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Abstract

A necessary condition for the establishment, on a

substantial basis, of a parallel software industry would

appear to be the availability of technology for generat-

ing transportable software, i.e. architecture indepen-

dent software which delivers scalable performance for

a wide variety of applications on a wide range of mul-

tiprocessor computers. This paper describes H-BSP {

a general purpose parallel computing environment for

developing transportable algorithms. H-BSP is based

on the Bulk Synchronous Parallel Model (BSP), in

which a computation involves a number of supersteps,

each having several parallel computational threads that

synchronize at the end of the superstep. The BSP

Model deals explicitly with the notion of communica-

tion among computational threads and introduces pa-

rameters g and L that quantify the ratio of commu-

nication throughput to computation throughput, and

the synchronization period, respectively. These two pa-

rameters, together with the number of processors and

the problem size, are used to quantify the performance

and, therefore, the transportability of given classes of

algorithms across machines having di�erent values for

these parameters. This paper describes the role of un-

bundled compiler technology in facilitating the devel-

opment of such a parallel computer environment.
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1 Introduction

For a parallel software industry to establish itself

on a substantial scale a necessary condition would ap-

pear to be that the problem of creating transportable

software be solved. A solution to this problem has to

encompass two vital issues: it has to accommodate a

variety of high level programming styles as is found

essential in sequential computing, and it has to o�er

a technology for compiling programs e�ciently onto

parallel machines as these continue to evolve. Three

aspects of parallelism need to be addressed. One is

that of providing a computational model to serve as an

alternative to the von NeumannModel that has served

us so well in transportability with sequential compu-

tations. Another is developing programming language

constructs that are appropriate for hosting parallel

computations. The �nal one is developing compilers

that produce highly e�cient code appropriate for a

variety of parallel target architectures.

We propose to address these issues as part of a so-

lution to this problem that takes the view that stan-

dardization su�cient to ensure success is unlikely to

be achieved at either the language or the architecture

level, but does appear to be feasible at the level that

the von Neumann model plays in sequential computa-

tion, one that is intermediate between language and

architecture, and tolerates broad variations in both.

Our proposed solution is based on the Bulk Syn-

chronous Parallel Model (the BSP model for short)

([24, 12]), in which a computation involves a number

of supersteps, each having several parallel computa-

tional threads that synchronize at the end of the su-

perstep. The BSP Model deals explicitly with the no-

tion of communication among computational threads



and introduces parameters g and L that quantify the

ratio of computational throughput to communication

throughput, and the synchronization period, respec-

tively. These parameters, together with the number

of processors and the problem size, are used to quan-

tify the performance and, therefore, the transporta-

bility of a given class of algorithms. In order to pro-

duce e�cient code that is transportable to a variety

of machines, programmers working in this framework

may make explicit how the execution of the program

should depend on these parameters. In other respects,

the programming style supported may be more or less

conventional.

This paper describes H-BSP (see Figure 1) { a

proposed general purpose parallel computing environ-

ment for transportable software which subscribes to

the BSP Model and consists of:

� BSP-L, an experimental higher level program-

ming language, that serves as a testbed for lin-

guistic constructs appropriate to transportable

programs, and whose constructs will be usable

for extending parallel Fortran, C or other higher

level parallel programming languages.

� A collection of compiler tools (optimizers, code

generators, etc.) which, based on the parameters

of the computationalmodel, will generate e�cient

code for a large range of parallel computers([4, 23,

6]).

� A collection of library operations for communica-

tion and synchronization appropriate for a BSP

runtime system.

For a number of signi�cant computational problems

algorithms can be found that are provably e�cient on

the BSP model for speci�ed ranges of the parameters

of the model ([12, 24, 3]). For many other algorithms

such static analysis may not be feasible because the

communication requirements are less predictable. In

these cases simulations will be needed ([22]) to de-

termine the algorithms' behavior over a range of pa-

rameter values. The e�ciency of the algorithms not

optimized for the BSP model by the programmer will

depend upon the BSP-style optimizations provided by

the compiler. We note that in the special case that

communication and computation are well balanced in

the machine, i.e. g is close to 1, compilation techniques

for simulating shared memory models with provable

e�ciency are known([24, 25]). While these techniques

may be used as a default for machines with large val-

ues of g, one expects that in many cases better perfor-

mance can be achieved by explicit use of the parame-

ters by either the programmer or the compiler.

Transportability among machines with widely dif-

ferent values of p, g and L appears to necessitate that

these parameters permeate both upwards to the pro-

gramming language level and downward in the compi-

lation process to the machine level. This is a crucial

aspect of what the BSP approach o�ers when com-

pared with alternative proposals (e.g. [10, 11, 14]).

Recent work ([19]) reports favorable experience

with the Oxford BSP Library which provides six basic

BSP primitives to be called from standard sequential

languages. The goal of H-BSP is to provide a higher

level programming environment, in the same vein as

the GPL project ([18]).

Since our overall aim is to experiment with a range

of alternative language constructs, compilation tech-

niques and library functions, we intend to take ad-

vantage of the unbundled compiler technology ([9]).

The unbundled compiler consists of a family of com-

ponents, C

i

, for i = 1; � � � ;m. In this setting the com-

pilation consists of applying C

1

to source text and, in

general, applying C

j

to the result of applying C

j�1

.

Adding or modifying language constructs, primitives,

or target architectures is accomplished by modifying

one or more of the C

j

. This work is described in detail

in [9] and is the basis for compiling BSP-L as well as

other parallel programming languages. Furthermore,

the unbundled nature of the compiler raises issues of

con�guration management whose solution is described

in [5].

The rest of the paper illustrates our approach by

using as a running example the familiar, yet impor-

tant problem of matrix multiplication. Section 2 de-

scribes an example of a BSP algorithm that is e�cient

over the full spectrum of parameters of the cost model.

Section 3 presents its implementation in BSP-L and

discusses pertinent language features while the subse-

quent section discusses and exempli�es optimization

strategies.

2 E�cient BSP algorithms

We believe that in order to generate transportable

software it is necessary to develop algorithms which

behave e�ciently (with respect to the chosen bridging

model) for the widest possible range of the parame-

ters of the model and thus for the widest range of high

performance computers. As an example we briey de-

scribe an optimal transportable algorithm for the mul-

tiplication of two n by n matrices A and B, recently

devised by W.McColl and L.Valiant.

The algorithm starts by tiling the input matrices A

and B as well as the result matrix C into p

2=3

square
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Figure 1: A schematic diagram for H-BSP.

blocks of size n=p

1=3

each. Each tile in C will then be

the sum of p

1=3

products of pairs of appropriate A and

B tiles.

Each processor is assigned the task of performing

one of these p

1=3

products for one of the p

2=3

tiles of

C. Then, assuming that data is initially distributed

among the processors equally but possibly arbitrar-

ily, each processor needs to send and receive 2n

2

=p

2=3

matrix elements.

Once the p tile products are computed, each tile of

C can be obtained by adding the appropriate set of

p

1=3

of these products. Computing each such tile se-

quentially would provide work for only p

2=3

processors,

corresponding to the current number of C tiles. To en-

sure full employmentwithout increasing the number of

supersteps, we now further partition each tile product

into p

1=3

tiles

1

containing n

2

=p elements each, and as-

sign to each processor the task of computing the values

of C for a tile of this smaller size. Now each processor

sends, receives and sums p

1=3

of these smaller tiles,

1

The shape of these smaller tiles does not a�ect the analysis.

In the implementation of Figure 2 they are n=p

1=3

� n=p

2=3

rectangles.

each containing n

2

=p matrix elements, for a total of

n

2

=p

2=3

messages.

The overall algorithm performs 3n

2

p

1=3

message

transmissions and 2n

3

� n

2

arithmetic operations. It

can be executed on a p-processor BSP machine([24])

in three supersteps

2

. The �rst performs communica-

tion only and takes time (2n

2

=p

2=3

)g. The second per-

forms the inner products and their �nal distribution,

the latter part being charged as time (n

2

=p

2=3

)g and

the former as 2n

3

=p � n

2

=p

2=3

. The �nal superstep

performs additions and takes time n

2

=p

2=3

� n

2

=p. It

can be seen that the algorithm is balanced, (i.e. the

communication cost does not exceed the computation

cost), as long as g � (2n � 1)=(3p

1=3

). Furthermore,

the total synchronization cost is less than the total

computation cost provided that 3L � (2n

3

� n

2

)=p:

Lower bound proofs ([1, 21, 15]), imply that this

algorithm is optimal for communication to small con-

stant factors, independent of n; p; g and L, among al-

gorithms that perform the arithmetic operations of the

standard matrix multiplication algorithm. Further-

more, the algorithm is clearly optimal for synchroniza-

2

See Section 4 for details of how we cost operations.



tion costs since it requires a constant number, namely

three, of supersteps. We note that the �rst of the three

supersteps employs the same data distribution as the

algorithm given in ([1]) for a di�erent model.

3 Language Constructs

The experience of sequential computing strongly

suggests that the advancement of a parallel software

industry will crucially depend upon the availability of

a host of parallel languages providing a variety of high

level programming styles. As such, developing trans-

portable software will require linguistic constructs for

exploiting parallelism. We plan to develop and exper-

iment with such constructs as part of the BSP-L lan-

guage, which will be used in the process of developing

transportable software, the ultimate aim being the in-

clusion of some of these constructs in parallel Fortran,

C or other languages of interest to the community.

As an example, we consider the implementation of

the e�cient matrix multiplication algorithm described

in the previous section (see Figure 2). It is important

to notice that this implementation depends upon p,

the number of processors. This is an elementary ex-

ample of intentionally allowing the use of model of

computation parameters to permeate to the language

level (see also [18]). In general the parameters L and

g may be used in programs in a similar way.

The BSP-L language [8] is a classically sequential

language to which we add several constructs to sup-

port parallel processing. For example, the implemen-

tation in Figure 2 features sequential constructs like

declarations and initializations of variables (e.g. tsize,

tsize1 which denote tile sizes) and arrays (e.g. A, B,

C and D) and For iterators.

3.1 Data partitioning constructs

Parallel programs frequently need to transfer sub-

arrays of data. In order to avoid tedious and mistake

prone index calculations, it is helpful to de�ne di�er-

ent views of arrays. The construct

Let Q: R tiled t by s

generates Q as a n=t �m=s array of rectangular tiles

which represents a new view of the n � m array R.

According to this construction, the element Q[i, j] rep-

resents the appropriate t � s elements of array R. The

size of the dimensions of the new array Q are given by

the built-in function dim(Q,k) which returns the size

of the k-th dimension of array Q.

Some other constructs for de�ning di�erent views

on arrays are particularly applicable to programs solv-

ing PDEs and are described in [16].

3.2 Constructs for Specifying Parallelism

A process can start new processes using the Forall

construct. For example, in Figure 2 the code:

Forall

i in 1 to d

j in 1 to d

k in 1 to d do

mat(<i,j,k>;

d,tsize,TA[i,j],TB[j,k];

C[i, k+(j-1)*d])

generates d

3

processes which are indexed in the itera-

tor set by the triple < i; j; k >, i; j; k 2 [1; d]. As such

the processes are organized as a cube of size d = p

1=3

in each dimension so that we can talk about the pro-

cess P[i,j,k].

Each of the p processes executes the supersteps as-

sociated with the mat thread call that corresponds to

it. In general the thread construct is de�ned as fol-

lows:

DEF THREAD name (index;input;output)

body

END THREAD

The execution of a thread call:

name (index ; input ; output)

proceeds in three stages, each of which may involve

several supersteps. In the �rst stage data input(i) is

sent to process i. The cost of this pure communication

stage depends upon the current data distribution and

any repetition among input(i), for the various values

of i. For example, in the matrix multiplication case,

if arrays A and B are uniformly distributed on the

p available processors, the cost of this superstep is

(2n

2

=p

2=3

)g which matches the analysis in Section 2

of the communication cost of the algorithm. If, on

the other hand, arrays A and B reside on the same

processor, the cost of this communication is 2n

2

g.

The next stage consists of executing the supersteps

prescribed by the body of the thread.

Finally, in the last stage, each process i sends the

data described by output(i) to locations prescribed by

the data distribution. The cost of this stage depends

on the data distribution and any repetition among out-

put(i). In the matrix multiplication example, the cost



Let A,B: array(< 1..N, 1..N >, int)

Let tsize be N/exp(p,1/3)

Let TA: A tiled tsize by tsize

Let TB: B tiled tsize by tsize

Let d be dim(TA,1) /* d= p^(1/3) */

Let C: array(< 1..N, 1..N >, int) tiled tsize by tsize/d

DEF_THREAD mat(index:tuple ;

d:int, tsize:int, A:array(<1..tsize, 1..tsize>, int),

B:array(<1..tsize, 1..tsize>,int);

D:array(<1..tsize, 1..tsize/d>, int) initially 0)

Let C0: array(<1..tsize, 1..tsize>, int)

Let tsize1 be tsize/d /* tsize1 = N/p^(2/3) */

Let TC0: C0 tiled tsize by tsize1

Let C: array(<1..tsize, 1..tsize1, 1..d>, int)

/*superstep 2: multiplication of tiles and redistribution of smaller tiles */

For s in 1 to tsize do

For q in 1 to tsize do

For r in 1 to tsize do

C0[s, r] <- C0[s, r] + A[s, q] * B[q, r]

For r in 1 to d

put(<index[1], r, index[3]>, TC0, <1..1, r..r>, _)

For q in 1 to d

get(_, C, <1..tsize, 1..tsize1, q>, _)

synch

/* superstep 3: final summations */

For q in 1 to tsize

For r in 1 to tsize1

For s in 1 to d do

D[q,r] <- D[q,r] + C[q,r,s]

END_THREAD

/* Main program: start p threads and name them according to a cube */

Forall i in 1 to d

j in 1 to d

k in 1 to d do

/* superstep 1: distribution of tiles of size N/p^(1/3) by thread call*/

mat(<i,j,k>;d,tsize,TA[i,j],TB[j,k];C[i, k + (j-1)*d] )

/* superstep 4: write back tiles via thread return */

Figure 2: BSP-L implementation of the e�cient matrix multiplication algorithm



of the last stage depends on the distribution of array

C. It would be 0, for a particular uniform distribution

of C, and n

2

g(1 � 1=p) if all elements of C reside on

the same processor.

The Forall construct ends with an implicit barrier

synchronization. Thus the statement following the

Forall is not executed until the execution of all its

parallel o�spring processes is complete. BSP-L also

provides for explicit synchronization of some collec-

tion of processes and for that the synch primitive is

introduced. When executed it blocks the executing

process until all its siblings have also issued synch.

The transfer of data between processes is done by

the communication primitives put and get.

3.3 Communication

The put and get primitives are nonblocking and

take the form put(p,A,d,t) and get(p,A,d,t),

where:

� p | a process name that identi�es the process

that is the source (sink) of the data being com-

municated,

� A | an array local to the process executing the

put (get),

� d | a speci�cation of the sub-array (slice)

3

of A

to be sent (received), and

� t | a tag that is used by the sender (receiver) to

distinguish among several di�erent messages that

might be sent (received) by process p.

Each process has an associated communications

bu�er in which data sent to it is stored. The semantics

of a put issued by myproc is then as follows: the slice

of A speci�ed by d is sent to process p along with the

tag t. It is assumed that the data arrives within the

same superstep.

The semantics of get is the following: when the

communications bu�er of process myproc has data

commensurate with d received from process p and with

tag t, then this data is removed from the bu�er and

the subarray A is modi�ed appropriately within the

same superstep.

3

A slice is a set of tuples that speci�es a rectangular subar-

ray. For example, < 1::n;1::n; q > describes the set of tuples

< i; j; k > where 1 � i; j � n and k = q.

4 Optimizations

There has been considerable work done in develop-

ing optimizations for parallel target architectures. For

example, [14] discusses message aggregation, message

pipelining as well as various optimizations of commu-

nications. In [13] there is an algorithm for labeling

statements with sync ranks which are used in produc-

ing optimized programs with less barrier synchroniza-

tion. Reference [2] gives an algorithm for communica-

tion optimization by solving a set of inequalities.

As described in [24, 17] a BSP program is a se-

quence of sequential supersteps separated by barrier

synchronizations. This organization induces a natural

dichotomy on the performance evaluation of a BSP

program, and, as a result, on the optimization oppor-

tunities for BSP programs.

At a �rst level of abstraction (the BSP level) the

cost of a program is given as the sum of the costs of

its supersteps. Each superstep cost is de�ned

4

to be

CMP+COMM+L, where:

� CMP is the maximum computation cost for any

process assuming a one-level memory

� COMM is the maximum communication and is

computed as hg, where h is the maximumnumber

of messages sent or received by any process and

g is a machine parameter denoting the ratio of

the number of computation steps/communication

steps.

� L, a machine parameter, is the barrier synchro-

nization cost.

The next level of abstraction (the sequential level)

details the computation cost of CMP in terms of a

register/cache/local memory hierarchy model for the

respective platform.

This "separation of concerns" view can be ex-

tended naturally to optimization opportunities by dis-

tinguishing between BSP-style and sequential-style

optimizations.

Superstep explosion is an example of a BSP level

optimization. This optimization is typical for code im-

plementing dispersing/combining operations. For ex-

ample, consider the matrix multiplication implemen-

tation and suppose that arrays A and B reside on the

same processor. Than the compiler may generate the

following code for the �rst stage of the execution of

thread mat:

4

This de�nition is a slight variant of the ones used in [24, 17,

20].



/* distribute data from master to workers */

For i in 1 to d do

For j in 1 to d do

For k in 1 to d do

put(P[i,j,k], TA, <i..i, j..j>, 100)

put(P[i,j,k], TB, <j..j, k..k>, 200)

In the innermost loop the master broadcasts the

TA[i, j] tile to d processes P[ , , k]. One possibility

is to use straight message sending at a cost of C

1

=

L + mdg, for messages of size m, which in this case

equals N

2

=p

2=3

. An alternative to this approach is to

broadcast using a binary tree in which case the cost

is C

2

= log

2

(d)(L + 2mg). The compiler can choose

which of these codes to generate by comparing C

1

and

C

2

. For example, if L=g = 200, as reported in [20]

for one measurement, the compiler will choose code

implementing straight message broadcast for the case

that d = p

1=3

= 8 and N � 112. Other BSP-style

optimizations are described in [7].

As an example of sequential-style optimization,

consider the tile multiplication performed in the sec-

ond superstep of the matrix multiplication program:

For s in 1 to tsize do

For q in 1 to tsize do

For r in 1 to tsize do

C0[s, r] <- C0[s, r] + A[s, q] * B[q, r]

Based on the cache size of the sequential platform,

the compiler can choose a block size b and generate

the following code:

For qq in 1 to tsize step b

For rr in 1 to tsize step b

For s in 1 to tsize do

For q in qq to qq+b-1 do

For r in rr to rr+b-1 do

C0[s, r] <- C0[s, r] + A[s, q] * B[q, r]

whose use induces a signi�cant enhancement in per-

formance ([27]).

5 Conclusions

One of the major challenges in parallel computing

is the creation, on a substantial scale, of an industry

for general purpose parallel software. As a result of

intensive e�orts, there is now a continuous stream of

new parallel computers that provide decreasing price

performance ratios. Much work is left to be done,

however, before parallel software that is e�cient, ar-

chitecture independent and scalable will be available

to fully utilize these machines.

This paper describes an approach to this problem

that provides for a variety of high level programming

styles and that promises technologies for e�cient com-

pilation on a wide variety of existing and evolving ma-

chines.

Our tenet is that the optimal area for activity en-

suring broad transportability is neither the language

nor the architecture levels, but rather the in-between

bridging level which tolerates signi�cant variations in

both. Our approach proposes to adopt the BSP model

as the computational model for this level and to gen-

erate transportable software by permeating its fea-

tures in the areas of e�cient algorithms, linguistic con-

structs and compilation techniques.
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