinders. The planar grid has 8,307 nodes, 16,231

triangles, and 24,537 edges. The numbers of shared

nodes and edges as a function of the number of parti-

tions are given in Table 2. The grid for the concentric

spheres consists of 20,374 nodes, 107,416 tetrahedra,

and 218,807 faces.

The results of applying the spectral bisection tech-

nique in a more realistic �nite element application [16]

are summarized in Table 4. The spectral bisection

technique in this example o�ered a reduction in the

number of remote references by a factor of 13.2. The

speedup for the gather operation was a factor of 13

and of the scatter operation the speedup was a factor

of 9.6 (the scatter operation includes the time required

for addition which is una�ected by the partitioning).

Another important aspect of computations with ir-

regular grids is that address computation may be very

time consuming. On a distributed memory machine,

the address computations require the computation of

Operation Standard Spectral

allocation bisection

Partitioning | 66

Gather 298 23

Scatter 445 46

Computation 180 181

Total time 923 316

Table 4: Gather and scatter times in seconds on a

32{node CM{5 for 50 time steps with a 1{point inte-

gration rule for �nite element computations on 19,417

nodes and 109,914 elements.

routing information as well as local addresses. In an it-

erative (explicit) method, the underlying grid may be

�xed for several or all iterations, and it is important

with respect to performance to cache the addressing

information.

In an arbitrary sparse matrix, there is no simple

way of encoding the global structure. Yet, arbitrary

sparse matrices may still have some local structure re-

sulting in a block sparse matrix. Taking advantage of

such a block structure for both economy in data rep-

resentation, data storage and e�ciency of operations,

is signi�cantly simpli�ed by explicitly representing the

blocks.

3 Allocation of aggregates

For regular arrays with uniform references along

one or more axis of the array, minimizing the band-

width requirement is equivalent to embedding a mesh

in the network interconnecting the processing nodes

with minimum dilation. Such embeddings are known

for some networks. However, contention may be a

much more signi�cant factor for performance in many

networks, and minimum congestion emulations may

be the desirable target. Much less is known about such

embeddings. They are more complex to �nd since they

require consideration of both placement and routing.

For irregular grids, mapping of data aggregates to

processing nodes such that proximity is preserved or

contention is minimized, is a much more di�cult prob-

lem than the mapping of aggregates of arrays. Instead

of attempting to �nd the best possible map, it may be

more pro�table to search for a map that is guaranteed

to have an acceptable worst case behavior. A ran-

domized data placement [30, 29] reduces the risk for

bottlenecks in the routing system. The randomized

placement of data achieves the same communication

load characteristics in a single (deterministic) routing

phase as randomized routing achieves in two phases

[33, 34].

Figures 1 and 2 give examples of the performance

improvements achieved on the CM{2 through the use

of randomized data allocation in a �nite element com-

putation on an unstructured grid. The horizontal axis

shows the number of degrees of freedom and elements,

while the vertical axis denotes the execution time.

Each element has 24 degrees of freedom. The per-

formance improvement for the gather instruction due

to randomization is in the range 2.1 - 2.4. The im-

provement is increasing with the problem size. Fig-

ure 2 shows the execution times for two methods of

accumulating the product vector: using the combin-

ing features of the router, and accumulation after the

routing operation. Randomization of the addresses

improved the router combining time by about a factor

of two, but performing the routing without combining

is even more e�ective. Table 5 gives the gather scat-

ter times with and without randomization for a solid

mechanics application [21] on the CM{200. The per-

formance enhancement is a factor of 1.5 { 2.2, which

in our experience is typical. It is rarely the case that

randomization has caused a performance degradation.
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Figure 1: Gather with binary and randomized ad-

dresses. 8K CM-2.
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Figure 2: Accumulation of vector elements. Binary

and randomized addresses. 8K CM-2.

Problem Gather Scatter

standard random standard random

alloc. alloc alloc. alloc

3200 20{node 75 50 124 55

brick elements

864 8{node 5.6 3.7 7.2 3.4

brick elements

Table 5: The e�ect of randomization on gather and

scatter performance. Times in msec on an 8K CM{

200.

3.1 A summary of data allocation issues

The assignment of data to memory units a�ects

load{balance, communication requirements, network

contention, and the performance of the computations

in each node (by a�ecting the ability to carry out local

blocking and pipelining of operations).

� Consecutive distribution preserves locality of ref-

erence along data array axes, and is suitable for

stencil{like reference patterns. It also o�ers the

possibility to improve the e�ciency of the oper-

ations in each node by increasing the chance for

good cache behavior through optimal blocking,

and through long vectors for pipelined processors.

� Cyclic distribution signi�cantly increases the

communication requirements for relaxation meth-

ods and explicit methods for the solution of par-

tial di�erential equations, and shall be avoided.

Cyclic distribution may o�er a reduction in the

communication requirements for the FFT by a

factor of two. Cyclic distribution is not required

for load{balance in LU and QR factorization, or

for the solution of triangular systems of equations.

� Irregular grids can be successfully partitioned into

subdomains using recursive spectral bisection and

geometric partitioning.

� An optimum distribution of partitions requires a

data dependence analysis and an understanding

of optimum embeddings and routing algorithms

for the network at hand. For irregular computa-

tions, and when proximity preserving embeddings

may not be possible, minimizing the contention

through randomized distribution has shown to be

e�ective.

Finally, we remark that data distributions cannot

be determined until run{time, not only because the

index sets may not be known until run{time, but it is

highly desirable not to constrain the number of proces-

sors used for execution at compile time. Moreover, the

decisions of what algorithm to choose for a given func-

tion, and whether or not a redistribution shall be per-

formed before and after executing the function, must

be made at run{time.
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