
R-Code a Very Capable Virtual Computer

Citation
Walton, Robert Lee. 1995. R-Code a Very Capable Virtual Computer. Harvard Computer Science
Group Technical Report TR-37-95.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506458

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:26506458
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=R-Code%20a%20Very%20Capable%20Virtual%20Computer&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=6f0c242cf3c138fd52cefb74d80757c1&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

R-Code a Very Capable Virtual Computer

Robert Lee Walton

TR-37-95

October 1995

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

R-CODE

A Very Capable

Virtual Computer

A thesis presented

by

Robert Lee Walton

to

The Division of Applied Sciences

in partial ful�llment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

October 1995

c

 1995 by Robert Lee Walton

All rights reserved.

iii

ABSTRACT

This thesis investigates the design of a machine independent virtual computer, the R-

CODE computer, for use as a target by high level language compilers. Unlike previous

machine independent targets, R-CODE provides higher level capabilities, such as

a garbage collecting memory manager, tagged data, type maps, array descriptors,

register data
ow semantics, and a shared object memory. Emphasis is on trying to

�nd universal versions of these high level features to promote interoperability of future

programming languages and to suggest a migration path for future hardware.

The memory manager design combines both automatic garbage detection and an

explicit \manual" delete operation. It permits objects to be copied at any time,

to compact memory or expand objects. It traps obsolete addresses and instantly

forwards copied objects using a software cache of an object map. It uses an optimized

write-barrier, and is better suited for real-time than a standard copying collector.

R-CODE investigates the design of type maps that extend the virtual function ta-

bles of C++ and similar tables of HASKELL, EIFFEL, and SATHER 0.6. R-CODE

proposes to include numeric types and sizes in type maps, and to inline information

from type maps by using dynamic case statements, which switch on a type map iden-

ti�er. When confronted with a type map not seen before, a dynamic case statement

compiles a new case of itself to handle the new type.

R-CODE also investigates using IEEE
oating point signaling-NaNs as tagged data,

and making array descriptors �rst class data.

R-CODE uses a new \register data
ow" execution
ow model to better match the

coming generation of superscalar processors. Functional data
ow is used for opera-

tions on register values, and memory operations are treated as unordered I/O. Bar-

riers are introduced to sequence groups of unordered memory operations. A detailed

semantic execution
ow model is presented.

R-CODE includes a shared object memory design to support multi-threaded program-

ming within a building where network shared object memory reads and writes take

several thousand instruction-execution-times to complete. The design runs on exist-

iv

ing symmetric processors, but requires special caches to run on future within-building

systems.

v

ACKNOWLEDGMENTS

For an older student, with a family to support, �nancing is very important. I would

like to thank the following people and institutions that made this thesis �nancially

possible: my wife, my mother, and my wife's family; the Division of Applied Sci-

ences of Harvard University; the Advanced Research Projects Agency (Contract Nr.

F19628-92-C-0113); and Professor Thomas Cheatham.

Contents

1 Introduction 1

1.1 Background : 1

1.1.1 S-CODE : 4

1.1.2 R-CODE : 7

1.1.3 V-CODEs : 9

1.2 Methodology : 11

1.3 Context : 12

1.4 Hardware Trends : 13

1.5 R-CODE Feature Selection : 15

1.5.1 Memory Management : 15

1.5.2 Data Types : 16

1.5.3 Execution Flow : 18

1.5.4 Shared Object Memory : 19

1.6 Summary of the Thesis : 21

1.7 Some Related Work : 21

2 Memory Management 22

2.1 Goals : 22

2.2 Requirements : 22

vi

CONTENTS vii

2.3 De�nitions : 25

2.3.1 Memory and Reachability : 25

2.3.2 Marking, Scavenging, and Sweeping : : : : : : : : : : : : : : : 25

2.3.3 Mutators and Frames : 26

2.3.4 Copying and Spaces : 27

2.3.5 Forwarding : 28

2.3.6 Swizzling : 28

2.3.7 Manual Deletion and Type Change : : : : : : : : : : : : : : : 30

2.3.8 Conservative Pointer Components : : : : : : : : : : : : : : : : 30

2.4 Two Level Addressing : 31

2.4.1 Related Work and Alternatives to Object Maps : : : : : : : : 33

2.4.2 Address Registers : 34

2.4.3 Multi-Process Single-Processor Systems : : : : : : : : : : : : : 36

2.4.4 Address Register Loads and Stores : : : : : : : : : : : : : : : 36

2.4.5 Shared Memory Multi-Processors : : : : : : : : : : : : : : : : 38

2.4.6 Copying Stops : 38

2.4.7 Address Register Overhead : 39

2.4.8 The Interrupt Check Alternative : : : : : : : : : : : : : : : : 41

2.4.9 Other Work Related to Address Registers : : : : : : : : : : : 42

2.5 Concurrent Garbage Detection Algorithms : : : : : : : : : : : : : : : 43

2.5.1 The Standard Marking Algorithm : : : : : : : : : : : : : : : : 43

2.5.2 Ephemeral Marking : 44

2.5.3 Concurrent Marking Conditions : : : : : : : : : : : : : : : : : 46

2.5.4 Snapshot and Non-Snapshot Detectors : : : : : : : : : : : : : 47

2.5.4.1 Non-Snapshot Detectors : : : : : : : : : : : : : : : : 47

2.5.4.2 Snapshot Detectors : : : : : : : : : : : : : : : : : : : 48

2.5.5 Read and Write Barriers : 49

CONTENTS viii

2.5.5.1 Read Barrier Detectors : : : : : : : : : : : : : : : : : 50

2.5.5.2 Write Barriers Detectors : : : : : : : : : : : : : : : : 50

2.5.5.2.1 The Write Barrier End Game : : : : : : : : 50

2.5.5.2.2 Write Barrier End Thrashing : : : : : : : : 51

2.5.5.3 Snapshot Detector Barriers : : : : : : : : : : : : : : 53

2.5.6 Comparison of Read-Barrier, Write-Barrier, and Snapshot De-

tectors : 53

2.5.7 Copying Collectors : 55

2.5.8 Forwarding : 57

2.5.8.1 Read Barrier Forwarding : : : : : : : : : : : : : : : : 57

2.5.8.2 Write Barrier Forwarding : : : : : : : : : : : : : : : 58

2.5.8.3 Replication Forwarding : : : : : : : : : : : : : : : : 59

2.5.8.4 Two Level Addressing : : : : : : : : : : : : : : : : : 60

2.5.8.5 Comparison of Read-Barrier-Forwarding, Write-Bar-

rier-Forwarding, Replication-Forwarding, and Two-

Level-Addressing Detectors : : : : : : : : : : : : : : 60

2.5.9 The R-CODE Write Barrier : : : : : : : : : : : : : : : : : : : 61

2.5.9.1 The Bitstring AND Write Barrier Test : : : : : : : : 61

2.5.9.2 Local and Global Heaps: A Future Use for the Write

Barrier Test : 62

2.5.9.3 Deferred Action Bu�ers : : : : : : : : : : : : : : : : 63

2.5.9.4 Write Barrier Mutator Overhead : : : : : : : : : : : 64

2.5.9.5 Related Work on Write Barriers : : : : : : : : : : : : 67

2.6 Non-Mutator Overhead : 67

2.7 Summary : 70

3 Data Types 71

3.1 Goals : 71

CONTENTS ix

3.2 Requirements : 72

3.3 Basic Data Types : 73

3.3.1 Memory Units : 74

3.3.2 Tagged Values : 76

3.3.3 Pointers : 78

3.3.3.1 The Pointer Type Field : : : : : : : : : : : : : : : : 79

3.3.3.2 Scalar Types : 81

3.3.3.3 Loads and Stores : 82

3.3.3.4 Related Work on Dynamic Compilation : : : : : : : 84

3.4 Type Maps : 84

3.4.1 Issues to be Analyzed : 86

3.4.2 Type Map Related Work : 87

3.4.3 Type Matching : 88

3.4.3.1 Static Type Matching : : : : : : : : : : : : : : : : : 88

3.4.3.2 Dynamic Type Matching in R-CODE : : : : : : : : : 89

3.4.3.3 Dynamic Type Matching via Formal Types : : : : : 91

3.4.3.4 The Formal Type ANY : : : : : : : : : : : : : : : : 93

3.4.3.5 Formal Component Descriptors : : : : : : : : : : : : 93

3.4.4 Constancy of Type Maps : 94

3.4.4.1 Adding Component Descriptors to Type Maps : : : : 94

3.4.4.2 Type Variables : 95

3.4.5 Actual Type Speci�cation : 95

3.4.5.1 An Actual Type Speci�cation Example : : : : : : : : 96

3.4.6 Component Descriptor Contents : : : : : : : : : : : : : : : : : 98

3.4.7 R-CODE Component Descriptors : : : : : : : : : : : : : : : : 100

3.4.7.1 R-CODE Actual Component Descriptors : : : : : : : 100

3.4.7.2 R-CODE Formal Component Descriptors : : : : : : 102

CONTENTS x

3.4.8 Subobjects : 103

3.4.9 Examples of De�ciencies in C++ : : : : : : : : : : : : : : : : 104

3.4.10 Type Maps in Other Languages : : : : : : : : : : : : : : : : : 106

3.5 Array Descriptors : 107

3.5.1 Summary : 109

4 Execution Flow 110

4.1 Goals : 110

4.2 Requirements : 111

4.3 Principals : 114

4.3.1 Virtual Computer Representation : : : : : : : : : : : : : : : : 114

4.3.2 Data
ow for Register Values : : : : : : : : : : : : : : : : : : : 115

4.3.3 RAM Memory is an Input/Output Device : : : : : : : : : : : 115

4.3.4 Based on Cases, Calls, Returns, Barriers, and Exception Throws116

4.3.5 Barriers are at Routine Top Level : : : : : : : : : : : : : : : : 116

4.3.6 Return Terminates Subsequent Partitions : : : : : : : : : : : : 116

4.3.7 Exception Catches are Cases Attached to Call Instructions : : 117

4.3.8 Exception Throws are like Returns with Termination : : : : : 117

4.3.9 Out-of-Line Equals Inline : 117

4.3.10 Blocks are Routines : 118

4.3.11 Loops are Tail-Recursive Routines : : : : : : : : : : : : : : : : 118

4.3.12 Traps are like Subroutine Calls : : : : : : : : : : : : : : : : : 118

4.3.13 NaNs instead of Traps : 118

4.3.14 Either Strict or Non-Strict : 119

4.3.15 Eager but for Traps : 120

4.3.16 Memory Reads have No Side E�ects : : : : : : : : : : : : : : 120

4.3.17 Case Statements Propagate Permissions : : : : : : : : : : : : 120

CONTENTS xi

4.3.18 Flexible Value Lists : 122

4.3.19 Second Class Frame Pointers : : : : : : : : : : : : : : : : : : : 122

4.3.20 Controllable Inlining : 123

4.4 Related Work : 123

4.5 R-CODE Machine Language Control Flow Semantics : : : : : : : : : 125

4.5.1 R-CODE Basic Register Data
ow : : : : : : : : : : : : : : : : 125

4.5.1.1 Registers : 125

4.5.1.2 Instructions : 126

4.5.1.3 Type Codes : 128

4.5.2 Frame Memory : 128

4.5.2.1 Register Frames : 129

4.5.2.2 Frame Heap : 130

4.5.2.3 Value Lists : 131

4.5.3 Execution State : 133

4.5.3.1 The Execution Tree : : : : : : : : : : : : : : : : : : 133

4.5.3.2 Tree Node States : 135

4.5.3.3 State Transition Rules : : : : : : : : : : : : : : : : : 135

4.5.3.4 State Maintenance : : : : : : : : : : : : : : : : : : : 136

4.5.4 Cases : 137

4.5.5 Barriers : 138

4.5.6 Calls and Returns : 139

4.5.7 Exception Throws : 141

4.5.8 Blocks : 142

4.5.9 Loops : 143

4.5.10 Inlining : 144

4.5.11 Localizing : 144

4.5.12 Coroutines : 145

CONTENTS xii

4.5.13 Non-Signaling-NaNs : 146

4.5.14 Traps : 147

4.5.15 Continuations : 148

4.5.16 Recording State : 148

4.6 Implementation Challenges : 149

4.6.1 Simulating the R-CODE Computer : : : : : : : : : : : : : : : 149

4.6.2 Non-Signaling-NaN Outputs : : : : : : : : : : : : : : : : : : : 150

4.6.3 Trap Implementation : 150

4.7 Summary : 151

5 Shared Object Memory 152

5.1 Goals : 152

5.2 Requirements : 154

5.3 Main Problems : 155

5.3.1 The Cache Coherency Problem : : : : : : : : : : : : : : : : : 155

5.3.2 The Thread Synchronization Problem : : : : : : : : : : : : : : 157

5.3.3 The Write Delay Problem : 159

5.3.4 The Atomic Transaction Problem : : : : : : : : : : : : : : : : 160

5.3.5 The Hotspot Problem : 162

5.4 Principals : 163

5.4.1 The Ordered Partition Model : : : : : : : : : : : : : : : : : : 163

5.4.2 Commutative/Associative Operations : : : : : : : : : : : : : : 163

5.4.3 Type Change : 164

5.4.4 Per Component Access Disciplines : : : : : : : : : : : : : : : 164

5.4.5 Volatile Component Caching : : : : : : : : : : : : : : : : : : : 164

5.4.6 Probabilistic Error Detection : : : : : : : : : : : : : : : : : : 165

5.5 Related Work : 165

CONTENTS xiii

5.6 R-CODE Shared Object Memory Semantics : : : : : : : : : : : : : : 165

5.6.1 Access Disciplines : 165

5.6.2 Access Speci�cations : 166

5.6.3 Access Speci�cation Combination : : : : : : : : : : : : : : : : 168

5.6.4 The Volatile Cache : 171

5.6.5 The Read-Only Access Discipline : : : : : : : : : : : : : : : : 172

5.6.6 The Write-Only Access Discipline : : : : : : : : : : : : : : : : 172

5.6.7 The Volatile Access Discipline : : : : : : : : : : : : : : : : : : 172

5.6.8 The Write-Once Access Discipline : : : : : : : : : : : : : : : : 172

5.6.9 The Accumulate Access Discipline : : : : : : : : : : : : : : : : 173

5.6.10 The Atomic Transaction Access Discipline : : : : : : : : : : : 173

5.7 Summary : 175

List of Figures

1.1 Language Interfaces : 5

1.2 S-CODE Advanced Example : 7

1.3 Example AT-CODE Information Graph : : : : : : : : : : : : : : : : : 10

2.1 Addressing Data : 32

2.2 Address Load and Store RISC Pseudo-Code : : : : : : : : : : : : : : 40

2.3 Write Barrier RISC Pseudo-Code : 65

2.4 Deferred Bu�er Processing Loop RISC Pseudo-Code : : : : : : : : : : 66

3.1 A Vector of 8 5-Bit Elements : 75

3.2 64-Bit and 128-Bit Tagged Values : 77

3.3 128-Bit Tagged Pointer : 79

3.4 The Pointer Type Field : 80

3.5 Copy Types : 81

3.6 Type Maps : 85

3.7 Static Type Matching : 89

3.8 R-CODE Default Type Matching : 90

3.9 Dynamic Type Matching by Formal Types : : : : : : : : : : : : : : : 92

3.10 R-CODE Non-Constant Component Descriptors : : : : : : : : : : : : 101

3.11 Array Descriptors : 108

xiv

LIST OF FIGURES xv

4.1 Tagged Register Values : 126

4.2 Example Arithmetic Instruction : 127

4.3 Example Instruction Execution Tree : : : : : : : : : : : : : : : : : : 134

5.1 R-CODE Pointers and Types : 167

5.2 Combining R-CODE Pointers and Component Descriptors : : : : : : 169

5.3 Access Speci�cation Combination : 170

Chapter 1

Introduction

1.1 Background

After a long career in computer software development, I returned to graduate school

a few years ago speci�cally to develop a programming language such that:

G

�

: A high school student knowing a bit of algebra and geometry can inves-

tigate and change commercially written games, editors, and simulators.

G

�

: The language is a suitable foundation for enhancements that merge the

best of

C, Fortran,

C++, Ada (Ei�el, : : :),

SML, Haskell (Id, : : :),

Lisp, Emerald (Smalltalk, : : :),

MatLab, Mathematica, Latex.

I did this for two reasons. First, having a family made me aware how di�cult it is for

average people to learn existing commercial programming languages. In particular,

I became ambitious to design a language in which companies would write computer

games and high schoolers would enjoy modifying them.

Second, I have had an extensive career specializing in high performance software that

glues other software together, via communications or common data structures, and

1

CHAPTER 1. INTRODUCTION 2

this gave me insight into what made existing programming languages good or bad

from the interfacing point of view. In other words, I have written in the neighborhood

of 200,000 lines of code, much of it glue software, in assembly language, C, LISP, Ada,

and C++, and I have developed opinions on how existing languages should be changed

to make interfacing easier.

One's �rst idea, of course, is to design a \neat little language", and after doing a

partial de�nition of one of these

1

, and looking at the fate of SCHEME and EIFFEL,

two good neat little languages, I decided that a more potent method is required.

The problem is that it is di�cult to convince people, such as the commercial compa-

nies mentioned in G

�

above, to switch to a new language, without o�ering some very

good reason to do so. The only good reason I can think of is that the new language

is a good candidate for a standard that would be much better than the previous

standards.

I suspect that many aspects of modern computer languages cannot be successfully

standardized. But there are a few that might be, and these form the basis of an

approach.

The �rst things that lend themselves to standardization are high performance op-

erations. Any operation that is high performance is short and does not have very

many degrees of freedom. Therefore it is possible to work through all possibilities

and choose a best one. Thus we have been able to standardize on the 8-bit byte, and

on two's complement integer arithmetic. It is not clear that two's complement integer

arithmetic is actually better than one's complement, but is it not noticeably worse,

and there is little chance that someone will come up with something signi�cantly

better.

Conversely, low performance operations are di�cult to standardize. There is always

some twist that works much better in some special case important to someone. Con-

sider, for example, trying to standardize on a single universal sort algorithm.

The second kind of thing that lends itself to standardization is \universal glue". By

this I mean some format for communication that many programmers adhere to so

their programs will interoperate with other programs.

There are several examples of data structures used as universal glue. One is LISP:

symbols, cons cells, and various types of numbers. This data structure permits many

1

Called, for the record, \The Game Language", and unpublished

CHAPTER 1. INTRODUCTION 3

di�erent functions to interoperate.

A similar example is MatLab. Here the data structure is a 2D matrix of complex

oating point numbers, stored as two matrices of
oating point numbers, one for the

real part and one for the imaginary part. The imaginary matrix may be omitted.

One dimension size may be set to 1 to get a vector. Both dimension sizes may be set

to 1, and the result is called a \scalar". And there is a \text
ag", which if set means

the numbers are to be interpreted as ASCII character codes, i.e. text is represented.

A vector with the text
ag set is therefore a character string. And that is the whole

show, data-structure-wise, upon which a large collection of interoperating MatLab

subroutines is built.

The other kind of \universal glue" is syntax. The LISP S-expression syntax provides

a way of interfacing programs to each other. COMMONLISP enhances this syntac-

tic glue with its \lambda list" extensions, such as optional arguments and keyword

arguments.

Universal glue pays for itself not because it is optimally e�cient in terms of computer

cycles or human e�ort, but because without it programs cannot interoperate. The

more potent forms of universal glue make it easier to program certain classes of

interoperating programs, which is why these forms of glue have been successful. Most

successful pieces of universal glue have a fairly simple structure.

None of the lower performance universal glues to date, e.g. LISP and MatLab, has

more than a restricted audience. However, the C language has a very wide audience,

because it both plays the role of universal glue and has high performance.

So what parts of a programming language might we successfully standardize?

Under the guise of universal glue, one can standardize some syntax, type checking, and

calling conventions: an interface that basically upgrades the LISP S-expression and

COMMONLISP lambda list by adding strong typing and in�x operators. I introduce

such an interface, which I call S-CODE, for \surface code".

All programming languages execute programs in some abstract machine model. For

example, the machine model for C includes a stack containing function frames. For

another example, the model for COMMONLISP includes a memory with COMMON-

LISP objects and garbage collection. The runtime system is part of the machine

model, but so are the hardware conventions used to make subroutine calls and main-

tain memory.

CHAPTER 1. INTRODUCTION 4

Standardizing a machine model for use by a set of programming languages seems

to be necessary if you want the languages to interoperate. So I propose a standard

abstract machine model called R-CODE, which stands for \register code", because it

supports a register data
ow model of program execution. R-CODE supports garbage

collection and other advanced programming language features. R-CODE is in e�ect

an interface to a virtual computer, on which many programming languages may run

together. R-CODE tends to standardize high performance interfacing, and therefore

is both universal glue and high performance.

Lastly, programming languages often have input/output support: e.g. printf/scanf

in C and <</>> in C++. Because I want to support games and simulations, I expect

to need something more potently visual. My root idea is to de�ne data structures

that are simple and logical and easy for programs to manipulate, but which can be

displayed visually using prede�ned and complex visualization programs. I call these

data structures V-CODEs. A simple example of a V-CODE consists of ASCII text

bu�ers, pointers into these bu�ers, and character string labels, all organized into a

directory information structure. This particular V-CODE has the name \AT-CODE",

standing for \ASCII Text Code".

The word V-CODE itself stands for \visualization code", but the visualization pro-

grams that display V-CODEs can be replaced by vocalization programs that permit

blind people to hear the data, and so V-CODE can equally well stand for \vocalization

code".

The relationship of the three interfaces, S-CODE, R-CODE, and V-CODE, is indi-

cated in Figure 1.1.

This thesis describes the rationale for a design of R-CODE. In order to give a more

complete background, I introduce S-CODE, R-CODE, and V-CODEs in more detail

immediately below, but then discuss nothing but R-CODE for the rest of the thesis.

1.1.1 S-CODE

S-CODE is a surface syntax which adds to the capabilities of COMMONLISP lambda

lists. One important feature to be added is strong typing. To my mind there are

two reasons for doing this. First, many programmers cannot write e�cient code in

COMMONLISP, even though in theory one can do so by adding suitable declarations.

It is too hard to tell when COMMONLISP declarations are needed for e�ciency

CHAPTER 1. INTRODUCTION 5

User

?

Editors

S-CODE

Surface Syntax

+

Typing

?

Compilers

R-CODE

Virtual Computer

with

Advanced Features

?

Application

Programs

V-CODEs

Visualizable

Data Structures

?

Visualization

Programs

User

Figure 1.1: Language Interfaces

CHAPTER 1. INTRODUCTION 6

purposes. Second, overloading, as in C++ and Ada, solves many naming problems

that arise when writing large systems of programs. The programmer need only worry

about getting unique type names, if the names of most functions and variables include

types implicitly.

Other important features to be added to S-CODE are purely syntactic features like

in�x operators and an improved scheme for lexical analysis.

The following is the de�nition in a possible version of S-CODE for the prototype of

the addition/subtraction expression:

define (v) = (x) ? + (y) ... # - (z) ...

where

x, y[.], z[.], v are each an (n)

and an n is a number

Here the define statement is de�ning the \form"

(x) ? + (y) ... # - (z) ...

S-CODE expressions are sequences of clauses, each consisting of some keywords fol-

lowed by some arguments. In a form, arguments are indicated by identi�ers in paren-

thesis: e.g. (x), (y), (z). The keywords in the form we are de�ning are + and -.

The �rst clause, de�ned by (x) ?, has no keyword, and the ? indicates that this

clause can be omitted. The second clause, de�ned by + (y) ..., has the keyword

+, and the ... indicates this clause can be repeated zero or more times. Thus y is

really a vector of values. The third clause, de�ned by - (z) ..., is similar, but the

keyword is -. The # between the second and third clause indicates that instances of

these clauses can be switched in order. The lack of a # after the �rst clause means

any �rst clause must come before any later clauses.

Forms are S-CODE expressions with \form variables" such as (x) in various places

where subexpressions would be placed. Types are also S-CODE expressions, and (n)

above is a form variable for a type. Form variables are indicated by surrounding them

by parentheses in at least one of their uses within the form. Typing is essentially a

process of matching expressions and assigning expressions as form variable values.

This is just an application of the uni�cation algorithm, analogous to uni�cation in

PROLOG.

I call this possible version of S-CODE a \unifying clausal grammar."

CHAPTER 1. INTRODUCTION 7

Example Function Prototype:

define sort (x) into (y) such that (efy[i],y[j]g)

for all (i) < (j)

where

x, y are each a vector from (type1) to (type2)

and y is a write-only variable

and i, j are each a type1 variable

and e is a boolean

and type1 is an enumeration

Example Use of Above Prototype:

sort company.employees into v such that

(v[i].name < v[j].name) for all i < j

Figure 1.2: S-CODE Advanced Example

Without getting into more details, we give another example of a function prototype

in Figure 1.2.

Although I have done some preliminary work on S-CODE, it is not close to being

formally de�ned.

1.1.2 R-CODE

Languages with garbage collection have problems interoperating with languages that

do not have garbage collection. Even worse would be the case of two languages with

di�erent garbage collectors trying to interoperate with each other.

Therefore, it seems that developing a standard garbage collecting memory manager

is very important to the future of computing.

If you standardize on a memory manager that includes garbage collection, then you

must standardize on other aspects of memory layout as well, including program stack

and frame organization, and how arguments are passed. You may also have to stan-

dardize on the way memory loads and stores are handled. In the end, you have what

CHAPTER 1. INTRODUCTION 8

amounts to a virtual computer with builtin memory management.

One might as well build machine independence into this computer too. Proposals to

develop a machine independent computer, or equivalently a machine independent low

level programming language, are quite old. One of the original proposals was to make

a language called UNCOL, or Universal Computer Oriented Language

2

, which was a

suitable target language for every compiler, yet was machine independent. UNCOL

was proposed speci�cally to reduce the burden of producing M �N compilers for M

source languages and N types of hardware. Instead, there would be M source ana-

lyzers compiling the languages to UNCOL, and N code generators compiling UNCOL

to machine language, for a total of M +N compilers.

source

language

-

source analyzer

UNCOL

-

code generator

machine

language

The UNCOL idea did not work originally, perhaps in part for the following two

reasons. First, machines were not very standard: some had 36 bit words, some 32

bit words, some supported 8 bit bytes, some had 6 or 9 bit bytes, and so forth.

Now machines are very standardized as far as data structuring is concerned, which

makes it much easier to de�ne an UNCOL, since now only instruction set di�erences

need be hidden. The second di�culty with UNCOLs was that they were not very

di�erent from higher level languages such as C and FORTRAN. So people who wanted

to work on developing an UNCOL were often told to use C instead. In fact, C

has been used as an UNCOL successfully to implement C++[Str94, section 3.3.1],

COMMONLISP[YHS], EIFFEL[M

+

91, section 6.3.3], and other languages. But of

course C does not include a standard garbage collecting memory manager.

R-CODE is an UNCOL that includes a garbage collecting memory manager and is

packaged as a virtual computer. It has its own data organization, instruction set, etc.

Implementations on real computers must promise to make the virtual computer look

real and be \e�cient".

The R-CODE virtual computer looks something like a RISC machine. It has 65,536

virtual registers per routine execution, so there is no need to map more than one

2

A modern survey of UNCOLs can be found in [Maca]. One study committee commented in 1958

that the concept \had been discussed by many independent persons as long ago as 1954. It might

not be di�cult to prove that `this was well-known to Babbage'."

CHAPTER 1. INTRODUCTION 9

variable to a single register. The registers are 128 bits and can hold tagged data,

including 128 bit
oating point numbers. The instructions are 64 bits, and have plenty

of space for option
ags. However, both the registers and instructions are virtual:

R-CODE is compiled to real machine languages that take advantage of of the fact

that the types of values in registers are known at compile time, so R-CODE registers

can be mapped to real untagged registers, R-CODE instructions can be mapped

to real untagged instructions, and R-CODE will execute e�ciently. Nevertheless,

when R-CODE routines are stopped during debugging, the debugging interface of

the R-CODE virtual computer makes things look as if R-CODE were being directly

executed.

Besides a garbage collecting memory manager, R-CODE includes other features not

found in normal computers. These features are all high performance universal glue

features that we feel will be necessary for programming languages in the future.

Included are type maps, array descriptors, tagged data, register data
ow, and shared

object memory. Later in this chapter we will introduce these in more detail.

R-CODE gets it name, \register code", from one of its features: register data
ow.

1.1.3 V-CODEs

Some of the programs we are interested in having high school students modify are

games, simulations, spreadsheets, word processors, and picture processors. All of

these contain some data structured in a way natural to the program, and some fairly

large piece of programming that permits users to visualize this data.

The V-CODE idea is to de�ne data structures natural to classes of programs such

that the programming necessary to visualize these data structures can be a prewritten

�xed visualization program plus a few simple application speci�c rules. Then the ap-

plication programmer will only have to worry about manipulating the data structures,

which are natural to the application, and will not have to worry about programming

visualization.

A side bene�t of this approach is that the visualization program can be replaced by

a vocalization program that will make the data structures accessible to blind people.

Since the data structures are natural to the application, this should be an e�cient

way of proceeding.

Therefore, a V-CODE is a data structure natural to a class of programs such that

CHAPTER 1. INTRODUCTION 10

root

?

-

debugger

-

�le

*

main.c

bu�er

+

-

break

point

*

line 55

pointer

+

-

�le

*

subr.c

bu�er

+

Figure 1.3: Example AT-CODE Information Graph

a visualization (and vocalization) program can be prewritten to provide a visual

(vocal) interface between a person and the data structure, with the help of some

simple application and person speci�c rules.

Work has been done on the simplest V-CODE, which is built around ASCII text

bu�ers, and is called AT-CODE, or \ASCII Text Code." The AT-CODE information

structure is an information graph whose nodes are bu�ers, pointers at characters in

bu�ers, pointers at regions in bu�ers, and symbols. The symbols are just character

strings used as labels, as in LISP (but without any associated values or functions).

An example information graph is given in Figure 1.3.

In this example there can be several programs running, one of which is the debugger.

The debugger has several file attributes, each of which is an ASCII text bu�er

mapped onto a �le. These bu�ers can have breakpoint attributes, which are each a

pointer to a line in the �le where a breakpoint has been set by the debugger.

The visualization program can display the file bu�ers just like an editor. The

visualization program may be given the rule:

.debugger.file<buffer>.breakpoint<pointer> ===> highlight green

which causes the visualization program to display any debugger file breakpoint

line in green. The visualization program may be given the rule:

CHAPTER 1. INTRODUCTION 11

.debugger.file<buffer> ===> on b send breakpoint <cursor>

which causes the visualization program to send the command

breakpoint copy-of-cursor

to the debugger program whenever the user types a `b' while a debugger file is the

current edit bu�er.

Other V-CODEs could represent data that could be visualized as spreadsheets. More

advanced V-CODEs could represent abstract syntax trees that could be rendered into

displays with variable-width fonts and mathematical formulas; or could represent data

in a simulation that could be rendered into 3D pictures as in a
ight simulator.

1.2 Methodology

Clearly I am interested in de�ning general purpose interfaces. In order to do so, one

may engage in the following kinds of activities:

M

1

: De�ne interfaces and analyze them. Analysis consists of listing options

and giving reasons pro and con for each option. A more or less exhaus-

tive search of the \reasonable option space" is desirable.

Analysis might use tools such as rough timing estimates and small pieces

of pseudocode expressing either implementation or usage.

M

2

: Build a system employing the interface and test it on a small scale.

M

3

: Build a system employing the interface and attempt to \market" it to

the world at large. This may consist of giving the system away for

free and attempting to get a large number of customers. One could

also charge a fee for the system, but since we are dealing with general

purpose interfaces, this is not so likely as in other areas of software.

My approach is to mine methodM

1

, analysis, until it starts running dry. I believe it

yields more meaningful results for general purpose interfaces than methodM

2

, small

scale implementation. It is also cheaper.

In the case of R-CODE there is enough analysis work for at least one thesis, and this

thesis contains only analysis.

CHAPTER 1. INTRODUCTION 12

1.3 Context

Programming languages take about 10 years to develop and popularize, and then last

perhaps 30 years, so:

C

1

: Our interfaces are for use primarily in the years 2005-2035 A.D.

We have a strong interest in what should be, rather than what is. This is an appro-

priate attitude for a Ph.D. thesis, and it causes no problems on the software side, for

that is under our control. But hardware is a di�erent matter. We need to develop the

art of getting computer manufacturers to put special hardware into every computer

sold to high school students.

A hint on how to proceed comes from the current relationship of RISC to CISC

computers. Digital Equipment Corporation is phasing out production of their VAX

computers. Instead they \emulate" the VAX on their new RISC ALPHA's. This

\emulation" technology actually consists of compiling binaries most of the time, and

typically has an ine�ciency factor of 3[Dig94, section 4.4]. Thus a 150 MIPS ALPHA

runs VAX code at the rate of 50 MIPS, which is a very fast VAX.

Therefore our method will be to design software that will run with some ine�ciency

factor, possibly up to 2 or 3 but hopefully much lower, on existing hardware, and will

run optimally, without ine�ciency compared to current software, if new hardware

is added to current computers. This consideration only a�ects R-CODE, and not

S-CODE or V-CODE, which are not hardware sensitive.

What must then happen is for the software to become popular before any hardware

is built. After the software becomes widespread, computer manufacturers will �nd it

bene�cial to make the optimizing hardware.

In order to become popular while being ine�cient, R-CODE will have to o�er ca-

pabilities worth the ine�ciency. In some cases this my be done by simply making

the new capabilities optional additions to existing e�cient capabilities, and making

the new capabilities as e�cient as possible. Then commercial programmers can chose

whether to use the new capabilities for a piece of code, or stick with the old capa-

bilities. Usually over half the lines of code in a program are not executed enough to

make e�ciency a problem, and so there may be a lot of use for advanced capabilities

even if they are ine�cient. An example of this is the several hybrid LISP/C systems,

CHAPTER 1. INTRODUCTION 13

such as EMACS, in which LISP is used for control, where e�ciency is not required,

and C is used for operations that must be e�cient.

In other cases the new capabilities will not be optional. In these cases they must be

worth something signi�cant.

So in summary:

C

2

: R-CODE must be popularized on existing hardware, but may require

new hardware to run optimally. R-CODE may be ine�cient by a factor

of as much as 2 or 3 when run without new hardware, but should be

fast enough to become popular.

C

3

: An ine�cient feature in R-CODE must either be optional, or must

have worth su�cient to overcome the adverse value of its ine�ciency.

Optional features must interoperate well with standard features.

1.4 Hardware Trends

Since I am attempting to develop programming languages for the future, in particular

for 2005-2035 A.D., we must pay attention to the likely development of hardware in

this time frame. By this I mean we must consider current hardware trends; not

new hardware one might hope for. We are interested mostly in personal computer

hardware: what every high school student will have.

From the point of view of programming languages, computer hardware is changing

more rapidly now than at any time in the last several decades. Three major themes

are increased parallelism, the \memory wall", and increased network speed.

The increase in parallelism means that sequential execution is no longer a viable

assumption, even for personal computers. Some consequences for our C

1

time frame

(2005-2035 A.D.) are:

H

1

: Even personal computers are switching to superscalar processors, which

simultaneously execute two or four instructions[E

+

95]. A superscalar

processor needs to execute instructions out of order so that it can keep

its multiple pipelines full of useful work.

CHAPTER 1. INTRODUCTION 14

H

2

: Shared memory multi-processors have made their appearance for desk-

top workstations. I expect to see 1 to 16 processors per personal com-

puter in our time frame.

The \memory wall" is the name given in [WK95] for the phenomenon that processor

speeds are increasing at the rate of 80% per year while DRAM memory speeds are

only increasing at the rate of 7% per year. The faster existing microprocessors,

such as the ALPHA with a peak speed of 300 MIPS, are already su�ering secondary

cache miss times of 30-100 instructions[F

+

95], with corresponding adverse impact on

timing[Sit92, Appendix A]. Some consequences for our time frame are:

H

3

: Organizing lists using small discontiguous CONS cells is becoming very

ine�cient due to large cache miss times, and so lists will probably be

represented in the future by variable length vectors, analogously to

character strings.

H

4

: Subroutine calls will have a high overhead, and routines should be in-

lined muchmore frequently. Documentation for the ALPHA already ad-

vises that routines shorter than 20 instructions should be inlined[Sit92,

A.2.3].

The memory wall also provides an additional reason for wanting to reorder instruc-

tions, as per H

1

above. Because memory is becoming slower relative to processors,

processors need memory read instructions to be executed as early in the instruction

stream as possible.

The increase in network speed is indicate by the progression from Ethernet to FDDI

to ATM. Inexpensive board-mounted lasers with gigabit per second speeds are be-

coming available. The latency limit for getting from one side of a building to another

at the speed of light is of the order of 1 microsecond, and this is likely the only limit

on network communications that will be operative during our time frame. We expect

to see within-building networks evolve somewhat in the direction of shared mem-

ory buses, though the latency will be on the order of 1,000 instruction executions,

and networks will have to operate somewhat di�erently from normal shared memory

because of this.

Although I do not expect high school students to have very high speed network

connections at home, even in our time frame, they will have such in school. Therefore

the consequences for us are:

CHAPTER 1. INTRODUCTION 15

H

5

: A large number of processors connected by networks capable of \pag-

ing in" an object in 1,000 instruction execution times will be available

sometimes. These should at least be usable by parallel compilers and

text processors.

Of course there will be other hardware developments, such as networks that replace

the current phone system. But these are not high performance, so they have little

impact on R-CODE, and I will ignore them.

1.5 R-CODE Feature Selection

R-CODE de�nes a virtual computer such that the assembly language for this virtual

computer is a good target language for compilers, but still machine independent.

The purpose of R-CODE is to get everyone to standardize on a common garbage

collector and some similar very capable features. The next question is, what exactly

should these very capable features of R-CODE be?

1.5.1 Memory Management

Clearly one feature should be garbage collection. However, when I thought about

trying to get commercial programmers in general to accept garbage collection (as per

G

�

, page 1), I became uncomfortable. Garbage collection has not been sellable to

that bunch for 30 years. The most commonly given reason is the desire to eliminate

pauses, but the technology to eliminate pauses has been around for 10 years, at least.

I concluded that commercial programmers would not want to buy into a memory

manager that did not permit manual deletion, via the good old fashion \delete oper-

ation". There are many instances in programming when you know something should

be deleted and you do not want to have to track down and kill all the pointers to

it. However, once an object is manually deleted, use of any dangling reference to it

should be
agged as an error, especially when students are modifying code. So in this

sense, manual deletion should be \strongly typed".

I also concluded that ability to move an object at any time is an extremely strong

selling point in a memorymanager. One use of this is to compact memory very slowly

CHAPTER 1. INTRODUCTION 16

to avoid interfering with the time response of the application code. Another use is to

expand a table when needed.

Lastly I feel that commercial programmers will want the memory manager to have

good timing characteristics, and perform in real-time when necessary.

Thus I come to our �rst R-CODE features:

F

1

: R-CODE will have a memory management system with automatic gar-

bage collection, a strongly typed manual delete operation, and an op-

eration to move an object at any time.

F

2

: R-CODE will have a memory management system with timing charac-

teristics suitable for real-time applications.

For the last few decades, long term data has been stored in �les. But this is changing,

and in the future data will be stored in databases that store objects which point at

each other. When such a object oriented database is input to main memory, there

are two problems. First, all the object pointers must be adjusted to point where the

objects land in memory. Second, objects must not be read until they are needed, as

the entire database will often be much too big to put into main memory.

The operation of adjusting pointers in this situation goes under the name of \swiz-

zling" the pointers. Since objects are not read into memory until they are needed,

swizzling pointers must be delayed until the pointers are used. Thus memory man-

agement gets involved, and we are led to our next feature:

F

3

: R-CODE will have a memory management system that supports de-

layed swizzling of pointers so external databases can be input e�ciently

into main memory.

The chapter on memory management proposes ways of providing the above features.

1.5.2 Data Types

The next issue I faced, after garbage collection, was what aspects of data types

should be present at run time and directly supported by R-CODE. Associated with

every type of object must be some function to perform garbage detection activities.

CHAPTER 1. INTRODUCTION 17

Speci�cally, there must be a \scavenger" function for every type that discovers the

pointers in any object of that type, and also discovers for each pointer the type of

the object it points at.

Modern object oriented languages associate with every type of object a list of functions

that can do various things to the object, such as print it or display it graphically. In

the high performance object oriented languages, such as C++, this list is organized

as a vector, and the compiler always knows at compile time the index of the element

it wants from the vector to perform a given operation.

We call such a vector of information about a type a \type map", and we make type

maps visible in R-CODE. The garbage collector is our �rst customer for type maps,

but there are other important uses.

In modern programming languages it has become important to distinguish between

the type a routine thinks an object has, which we call the object's \formal type",

and the type the object actually has, its \actual type". Type maps may be used to

make objects of di�erent actual types appear to have the same formal type. Then

one routine can be used on many actual object types.

There are many uses for this. For example, programs written at one time can be

applied to data de�ned at a di�erent time if a type map can compensate for the

di�erences between what the program expects and the actual data format. Or \poly-

morphic" routines can be written to handle any type of object that has certain com-

ponents and operations.

There are two reasons for making type maps part of R-CODE. The �rst is to be

sure that di�erent programming languages can interoperate. The way type maps are

created and passed between routines needs to be standardized, and certain compo-

nents of type maps, such as the scavenging functions mentioned above, need to be

standardized. Other components could, however, be language dependent.

The second reason for making type maps part of R-CODE is e�ciency. The functions

speci�ed by type map components should often be inlined. Also, many of these

functions reduce to a single load or store instruction, so that the only information

really in the type map is the displacement, size, and numeric type of a component.

Special hardware can make type maps containing this kind of information e�cient,

but before such hardware is built, software techniques are needed. One such technique

uses \dynamic case statements" that switch on the type map input to a particular

piece of code, and dynamically compile new cases when the case statement sees a new

CHAPTER 1. INTRODUCTION 18

type map.

Thus the feature we want R-CODE to support is:

F

4

: R-CODE will support type maps, and will e�ciently handle execution

of very small functions selected from a type map, and also e�ciently

handle loads and stores in which only displacement, numeric type, and

size are stored in the type map.

Just as the map from an actual object to a formal object (i.e. the object as seen

by a routine) is encoded in a type map, a linear map from a list of subscripts to an

address within an array is encoded in a map we call a \array descriptor". One of the

things I learned during my decades writing glue software is that array descriptors are

the right way to treat array accesses. This is because there are many instances when

pieces of an array need to be treated as arrays in their own right. Thus:

F

5

: R-CODE will support array descriptors, treating them as �rst class

data, except that they may not be modi�ed once created.

Lastly, LISP and other languages permit use of tagged data whose type is not known

at compile time. There are times when this is indispensable, as when LISP S-

expressions are used to describe linguistic information. Therefore:

F

6

: R-CODE will support tagged and untagged data and an e�cient tran-

sition between the two kinds of data.

The chapter on data types proposes ways of providing these R-CODE data type

features.

1.5.3 Execution Flow

We are free to develop completely new languages, and thus escape the baggage of the

past. Two problems suggest our languages should be more functional.

First, as indicated by H

1

above (page 13), compilers need to be able to reorder

instructions to get hardware e�ciency. Functional languages are insensitive to order

of execution, as long as computations terminate.

CHAPTER 1. INTRODUCTION 19

Second, in order to make it possible for high schoolers to understand programs well

enough to change them, we need debuggers that do a very good job of displaying

what a program is doing. Functional languages are single assignment languages, in

which each \variable" gets only a single value during its lifetime, and this makes it

easier to understand the program and to display what the program is doing.

Functional languages can handle most programming tasks easily and e�ciently. But,

on the other hand, they usually cannot express everything required in a single pro-

gram. They cannot handle objects and arrays with changing state. They have trouble

with algorithms that require state maintenance, such as histogram computation or

graph tracing.

The extra e�ciency one might get from functional languages derives from the fact

that they can be executed in data
ow order: each primitive operation (e.g. add)

can execute whenever its inputs are ready. To maximize the parallelism this permits,

special hardware is needed to detect when the inputs to an operation are ready (see,

for example, the work of Burton Smith[Smi78, ACC

+

90] and Arvind[Nik91, Pap90]).

But R-CODE must run e�ciently without special hardware.

Therefore R-CODE uses a compromise. It is possible to compile a functional language

e�ciently for a sequential computer as long as all the variables are register-like, in

that they are local to a routine, cannot be aliased at runtime using pointers, and

therefore the compiler can �gure out at compile time when they will receive their

values. But variables that are global or are array elements addressed by general

subscripting cannot be handled e�ciently using data
ow execution order on existing

computers. So the compromise is:

F

7

: R-CODE will be a functional data
ow language with register-like vari-

ables that treats RAM memory as an I/O device.

R-CODE gets its name, \register code", from this feature, which is investigated in

the chapter on execution
ow.

1.5.4 Shared Object Memory

As mentioned above (H

5

, page 15), sometimes student computers will be connected

in a building-wide network capable of \paging in" an object in 1,000 instruction

CHAPTER 1. INTRODUCTION 20

execution times. Some means of easily using this feature to write parallel compilers,

text processors, simulators, calculators, and games is needed.

The memory of the computers on the network becomes, with the help of the network,

a kind of disk-like memory that can store objects and retrieve them more than 1000

times faster than current disks. The question is: what kinds of operations can be

performed on objects in this \shared object memory?"

First, many objects will turn out to be read-only after they are created, just as many

�les are. The operations on these are creation, reading an object, and reading part

of a large object.

For functional programming, it is also convenient to have objects that go through

an initial write-only phase, during which many processes write them but cannot read

them. Then the objects are switched to read-only, after which they cannot be written.

A histogram is similar but undergoes an accumulate-only phase, during which many

processes may add to its elements. Then, when it is �nished, it is switched to read-

only.

This thinking leads to the following:

F

8

: R-CODE will support a shared object memory in which individual ob-

ject components can be be marked as read-only, write-only, write-once,

or accumulate-only as part of the component type. Also, objects may

change types dynamically, so their components can, for example, switch

from write-only to read-only.

However, this approach is not always enough, so:

F

9

: R-CODE shared object memory will support atomic multi-object trans-

actions.

Special hardware will be necessary to make a real networked shared object memory,

but this is not available, even approximately, today. However, shared memory sym-

metric multi-processors have been available for some time, and are working their way

toward student computers (see H

2

, page 14). This leads to:

F

10

: R-CODE shared object memory will be e�cient on existing symmet-

ric multi-processors, but may require specially designed hardware for

e�ciency on a within-building network.

CHAPTER 1. INTRODUCTION 21

The chapter on shared object memory explores these features.

1.6 Summary of the Thesis

The remainder of the thesis consists of four chapters, matching the four groups of

features just introduced. Each of these chapters may be read independently of the

others.

There is also a separate R-CODE ArchitectureDescription [Wal] which maps the ideas

of this thesis onto a speci�c architecture. However, this thesis and the Architecture

Description are independent of each other.

1.7 Some Related Work

Each of the following chapters cite work related to the topic of the chapter. But

because the chapters are on ambitious advanced features, many historical e�orts to

provide student usable languages and UNCOLs are not listed. Therefore we list some

of these brie
y here.

Some of the more popular student oriented languages are BASIC, SCHEME, and

MATLAB. Others are SMALLTALK and MATHEMATICA. Some more recent at-

tempts in these directions are EIFFEL[Mey92] and SATHER[Int94], which develop

type dispatching ideas related to type maps, SELF[U

+

93], which develops dynamic

compilation ideas, and DYLAN[App94], which combines strong typing and LISP.

The original UNCOL proposal is described in [Maca, CPW74]. Some e�orts over

the years to build UNCOL languages are JANUS[CPW74, HW78] and ANDF[Macb,

Def94], which are machine independent languages with approximately the same ca-

pabilities as C, but with lower level data types and only basic operations.

Chapter 2

Memory Management

2.1 Goals

The main goal of this chapter is to:

G

�

: Find a design for a universal memory manager that everyone can share.

The main motivation for this goal is that it is very hard for two pieces of code to

interoperate if they each assume a di�erent memorymanager. Thus, however di�cult

our goal may be, there is considerable value in reaching it.

The method for achieving this goal is to examine all the reasonable alternative ways

of building a memory manager that might meet the requirements of the next section,

and pick the alternatives that seem best. There are quite a few alternatives, leading

to a lengthy analysis.

2.2 Requirements

The R-CODE memory manager is to support new programming languages meeting

the requirement (see page 1):

G

�

: A high school student knowing a bit of algebra and geometry can inves-

tigate and change commercially written games, editors, and simulators.

22

CHAPTER 2. MEMORY MANAGEMENT 23

Clearly one memory management feature should be garbage collection. However,

when I thought about trying to get commercial programmers in general to accept

garbage collection, as per G

�

, I became uncomfortable. Garbage collection has not

been sellable to that bunch for 30 years. The most commonly given reason is the

desire to eliminate pauses, but the technology to eliminate pauses has been around

for 10 years, at least.

I concluded that commercial programmers would not want to buy into a memory

manager that did not permit manual deletion, via the good old fashion \delete opera-

tion". There are many instances in programming when you know an object should be

deleted and you do not want to have to track down and kill all the pointers to it. The

object may have substantial memory resources, and you do not want to wait until an

automatic garbage detector has run before these are recovered and reused. However,

once an object is manually deleted, use of any dangling reference to it should be

agged as an error, especially when students are modifying code. So in this sense,

manual deletion should be \strongly typed".

After being manually deleted, memory would be returned to some free list for imme-

diate reuse. Users would be able to design their own free memory lists and memory

allocators.

For example, an object may be deleted when it ceases to be in some \directory" and

is not \open". In this case there may be one reference count for the directory and

another for being open, and the object is deleted when both counts go to zero. The

directory count may be used separately to initiate cleanup action.

Or as another example, a communication system may use �xed size message bu�ers

that are allocated from queues of free blocks of memory of the appropriate size, and

returned to these queues as soon at they are no longer needed. In this case there

might only be one reference count of the number of queues a bu�er is on plus the

number of times the bu�er has been \opened" by processes.

In general, users of the memorymanager, and not the manager itself, should maintain

reference counts. Compilers may automate this where appropriate.

I also concluded that ability to move an object at any time is a strong selling point

in a memory manager. One use of this is to compact memory very slowly to avoid

interfering with the time response of the application code. Another use is to expand

a table when needed.

CHAPTER 2. MEMORY MANAGEMENT 24

Lastly I feel that commercial programmers will want the memory manager with good

overall timing characteristics, that can perform in real-time when necessary.

Thus I come to our �rst R-CODE memory management features:

F

1

: R-CODE will have a memory management system with automatic gar-

bage collection, a strongly typed manual delete operation, and an op-

eration to move an object at any time.

F

2

: R-CODE will have a memory management system with timing charac-

teristics suitable for real-time applications.

The other memory management feature concerns object oriented databases, which I

expect to be used increasingly in the future. When such a object oriented database is

input to main memory, there are two problems. First, all the object pointers must be

adjusted to point where the objects land in memory, an operation called \swizzling"

the pointers. Second, objects must not be read until they are needed, as the entire

database will often be much too big to put into main memory.

Since objects are not read into memory until they are needed, swizzling pointers must

be delayed until the pointers are used. Thus memory management gets involved, and

we are led to our last memory management feature:

F

3

: R-CODE will have a memory management system that supports de-

layed swizzling of pointers so external databases can be input e�ciently

into main memory.

This chapter is organized into four parts. The �rst part contains de�nitions. The

second part discusses two level addressing, my solution to the need for strongly typed

manual deletion and dynamic object movement. The third part discusses how to

structure garbage detection in order to minimize timing impact on application pro-

cesses, and introduces a bit string AND write barrier test to this end. The fourth

part discusses other overheads of automatic garbage collection.

Below I will reference other work that impacts on speci�c parts of my analysis.

Some more general surveys of memory management are Wilson's modern survey

of garbage collection[Wil92], the introduction to Hayes's recent thesis[Hay94], Co-

hen and Nicolau's 1981 survey of garbage collection[Coh81], Cohen's 1983 survey of

compaction[CN83], and Hickey and Cohen's 1984 analysis of performance[HC84].

General references can be found in the surveys just cited.

CHAPTER 2. MEMORY MANAGEMENT 25

2.3 De�nitions

In this section I will de�ne an abstract model of memory management suitable for

investigating the design of the R-CODE memory manager. As be�ts an abstract

model, I omit details which I do not believe will a�ect the outcome.

2.3.1 Memory and Reachability

Memory is a sequence of objects, free blocks, and gaps. A gap is an unimplemented

piece of memory; a free block is piece of memory that is free to be allocated to objects.

Each object, free block, or gap has a non-zero positive integer length, and each has

an address which equals the sum of the lengths of the previous objects, free blocks,

and gaps in memory.

Objects contain pointers to other objects. A pointer to an object is in e�ect the

address of the object. The di�erent places where pointers can be stored within an

object are called pointer components. A pointer component may be empty, meaning

it contains no pointer. Such a pointer component is said to be null. Two pointer

components in the same object may not overlap.

An object is said to be reachable if it is one of a particular set of objects, called the root

set, or if it can be reached from the root set by following the pointers in objects. In

order to be accessed, an object must be reachable; and furthermore, once an object

becomes unreachable, it stays unreachable. Unreachable objects may therefore be

garbage collected.

2.3.2 Marking, Scavenging, and Sweeping

Marking is the process of putting a mark on each object that is reachable, and leaving

the mark o� of most objects that are unreachable. To this end, each object may be

thought of as having a marked bit which is set if the object is marked, and clear

otherwise. To mark an object is to set its marked bit.

To scavenge a pointer component is to mark the object pointed at by the component

if the component is not null and the object pointed at is not already marked.

1

To

1

Sometimes this is called scanning the component.

CHAPTER 2. MEMORY MANAGEMENT 26

scavenge an object is to scavenge all its pointer components. All objects that have

been marked must be scavenged, so that it is convenient to think of each object as

having a scavenged bit which is set when the object is scavenged, and clear otherwise.

2

There are questions of timing in concurrent algorithms: do you set the scavenged bit

just before or just after scavenging an object.

To sweep means to �nd all unmarked objects and turn them into free blocks. To

sweep an object means to turn the object into a free block if and only if its marked

bit is o�.

2.3.3 Mutators and Frames

A mutator is an application program process that is trying to do useful work, and

for whose bene�t the garbage collector algorithm is being run. There may be any

number of mutators running on any number of hardware processors. Each mutator

has a stack, which is a sequence of objects called frames. The frame at the top end

of the stack is called the top frame. A mutator may perform the following actions:

Create a new object all of whose pointer components are null, and write a

pointer to this new object into the top frame.

Write a pointer into a pointer component. The pointer written must be the

value of a pointer component in the top frame, and the object containing the

pointer component to be changed must be a non-frame object pointed at by the

top frame.

Read a pointer from a pointer component into the top frame. The pointer

component must be in a non-frame object pointed at by the top frame, and the

value of that pointer component will be written into the top frame.

Load-root: load a pointer to a non-frame root object into the top frame.

Reference an object. Some non-pointer-component part of the object is read or

written. The object must be a non-frame object pointed at by the top frame.

2

In the literature[Wil92] the marked and scavenged
ags are often represented by assigning one

of three colors to an object: white = unmarked and unscavenged; grey = marked and unscavenged;

black = marked and scavenged.

CHAPTER 2. MEMORY MANAGEMENT 27

Push a new frame into the top of the stack. The new top frame is created as

a new object with null pointer components. Then some pointer components of

the previous top frame may be copied into the new top frame.

Pop the top frame from the stack. The top frame must not be reachable after

it has been popped. Some pointer components of the top frame being popped

may be copied into the frame that becomes the new top frame.

Objects (including frames) may not contain pointers to frames.

The frames in every mutator stack are part of the root set.

A stack may only be changed by its own mutator, and that mutator may only change

the top frame of its stack.

In the R-CODE virtual computer, mutator stacks may share frames that are not top

frames, and so the abstract model of this chapter does not exactly �t the model of

R-CODE in other chapters. But as stated above, I have intentionally omitted this

and other extra complexities from my memory model because they make no essential

di�erence to the analysis of this chapter.

2.3.4 Copying and Spaces

To copy an object means to move it in memory, changing its address. To compact

memory means to copy objects so as to glue free blocks together to make larger free

blocks. Objects may be copied for reasons other than compacting memory. They

may be moved because their size has increased and they cannot expand where they

are.

A space is a subset of memory such that every object and every free block is either

completely outside or completely inside the space. Typically a space is a contiguous

region of memory addresses, but it may also be a set of pages.

Objects are sometimes copied between spaces. Some spaces may be memory accessible

by only some processors in a multi-processor system. Database �les that are not

actually in memorymay be viewed as if they were a space in memory for our purposes.

Therefore a mutator may not be able to reference or mutate objects in some spaces,

and the objects may have to be copied to another space in order for the mutator to

access them.

CHAPTER 2. MEMORY MANAGEMENT 28

A copying collector is a kind of garbage collector that works by copying all reachable

objects in one space, called the from-space, into a second space, called the to-space.

After all reachable objects are copied, the from-space is freed. This kind of garbage

collector naturally compacts memory.

2.3.5 Forwarding

Consider the situation where an object has been copied one or more times and there

is a single most recent copy of the object, along with possible older copies. In this

situation, which I call the forwarding scenario, it is desirable to adjust each pointer

component pointing at the object to point at the most recent copy. This adjustment

is called forwarding the pointer component. A pointer that points at the most recent

copy of the object it points at is said to be forwarded.

As an aid to forwarding, a pointer to the new location of a copied object is often left

at the previous address of the object.

3

The question arises: which copy of an object does a mutator read or write. If the

mutators all access only the most recent copy of an object, I say the memorymanage-

ment system employs eager forwarding. If the mutators may read a non-recent copy

of an object, and must write all copies of the object identically, I say the memory

management system employs lazy forwarding.

In an eager forwarding system, pointers may be forwarded when they are read into

the top frame. In many systems, eager or lazy, pointer components are forwarded

when they are scavenged.

2.3.6 Swizzling

Consider the situation where there are two spaces, one inaccessible to mutators and

one accessible to mutators. The inaccessible space has other desirable properties: it

might be permanent disk storage, for example, or it might be accessible to mutators

other than those we are considering. Objects may have copies in either space or in

3

Storing this address is sometimes called \forwarding the object," but I carefully avoid this

terminology, since in my scheme it might mean instead that all pointer components in the object

were forwarded.

CHAPTER 2. MEMORY MANAGEMENT 29

both, and may be copied back and forth between the spaces. However, it is desired

that an object copy in one space only point at object copies in the same space.

In this situation, which I call the swizzling scenario, adjusting a pointer component in

one space to point at a copy of its target object in the same space is called swizzling

the pointer component. To swizzle all pointer components in an object is called

swizzling the object. A pointer stored in one space that points to the same space is

said to be swizzled.

4

An object that has a copy in one space may have an empty place reserved for it in

the other space. Such an empty place is called an object slot.

When a pointer is swizzled, a check is made to see if the object pointed at has already

been copied, and if yes, the pointer is swizzled to point at this copy. If no, a slot is

allocated for the object, and the pointer is swizzled to point at this slot.

In the swizzling scenario, it is necessary to delay copying objects from the inaccessible

space to the accessible space until the objects are actually accessed by the mutators,

because if all objects were copied, there would be too many copies. There would even

be too many copies if all objects pointed at by a copied object were copied, for then

all objects reachable from the root of a database would be copied when the root was

copied. In order to delay copying, it is necessary to delay swizzling.

Pointer components might not be swizzled until they are used to access the objects

they point at. This is called demand pointer swizzling. To implement this, something

must be done to distinguish unswizzled pointers from swizzled pointers.

Or all the pointer components of an object may be swizzled when the object is �rst

accessed, with the swizzled pointers possibly pointing at empty slots into which other

objects will be copied. This is called demand object swizzling. In this situation, the

act of using a pointer to access an object will cause the object to be copied if the

pointer pointed at an empty slot, and will cause the object to be swizzled if the

pointer pointed at an unswizzled object. To implement this, something must be done

to distinguish empty slots or unswizzled objects from swizzled objects.

Swizzling and forwarding should not be confused with each other. The same memory

management system might implement each by a di�erent method. The two level

addressing scheme used in R-CODE does exactly this.

4

A history of swizzling is given in [SKW93, section 2.5].

CHAPTER 2. MEMORY MANAGEMENT 30

2.3.7 Manual Deletion and Type Change

Manual deletion refers to deleting an object and most of its memory in response to

an operation executed by a mutator. Strongly typed manual deletion requires that all

accesses to a manually deleted object be trapped as errors. Strongly typed manual

deletion of an object is conceptually similar to copying the object into an inaccessible

region of memory and instantly forwarding all pointers to the object.

Type-change refers to changing the \type" of an object in a strongly typed system,

in response to an operation executed by a mutator. For example, a write-only object

might be made read-only. Strongly typed type-change requires that the addresses used

to access the object under the old type must be immediately invalidated, and the

object must be given a new address. This is similar to deleting an object manually

and allocating a new object that is a copy of the original. Attempts to access the

object using its old address result in detected errors, just as in the case of strongly

typed manual deletion.

2.3.8 Conservative Pointer Components

Sometimes it is not known what parts of an object are pointer components, though

it is possible to list all places in the object that might be pointer components. Places

that might be pointer components are called conservative pointer components. For

purposes of �nding all reachable objects, knowing all conservative pointer components

may su�ce, if one can tell a valid object pointer from random data. What one does

is to try to interpret each conservative pointer component value as a pointer to an

object, and if this fails, ignore the value, while if it succeeds, declare the object pointed

at to be reachable.

A value might be interpretable as a pointer and yet not really be a pointer. Thus an

unreachable object might accidentally be declared to be reachable. More importantly,

one must never forward or swizzle a conservative pointer component.

A number of papers[Zor93] have been written on conservative garbage collectors, which

are just garbage collectors that use conservative pointer components in lieu of knowing

where all the pointer components are. However, there does not seem to be any reason

why R-CODE should not be able to correctly identify pointer components, so I will

not mention conservative collectors or conservative pointer components again in this

thesis.

CHAPTER 2. MEMORY MANAGEMENT 31

2.4 Two Level Addressing

Feature F

1

(page 24) requires strongly typed manual deletion and instant forwarding

of pointers to objects whenever the objects are moved. The only way to provide

strongly typed manual deletion seems to be to associate a trap
ag with each object,

such that when the trap
ag is set, all accesses of the object are trapped. Similarly,

when an object is copied, the only way to immediately forward all pointers to the

object seems to be to make all accesses of the object use indirect addressing through

a table location that holds the current address of the object.

These ideas lead to the scheme I call two level addressing, that seems to be the

only way of satisfying the requirements of F

1

. Two level addressing provides a trap

ag that can also be used to provide demand object swizzling, as required by fea-

ture F

3

(page 24).

In the two level addressing scheme, pointers contain an object number and a within-

object byte displacement. The object number speci�es an entry in a table called the

object map, and this entry has the base address of the object (see Figure 2.1). The

base address and the within-object displacement are added to get the address of the

byte accessed. The object map entry also contains a trap
ag that may be set to trap

all references to the object.

To move an object dynamically, a process does the following:

1. Set the trap
ag of the object to stop all processes accessing the object.

2. Move the object.

3. Update the object map entry to point at the new address of the object.

4. Clear the object trap
ag.

5. Restart any processes that stopped because they tried to access the object.

Strongly typed manual deletion of an object merely requires setting the trap
ag in

the object map entry, and deleting the memory used by the object, without deleting

the object map entry. The object map entry is automatically collected by a mark

and sweep garbage collector at some later time.

Stopping processes that try to access a moving object is not optimal. It is possible to

stop only processes that write an object, as long as the source and destination copies

CHAPTER 2. MEMORY MANAGEMENT 32

object-map ::= vector of object-map-entries

object-map-entry ::= (byte-address-of-object, trap-
ag, S, M)

object-number ::= <index of object-map-entry in object-map>

pointer ::= (object-number,

within-object-byte-displacement)

address-register ::= (object-number, within-object-byte-address)

object-map

entry

trap

ag

@

@

@I

-

object

	�

pointer

object-number

�

�

�

�

�

�

�

��

byte-displacement

@

@

@

@

@

?

load

�
�

6

store

�
�

P

P

P

P

P

P

P

Pi

object-number

byte-address

-

address-register

Figure 2.1: Addressing Data

of the object do not overlap. If processes that write an object write both copies of the

object when the object is being copied, it is possible to copy the object incrementally,

only stopping writing processes while copying each increment (to avoid write/copy

con
icts), and running writing processes for a while between copy increments.

The trap
ag can also be used to implement the strongly typed type-change operation.

The object whose type is being changed is given a new object number with a new

object map entry, and the old object number is invalidated by setting the trap
ag

in its object map entry.

The trap
ag can be used to implement demand swizzling by allocating object map

entries with their trap
ags set to serve as slots where objects are \to be copied"

when they are �rst accessed. When an object that has only such a map entry is �rst

accessed, the trap allocates memory for the object, copies the object from external

CHAPTER 2. MEMORY MANAGEMENT 33

memory, and swizzles the pointers in the object so that they point either at other

objects already copied into memory, or at object map entries serving as slots.

Such a system, in which an object map entry serving as a slot has no associated

memory for the object itself, approximates demand pointer swizzling, because only a

small amount of memory, the object map entry, is allocated for unaccessed objects.

5

An alternative system associates a block of memory su�cient to contain the object

with the object map entry of a slot, and initiates copying the object into that memory.

Then when the object is �rst accessed, the trap waits until object copying is �nished,

and then swizzles all pointers in the object. This alternative system implements

demand object swizzling.

2.4.1 Related Work and Alternatives to Object Maps

Object maps seem to be the only way to quickly obsolete the old address of an object

that has been deleted and to quickly forward addresses of objects that have been

moved. Both the trap
ag and address indirection through the object map entry

seem necessary for these functions.

Hardware has been built to implement object maps, but no such hardware survives

today among common computers.

One of the earliest references to such hardware was the following piece of folklore that

the author ran into in the mid-1960's:

A large military system was built on a computer whose core memory was

so small that data and program had to be copied constantly between

it and magnetic tape. The computer had a very large number of index

\registers," which were in core memory, and could be used to let data

and instruction blocks move around in memory freely while the program

ran. But using them doubled the memory access time, so the system

designers decided not to. They built the system and it ran. They then

assigned a small group to rewrite the system using the index registers. As

expected, the new system was much smaller and simpler than the original.

Unexpectedly, the new system ran faster.

The Intel i432[Org83] was another system that built object maps into hardware.

5

A similar \hybrid" system is proposed in [VD93].

CHAPTER 2. MEMORY MANAGEMENT 34

Brooks proposed in [Bro84] to implement object maps without trap
ags in software

by performing the required indirect addressing on (almost) every memory access. I

will describe this work in more detail below.

If quick obsolescence of old addresses is not required, two software systems that do

not continually indirect through object maps for reading can be used.

In the Pegasus system of North and Reppy[NR87], two or more copies can exist

simultaneously, and any copy can be read without further checking. Write operations

are made atomic and update all copies. Writes must be atomic to avoid race situations

with copying. Obsolete addresses are not completely
ushed until the end of the

garbage collection cycle.

Atomic write operations take a lot of time because of synchronization overhead, and

are not very practical for applications such as updating each element of a large array.

So an alternative is proposed by Nettles, O'Toole, Pierce, and Haines[NOPH92], in

which a complete set of copies of all used objects is produced while the application

processes continue to use the originals of the objects. The copies point only at copies,

while the originals point only at originals. A write log is produced by the application

processes that is used to update the copies. The system switches over to the copies at

the end of a garbage collection. This system cannot handle multiple processors writing

to the same object component because each processor would have an independent

unsynchronized write log.

These software solutions that do not continually indirect through object maps do

not support manual deletion, type change, or swizzling; do not support use of object

copying to increase the size of the object; do not permit an object and its copy to

overlap; and do not support immediate reuse of memory vacated by a copied object.

2.4.2 Address Registers

In order to get to the point where special hardware for object maps is built, we �rst

need to popularize software that needs this hardware. To do this we need a software

approach that does the same thing with usable e�ciency. The rest of the discussion

of two level addressing will center on the solution to this problem that I am proposing

for R-CODE. A di�erent solution of similar quality is described near the end of this

discussion.

The key idea is to introduce the address register as a software implementation of an

CHAPTER 2. MEMORY MANAGEMENT 35

object map cache entry. An address register is very analogous to a machine register,

but has special properties. To access an object, one must load a pointer pointing

somewhere within the object into one of the processor's address registers. Address

registers can be saved and restored like any other register.

Pointers not stored in address registers are stored in the form of an object number

plus a byte displacement. Such pointers do not have to be changed when an object

is moved.

Pointers stored in address registers are stored in the form of an object number plus

a byte address of a byte within the object (see Figure 2.1, page 32). When an object

is moved, each address register pointing into the object must be updated by adding

the o�set of the move into the byte address in the register.

When an address register is saved, it is stored as a pointer in the form that contains

the displacement. Loading an address register converts a byte displacement to a byte

address, and saving the register converts a byte address to a byte displacement. Thus

the only byte addresses pointing into an object are in the object's object map entry

and in address registers.

An object map entry also contains a trap
ag that is checked whenever an address

register is loaded, and causes the processor to trap if it is on. The fact that the

trap
ag is checked only when the address register is loaded means that on a multi-

processor system, where one processor may set a trap
ag while another is using the

object, the second processor will not \see" the trap
ag until it has been interrupted

and saved its address registers.

An address register that is no longer in use needs to be cleared by the application

code so it will not cause inadvertent traps if the trap
ag of the object it points at is

turned on. Interrupts can save and restore an address register at any time, so if the

trap
ag is on, a process can trap at any time during an interrupt restore operation.

In most implementations, object numbers can be the direct addresses of object map

entries. The byte address part of an address register is typically stored in an actual

machine register. The object number part of the address register is stored in global

memory, where it can be seen by other processors in a multi-processor system (see

below).

Above I said the byte address in an address register has to point \within" an object.

However, this is not literally true. The byte address can point beyond either end of

the object, as long as any address actually used to access part of the object points

CHAPTER 2. MEMORY MANAGEMENT 36

within the object.

2.4.3 Multi-Process Single-Processor Systems

In a multi-process single-processor system, the single processor should have only one

set of address registers, which are shared among processes. Each process that is not

running has its address registers saved in the form of pointers. When the process is

resumed, it will reload the processor address registers with these saved pointers, and

trap if the trap
ag of any object pointed at is set.

An example use of this system is moving an object on a single processor, multi-process

system. The trap
ag for the object is set by the process that is going to move the

object at a time when no address register is pointing at the object. At this time, all

other processes have saved their address register contents as pointers. If the moving

process is interrupted while it is moving the object, the interrupting process runs

until it loads an address register with a pointer to the object. Then the interrupting

process is trapped, saves its address registers as pointers, and stops, waiting for the

object move to �nish. When the moving process �nishes the move, it clears the trap

ag and restarts any processes waiting for the move to �nish. These processes then

reload their address registers with the new location of the object.

From the point of view of a process addressing an object but not moving it, the

direct byte-address part of any address register pointing at the object is spontaneously

adjusted whenever another process moves the object.

This method can also be applied to a single user process under a standard operating

system to support user process interrupts. The standard operating system does not

have to be modi�ed, as the user process can be treated as a virtual computer with

its own interrupt system.

2.4.4 Address Register Loads and Stores

There are some problems loading and storing address registers in a system where

interrupts can occur between any two instructions.

Loading address registers is not a problem if one makes the rule that the byte address

in an address register can be meaningless garbage. Then the object number part of

the register can be loaded �rst, before any meaningful byte address is loaded. To

CHAPTER 2. MEMORY MANAGEMENT 37

make the rule work, adding address o�sets to garbage byte addresses must not cause

failures. Generally computers have unsigned integer add instructions that ignore

over
ows and can be used to add address o�sets without trapping, even if they are

adding the o�sets to garbage values.

Making an appropriately atomic address register store operation can be trickier. This

operation subtracts the byte address of an object in its object map entry from the

byte-address in an address register to produce a displacement. The displacement

cannot be stored in the same location as either argument, however. If an interrupt

occurred and the object was moved during the interrupt, any location holding a byte-

address should be adjusted, but any location holding a displacement should not, so

the two kinds of location must be distinct. What is needed is an atomic three address

subtract instruction, even on a two address computer.

One can make an atomic three address subtract instruction on a two address computer

without any extra normal execution overhead by the following trick. The rule is

enforced that no interrupt can occur before a register-to-register subtract instruction

(unless the previous instruction is also a register-to-register subtract). If this rule

can be enforced, the atomic subtraction needed to store an address register X can be

done as follows:

D = map-entry-address(X.object-number)

D = D � X.byte-address

D = � D

where D and X.byte-address are in registers and no interrupt is allowed just before

their subtraction.

The rule can be enforced by programming the interrupt routine to check if the next

instruction after the interrupt is a register-to-register subtract instruction. If it is, the

interrupt routine emulates that instruction before completely saving the interrupted

process state. The only overhead is per interrupt, and it is small since both the time

to check the next instruction and the time to emulate a register-to-register subtract

instruction are small.

If we are applying this method to support user process interrupts in a single user

process under a standard operating system, only the user process interrupt trap rou-

tine needs to be modi�ed. Again the standard operating system does not need to be

modi�ed.

CHAPTER 2. MEMORY MANAGEMENT 38

2.4.5 Shared Memory Multi-Processors

In a symmetricmulti-processor shared memory system the simple approach to getting

all processors to recognize a newly set trap
ag is to interrupt them all and get each

to check its address registers. However, this is ine�cient for the processors not setting

the trap
ag, and it is desirable to move some of the work o� to the trap
ag setting

processor.

This is done by putting the object number part of each address register in global

memory, so the trap
ag setting processor can �nd out which other processors are

referencing the object in their address registers. Only these processors need be inter-

rupted. Note that the address register load operation must write the object number

being loaded into global memory before reading the trap
ag for that object. This

requires a memory barrier operation between the object number write and the trap

ag read on newer faster processors[Sit92].

This approach does not scale well to large numbers of processors. For such systems

special hardware is indicated for this and other reasons (e.g. cache coherency).

This method can also be applied to multiple user processes under a standard operating

system, provided any process that sets an object trap
ag can get any other process

that shares the same memory to interrupt \su�ciently promptly." The standard

operating system does not have to be modi�ed, as the user processes are treated

as virtual processors. Note that strict priority scheduling of user processes would

normally not be allowed, as a trap
ag setting process might not be able to get lower

priority processes to interrupt.

2.4.6 Copying Stops

Stopping processes that try to access an object being copied disrupts real-time re-

sponse. However, the e�ect is no worse than I/O interrupts if the objects being copied

are small enough to be copied in approximately the time taken by an I/O interrupt

routine. If the object moving process is part of the garbage collection system, it can

detect when processes have been stopped, and slow down copying to avoid too many

such stoppages in a short period of time.

It is important to copy each object at a priority level appropriate for the processes

accessing the object, since these processes will have to wait for the copying process

to �nish.

CHAPTER 2. MEMORY MANAGEMENT 39

Large objects can be copied if they are only accessed by low priority processes (stop-

ping is OK). Or large objects can be �xed in memory and not moved. Another option

is to be sure the source and destination of the copy do not overlap, and only stop

writing processes. And yet another idea is to preserve the page alignment of a large

object when it is copied, and copy most of the object by merely copying page table

entries, without actually copying the contents of the pages.

Thus the worst case is when high priority processes must write a large object that

is itself one of a set of objects dynamically created and destroyed on a slower time

scale, and the large object cannot be copied by copying page table entries. If this

case cannot be avoided, the following scheme can be used to copy the large object

incrementally. Readers are not stopped during the copy, but are interrupted at the

end of the copy to get the correct new object location. Writers are stopped during

each copy increment, but are allowed to run between increments to maintain their

real-time response. Writers write both copies of the object while it is being copied,

so at the end of the copy both copies of the object are identical. Writers must be

stopped during copy increments to avoid write/copy con
ict.

2.4.7 Address Register Overhead

The overhead of the address register implementation of two level addressing consists

mostly in the time taken to load and store address registers. With ordinary address

registers, load and store would each take one RISC instruction. With two level

addressing, load takes 9-18 RISC instructions and store takes 5-10 instructions. The

lower bounds on these estimates are the instruction counts from Figure 2.2, and the

upper bounds are simply double the lower bounds.

On modern computers it may be more important to count secondary cache misses

than it is to count instructions, in order to determine timing. Use of address registers

tends to add one secondary cache miss, for the object map entry, for every address

register load. Presumably address register stores would not add further misses most

of the time.

For two address instruction computers, there is an additional per interrupt overhead

to check whether the next instruction is a register to register subtract, and emulate

it if it is.

While these overheads are signi�cant, for most programs they should average much

CHAPTER 2. MEMORY MANAGEMENT 40

In the following P is a pointer in memory and A is an address register. The pointer

is being loaded into the address register, or the address register is being stored

in the pointer. A.object-number is the object number part the address register

stored in global memory, and A.byte-address is the byte address part stored in

a hardware register. Object numbers are addresses of object map entries. Each

pseudo-instruction below is intended to map to one RISC instruction on a typical

RISC computer.

Address temp-object-number-reg = P.object-number

Load: A.object-number = temp-object-number-reg

memory-barrier-instruction

temp-trap-reg = map-flag-word(temp-object-number-reg)

temp-trap-reg =

temp-trap-reg AND trap-flag-mask-constant

if (temp-trap-reg non-zero)

then call trap-subroutine

// subroutine argument is in temp-object-number-reg

// subroutine may return to this point to resume

// process

A.byte-address = map-address(temp-object-number-reg)

temp-displacement-reg = P.byte-displacement

A.byte-address =

A.byte-address + temp-displacement-register

Address temp-object-number-reg = A.object-number

Store: temp-byte-address-reg =

map-address(temp-object-number-reg)

// interrupts adjust temp-byte-address-reg when

// temp-object-number-reg object moves

temp-displacement-reg =

A.byte-address - temp-byte-address-reg

P.object-number = temp-object-number-reg

P.byte-displacement = temp-displacement-reg

Figure 2.2: Address Load and Store RISC Pseudo-Code

CHAPTER 2. MEMORY MANAGEMENT 41

less than the factor of 3 overhead of emulating a VAX on an ALPHA mentioned on

page 12. If a 150 MIPS ALPHA can emulate a 50 MIPS VAX, it should be able to

emulate an R-CODE virtual computer running much faster than 50 MIPS, at least

as far as the memory manager is concerned.

Note that, very importantly, the overhead is zero for stepping addresses through an

array after the address register is loaded. Byte addresses in address registers can be

incremented or decremented directly.

The address register load overhead may appear to be a high price to pay for languages

like LISP that have small cons cells. However, because memory speeds are falling

behind processor speeds[WK95], modern computers are su�ering very large overheads

for secondary cache misses, so small cons cells are becoming ine�cient anyway. Thus

address register load overhead may be less signi�cant on future computers.

2.4.8 The Interrupt Check Alternative

There is a classical way of handling object map like structures in LISP implementa-

tions. Interrupts are not permitted except when a special interrupt check operation

occurs in the code. Between such operations, where interrupts cannot occur, direct

addresses to objects may be put into any register, as long as trap
ags are checked

when addresses are loaded from object maps. When an interrupt check operation is

executed, all address information outside the object maps becomes invalid if and only

if an interrupt occurs, and in that case any subsequent use of addresses must reread

them from object map entries and recheck the entry trap
ags.

Interrupt check instructions can be placed at the beginning of subroutines and loops.

This scheme can be used when LISP is compiled into a language like C. The interrupt

check operation checks a global interrupt
ag, and if on, calls an interrupt processing

routine, which according to the rules of C, may change any object map entry, as these

are globally accessible.

The interrupt check scheme has operations very similar to address register loading,

done at similar times. However, instead of storing address registers, the interrupt

check scheme does interrupt check operations.

In the interrupt check scheme, addresses outside object maps become invalid when

a subroutine is called, whereas in the address register scheme, it is possible to have

address registers which remain valid across subroutine calls.

CHAPTER 2. MEMORY MANAGEMENT 42

In a multi-processor system, setting an object's trap
ag does not take e�ect until

all processes that are accessing the object interrupt, just as for the address register

scheme. Therefore, just as for the address register scheme, the object numbers of

objects being accessed need to be put into global variables where they can be seen by

the process setting the trap
ag. Then that process can interrupt only other processes

that are accessing the object whose trap
ag it is setting.

Thus on a multi-processor system, the interrupt check scheme needs to implement the

object number part of address registers. These can be treated like their byte address

counterparts, becoming invalid when an interrupt occurs or a subroutine is called.

In a serious real-time system, where processes sharing a common garbage collected

memory can inde�nitely preempt each other with priority scheduling, the operating

system scheduler must be modi�ed for both the address register and interrupt check

schemes. For the address register scheme the scheduler must save address registers in

the appropriate manner. For the interrupt check scheme, the scheduler must wait for

a process to reach its next interrupt check operation, before interrupting the process

to switch to another process sharing the same memory. This requires setting a timer

in case the user process gets caught in an in�nite loop.

In a system that is merely interactive, and not real-time, processes can be treated

like independent processors if none can preempt any other sharing the same memory,

and the operating system need not be modi�ed.

It is not clear whether the address register scheme is better than the interrupt check

scheme, but both implement object maps with manual object deletion and dynamic

moving. For R-CODE I have proposed the address register scheme because it seems

a better match to future hardware and does not require as intrusive tinkering with

the way interrupts are scheduled.

2.4.9 Other Work Related to Address Registers

Brooks[Bro84] introduces a scheme that has an object map equivalent and performs an

indirect address operation through the object map for almost every memory access.

To implement this on the Motorola 68000, a single hardware register, named ipr,

is given the special function of holding the address of the beginning of the object

currently being accessed. This register holds the only direct address outside the

object map.

CHAPTER 2. MEMORY MANAGEMENT 43

What serves as the object map in this scheme is a word in front of each object copy

that holds the address of the beginning of the current version of the object. Given

the address in ipr of some copy of the object, the address of the current copy can

be loaded into ipr by loading the word just before the location pointed at by ipr.

This is done when returning from an interrupt, so a process can be interrupted by a

second process that moves an object.

The 68000 computer has addressing modes in which two registers are added to form

an address, so this computer has no need for any register to address any point in an

object other than the beginning of the object.

There is no trap
ag facility with this scheme, no ability to do manual deletion, and

no ability to interrupt a process copying an object with another process that tries to

access the object and is then stopped. Nevertheless, there is a version of an object

map, and ipr is a primitive version of an address register.

2.5 Concurrent Garbage Detection Algorithms

In addition to manual deletion and dynamic object moving, our memory manager

must provide for automatic garbage collection of objects, and also collection of the

object map entries for manually deleted objects as required by F

1

(page 24). This

leads us to a study of various concurrent object marking algorithms.

In this section I will exhaustively investigate the options for concurrent marking

algorithms, and pick the variants that seem to be most promising. There are a

number of options, resulting in a lengthy analysis.

2.5.1 The Standard Marking Algorithm

Garbage detection algorithms all attempt to mark reachable objects (see sections 2.3.1

and 2.3.2). The standard algorithm is the following:

1. Initialize. Turn o� the mark and scavenged bits of all objects.

2. Root set. Turn on the marked bits of the root set.

3. Scavenge. For each object whose marked bit is on and whose scavenged bit is

o�, scavenge the object and set its scavenged bit.

CHAPTER 2. MEMORY MANAGEMENT 44

This algorithm maintains an important invariant: no scavenged object points at an

unmarked object. This invariant, which need not be maintained precisely at every

instant, must hold at the instant marking �nishes.

A problem with this algorithm is how to maintain a list of all objects that have been

marked but not scavenged.

This algorithm assumes that after it is done, all objects will be swept, so unmarked

objects will be returned to the free list. Compacti�cation may be done as part of

sweeping. Whenever compacti�cation is done, forwarding must be done. Discussion

of forwarding is deferred till later.

2.5.2 Ephemeral Marking

Studies have shown ([Hay94, Chapter 3]) that 85% of all objects allocated have fairly

short lifetimes. Also, some systems have initial program loads that contain tens of

megabytes of objects that need never be garbage collected.

Garbage collection can be adapted to these facts by dividing objects into two kinds:

permanent objects and ephemeral objects. Then an ephemeral garbage collection is

just a standard garbage collection in which the permanent objects are treated as part

of the root set.

By a full garbage collection I will mean one that can collect permanent and ephemeral

objects, i.e. one that ignores the distinction between the two kinds of objects, or more

speci�cally, one that has as small a root set as possible.

In order to do ephemeral garbage collection e�ciently, a list of all permanent objects

that might point at ephemeral objects needs to be kept at all times, so the many

permanent objects that do not point at ephemeral objects can be ignored. The

objects on this list are called ephemeral root objects. Permanent objects that are

not ephemeral root objects are called not-ephemeral-root objects. Thus the e�ciency

of ephemeral garbage collection depends upon the propensity for permanent objects

to be not-ephemeral-root objects, or in other words, for the list of ephemeral root

objects to be short.

One can add two bits to each object: the permanent bit to indicate that the object is

permanent; and the not-ephemeral-root bit to indicate that the object is a permanent

object that does not point at ephemeral objects. An important invariant must be

maintained: no not-ephemeral-root object points at a non-permanent (ephemeral)

CHAPTER 2. MEMORY MANAGEMENT 45

object. This invariant is strictly analogous to the invariant which says no scavenged

object may point at an unmarked object: the permanent and not-ephemeral-root bits

are respectively analogous to the marked and scavenged bits; and the list of ephemeral

root objects is analogous to the list of unscavenged marked objects.

Thus the analogy:

scavenged � not-ephemeral-root

marked � permanent

is quite precise.

This analogy is not an accident. At the start of an ephemeral garbage collection,

it is possible to set the marked bit of each object equal to the object's permanent

bit, and set the scavenged bit equal to the not-ephemeral-root bit. However this is

not what is generally done. Instead, the marked bits of all permanent objects are

permanently set, and never cleared, to cause pointers to permanent objects to be

ignored for marking. Similarly, the scavenged bits of all not-ephemeral-root objects

are either permanently set or permanently cleared, depending on the type of garbage

collector, non-snapshot or snapshot (see below), to prevent any action when pointers

are stored into not-ephemeral-root objects, except, of course, for the possible action of

turning o� the not-ephemeral-root bit of the object and putting it on the ephemeral

root object list.

During an ephemeral marking garbage detection every ephemeral root object is scav-

enged. This scavenging operation can be programmed to discover whether the ephem-

eral root object, which might point at an ephemeral object, does in fact point at any

ephemeral object. If not, the ephemeral root object can be declared to be a not-

ephemeral-root object, and taken o� the list of ephemeral root objects.

Sometimes, instead of keeping a list of ephemeral root objects, a list of the exact

permanent object pointer components that might point at ephemeral objects is kept.

These are called ephemeral root pointers. However, I do not propose this for R-CODE

because it does not �t into the e�cient testing scheme given below in section 2.5.9.1.

Often several ephemeral garbage collections are run \simultaneously", using a se-

quence of successively smaller permanent object sets, each consisting of successively

older objects. This scheme is referred to as generational garbage collection.

CHAPTER 2. MEMORY MANAGEMENT 46

2.5.3 Concurrent Marking Conditions

It is desirable to run garbage detection concurrently with mutators. It is also desirable

to run several ephemeral garbage detections concurrently with each other, as in a

generational scheme where one garbage detection detects garbage among very new

objects, with all older objects in its permanent object set, and another detects garbage

among relatively old objects, with only objects in the initial program load in its

permanent object set.

In order to run the mutator concurrently with marking it must maintain the invari-

ants:

I

s

: No scavenged object points at an unmarked object.

I

e

: No not-ephemeral-root object points at an ephemeral object.

Both these invariants have the same structural form. Suppose we associate two bits,

M for \marked" and S for \scavenged", with each object. Then invariant I

s

says

\If object X points at object Y , then X:S ^ (:Y:M) = 0."

Invariant I

e

says exactly the same thing if we reinterpret M to mean \permanent"

and S to mean \not-ephemeral-root".

A non-ephemeral marking process strives to meet three conditions at some single

point in time:

1. All root objects are marked.

2. All marked objects are scavenged.

3. Invariant I

s

above holds.

An ephemeral marking process strives to meet the following alternate set of conditions

at some single point in time, while ignoring pointers to permanent objects, ignoring

not-ephemeral-root objects, and maintaining the list of ephemeral root objects.

1. All root objects are marked.

CHAPTER 2. MEMORY MANAGEMENT 47

2. All ephemeral-root objects are marked.

3. All marked objects are scavenged.

4. Invariants I

s

and I

e

above hold.

2.5.4 Snapshot and Non-Snapshot Detectors

The marking conditions described above need not hold at all times. Rather, they

must hold at some particular speci�ed time. There are two common choices: the end

of the garbage detection, and the beginning of the garbage detection. Detectors using

the later choice, the beginning of garbage detection, are called snapshot detectors.

In this section, I will talk about \storing" a pointer into an object X. If X is a top

frame, this \store" is actually done by a \read operation" (as de�ned in section 2.3.3,

page 26). If X is not a top frame, this \store" is done by a \write operation".

2.5.4.1 Non-Snapshot Detectors

In a non-snapshot detector the conditions given above must hold at the end of garbage

detection.

In order to make invariant I

s

hold at the end of the garbage detection, the mutator,

when it is about to store a pointer to Y into the object X and discovers that X:S ^

(:Y:M) 6= 0, can merely arrange that either Y:M be turned on, or X:S be turned o�,

sometime before the end of the garbage detection. Thus although the invariant may

be violated temporarily, it will be re-established before the end of garbage detection.

Note that for a non-snapshot detector, the bit X:S should be turned on as soon as

any pointer components in X are scavenged. Thus in general it is turned on at the

beginning of scavenging X. E�ciency aside, no harm is done by turning X:S on

prematurely.

In order to make invariant I

e

hold at the end of the garbage detection, the same

procedure may be followed, but with X:S always turned o� sometime before the

end of garbage detection. This indicates that X is no longer a \not-ephemeral-root"

object, but may now point at an ephemeral object.

CHAPTER 2. MEMORY MANAGEMENT 48

2.5.4.2 Snapshot Detectors

In a snapshot detector the conditions given above must hold at the beginning of

garbage detection. Objects allocated since the beginning of garbage collection cannot

be collected, and are neither marked nor scavenged.

I de�ne an object to be \marked at the beginning of garbage collection" if and only

if it is marked at the end of garbage collection, and similarly de�ne an object to be

\scavenged at the beginning of garbage collection" if and only if it is scavenged at

the end.

In order to make invariant I

s

hold at the beginning of the garbage detection, the

mutator, when it is about to store over a pointer to Y that was previously stored

in the object X, and both objects were allocated before the beginning of garbage

detection, and (:X:S) ^ (:Y:M) 6= 0, can arrange that Y:M be turned on sometime

before the end of the garbage detection. Note that the invariant itself is not checked,

but clearly X was reachable at the beginning of garbage detection, or else we would

not be storing into it.

Note that for a snapshot detector, the bit X:S should not be turned on until after

all pointer components in X have been scavenged. Thus in general it is turned on at

the end of scavenging X. E�ciency aside, no harm is done by turning X:S on late.

Then it can be proved that all the required conditions hold at the beginning of

garbage detection. Brie
y, if object X points at object Y at the beginning of garbage

detection, and X is scavenged at the \beginning" (i.e. by the end) of detection, then

we must show that Y is marked at the \beginning" (i.e. by the end) of detection.

There are two cases. First, the pointer component in X pointing at Y is not changed

until after X:S is set. Then when X is scavenged, Y will be marked. The second

case is when the pointer component is changed before X:S is set. But then Y will be

marked as a consequence of the pointer to Y being stored over while X:S is o�.

In order to make the ephemeral invariant I

e

hold, we can assume that it holds at the

beginning of the garbage detection, and arrange, as in the non-snapshot case, for it

to hold at the beginning of the next detection. More speci�cally, when the mutator is

about to store a pointer to Y into the object X and discovers that X:S^(:Y:M) 6= 0,

it arranges that X:S be turned o� sometime before the beginning of the next garbage

detection. Here X:S is on if X is a permanent object that is not an ephemeral root,

and Y:M is on if Y is a permanent object.

CHAPTER 2. MEMORY MANAGEMENT 49

In theory objects allocated after garbage collection starts are ignored by a snapshot

detector. In practice they can have both theirM and S bits set and will be e�ectively

ignored.

It is possible to replace any single test (:X:S) ^ (:Y:M) 6= 0 by the simpler test

(:Y:M) 6= 0, i.e. Y:M is o�, whenever a pointer to Y in an object X is stored over,

without marking any more objects than one would otherwise mark, assuming objects

allocated after detection began are marked. Suppose X:S is on when the pointer

from X to Y is stored over. Then if the pointer to be stored over existed when X

was scavenged, Y:M will be on. But if not, then the pointer was stored after garbage

detection started. Therefore Y was reachable after detection started, and hence either

Y was allocated after detection began, or Y was reachable when detection began.

2.5.5 Read and Write Barriers

In the discussion of ephemeral, non-snapshot, and snapshot detectors, three di�erent

tests were mentioned:

T

ns

: Non-snapshot scavenge: X:S ^ (:Y:M) 6= 0

T

ss

: Snapshot scavenge: (:X:S) ^ (:Y:M) 6= 0

T

e

: Ephemeral root: X:S ^ (:Y:M) 6= 0

When a pointer is read into a top frame, these tests must be applied where X is a

top frame. A test applied during a read operation called a read barrier.

When a pointer is written into an object that is not a top frame, these tests must be

applied where X is not a top frame. A test applied during a write operation is called

a write barrier.

Non-snapshot detectors come in two
avors. Those that enforce I

s

with the aid of

T

ns

read barrier tests, but use no write barrier tests, are called read barrier detectors.

Those that enforce I

s

with the aid of T

ns

write barrier tests, but use no read barrier

tests, are called write barrier detectors.

Snapshot detectors, on the other hand, must always use a T

ss

write barrier test. It

is possible to program them to also require a T

ss

read barrier test, but this should

never be done as it is obviously ine�cient.

Invariant I

e

must always be maintained with the help of a T

e

write barrier test.

CHAPTER 2. MEMORY MANAGEMENT 50

2.5.5.1 Read Barrier Detectors

A read barrier detector is a non-snapshot detector that scavenges all top frames before

it scavenges any other object. More speci�cally, the rule is enforced that after the

S bit is set for any object that is not a top frame, then no top frame will contain

a pointer to an unmarked object. Therefore, write barriers will not be necessary to

maintain invariant I

s

, as any pointer written will point at a marked object.

Write barriers are still necessary to maintain I

e

.

A read barrier detector sets all frame S
ags at the very beginning of detection, so

the read barrier test T

ns

reduces to (:Y:M) 6= 0, i.e., Y:M is o�. The frames do

not have to be immediately scavenged; the mutators may run while they are being

scavenged. But they must be completely scavenged before the I

s

invariant S
ag of

any non-frame object is set.

Note that the read barrier need not actually mark an unmarked object. It need merely

schedule the object to be marked at some time before the end of garbage detection.

2.5.5.2 Write Barriers Detectors

A write barrier detector is a non-snapshot detector that does not scavenge frames

until the end of detection, and uses no read barrier test whatsoever. Therefore the

top frame may contain pointers to unmarked objects, and a T

ns

write barrier test is

needed to support invariant I

s

. A similar T

e

write barrier test is needed to support

invariant I

e

.

2.5.5.2.1 The Write Barrier End Game. Finishing a write barrier detection

is not trivial. The following is a reasonable ending algorithm:

1. Wait until a time when all non-frame root objects have been marked, and all

marked non-frame objects have been scavenged.

2. Scavenge stacks from the bottom up. To scavenge a frame, set its S bit and

scavenge it. But if a frame being scavenged becomes the top frame, clear its S

bit and stop scavenging the frame's stack.

If there are any unscavenged marked non-frame objects at the end of this step,

go back to step 1.

CHAPTER 2. MEMORY MANAGEMENT 51

3. Stop all mutators and scavenge all unscavenged frames.

If any objects are newly marked by this scavenging, restart mutators and go

back to step 1.

4. Terminate the detection and restart the mutators.

The time needed when mutators are stopped in step 3 can be a problem. Use can

be made of code optimized to check each frame to see if it points at any unmarked

objects.

2.5.5.2.2 Write Barrier End Thrashing. If the write barrier detection ending

algorithm above must repeatedly go back to step 1 from steps 2 or 3, this is known

as write barrier end thrashing.

There are theoretical examples where such thrashing can be severe. Suppose a mu-

tator has built a very long LISP list reachable only from its top frame, and then

applies the LISP NREVERSE function to destructively reverse the elements of the

list. Suppose the garbage detector reaches step 3 of the ending algorithm just after

NREVERSE starts.

During the NREVERSE function, the top frame maintains pointers to the head of

the unreversed part of the list and the head of the already reversed part. An element

is moved from the head of the unreversed part, and the element is changed to become

the head of the reversed part. Once changed, it is no longer possible to reach the yet

unreversed part of the list through the moved element.

So step 3 will mark the heads of the reversed and unreversed parts of the list. Then the

mutator will be restarted, and move the head of the unreversed part to the reversed

part, and change it. The garbage detector will then not be able to reach the rest of

the unreversed part of the list through already marked objects. The detector will run

until it reexecutes step 3, without marking the unreverse remainder of the list. Then

at step 3 the whole process will repeat, and may continue doing so as long as the

NREVERSE function continues.

Note that this sort of behavior cannot happen unless mutators destroy the connectiv-

ity of the part of the object graph reachable only from the stack. The NREVERSE

function is particularly perverse in this respect.

The garbage detector can detect such thrashing by counting the number of times it

reaches steps 2 and 3. Furthermore, by keeping a count of how many times unmarked

CHAPTER 2. MEMORY MANAGEMENT 52

objects were discovered for each mutator in steps 2 and 3, the detector can identify

which mutators are causing thrashing.

The only danger is that there will be so little extra work for the detector discovered

by step 2 or step 3 that the cost of the end algorithm will not be properly amortized

over the extra detection work discovered. If this begins to happen, the detector may

take one of the following special steps:

1. Switch into a mode where the allocator always sets new objects as being marked

and scavenged. This prevents thrashing caused by simply allocating new ob-

jects.

2. Switch into a mode where the mutators causing trashing are stopped while

garbage detection attempts to �nish. These mutators may be restarted after

some signi�cant amount of work has been done by the garbage detector, even

if detection has not �nished.

3. Switch into a mode where some mutators have a read barrier that marks any

object when a pointer to it is copied into the mutator's top frame.

Whether any of these steps are necessary, and which are best to use, is a very prob-

abilistic and experimental subject. Clearly mode 3 will work well, but it requires

considerable extra code, though this extra code is not executed most of the time.

Write barrier end thrashing is signi�cant because it is the only component of write

barrier detector overhead that cannot be rationally bounded. One would hope that

the overhead of a detector could be bounded in terms of reasonable parameters such

as number of used objects, rate of object allocation, rate of byte allocation, number

of pointer writes, and so forth. And in fact every overhead of a write barrier detector

can be so bounded, except write barrier end thrashing.

Write barrier end thrashing is likely to be similar to other kinds of thrashing that can

happen in a computer system. For example, cache thrashing, and virtual memory

page thrashing. It will be unlikely in practice, but unpredictable in theory. But it is

possible to detect write barrier thrashing, and take some easy countermeasures, such

as modes 1 and 2 above.

CHAPTER 2. MEMORY MANAGEMENT 53

2.5.5.3 Snapshot Detector Barriers

A snapshot detector begins by scavenging all top frames, and thereafter, whenever

a frame becomes a top frame, stops its mutator and scavenges the frame before

permitting the mutator to continue. Then no T

ss

read barrier test is needed.

In a snapshot detector, an object's I

s

invariant S bit cannot be set until after the

object is scavenged, and it is the setting of this bit for frames that makes the read

barrier test unnecessary. So each top frame must really be scavenged with its mutator

stopped before the mutator can be permitted to continue.

However, scavenging a top frame for a snapshot detector can be done by making a

copy of the frame with the mutator stopped, and then scavenging the copy while the

mutator resumes.

A snapshot detector always requires both T

ss

and T

e

write barrier tests. The �rst

can be simpli�ed to test (:Y:M) 6= 0, i.e. Y:M is o�.

2.5.6 Comparison of Read-Barrier, Write-Barrier, and

Snapshot Detectors

The following are some comparisons between these three kinds of detector:

1. Read-barriers make pointer reads more expensive, while write barriers make

pointer writes more expensive. There are typically many more pointer reads

than writes, so the total overhead for read barriers can be much greater.

2. If a garbage detection takes a long time, a write barrier detector may detect

signi�cantly more garbage than a snapshot detector or a read barrier detector.

This is because objects created during garbage detection, but which are never

reachable except from a mutator stack, and which become unreachable before

the end of garbage detection, are usually classi�ed as garbage by a write barrier

detector.

Both a read-barrier and a snapshot detector, however, e�ectively mark any

newly create object.

3. The tests T

ns

and T

e

needed to maintain invariants I

s

and I

e

when a pointer

is written into an object are so similar in a write barrier detector that they can

be bundled together and done in parallel by executing a single bit-string AND

CHAPTER 2. MEMORY MANAGEMENT 54

operation. So both kinds of tests can be done in the same amount of time it

would take to do one kind of test.

But in a snapshot detector the previous value of the pointer component must

be tested to maintain invariant I

s

, and the new value of the pointer component

to maintain invariant I

e

, so the totality of both kinds of write barrier tests takes

twice as long as for a write barrier detector.

4. If we examine our invariants

I

s

: No scavenged object points at an unmarked object.

I

e

: No not-ephemeral-root object points at an ephemeral object.

we see that only I

s

can be maintained by a read barrier. I

e

must be maintained

by a write barrier, because the invariant is maintained by clearing the S
ag of

the object into which the pointer is being stored (making it an ephemeral-root),

rather than setting the M
ag of the object pointed at (making it permanent).

Thus a read-barrier ephemeral detector must also use a separate write barrier

too.

5. Write barrier detectors have some trouble getting the stacks scavenged at the

end of detection without using operations that disrupt real-time performance.

Snapshot detectors have some trouble getting stacks scavenged at the beginning

of detection without using operations that disrupt real-time performance.

Read barrier detectors have no such problems since they merely need to start

scavenging stacks at the beginning of detection, and can take as long as they

like while mutators are running to actually scavenge the stacks.

All but the last comparison is a reason to favor write barrier detectors. Therefore,

R-CODE uses a write barrier detector. This means that R-CODE must live with the

possibility of write barrier end thrashing (section 2.5.5.2.2), and control such thrashing

with measurement tools and other means. I do not anticipate this thrashing to be

much of a problem in the real world.

CHAPTER 2. MEMORY MANAGEMENT 55

2.5.7 Copying Collectors

A copying collector organizes some of memory into two disjoint spaces, the from-space

and the to-space, and assuming all objects it wants to detect as garbage are initially

in the from-space, attempts to copy all reachable objects in the from-space into the

to-space.

Speci�cally, a copying collector copies a from-space object to to-space either when the

object is marked or when it is scavenged or in between. To distinguish these three

options, I refer to copy-on-mark detectors, copy-on-scavenge detectors, and mark-

copy-scavenge detectors.

Thus for a copy-on-mark detector, being marked is synonymous with being in to-

space, and being unmarked is synonymous with being in from-space, for the set of

objects under consideration.

Copying collectors have been used with read barrier detectors, and proposed for write

barrier detectors.

Some advantages and disadvantages of copying collectors are:

1. A copy-on-mark read barrier detector can do forwarding at the same time as

the read barrier check. Therefore all pointers in the top frame point at copied

objects. This is one of only two ways of doing forwarding that has mutators

using only forwarded pointers for objects that have been copied, so there are no

problems with two copies of an object becoming inconsistent (see \Forwarding"

below).

Note that if pointers used by mutators are to be forwarded when read using a

read barrier, marking cannot be delayed in the way it otherwise could be. If

marking were delayed, the mutator might end up using a non-forwarded pointer,

which would be a problem if the two copies of the object became inconsistent.

If a copy-on-mark detector forwards pointers both during the read barrier and

when a pointer is scavenged, then at the end of garbage detection all pointers

will be forwarded.

Write barrier and snapshot copy-on-mark detectors, all copy-on-scavenge de-

tectors, and all mark-copy-scavenge detectors do not have the nice property of

having mutators only access to-space copies of objects and not the from-space

originals.

CHAPTER 2. MEMORY MANAGEMENT 56

2. Compaction happens automatically without sweeping.

3. For copy-on-mark detectors, the list of marked, unscavenged objects is easily

maintained by simply scavenging objects in the same order in which they were

copied. If copies are allocated in to-space in order of increasing addresses, then

objects that are marked can be scavenged in order of increasing addresses, and it

is merely necessary to keep the address of the boundary between scavenged and

unscavenged objects in to-space to know which objects have been scavenged.

For mark-copy-scavenge detectors, a separate list of objects to be copied must

be maintained, but the list of copied objects to be scavenged is easily maintained

as just described.

4. For copy-on-mark detectors, the cost of marking an object becomes high, be-

cause the object must be copied.

In real-time systems it is better to perform copying at the convenience of the

system, in order to stretch the overhead out evenly over time. But mutators

do marking via read or write barriers on their own schedule, and with copy-on-

mark detectors, this means copying is done on the mutator's marking schedule,

which may bunch copies at awkward moments. In other words, the mutator

overhead of a copy-on-mark detector is not \rationally bounded".

Both the copy-on-scavenge and mark-copy-scavenge detectors solve this prob-

lem.

5. Copying collectors require a separate to-space at least as big as the set of reach-

able objects in from-space, and cannot simply compact a single memory space

by sliding objects to one end.

6. The order in which objects appear in memory changes, and this might adversely

impact time e�ciency, amount of memory required, or predictability, depending

on the total situation. There is much debate on the memory order objects should

appear in for best e�ciency. However, allocation order appears to be one of the

better orders.

Because R-CODE uses two level addressing, it does not need to worry about forward-

ing pointers in other ways. Therefore, the principal advantage of a copy-on-mark

detector with read barrier forwarding does not apply to R-CODE.

CHAPTER 2. MEMORY MANAGEMENT 57

The principal disadvantage of copy-on-mark collectors, the possibility of uncontrolled

mutator delay copying a set of objects referenced by the mutator, con
icts with re-

quirement F

2

(page 24) that R-CODE be suitable for real-time applications. There-

fore R-CODE does not use a copy-on-mark collector algorithm. There is no reason

for R-CODE to associate copying and scavenging, so R-CODE does not use a copy-

on-scavenge or a mark-copy-scavenge algorithm.

2.5.8 Forwarding

When objects are copied by garbage collectors, a principal problem is making sure

all mutators access the same copy or consistent copies. There are four ways of doing

this: read-barrier-forwarding, write-barrier-forwarding, replication-forwarding, and

two level addressing. All four ways of doing this are discussed in this section for

completeness, although for reasons other than just forwarding, R-CODE uses the two

level addressing scheme described in section 2.4 above.

2.5.8.1 Read Barrier Forwarding

A read-barrier-forwarding garbage collector is a special case of a copy-on-mark copying

collector with a read barrier detector. A read-barrier-forwarding collector ensures that

all object pointers in top frames point at object copies in to-space, and not at the

originals in from-space. Therefore, mutators only access to-space copies.

With a read barrier detector, all pointers in top frames have been marked. With

a copy-on-mark collector, all objects that have been marked have also been copied

to to-space. The read barrier that is part of the garbage detector is augmented to

forward all pointers to objects which have already been copied, with the result that

all pointers in top frames are to to-space.

Therefore all mutators access only the to-space versions of copied objects, and the

collector is of the eager forwarding variety.

The read barrier in this detector may not delay marking, but must mark and copy any

unmarked object immediately, so it can forward pointers to the object immediately.

Pointer components are also forwarded when they are scavenged. Thus at the end

of garbage detection, all objects have been copied to to-space, and all pointers have

been forwarded and point at to-space.

CHAPTER 2. MEMORY MANAGEMENT 58

A read-barrier-forwarding collector does not have to begin by copying all objects

pointed at by top frames. Instead, it can run mutators and frame scavenging simul-

taneously until all the frames are scavenged, as long as no non-frames are scavenged

until all frames have been scavenged.

One of the standard kinds of garbage collector in use today is the read-barrier-

forwarding collector, which is generally known[Wil92] as \The Copying Collector."

2.5.8.2 Write Barrier Forwarding

A write-barrier-forwarding garbage collector is a special case of a copy-on-mark copy-

ing collector with a write barrier detector. A write-barrier-forwarding collector may

have some mutators accessing the to-space version of a copied object while other

mutators are still accessing the from-space version.

The scavenger and write barriers are augmented to forward all pointers to objects

which have been copied. Therefore, by the end of garbage detection, all pointers will

have been forwarded and point at to-space.

Because mutators may access either copy, write operations must write all copies of an

object. To do this they must synchronize with each other and with processes copying

objects. This synchronization tends to impose a high cost in time on write operations.

Read operations may access any copy, and the collector is of the lazy forwarding

variety.

The write barrier in this detector may not delay marking, but must mark and copy any

unmarked object immediately, so it can forward pointers to the object immediately.

It is possible to avoid the extra write overhead on objects being initialized for the

�rst time, and therefore it is possible to avoid it for all writes in a purely functional

language. Thus it is possible to avoid the overhead for most writes in a mostly

functional language.

The Pegasus system of North and Reppy[NR87], described on page 34 is a write-

barrier-forwarding garbage collector. The garbage collector proposed by Brooks de-

scribed on page 42 mixes the write-barrier-forwarding collector and object map ideas.

CHAPTER 2. MEMORY MANAGEMENT 59

2.5.8.3 Replication Forwarding

A replication-forwarding garbage collector does not require objects to be copied at

any given time, nor does it require the detector be of any particular type, such as

read barrier or write barrier.

The mutators in a replication-forwarding collector always access the originals of the

objects in from-space. At some point, not necessarily during detection, a copy of all

marked objects is made in to-space, by a background process. All the pointers in the

to-space copies are forwarded, but none of the pointers in the from-space copies are

forwarded.

The goal of copying is to copy all marked objects. Copying can start any time after

marking starts, and �nish any time after marking �nishes and before the next marking

cycle starts.

New objects allocated after a write barrier detection ends but before copying ends

can be allocated in to-space, and never be copied, so no pointers to them will require

forwarding. New objects allocated after a read barrier or snapshot detection begins

can likewise be allocated in to-space.

The stack frames are not copied till the end of the copying. Until this time they

contain only pointers to from-space. Then at the end of the copying, mutators are

stopped, the stack frames are copied, the pointers in the stack frames are forwarded,

and the mutators resume with the copied stacks.

This algorithm for copying the stacks can be made more sophisticated along the same

lines as the detection ending algorithm for write barrier detectors, in order to stop

mutators for a shorter period of time. However there is no analog of write barrier end

thrashing, as nothing is left to do at this point except copy and forward the stacks.

In order to keep the copies up to date, each process makes a write log of all the writes

it makes into objects that might have a copy. These write logs are processed by the

copying process.

Because the write logs can consist of log bu�ers private to the writing process while

the log bu�er is being �lled, writes do not have to synchronize with the copy process.

This makes writes much more e�cient than they would be if they had to synchronize.

A de�ciency of this system is that two mutators may not write the same object

component because of time race condition problems updating the copies. This could

be addressed by having special write operations that were synchronized with each

CHAPTER 2. MEMORY MANAGEMENT 60

other, at the cost of extra synchronization overhead per write. In a single processor

system it might be addressed by building a fast atomic operation to write a log

common to all processes.

The system can be designed so new objects do not have copies until after they are

initialized, and therefore writes done to initialize an object need not be logged.

The collector of proposed by Nettles, O'Toole, Pierce, and Haines[NOPH92] described

on page 34 is a replication-forwarding collector.

2.5.8.4 Two Level Addressing

A two level addressing memory manager requires that pointers consist of two parts:

an object number which identi�es an object, and a within object byte displacement,

that identi�ers a byte location within the object. All accesses to the object use the

object number to look up the current address of the object in a table called the object

map. The object map also contains a trap
ag for each object, that can be used to

trap all accesses to the object.

With two level addressing an object can be moved at any time. The trap
ag is set

to stop processes that try to access the object, the object is moved, the trap
ag is

cleared, and any processes stopped by the trap
ag are restarted.

There is a more detailed description of two level addressing above in section 2.4.

Two level addressing makes object copying completely independent of garbage detec-

tion or collection.

2.5.8.5 Comparison of Read-Barrier-Forwarding,

Write-Barrier-Forwarding, Replication-Forwarding, and

Two-Level-Addressing Detectors

The following are comparisons of the forwarding mechanisms.

1. Read-barrier-forwarding can stop a mutator for as long as it takes to copy the

objects it is referencing. It may be necessary to copy many such objects at one

time, and this makes it di�cult to bound mutator execution time.

2. Write-barrier-forwarding can make non-initialization writes take much longer

than normal because of synchronization problems.

CHAPTER 2. MEMORY MANAGEMENT 61

3. Replication-forwarding does not easily permit two distinct processes to write

the same component of an object, unless special synchronized writes are used

that take much longer than normal writes.

4. Two-level-addressing is implemented with address registers into which pointers

must be loaded to be used, and in software implementations, operations to load

and store address registers take much longer than normal.

5. Two-level-addressing permits a number of other things to be done besides just

forwarding. For example, objects can be copied to increase their size, or an

object can be deleted and the object trap
ag set to detect dangling pointers.

The other forms of forwarding do not support such operations.

R-CODE uses two level addressing because it supports manual deletion and object

size increases as well as garbage collection forwarding.

2.5.9 The R-CODE Write Barrier

One of the advantages of a write barrier detector listed on page 53 is that the tests

T

ns

and T

e

can be combined into a single test using a bit string AND operation.

In this section we will describe the R-CODE write barrier and analyze its e�ect on

mutator performance.

2.5.9.1 The Bitstring AND Write Barrier Test

.

The T

ns

write barrier test to ensure that no scavenged object points at an unmarked

object, and the T

e

test to ensure that no not-ephemeral-root object points at a non-

permanent (ephemeral) object, are operationally identical if we make the equivalences:

scavenged � not-ephemeral-root

marked � permanent

To perform these tests for several garbage detections running in parallel, we may

associate two bit vectors with each object (e.g. in its object-map-entry), S and M .

CHAPTER 2. MEMORY MANAGEMENT 62

Then when a pointer to object X is stored in object Y , all the write barrier tests are

combined into the single test: Y:S ^ (:X:M) 6= 0. This test is called the bitstring

AND write barrier test. If this test is true, special action must be taken that may

mark objects and update lists.

If the matching bits of S and M that were respectively on and o� have the inter-

pretations \scavenged" and \marked", the action is to mark object X, i.e. set the

X:M bit, and to put X on the list of objects to be scavenged. This action need not

be done immediately; it may be postponed until any time before the end of garbage

detection.

If the matching bits of S and M that were respectively on and o� have the inter-

pretations \permanent object that is not an ephemeral root object" and \permanent

object", then the action is to clear the Y:S bit, put object Y on the list of ephemeral

root objects, and mark Y . Again this need not be done immediately: it may be

postponed until any time before the end of garbage detection.

Several garbage detections can run asynchronously using the same bit vectors. Each

detection is assigned a di�erent pair of matching bits to mean \marked" and \scav-

enged". Several di�erent sets of permanent objects can also be maintained at the

same time by assigning other pairs of matching bits to mean \permanent" and \not-

ephemeral-root".

Most computers do not have a single bit string \x AND NOT y" instruction, but do

have an \AND" instruction. For these, the bit vectorM can be stored complemented

in memory, so that each write requires only a single bit string AND instruction to

perform all write barrier tests.

2.5.9.2 Local and Global Heaps: A Future Use for the Write Barrier

Test

Here I will mention a possible additional future use for the write barrier test just

described.

Because memory speeds are falling behind processor speeds[WK95], memory local

to one processor is becoming more e�cient than memory shared between several

processors. This is partly just a matter of not having to maintain secondary cache

coherence for local memory.

As a consequence, it may become expedient in the future to have separate local and

CHAPTER 2. MEMORY MANAGEMENT 63

shared heaps. Each processor would have a local heap only it could access, and several

processors would share a separate shared heap. The rule would be enforced that the

shared heap could not point at local heaps, so that the several processors would not

have troubles accessing objects pointed at by the shared heap.

To enforce this rule a pair of S and M bits would be assigned to enforce the invariant:

I

l

: No shared heap object points at a local heap object.

The M and S bits would both be o� for local objects, and both be on for shared

objects, so the write barrier test would have the standard form, X:S ^ (:Y:M) 6= 0,

to trap on storing a pointer to a local object Y into a shared object X.

I do not expect this to be very useful in the immediate future, but it may be within

the decade.

There is, however, a technical di�culty with using the X:S ^ (:Y:M) 6= 0 test to

detect illegal stores of local pointers into shared heap objects. The di�culty is that

for all other applications of this test, the pointer needs to be written in the object

before the test is made,

6

whereas for the use we are describing here, we would like

the pointer to be stored only after the test has been passed.

For e�ciency, we will have to live with storing the pointer before the test, but this

will mean that for a short time after an illegal pointer is stored the shared object will

actually contain a pointer to a local heap. This situation can be detected and �xed

when the deferred action bu�er is processed (see section 2.5.9.3 below for deferred

action bu�ers). Also, it may be possible to use separate ranges of object numbers for

di�erent local and shared heaps, so that illegal uses of local pointers will be detected

no matter how they were communicated. Then the write barrier test will be just a

convenience for detecting the guilty party.

2.5.9.3 Deferred Action Bu�ers

In a concurrent system, there is a problem with setting M bits, clearing S bits, and

manipulating related lists: these actions must be atomic. I will assume hardware with

6

Because there is a scavenger process that turns an object's S bit on and then looks at pointers in

the object, it is necessary for the mutator to put the pointer in the object for the scavenger process

to see before the mutator looks at the S bit to see whether the scavenger has already processed the

object, and therefore will not see the pointer.

CHAPTER 2. MEMORY MANAGEMENT 64

a relatively high atomic synchronization overhead for these actions, and therefore

introduce a method of delaying and batching them.

Our store pointer instruction will do just the following. On storing a pointer to object

Y into object X, if X:S ^ (:Y:M) 6= 0, pointers to X and Y will be written into a

deferred action bu�er. Each process will have its own bu�er, and so will not need to

interlock these bu�er writes. When the bu�er is full, its process will synchronize with

other processes to set M bits, clear S bits, and maintain lists.

There are two ways to keep the time needed to process a full deferred action bu�er

reasonable for fast high priority processes. First, the bu�er may be made just long

enough to amortize the cost of synchronizing, in which case the cost of processing

it should not be more than several times the cost of synchronizing. Or second, full

bu�ers may be shipped to a lower priority process for processing.

2.5.9.4 Write Barrier Mutator Overhead

The mutator write barrier pseudo-code is shown in Figure 2.3. Based on this the

write barrier takes 6-12 RISC instructions best case and 10-20 instructions worst

case, where the lower bounds are from the �gure and the upper bounds are double

the lower bounds. The best case is when the write barrier test indicates no further

action is required. The worst case is when a deferred action bu�er entry is written.

Here we assume that in the worst case the end of the deferred action bu�er is not

reached, so the subroutine to process this bu�er is not called.

When the end of the deferred action bu�er is reached, the deferred action bu�er

end processing routine is called. This routine locks out the scavenger processes and

executes the loop in Figure 2.4 to process the bu�er entries.

For each entry, either some X:S bits are turned o� or some Y:M bits are turned on.

It is important to do this soon after the write barrier test indicates it is necessary,

so it will normally be done by the mutator. Otherwise, a single unmarked Y object

may produce many deferred action bu�er entries before it is marked, for example.

Then an action is sent to a scavenger that will perform the actual processing. The

scavengers run in background with di�erent priorities: there might be a faster high

priority scavenger for ephemeral garbage collection, and a very low priority scavenger

for a full garbage collection. The action is sent to a bu�er associated with the desti-

nation scavenger. An operation code is sent as part of the action to tell the scavenger

CHAPTER 2. MEMORY MANAGEMENT 65

In the following Y-object-number-reg is a register holding the object number of

an object Y , and AX is the address register pointing at an object X that contains

a pointer-component into which Y 's object number is to be stored. The current

entry in the deferred action bu�er is pointed at by the deferred-entry-reg

register, and the point just after the end of the bu�er is pointed at by the

deferred-end-reg. An action-entry in this bu�er has two components: X

and Y. Other considerations are as in Figure 2.2, page 40.

pointer-component (AX.byte-address) = Y-object-number-reg

memory-barrier-instruction

temp-reg-1 = map-S-bitstring(AX.object-number)

temp-reg-2 = map-not-M-bitstring(Y-object-number-reg)

temp-reg-1 = temp-reg-1 AND temp-reg-2

if (temp-reg-1 non-zero) then

X(deferred-entry-reg) = AX.object-number

Y(deferred-entry-reg) = Y-object-number-reg

deferred-entry-reg += action-entry-size-constant

if (deferred-entry-reg >= deferred-end-reg)

call deferred-action-buffer-end-subroutine

Figure 2.3: Write Barrier RISC Pseudo-Code

what to do, i.e. which bits of X:S were cleared and which bits of Y:M were set. If

more than one bit is changed, there may be work for more than one scavenger, but

the mutator only sends the action to the highest priority of these scavengers, and

after that one scavenger has done its part, it forwards the action to the next highest

priority scavenger.

The time needed to process a deferred action bu�er entry is 30-60 RISC instructions,

where as before the lower bound is from the pseudo-code and the upper bound is

double the lower bound, and in this case the assumption is made that the per entry

overhead for starting and stopping the processing of one bu�er is half the per entry

loop overhead (which is 20-40 instructions from Figure 2.4). The overhead for starting

and stopping the processing of one bu�er includes the time to lock out scavengers

before processing the bu�er, and reset this lock after processing the bu�er. The bu�er

CHAPTER 2. MEMORY MANAGEMENT 66

The following loop processes the action entries in a deferred action bu�er. For each

entry containing the object numbers of X and Y , some X:S bits may be turned o� and

some Y:M bits may be turned on (the complement of M is called not-M and its bits are

turned o�). Then an operation is sent to one of several (1 to 3) scavengers with di�erent

priorities. In the case given below, the second scavenger is sent to using a bu�er whose

current entry is pointed at by scavenge-2-entry-reg.

loop:

X-object-number-reg = X(deferred-entry-reg)

Y-object-number-reg = Y(deferred-entry-reg)

S-reg = map-S-bitstring(X-object-number-reg)

not-M-reg = map-not-M-bitstring(Y-object-number-reg)

temp-reg = S-reg AND not-M-reg

jump to dispatch-table(temp-reg)

.

case-....:

S-reg = S-reg AND case-S-mask-constant

map-S-bitstring(X-object-number-reg) = S-reg

not-M-reg = not-M-reg AND case-not-M-mask-constant

map-not-M-bitstring(Y-object-number-reg) = not-M-reg

scavenge-opcode(scavenge-2-entry-reg) =

case-opcode-constant

scavenge-X(scavenge-2-entry-reg) = X-object-number-reg

scavenge-Y(scavenge-2-entry-reg) = Y-object-number-reg

scavenge-2-entry-reg += scavenge-entry-size-constant

if (scavenge-2-entry-reg >= scavenge-2-end-reg)

call scavenge-buffer-2-done

jump to end-of-dispatched-code

.

end-of-dispatched-code:

deferred-entry-reg += action-entry-size-constant

if (deferred-entry-reg < deferred-end-reg)

jump to next iteration of loop

end-of-loop:

Figure 2.4: Deferred Bu�er Processing Loop RISC Pseudo-Code

CHAPTER 2. MEMORY MANAGEMENT 67

need only be long enough to amortize this time.

The mutator write barrier overhead can be viewed as having two components: the

time for the test, 6-12 instructions, and the time for the mutator to process an action,

35-70 instructions. I will call the �rst component the \mutator test time", and the

second component the \mutator action time." The total mutator action time during

any complete garbage detection is proportional to the number of used objects plus

the number of objects added to the ephemeral root list. Thus the total action time

is bounded by considerations similar to those that bound the total scavenger process

time. These are discussed below in section 2.6.

For high priority processes, the deferred action bu�er may be sent to a lower priority

process for handling, moving the action time o� to lower priority.

It is important to note that when a new object is initialized, only the write barrier

test time, 6-12 instructions, occurs. This is because the new object's scavenged
ags

are not set (including the
ag that really means \not-ephemeral-root"). No action is

written in the deferred action bu�er, and no bu�er processing occurs. However, there

may be exceptions to this during the \Write Barrier End Game": see section 2.5.5.2.1

above. Also, the test must still be made for two reasons: �rst, illegal stores of local

pointers into global storage must still be detected (see section 2.5.9.2, \Local and

Global Heaps", above), and second, the new object may have its scavenged
ag set

during the write barrier end game.

The importance of a fast write barrier test should be clear.

2.5.9.5 Related Work on Write Barriers

Write barrier tests are described by Hosking, Moss, and Stefanovic in [HMS92], which

measures various write barrier schemes used to maintain ephemeral root-set lists of

permanent objects that reference ephemeral objects. The tests there involve compar-

ing generation numbers, \trapping" if one is less than the other. Unlike our system,

there is no ability to suppress a trap if one has already occurred for the object being

stored into (S bit already cleared). Also, there is no ability to have the T

ns

write

barrier test be \for free" in the presence of the T

e

ephemeral root write barrier test.

2.6 Non-Mutator Overhead

In a concurrent system, garbage collection processes run concurrently with mutators.

CHAPTER 2. MEMORY MANAGEMENT 68

These collection processes may do operations such as scavenging marked objects,

sweeping unused objects into free blocks, and compacting used objects to make a

single large free block.

The garbage collection processes require a certain amount of CPU time to process:

1. Each used object (for marking/scavenging/sweeping/compacting).

2. Each ephemeral root object (for marking/scavenging).

3. Each pointer in a used or ephemeral root object (for scavenging).

4. Each byte of a used object (for compacting).

5. Each unused object (for sweeping).

6. Each pointer to a root object (for marking).

I will call one garbage collection algorithm execution a gc cycle. Thus for each used

object there is a certain amount of CPU time required during each gc cycle, which I

refer to as the gc time overhead of the used object. This is a linear function of the

number of pointers in the object and the size of the object. There is a similar linear

function for ephemeral root objects, but the size in bytes of such objects does not

contribute. There is a gc time overhead for each unused object, which is generally a

small �xed time regardless of the contents and size of the object. And lastly there

is a small �xed gc time overhead for each pointer to a root object, to mark the root

object.

To keep the total gc time overhead bounded, one must have:

1. An upper bound for the number of used objects.

2. An upper bound for the number of pointers to root objects.

3. An upper bound for the number of ephemeral root objects.

4. An upper bound for the number of pointers in used and ephemeral root objects.

5. An upper bound for the number of bytes in used objects.

6. An upper bound for the allocation rate of new objects.

CHAPTER 2. MEMORY MANAGEMENT 69

7. An upper bound for the rate of allocating bytes in new objects.

8. A lower bound for the number of bytes of memory available for used and unused

objects.

9. A lower bound on the number of used plus unused objects allowed.

These items can be used to �nd bounds for the time taken by gc cycles, and this with

the various upper bounds gives a minimum e�ciency for the garbage collector.

A garbage collection cycle also needs memory for lists of objects to be scavenged and

lists of ephemeral root objects. This memory has a size proportional to the number

of used objects and the number of ephemeral root objects, respectively.

There is no problem bounding all the above appropriately for real-time applications

as long as the allocation rates are not too high and there is several times as much

memory as required to hold the used objects.

There is one part of the write barrier garbage collector non-mutator overhead that is

not bounded by the above considerations. This is the overhead resulting from write

barrier end thrashing that was discussed in section 2.5.5.2.2 above.

There is also a question of how to de�ne \used object." Bounds on the number of

used objects and the number of bytes they consume are experimentally measured for

most systems, so any experimentally measurable de�nition will work. We therefore

chose to de�ne an object as used during a garbage collection cycle if it exists and is

not collected at the end of the cycle. Similar practical de�nitions can be made for

the other quantities above.

Use of ephemeral garbage collection helps keep the amount of memory needed down

by not counting permanent objects in any of the above bounds, except that ephemeral

root objects count slightly in the time bound.

Real-time systems often use queues of free blocks of several �xed sizes to get good

real-time allocation and deallocation times. This can also be done with our memory

manager, using manual deletion to return an object's memory to a free queue. Then

the byte allocation rate for the garbage collection cycle does not have to count bytes

allocated and freed in this manner. Therefore cycles can be very much longer than

they would otherwise have to be, and the cycle can be very e�cient. The only part

of an unused object that the cycle must collect is the object map entry, which is

relatively small.

CHAPTER 2. MEMORY MANAGEMENT 70

2.7 Summary

I believe that a memory manager based on two level addressing as implemented in

software by address registers, and on the bitstring AND write barrier test as discussed

above, will be a strong candidate for a universal memory manager that will permit

many di�erent languages to interoperate.

Chapter 3

Data Types

3.1 Goals

As an intermediate programming language, the R-CODE virtual machine language

provides only data types matched to the hardware. Thus the data types of R-CODE

are various forms of integer and
oating point numbers, and various forms of pointers.

The main goal of this chapter is to:

G

�

: Standardize data types so that di�erent high level languages, di�er-

ent computer hardware, and programs written by di�erent people at

di�erent times can interoperate.

This is not a new goal. It has been pursued by the computer hardware community

for decades, and has resulted in standardizing on the 8-bit byte, the two's comple-

ment integer, and the IEEE
oating point number format. As far as number types

are concerned, the di�erences between big and little endian computers and between

the alignment requirements of di�erent computers are the only signi�cant remaining

issues.

R-CODE follows in this trend, but is very careful about pointer data because it must

support the garbage collecting memory management of Chapter 2. R-CODE is also

very careful about big and little endian and alignment issues.

In addition, R-CODE introduces other ways of formatting information that make it

easier for programs written by di�erent people at di�erent times to interoperate. The

71

CHAPTER 3. DATA TYPES 72

�rst of these is tagged values, which are used in many LISP implementations. The

second is including type information in pointers, so machine code discovers at run

time the exact size of numbers pointed at. The third is type maps, so machine code

discovers at run time both the size and displacements of structure components. The

fourth is a type matching system, so machine code can translate at run time the

actual types of data, as expressed by type maps, into the formal types expected by

the code, also expressed by type maps. The �fth is array descriptors, so that machine

code discovers array layouts at run time.

The method of this chapter is simply to extend the basic hardware data types that

have become standard in the last several decades. R-CODE includes all the extensions

I have thought of that address G

�

above and that have a reasonable chance of being

passably e�cient on existing hardware (see C

2

, page 13) and being very e�cient on

potential future hardware. Only occasionally does this chapter discuss alternatives

that have not been included in R-CODE for one reason or another.

3.2 Requirements

The basic R-CODE goal (see page 1):

G

�

: A high school student knowing a bit of algebra and geometry can inves-

tigate and change commercially written games, editors, and simulators.

leads to programming languages of the \strongly typed LISP" variety. Basic LISP

computes with tagged values, but if the user provides su�cient strongly typed lan-

guage style declarations, LISP can deal with untagged values, and be much more

e�cient on existing computers. Thence the requirement (quoted from page 18):

F

6

: R-CODE will support tagged and untagged values and an e�cient tran-

sition between the two kinds of data.

We also want programming languages that support mixing code written by di�erent

people, some commercial, some students, and some non-commercial professionals. To

get this code to interoperate properly, it is desirable to delay until runtime matching

the actual type of data to the formal type expected by functions, to the extent

CHAPTER 3. DATA TYPES 73

allowed by e�ciency goals. One way of doing this is to represent types by type maps

that tell the sizes and displacements of components of objects of the type, and the

addresses of functions that operate on these objects. A type map is a vector organized

analogously to a page table, and can be e�ciently implemented in future hardware.

R-CODE attempts to make type maps as capable as they reasonably can be, and

therefore strives to meet the following requirement:

F

4

: R-CODE will support type maps, and will e�ciently handle execution

of very small functions selected from a type map, and also e�ciently

handle loads and stores in which only displacement, numeric type, and

size are stored in the type map.

Just as the map from an actual object to a formal object (i.e. the object as seen by a

routine) is encoded in a type map, a linear map from a list of subscripts to an address

within an array is encoded in a map we call a \array descriptor". One of the things I

learned during my decades writing glue software (see \Background", page 1) is that

array descriptors are the right way to treat array accesses. This is because there are

many instances when pieces of an array need to be treated as arrays in their own

right. Thus:

F

5

: R-CODE will support array descriptors, treating them as �rst class

data except that they may not be modi�ed once created.

The rest of this chapter is organized into three main sections. The �rst describes basic

R-CODE number, pointer, and tagged types, and explains how R-CODE pointers

containing numeric type information are used. The second analyzes type maps. The

third describes R-CODE array descriptors.

3.3 Basic Data Types

Integer and
oating point number types are standardized by existing hardware. R-

CODE supports signed two's complement integers of sizes from 1 to 64 bits, unsigned

binary integers of sizes from 1 to 64 bits, and
oating point numbers of four sizes:

16, 32, 64, and 128 bits

1

.

1

The format for a 128 bit
oating point IEEE number can be found in [Inc92]. For 16 bit IEEE

numbers the only sensible parameters are 10 bits of mantissa and 5 of exponent. If denormalized

CHAPTER 3. DATA TYPES 74

One set of basic data type issues concerns how to transmit data e�ciently between

big and little endian computers, and between computers with di�erent alignment

requirements. A second set of issues concerns how to represent the tagged values

required by LISP. A third set concerns how to represent and use pointers. This last

includes whether or not to include type information in pointers, what information

to include, and how to use this information e�ciently at run time. The following

subsections consider these three sets of issues in turn.

3.3.1 Memory Units

Amemory unit is a data component that preserves its addressability when transported

without reformatting between computers of di�erent data formats. By addressability

we mean merely the ability to compute the address of the memory unit. By computers

of di�erent data formats we include, in particular, computers of di�erent endianhoods.

An aligned 8-bit byte is a memory unit.

On the other hand, if we transmit a byte-aligned vector of 8 5-bit elements from a big

endian computer to a little endian computer, we get a result in which the elements

cannot reasonably be addressed unless all 5 bytes of the vector are reversed in memory

and the direction in which the elements are access is also reversed: see Figure 3.1.

Clearly the 5-bit elements of this vector are not memory units. The entire 40-bit

vector might be considered a memory unit, because even without reversing its bytes

the vector itself is addressable after transmission.

R-CODE requires that all memory units have a size in bits that is a power of two, and

that all memory units be aligned (have an address that is an exact multiple of their

length). Addressing memory units of this kind is the same for big and little endian

computers, except for units of size less than 8 bits. For these, R-CODE requires

big endian addressing. It is possible to insist on big endian addressing of memory

units, even on little endian computers, by just complementing some of the low order

bit-address bits when accessing the unit, because memory units are aligned on power

of 2 boundaries. Big endian is preferred because that is what I/O devices usually

numbers are supported, this gives a precision of 0.1% or 10

�7

, whichever is greater, and a range

in excess of -65,000 to 65,000. Only load and store operations, and not arithmetic, would be sup-

ported for 16 bit
oating point numbers. Implementations might have to do 128 bit
oating point

computations to only 64 bit precision, for e�ciency.

CHAPTER 3. DATA TYPES 75

Big Endian

Computer

Bytes:

Elements:
0 1 2 3 4 5 6 7

0 1 2 3 4

?

Transmit

Little Endian

Computer

Bytes:

Elements:
0 11 2 33 44 5 66 7

4 3 2 1 0

?

Reverse Byte Order

Little Endian

Computer

Bytes:

Elements:
0 1 2 3 4 5 6 7

4 3 2 1 0

Figure 3.1: A Vector of 8 5-Bit Elements

prefer.

R-CODE requires that objects which are to be copied consist of contiguous disjoint

memory units, with the displacement of each memory unit from the beginning of the

object being a multiple of the size of the memory unit. The alignment of the object

is then the size of the largest memory unit.

With these R-CODE requirements, when an object is transmitted between a big

and a little endian computer, the only \endian conversion" required is reversing the

bytes of each memory unit larger than 8 bits. This solves the problem of e�ciently

transmitting data between computers of di�erent endianhood.

R-CODE does not permit arbitrary bit �elds, e.g. a 5-bit quantity or unaligned 2-bit

quantity, to exist outside memory units. Such �elds can only exist inside memory

units, and can be extracted from these memory units by operations such as integer

shifts. Therefore, such bit �elds can be ignored when transmitting data between

computers and reformatting memory units to meet the needs of di�erent computers.

The reasons for this are:

1. As discussed above, arbitrary bit �elds are not memory units, and cannot sen-

sibly be copied between computers of di�erent endianhood.

CHAPTER 3. DATA TYPES 76

2. Many modern computers do not have instructions for loading and storing bit

�elds directly into memory.

The consequence of the R-CODE requirements is that to access a component, one

must �rst access the memory unit that contains it, and then access the component

within the memory unit. Displacements of memory units can be used to load or store

memory units. Displacements of components within memory units can be used to

extract components from the memory units, or merge components into the memory

units.

The displacements of the memory units are computationally like one would expect

displacements to be; but the displacements of components within memory units are

more like the numeric type of the component, and need to be encoded in instructions

by a compiler to be most e�cient on many existing computers.

One can generalize R-CODE's restrictive notion of memory units rather easily to

include any value that is a multiple of 8 bits in length and is aligned on a byte bound-

ary. When transmitted between di�erent endian computers, the bytes of the unit are

reversed. The vector in Figure 3.1 would be an example. The major disadvantage is

that unaligned data are much, much slower to access than aligned data on the coming

generation of computers (a factor of 10-100 slower on the Alpha: [Sit92, p. A-6-7,

and A-2]).

R-CODE memory units also have formats: signed integer, unsigned integer,
oating

point, and tagged value. These can be used to translate memory units when copying

data between di�erent kinds of computers. For example,
oating point data might

be converted. Format speci�c translation of memory units is not needed when both

computers have IEEE format
oating point numbers.

3.3.2 Tagged Values

In order to support LISP, R-CODE provides 64-bit tagged values modeled on the

IEEE 64-bit
oating point number. Floating point numbers are represented as per

the IEEE format. Tagged integers and pointers are represented as signaling-NaNs,

IEEE values that will cause a trap if input to a
oating point operation. The non-

signaling-NaN is reserved for use in indicating the output of an instruction whose

inputs were illegal: see Chapter 4 (particularly section 4.3.13, page 118).

Figure 3.2 gives the basic format of R-CODE 64- and 128-bit tagged values. For

CHAPTER 3. DATA TYPES 77

tagged value ::=
oating point j non-signaling-NaN j tagged-signaling-NaN

Tagged Signaling-NaNs:

tag

32

value

32

tag

32

value

96

tag ::= integer j unsigned-integer j boolean j pointer j : : :

Figure 3.2: 64-Bit and 128-Bit Tagged Values

64-bit tagged values, 32-bit quantities can be represented by a 32-bit tag and a 32-

bit value, where the tag is chosen to make the whole an IEEE signaling-NaN. This

is used to represent 32-bit signed and unsigned integers. It is also used to represent

special values such as the OMITTED value, that can be passed to indicate an omitted

optional argument, and the ERROR value, that contains a 32-bit error code and can

be passed to indicate an error.

When a pointer is stored in a 64-bit tagged value, the 32-bit value part is used to hold

the object number that designates the object being pointed at. This object number

references an object map entry in a table, and the object map entry holds the address

of the object: see section 2.4 in Chapter 2 for details (particularly Figure 2.1 on

page 32). The 32-bit tag in the pointer tagged value is used to hold a 19-bit type map

number that references a type map which describes the apparent type of the object.

Type maps are discussed below in section 3.4 of this chapter. 19 bits is the largest

number of bits that can reasonably be allocated for a type map number while still

making the value a 64-bit IEEE signaling-NaN and leaving room for other tagged

values.

A LISP system has been built by Umemura[Ume91] that represents LISP tagged

CHAPTER 3. DATA TYPES 78

data as 64-bit VAX
oating numbers. Pointers (without type map numbers) are rep-

resented by invalid
oating point numbers that cause traps when input to arithmetic

operations. In this LISP system, the integer 1 and the
oating point number 1.0 are

not distinguished, and
oating point hardware instructions are used for LISP integer

arithmetic. Arithmetic e�ciency is comparable to FORTRAN.

R-CODE register data
ow execution, as described in Chapter 4, is supported by

128-bit tagged values that are used as the values of virtual registers. The registers

are virtual in that they all have an associated type code that restricts their range of

values and permits them to be stored more compactly in actual implementations. For

example, the type code of a register might restrict the register's values to 32-bit signed

integers, so the implementation would store the register in a 32-bit hardware register,

but the R-CODE debugging interface would present the value to a source language

debugger as a 128-bit tagged value. So the human user can think of all register values

as being 128-bit tagged values, while the hardware can view them more e�ciently.

One of the dangers of using a virtual computer model as an intermediate represen-

tation for program code is that the constraints of packing information into the �xed

size data units of a virtual computer will corrupt the semantics of the intermediate

representation. R-CODE avoids most of this problem by using very large virtual

registers and very large virtual instructions. Thus, after some experimentation, 128

bits was settled on as large enough for a virtual register, though there is little reason

one could not go to 256 bits.

The 128-bit tagged value format is based on the 128-bit IEEE
oating point format

2

,

just like the 64-bit tagged value format. Floating point numbers, including the in-

�nities, are represented in IEEE format. Non-signaling-NaNs are reserved to indicate

the outputs of instructions with illegal inputs. 64-bit quantities, such as signed and

unsigned integers, are prefaced with a tag. 128-bit tagged pointer data are discussed

in the next section.

3.3.3 Pointers

A full pointer in R-CODE is a 128-bit tagged pointer formatted as in Figure 3.3.

The object number designates an object, the unsigned displacement designates the

2

See [Inc92, Table 3-5]. Its not completely clear to me whether this is an o�cial IEEE standard

yet for the 128-bit size.

CHAPTER 3. DATA TYPES 79

FFFF0C

16

(tag)

24

unsigned

displacement

40

type

32

object

number

32

Figure 3.3: 128-Bit Tagged Pointer

displacement in bits of a memory unit within the object, and the type designates the

type of the component stored in the memory unit or the component that begins with

the memory unit. Types will be explained below.

128-bit pointers are usually stored in virtual registers, and therefore are not stored by

implementations directly in the format given. In particular, implementations usually

store only a 32 bit displacement, which is in units of either bits or bytes, depending

upon the type �eld in the pointer. This means that implementations have permission

to implement only 32 bits of displacement for bit aligned memory units and implement

only 35 bits of displacement for byte aligned memory units.

3.3.3.1 The Pointer Type Field

There are three di�erent formats for the 32-bit type �eld of a 128-bit tagged pointer,

formatted as in Figure 3.4. The scalar type, which we will explain below, is used for

simple number and pointer components. The mapped type is used for components

associated with a type map, and will be explained later within section 3.4. A mapped

type contains a type map number that points at a type map. The type map has the

scalar type of the component in element 0, so even a mapped type has a scalar type.

Lastly the routine type is just a means of expanding the 32-bit type �eld to hold

extra information, namely pointers to three routines that perform the component

load, store, and load-address functions. The routine type contains a routine map

number that points at a routine map which holds this extra information, and also

holds the 32-bit type that would have been stored where the routine type was stored

if we did not need the extra information. This 32-bit type cannot itself be a routine

type, but can be a scalar or mapped type. In either case one eventually �nds a scalar

type, so even a routine type has a scalar type.

CHAPTER 3. DATA TYPES 80

Scalar

Type:

8

access

spec

4

0

12

copy type

+ mem unit size

+ within mem unit o�set

8

component

size

Mapped

Type:

8

access

spec

4

1

20

type map number

Routine

Type:

8

access

spec

4

2

20

routine map number

Type

Map:

0:

scalar type

1: size

.

.

.

Routine

Map:

0:

type

1:
load routine

2: store routine

3:
load-address routine

Figure 3.4: The Pointer Type Field

The access speci�cation �eld of a scalar, mapped, or routine type speci�es whether

the component is write-only, read-only, read-write, or something more complicated.

On existing computers access speci�cation information needs to be compiled into

instructions to be e�cient.

In parallel computing it is desirable to break code into blocks within which memory

operations may be reordered by the compiler or hardware. Memory read operations

on a read-only component can be reordered without problem, but read-write and

even write-only operations on the same component cannot be. Thus it is desirable

to introduce other more order-independent access speci�cations such as \write-once",

\accumulator", and \atomic-transaction". These are discussed in Chapter 5.

CHAPTER 3. DATA TYPES 81

3.3.3.2 Scalar Types

The scalar type contains a copy type and a component size. These two pieces of

information are just what is needed to copy a scalar value between registers. In

addition the scalar type contains a memory unit size and a within-memory-unit o�set

that are needed to copy the scalar value between a register and memory.

Copy types are listed in Figure 3.5.

integer Signed integer.

unsigned Unsigned binary integer.

unsignedN Unsigned binary integer that is an exact multiple

of N for N = 2, 4, 8, 16, 32, 64, or 128

oat Floating point number.

tagged 64 or 128 bit tagged value.

pointer 64 or 128 bit tagged pointer.

object number 32-bit object number.

type map number 32 bit type map number.

routine map number 32 bit routine map number.

reduced pointer 64 bit pointer containing a 32-bit object number

and a 32-bit unsigned displacement.

contiguous subobject Object that is a contiguous set of memory units.

discontiguous subobject Object that is scattered in memory.

Figure 3.5: Copy Types

Besides the normal number types there are special types for storing numbers that are

exact multiples of small powers of two. An \unsigned8" copy type value, for example,

can be used to store an unsigned integer that is an exact multiple of 8, without storing

the low order 3 bits of the integer. The value actually stored in memory is multiplied

by 8 to get the true value. Such a value can store a size that appears to be in units

of one bit when in fact it is in units of one byte.

There are a variety of pointer formats. A reduced pointer contains just the information

an implementation would store for a 128-bit tagged pointer, but without the type �eld

(see Figure 3.5). The displacement is stored as 32 bits and is in either bit or byte units,

CHAPTER 3. DATA TYPES 82

depending on the missing type �eld, which must be added later by an instruction.

A contiguous subobject is a contiguous sequence of memory units that contain sub-

object components accessed via a type map. A discontiguous subobject is a set of

components accessed via a type map, with the components being possibly scattered

in memory. Subobjects are discussed more below in section 3.4.8.

The scalar type stores the size of the memory unit containing the scalar component

and the o�set of the component within that memory unit. For integers the memory

unit size can be 1, 2, 4, 8, 16, 32, 64, or 128 bits, and the o�set within the memory

unit is up to 7 bits long. The displacement stored in the pointer is the displacement

of the memory unit, and must be an exact multiple of the memory unit size, since

all memory units in R-CODE are aligned. Pointer components, including object and

type map numbers, are all aligned, and their memory unit size and component size

are equal. Pointer components only come in 32, 64, or 128 bit sizes.

3.3.3.3 Loads and Stores

The next question is what happens when an R-CODE load or store instruction inputs

a 128-bit tagged pointer for the purpose of reading or writing a memory location.

R-CODE has an instruction to check whether the type �eld of a pointer matches a

particular value exactly. If this instruction has been applied to the pointer which the

load or store instruction is going to use, the R-CODE load or store can be compiled

for existing computers into a single machine load or store instruction containing the

speci�ed type information.

It is also possible that the pointer was computed in the current subroutine by some

instruction that speci�ed the pointer type �eld, or the type �eld will be known at

compile time for some other similarly straightforward reason.

But if the type �eld is not known, the load or store must cope with many di�erent

types. I propose that R-CODE implementations do this by making the load or store

instruction into a case statement that switches on the type �eld of the pointer. Fur-

thermore, the cases of this case statement are dynamically compiled: whenever a new

value for the type �eld is seen by the case statement, it compiles a new case of itself

to handle the new type �eld value. Thus load and store instructions compile into

dynamic case statements.

If load and store instructions using the same type �eld can be batched, this will

CHAPTER 3. DATA TYPES 83

be more e�cient. It may even be appropriate to batch such instructions with non-

memory reference instructions, as when the batch forms a tight loop. Such batching

is facilitated by the fact that R-CODE tries to permit instructions to be as reorder-

able as possible (see Chapter 4). This kind of batching is clearly experimental, and

considerable experience will be required to quantify its e�ciency.

When a routine receives an argument that is a pointer to an object or subobject, the

routine typically applies a type matching operation to get a new pointer with a match

type. Then this new pointer is used with load and store instructions. These load and

store instructions are dynamic case statements, switching on the match type map

number. But the implementation can streamline this situation by having the load

and store dynamic case statements switch directly on the type map number from the

original pointer argument, so the type matching operation is never actually executed,

except while compiling a new case.

An advantage of the dynamic case statement approach is that one is not limited to

compiling cases that contain single load or store instructions, but may compile inline

whole small routines to perform loads and stores. Routine types take advantage

of this by specifying routines to perform component load, store, and load-address

operations. These routines can be compiled inline if they are small, or calls to them

can be compiled if they are large. Inlining is becoming increasingly important; for

example, one manufacturer of newest generation computers recommends that routines

of 20 or fewer instructions be inlined for e�ciency ([Sit92, Section A.2.3, Number 2.]).

Load and store instructions operate on the scalar type of a pointer. A pointer may

have a mapped type which in turn has a scalar type stored in a type map. Thus the

pointer may point at scalar numeric elements of an array, for example, while there

is still a type map associated with the type of these elements. This type map may

contain function pointers for operations on the array elements, such as the \max"

operation mentioned in section 3.4 below. Calls to such functions may be separately

treated as dynamic case statements, or may be batched with load and store instruc-

tions that are so treated.

Dynamic case statements have two di�erences from the hash table based dynamic

dispatching common to object oriented languages. First, the table searched by a

dynamic case statement is very much smaller than the hash tables: often it may be

only 1 to 3 elements, and sometimes 10 or so. Second, the code being dispatched to

can be inlined at the call site by the dynamic case statement.

CHAPTER 3. DATA TYPES 84

3.3.3.4 Related Work on Dynamic Compilation

H�olzle and Ungar have implemented a compiler for the SELF language in [UU94]

that is very similar to dynamic case statements. The di�erence is that the SELF

system does not compile new cases dynamically at runtime, but rather feeds back to

a compiler a histogram of the frequency with which various types are encountered at

runtime by a particular object oriented method call. If a case has not been compiled

inline, it is handled by an general object oriented method dispatcher. Their system

handles 75-80% of all method invocations with cases compiled inline.

There has been considerable additional work on dynamic or adaptive compiling in

general, and not just compiling case statements switching on types. The work on

SELF referenced in [UU94] can be used as a starting point for accessing this literature.

The advantage of R-CODE should be that compilation of new cases should be very

fast, because R-CODE is likemachine language. Thus dynamic on-the-
y compilation

should be doable with little run-time penalty. This remains to be tested in practice.

And, of course, if one wants full optimization, then recompilation of full routines

using knowledge of the types seen so far would be necessary and take time.

Lastly, some way of handling particular situations where classical object oriented

hash table dispatch is really the best approach, because a particular dynamic case

statement would have too many cases that would not bene�t from inlining, is also

needed by an R-CODE implementation.

3.4 Type Maps

A type map

3

is a vector of component descriptors (see Figure 3.6), where each com-

ponent descriptor tells how to access a component within a block of memory that

represents an object. Type maps are used to complete the de�nition of a type at run

time.

For example, suppose a subroutine is passed an object that it knows to be of formal

type \animal". It knows that all animal objects have a \weight" component, but

it does not know at compile time where the weight component is within the object.

However, it does know that at run time a type map will be provided to enable the

object to be viewed as an animal, and that element 3 of this type map will be the

3

Type maps in some form were invented at least as early as 1966 [Str94, p. 258].

CHAPTER 3. DATA TYPES 85

Type Map

Component Descriptor

Component Descriptor

Component Descriptor

.

.

.

Component Descriptor

Component Descriptor

Non-Constant Component Descriptor ::=

(displacement of memory unit

and displacement of component

within memory unit, or

displacement of component;

size of memory unit in bits, or

alignment of component;

size of component in bits;

copy type identi�er;

actual type identi�er, or

match type map identi�er;

access speci�cation;

load/store/load-address

routine identi�ers)

Figure 3.6: Type Maps

displacement of the weight component in the object.

A type map may also contain constants. These may be thought of as descriptions of

\components" that depend only on the type of an object. Such constant components

can be addresses of functions that tell how to perform operations on objects of a given

type. Or constant components can be addresses of type-related variable data, such

as free lists for allocating objects of a given type.

For example, suppose a subroutine is passed an array whose elements have formal

type \lattice element". The subroutine knows that all lattice element types have a

\max" operation, but does not know at compile time how to perform this operation.

However, it does know that at run time a type map will be provided to enable the

array element values to be viewed as having values of type lattice element, and that

element 2 of this type map will be the address of a function that will implement the

max operation for these values.

Type maps are computed as follows. Every object or value has an actual type that

denotes the object format and contents. Every piece of code that references the

object or value considers the object or value to have a formal type, which denotes

CHAPTER 3. DATA TYPES 86

what the code knows about the format and contents of the object or value. There is

a type matching operation that inputs an actual type and a formal type and outputs

a type map. This type map is called the match type map, and assists the code in

interpreting the object or value as having the desired formal type, as the above two

examples illustrate.

Note that languages usually permit every actual type to be used as a formal type.

Also, formal types that are not also actual types are often called abstract types, and

are supported only by more recent languages.

Below I will discuss type maps somewhat abstractly. It may help the reader to known

that in the end R-CODE non-constant component descriptors turn out to be just like

128-bit tagged pointers (page 78 above) without the object number.

In R-CODE, type maps provide a notion of a virtual object that is mapped onto an

actual object. The actual objects and the code using them may be created by di�erent

programmers at di�erent times, and the type maps �x up the di�erence by presenting

the code with the correct virtual objects. Or many di�erent types of actual object

with something in common may be processed by the same code by making all these

objects appear to have the same formal type using type maps. All of this promotes

the goal G

�

of permitting programs to interoperate.

Type maps are required to be actual vectors: they may not be conceptual vectors

implemented by hash tables. If we were to allow type maps to be hash tables, some

of the analysis would be quite di�erent. Another way of putting this is to say that

any use of hash tables is con�ned to the type matching operation, and the output

of this matching operation is a type map that is a true vector that will be accessed

using element indices known at compile time. Furthermore, as we will see below

in sections 3.4.3.3 and 3.4.3.1, type matching can often be done using only vector

element accesses with indices known at compile time.

3.4.1 Issues to be Analyzed

A basic principle of R-CODE is to provide maximally capable type maps. The method

of this section is to analyze what is possible with type maps, and include the best of

these possibilities in R-CODE. The issues I will discuss are:

1. How might type matching be done?

CHAPTER 3. DATA TYPES 87

2. Should type maps be constant?

3. How should actual types be speci�ed?

4. What information can be put into a component descriptor?

5. What is in an R-CODE component descriptor?

6. How are subobjects handled?

7. Examples of de�ciencies in existing languages.

One issue not analyzed is how to architect future hardware that will optimally im-

plement more capable type maps.

3.4.2 Type Map Related Work

Although limited type maps have been used by various languages for decades, no

one seems to have attempted a systematic analysis of their potential

4

. Note that

type maps in our sense are intended to be high performance; we exclude the many

low performance dispatch table methods and methods that always make out-of-line

subroutine calls.

Detailed information has been published on the type maps used in C++[Str94,

p. 266], EIFFEL[MS94, page 7], SATHER 0.6[MS94], and HASKELL[Jon94, sec-

tion 7.5.1].

Languages that have made some use of type maps have not been comprehensive about

doing so. Probably this is because type maps are introduced only to implement certain

features of the languages.

However, we believe that the most successful programming languages provide rela-

tively complete control over their target hardware and runtime systems, that is, over

their computer model. Examples are C and LISP. Proceeding in this manner, we

4

The paper by Milton and Schmidt[MS94] comes close. It contains an analysis of EIFFEL and

SATHER dispatching, but does not contain topics, such as general type matching and inclusion

of type information in component descriptors, that arise when one attempts to analyze type maps

independently of any language.

CHAPTER 3. DATA TYPES 88

believe languages should provide complete control over type maps, permitting the

latter to do all they can.

C++ uses type maps that it calls virtual function tables which contain displacements

and function addresses. These tables could easily contain data addresses and ad-

dresses of other type maps, but C++ does not support this. Thus C++ does not

provide complete control of its computer model. This assertion also applies to other

languages.

We discuss such issues in more detail in sections 3.4.9 and 3.4.10 after our analysis

of type maps.

In order to design R-CODE, a comprehensive analysis of the possibilities of type maps

is required. Since none is available, I have produced my own, the current version of

which is reported in the following subsections.

3.4.3 Type Matching

The type matching operation inputs an actual type and a formal type and outputs a

type map.

5

There are two kinds of type matching: static type matching, for which enough is

known at compile time to permit the compiler to ensure that matching will work if

there are no compile errors; and dynamic type matching, for which the actual type

is su�ciently unknown at compile time that the match might fail. There are several

ways to do dynamic type matching.

3.4.3.1 Static Type Matching

A language such as HASKELL performs type matching by applying one of the fol-

lowing cases:

1. The compiler knows the actual type. In this case, the compiler computes the

type map. Note that the compiler always knows the formal type.

5

In HASKELL[HF92, H

+

92] the actual type is called a \type", the formal type is called a \class",

and the type map is built rather explicitly by an instance declaration.

CHAPTER 3. DATA TYPES 89

2. The compiler does not know the actual type, but does know a formal type X,

and knows that formal type X inherits from the formal type Y, for which we

desire to obtain the type map. The compiler also knows the location of an \X

type map" resulting from matching the formal type X with the actual type (see

Figure 3.7). And furthermore, when the X type map was created, a pointer to

the desired \Y type map" matching Y to the actual type was stored in in the

X type map, along with pointers to type maps for any other formal type from

which X inherited. So the compiler merely outputs code to read the pointer to

the Y type map from the X type map.

Type X Inherits from Type Y

X Type Map Y Type Map

-

Figure 3.7: Static Type Matching

3.4.3.2 Dynamic Type Matching in R-CODE

Communication systems and general databases transmit and hold data of arbitrary

type. When extracting data from such subsystems, code is compiled that does not

know the actual type of the datum until run time, and needs to test whether the

actual type can be matched to various formal types.

There are several ways to do this dynamic type matching. The following system is

proposed for R-CODE.

In R-CODE both actual and formal type are represented by type maps, called the

actual type map and the formal type map. The R-CODE type matching operation

CHAPTER 3. DATA TYPES 90

produces a match type map from an actual and a formal type map. This operation is

memoizing: it remembers its former results and replays them. When it has no former

result, it traps to software that can be supplied by the compiler or user.

R-CODE supplies default trap software for performing matches that have not been

done before (see Figure 3.8). This software expects formal type maps to have formal

component descriptors, that give information about corresponding match type map

descriptors. Each component descriptor in an actual or formal type map has an

associated 32-bit component-ID. If the i'th component descriptor in the formal type

map has component ID x, the actual type map component descriptor with component

ID x is found, and this becomes the i'th component descriptor in the match type map.

actual

descriptor

component

ID

Actual

Type Map

Actual

Comp. IDs

formal

descriptor

component

ID

Formal

Type Map

Formal

Comp. IDs

actual

descriptor

Match

Type Map

index

i

� -
�

�
�

�

�
-

Figure 3.8: R-CODE Default Type Matching

An error occurs if there is no actual component descriptor with ID x, or if the ac-

tual descriptor with ID x violates any speci�cation that is encoded in the formal

component descriptor of ID x (see \Formal Component Descriptors" below, page 93).

As mentioned in the section on \Loads and Stores" above (page 82), the type matching

operation can be optimized away when its match type map result is used by a dynamic

case statement, by having the case statement switch on the actual type input to the

type matching operation, instead of on the match type output. Thus although the

CHAPTER 3. DATA TYPES 91

type matching operation may need a hash table to look up memoized results, the

hash table will not be used during normal execution, but only when compiling a new

dynamic case.

3.4.3.3 Dynamic Type Matching via Formal Types

Suppose type X inherits from type Y, and we have some actual type T whose objects

may contain an X object with its Y subobject, or may contain just a Y object with

no X object (see Figure 3.9). The result of matching T with a formal type Y is some

\Y type map", and the result of matching T with type X is some \X type map" or an

error. If objects of type T contain an X object with its Y subobject, then we could

put a pointer to the X type map in some particular element of the Y type map, and

easily obtain a pointer to the X type map from a pointer to the Y type map. But if

objects of type T just contain a Y object outside any X object, then there is no X

type map, and we can put a \null" in the Y type map element were the pointer to

the X type map should be, to indicate that the actual type does not match with X.

However, it may be that objects of type Y are not at displacement zero when included

in objects of type X, so in order to pass from objects of type Y to objects of type X,

one must also subtract the displacement of Y objects in X objects from the address

of the Y object. So in addition this displacement needs to be stored in all type maps

for formal type Y.

Thus when we derive a type X from a type Y, we add to all Y type maps two

constants: �rst the address of an X type map or null, and second the displacement of

Y objects in X objects. In R-CODE it turns out that these two pieces of information

can be combined in a single component descriptor that makes the X objects look

like components of some Y objects. If a Y object is in fact in an X object, this X

component is present; otherwise it is \null".

A disadvantage of this approach occurs if there are very many types X that inherit

from one type Y. Then the number di�erent formal type maps corresponding to Y

goes up as the number of types X inheriting from Y, and the number of constants in

each of these type maps goes up as the number of types X inheriting from Y, and so

the total number of constants in type maps goes up as the square of the number of

types X inheriting from Y.

An alternative approach just stores the identi�er of the actual type, from which a

type map was derived, in the type map, permitting matches to other formal types

CHAPTER 3. DATA TYPES 92

Type X Inherits from Type Y

X Type Map

Y Inside X

Type Map

displacement

Y Outside X

Type Map

unused

null

-�

X Object

Y subobject

-

-

Figure 3.9: Dynamic Type Matching by Formal Types

using this identi�er. However these matches would presumably have to be done using

a hash table.

Suppose all components of Y are accessed by obtaining their displacement from the

appropriate Y type map. Then it is possible to insist that the displacement of Y in X

always be zero, and any actual non-zero displacement be compensated for by adding

the true displacement of Y in X to the displacements of the Y components in the \Y

inside X type map" (see Figure 3.9). This would permit the displacement of Y in X to

be omitted from this type map, as it could be assumed to be zero. It is only necessary

to include this displacement if it is needed, as when some Y components are at �xed

o�sets from the start of Y, or when the start of a contiguous Y is needed to copy Y to

another location in memory. It is also necessary to include this displacement in any

system (see \Actual Type Speci�cation" below, page 95) in which objects begin with

an actual type identi�er specifying their position within other larger objects. Usually

the displacement will be needed for one of these reasons.

CHAPTER 3. DATA TYPES 93

3.4.3.4 The Formal Type ANY

Conceptually it is possible to have a formal type \ANY" from which all other types

inherit. As suggested in the last section, a match type map for some actual type

and ANY would contain pointers to all type maps resulting from matching the actual

type. Such a match type map is conceptually equivalent to an actual type identi�er,

and can be used to implement the dynamic match operation by simply reading a

vector element.

\ANY" match type maps would be very sparse vectors, and would take a lot of

memory unless they were stored as dispatch tables, instead of as type map vectors.

But such dispatch tables are similar to and less
exible than the R-CODE type

matching memoizer.

The R-CODE default type matching algorithm speci�ed above is conceptually at least

as general as \ANY"-based type matching. If each formal component descriptor had

its own unique component ID, then we could add to each actual type that had a cor-

responding component the correct actual component descriptor with that component

ID.

Whether this is economical depends upon how types are actually used. The R-CODE

model tends to view actual and formal types as subsets of the universe of all possible

kinds of components, where a particular kind of component, say the \weight of a

body", is shared by many di�erent types. If this view is close to the user's, the

R-CODE model will be economical.

3.4.3.5 Formal Component Descriptors

R-CODE represents formal types by formal type maps containing formal component

descriptors. Formal component descriptors contain information about corresponding

match type map component descriptors. Formal type maps and formal component

descriptors are always known at compile time.

For example, a formal component descriptor may specify the corresponding match

type map component descriptor completely, permitting code using this match de-

scriptor to compile into instructions that contain all information from the descriptor.

This is just what is needed to compile the C programming language.

Or the formal component descriptor may specify everything but the component dis-

placement, permitting the instructions to contain all information but the displace-

ment, which they get from the match type map at run time.

CHAPTER 3. DATA TYPES 94

If a formal component descriptor leaves too much unspeci�ed, e�cient component

load instructions cannot be compiled in the normal way. Instead, each load instruc-

tion is compiled as a case statement switching on the identi�er of the match type

map. Whenever a new match type map that the instruction has never seen before is

encounterred, another case of the instruction is dynamically compiled.

Similar dynamic case statement methods are used for store instructions and for load-

address instructions used to locate components. It may be possible to batch such

\cased" instructions together when they are dependent on the same match type map,

and produce a single case statement for the entire batch, thus reducing case branch

overhead.

When the type map components are binary functions implementing operations such

as \max", these operations may be made into dynamic case statements switching

on the type map, with the functions pointed at by the type map being dynamically

compiled inline.

Dynamic case statements and batching may be used for such operations just as for

load and store instructions.

Thus formal component descriptors in R-CODE can specify enough to compile e�-

cient code directly as in a C compiler, or leave enough open to require dynamic case

statements for loads, stores, and other operations.

3.4.4 Constancy of Type Maps

R-CODE assumes that type maps do not change during the execution of a program,

so that code can be dynamically compiled using information in type maps. Thus

type maps are like inlineable code; changing them forces recompilation of all code

that inlined information from the type maps.

Similarly R-CODE assumes the match operation does not change, and can be mem-

oized.

3.4.4.1 Adding Component Descriptors to Type Maps

In the section \Dynamic Type Matching via Formal Types" above (page 91) we

noted that deriving a new formal type X from an existing formal type Y might add

component descriptors to the existing Y type maps. Adding component descriptors

to the end of existing type maps does not compromise the constancy of type maps.

It also permits new formal operations to be de�ned for existing formal types when

CHAPTER 3. DATA TYPES 95

new code is loaded, which can be useful.

3.4.4.2 Type Variables

An object type (e.g. C++ \class"), may have variables associated with it, as well as

constants.

There are two reasons not to store such variables in a type map.

1. The same formal object type may require many match type maps to accom-

modate di�erent object layouts, i.e. actual types, and these should all share

the same type variables. So each match type map should have a pointer to the

shared type variables.

2. It is important to know that type map information is constant, so compilation,

initial or dynamic, can trust the information not to change (any more often

than code changes).

3.4.5 Actual Type Speci�cation

An actual type \identi�er" can be put into three places:

1. In machine instructions.

2. In the data.

3. In a pointer to the data.

These options are roughly in order of increasing
exibility.

An actual type identi�er may be the address of a type map or a numeric code. When

actual type identi�ers are stored in objects, there are reasons for using numeric codes

instead of addresses:

1. The data is to be copied directly between RAM memory and an external

medium.

CHAPTER 3. DATA TYPES 96

2. The data is in RAM memory shared by several di�erent programs that are

linked separately and may need di�erent versions of type maps. For example, a

particular function may be at di�erent addresses in the code space of di�erent

links, so that function addresses stored in type maps are determined by the type

and the program.

3. The data needs to be compact, and cannot a�ord the space of a full type map

address.

Reasons 2 and 3 are also valid when actual type identi�ers are stored in pointers.

R-CODE uses type map numbers to identify type maps, and uses type maps to identify

actual types. R-CODE can store type map numbers in pointers or in data. Numeric

codes are used for all three reasons above, and also because the R-CODE memory

management system indirects all addresses anyway to permit objects to be moved at

any time, so the indirection needed to look up a numeric code in a table would be

done by R-CODE in any case.

3.4.5.1 An Actual Type Speci�cation Example

Reason 2 arises in large real-time systems, and we will sketch an example, because

most language designers are unfamiliar with such systems. Our example large real-

time system has a few hundred thousand lines of code loaded at one time into the

same symmetricmultiprocessor shared memory computer. Communication is by mes-

sage passing between separate programs running at di�erent priority levels. This is

because no one has �gured out how to e�ciently debug large real-time systems with-

out breaking them up into modest sized programs that take in a single stream of

messages and send out messages to several streams. Also, it is uneconomical to try

to link too much code together, so each modest sized program is linked separately.

In spite of the fact that communication is by message passing, the messages are

stored in shared memory, and only pointers are actually passed (the messages become

read-only once sent). This is because systems that actually copy messages, even

just memory to memory, use so much computer time doing the copying, and cause

such worries for programmers trying to optimize message size, that they are not

competitive.

CHAPTER 3. DATA TYPES 97

So far we have described systems that actually exist. Now let us hypothesize an

object oriented approach to organizing the code.

6

Most code will operate on objects

that are packed into messages. When a message arrives in the input of a program,

the program control code �gures out what to do, constructs output messages, and

then passes pieces of input and output messages, expressed as objects, to a subroutine

library to perform computations.

The objects will be denoted by addresses of actual type identi�ers stored in messages.

Given the address of an actual type identi�er, a subroutine can locate the type maps

it needs by type matching operations, and these tell how to access everything else

in the object, as the object is stored in that particular message, starting from the

address of the actual type identi�er. The same formal type of object may be packed

in di�erent ways into di�erent messages by varying the actual type identi�er and type

maps.

In this hypothesized paradigm for developing programs, separate programmers called

system integrators establish which objects are packed into which messages, and write

the program control code. The mission of these integrators is to get each computation

done at the right priority level and within the proper latency. To do this they move

information and computation around in ways that would upset a mathematical pro-

grammer who just looked at the computations that needed to be done. The paradigm

will work if the object subroutine libraries give the system integrators enough room

to maneuver.

Note that what we have just described is not currently done because support for type

maps is too weak in any existing or proposed language we know of. Instead the details

of the structure of each message are written into the algorithm code for processing

that message. This limits code reusability, and makes it harder to move computa-

tions around, making system integration more di�cult. It is not automatically clear,

however, whether the system we have just proposed would improve reusability and

system integratability enough to be economical.

The system we have just proposed stores type identi�ers in the data and passes

pointers to these identi�ers to subroutines. But this system is not as
exible as one

that stores type identi�ers in the pointers, and not in the data, as we shall see.

6

This approach was suggested to the author by a comment of Dr. Richard M. Elkin of Raytheon

Corporation.

CHAPTER 3. DATA TYPES 98

Consider the following problem with the system proposed above that stores type

identi�ers in the data. The system integrators �nd that an existing message needs

to be viewed as containing several new objects, which it did not previously need to

appear to contain, but whose components are already in the message. This means

new actual type identi�ers need to be added to the message, but nothing else. In a

real-time system this might not be a problem, but if we add long term data storage of

\messages" to the system, then we may �nd it very inconvenient to change \messages"

just to view them in a new way.

Therefore we propose a di�erent system in which each message begins with an actual

type identi�er that is the only actual type identi�er in the message. Matching this to

an application speci�c formal type obtains a type map that contains for each object

in the message a subobject component descriptor telling the actual type and relative

location of that object. From these descriptors, pointers to objects are obtained that

contain the actual types of the objects. These pointers with their contained actual

types are passed to subroutines that compute with objects.

This hypothetical example indicates some of the possibilities of type maps, and some

of the variations that can be played on the type map theme. R-CODE encodes actual

types as type map numbers in either 64- or 128-bit tagged pointers. R-CODE can

also encode actual types as type map numbers stored in objects, and use reduced

pointers (page 81) to point at these type map numbers. Reduced pointers have only

an object number and a displacement, and must be combined with the type map

number they point at to make a full 128-bit tagged R-CODE pointer.

3.4.6 Component Descriptor Contents

A component descriptor might include some of the following information (see the

above sections, particularly sections 3.3.1 and 3.3.3, for de�nitions of terms):

1. The displacement within the object of the memory unit containing the compo-

nent and the displacement of the component within this memory unit, if the

component is contained in a memory unit;

or

the displacement within the object of the component, if the component is not

contained in a memory unit.

2. The size of the memory unit containing the component, if the component is

contained in a memory unit;

CHAPTER 3. DATA TYPES 99

or

the alignment of the component in memory, if the component is not contained

in a memory unit.

3. The size of the component, if the component is contained in a memory unit;

or

if the component is not contained in a memory unit, the component will be a

subobject, and its size will be stored in one of its components as determined by

its type map (the size component may be a constant stored in the type map or

a value stored in the subobject).

4. An identi�er for the copy type of the component. Some standard copy types

are integer,
oating point, pointer, contiguous subobject, and discontiguous

subobject (see page 81).

5. An identi�er for the actual type of the component, for use in type matching;

or

an identi�er for a match type map that is the result of matching the actual type

with some formal type.

6. An access speci�cation indicating whether the component is read-only, write-

only, write-once, read-write, etc.

7. Identi�ers of routines to be called to perform the load, store, and load-address

operations on the component, if the component is not to be accessed by standard

memory load, store, and load-address instructions.

8. The value of the component, if the component is a constant determined only

by the type map. (Of course, in this case much of the above information is

unnecessary).

Some of this information may be used by existing computers without too much in-

e�ciency and without being compiled into instructions. Memory unit displacements

fall in this category. Other information must be compiled into machine instructions

on current computers to be e�cient.

CHAPTER 3. DATA TYPES 100

3.4.7 R-CODE Component Descriptors

R-CODE component descriptors are 128-bit tagged values. Type maps and compo-

nent descriptors in R-CODE are like code, and are virtual in the same sense: their

apparent value is not the same as their implementation.

R-CODE has two kinds of component descriptors: actual and formal. The actual

component descriptors appear in actual and match type maps, while the formal com-

ponent descriptors appear in formal type maps.

3.4.7.1 R-CODE Actual Component Descriptors

R-CODE has two kinds of actual component descriptors: constant and non-constant.

Constant component descriptors are just constants which are the \values" of the

components described. The components are therefore constants dependent only on

the type, or more speci�cally, on the type map. Function pointers are typically

constant descriptors. A contiguous object size that is not stored in its object is a

constant descriptor.

Any R-CODE 128-bit tagged value may be used as a constant component descriptor,

except for non-constant component descriptor values.

Non-constant component descriptors have almost the same format as R-CODE 128-

bit tagged pointers. Their format, given in Figure 3.10, is just like the 128-bit pointer

except the object number in the pointer is replaced by a lock number, the displacement

is signed in the component descriptor and unsigned in the pointer, and the tag is

FFFF14

16

for the non-constant component descriptor and FFFF0C

16

for the pointer.

Lock numbers are only used for components involved in atomic transactions: see

section 5.6.10 of Chapter 5.

An R-CODE component load instruction speci�es a pointer that points at an object

or at a subobject inside an object, and also speci�es a component index, that is the

index of a type map element. The pointer must contain a mapped type (see Figure 3.4,

page 80) that has a type map number identifying a type map. The load instruction

component index is the index of an element in this type map vector, and this element

is the component descriptor that will be used to access the component.

If this component descriptor is a constant component descriptor, the value of the

component descriptor is the value of the component loaded by the load instruction.

CHAPTER 3. DATA TYPES 101

R-CODE Non-Constant Component Descriptor:

24

FFFF14

16

(tag)

40

displacement

in bits

32

type

32

lock number

type ::= scalar type j mapped type j routine type

Scalar

Type:

8

access

spec

4

0

12

copy type

+ mem unit size

+ within mem unit o�set

8

component

size

Mapped

Type:

8

access

spec

4

1

20

type map number

Routine

Type:

8

access

spec

4

2

20

routine map number

Type

Map:

0:

scalar type

1: size

.

.

.

Routine

Map:

0:

type

1: load routine

2: store routine

3: load-address routine

Figure 3.10: R-CODE Non-Constant Component Descriptors

CHAPTER 3. DATA TYPES 102

If the component descriptor is not a constant component descriptor, a pointer to

the component is formed by taking the type from the component descriptor, the

object number from the object pointer, and the sum of the displacements from the

component descriptor and the object pointer. This pointer is then used as input to

the load instruction in order to load the component as described above in the section

on \Loads and Stores" (page 82).

An R-CODE component store instruction computes a pointer in the same way as a

component load instruction. Constant component descriptors cannot, of course, be

used with store instructions.

3.4.7.2 R-CODE Formal Component Descriptors

R-CODE formal component descriptors have almost the same format as R-CODE

actual component descriptors, but have some special values for the various �elds, and

have some extra �elds. Any actual component descriptor can be used as a formal

component descriptor, without any special �eld values or extra �elds. When special

values or extra �elds are present, the tag in the descriptor is changed from FFFF14

16

to FFFF18

16

to indicate their presence. The extra �elds are stored where the lock

number is stored in an actual component descriptor; the lock number is not needed

in a formal component descriptor.

Formal component descriptors are matched against actual descriptors to determine

whether the actual descriptor is legal in some situation. If the formal component

descriptor has no special values in any of its �elds, and no extra �elds, the actual

descriptor must equal the formal descriptor exactly.

The displacement, component size, copy type, and access speci�cation �elds of a for-

mal component descriptor can be given the special UNKNOWN value, which indicates

the corresponding �eld of the actual component descriptor can be anything.

The displacement �eld of a formal descriptor can be given one of several special

ALIGNED values, which constrain the displacement in the actual component de-

scriptor to be a multiple of some power of two from 2 through 128, without otherwise

constraining the actual displacement.

One of the special �elds is thematch
ag. If this is set, any type map number supplied

by the actual component descriptor must denote a match type map obtained by

matching some actual type map number with the formal type map number supplied

CHAPTER 3. DATA TYPES 103

by the formal component descriptor.

Another special �eld is the load convert �eld, which can be set to one of the values

NO-CONVERT, STATIC-CONVERT, or DYNAMIC-CONVERT. If this �eld has the

NO-CONVERT value, and reading the component is permitted by its access type,

then any speci�ed formal copy type and component size must match the actual com-

ponent descriptor copy type and component size. If the value is STATIC-CONVERT,

it must always be possible to convert a value with the actual component copy type

and size to a value with the formal component copy type and size. No range error can

occur during this conversion. But if the load convert value is DYNAMIC-CONVERT,

then it must be possible to perform this conversion for many likely values of the actual

type, but other values may lead to a range or over
ow error during runtime.

So, for example, an 8-bit unsigned actual integer is statically convertible to a 16-bit

signed formal integer, but only dynamically convertible to an 8-bit signed integer. In

the latter case, values from 128 on will cause over
ow errors.

Similarly there is another special store convert �eld with the same set of values as

the load convert �eld that controls conversion of values of the formal scalar type to

values of the actual scalar type in the same manner that the load convert �eld controls

conversion in the opposite direction.

3.4.8 Subobjects

A subobject is part of an object. It can be the whole object, or just a subset.

A subobject has a subobject address that consists of the object number of the con-

taining object and a displacement within that object.

A \contiguous subobject" is a contiguous set of disjoint memory units, the �rst of which

is at the subobject address. A contiguous subobject has a size and an alignment. The

subobject may be copied from one memory location to another by copying it as a bit

string, respecting the require alignment. It may be copied into or from a sequence of

registers by copying each subobject memory unit to or from a separate register.

All memory units in a subobject must be aligned relative to the beginning of the

subobject. The alignment of a subobject is the size of its largest memory unit. A

contiguous subobject can be copied to a computer with a di�erent endianhood, and

all that need be done on receipt is to reformat (e.g. byte reverse) each memory unit

individually.

The size in bits of a contiguous subobject is stored as the second component of the

CHAPTER 3. DATA TYPES 104

subobject, as described by the second element of a type map (the �rst component is

the scalar type). The size in bytes or words may be stored in the subobject itself by

giving this second component a type such as \unsigned8" or \unsigned32"(page 81).

A \discontiguous subobject is a set of parts of memory units, and has an alignment

equal to the size of the largest of these memory units. All the memory units must

be aligned properly relative to the address of the discontiguous subobject. A discon-

tiguous subobject has no size.

A discontiguous subobject cannot be copied at all, and therefore cannot be passed as

an argument or returned by copying. However, addresses pointing at the discontigu-

ous subobject can be passed.

A 128-bit tagged pointer that points at a subobject contains the address of the sub-

object and a mapped type giving the type map to be used in accessing the subobject.

The scalar type of the subobject has the \contiguous subobject" or \discontiguous

subobject" copy type, and stores the alignment of the subobject as the component

size �eld of the scalar type.

In addition to loading and storing components of subobjects, it is possible to load a

contiguous subobject into registers or produce a copy of the subobject in the frame

heap, and similarly a contiguous subobject may be stored from registers or from a

frame heap copy of the subobject.

3.4.9 Examples of De�ciencies in C++

Note that C++ uses the word \class" where we use the word \type".

C++ has type maps called virtual function tables that hold virtual function addresses

and displacements used to adjust the current object pointer when a virtual function

is called [Str94, pp. 264{5].

A C++ type map also holds a pointer to a typeinfo object that holds information

about the actual type of the largest object containing a given C++ object[Str94].

The type map also holds the displacement of the given C++ object in its largest

containing object.

A C++ object may contain subobjects called virtual bases that can be at di�erent

displacements relative to the address of the object depending on the actual type of the

largest object containing the addressed object. But C++ type maps do not contain

CHAPTER 3. DATA TYPES 105

the displacements of virtual bases; rather, instead of having the object point at a

type map and the type map have the displacement of the virtual base, C++ has the

object point at the virtual base directly. This system is faster by one indirection, but

has other overhead problems in terms of both amount of memory taken by an object

and time required to adjust pointers when an object is copied. Otherwise the two

systems are equivalent [Str94, p. 266].

Type maps permit any component to have a displacement determined by a type map

for the containing object. C++ permits this only for virtual bases, which are like

unnamed components. But a C++ object may not contain two di�erent virtual bases

with the same type. Because C++ derived its notion of type maps merely to support

its notion of inheritance, C++ has an incomplete implementation of the notions of

virtual object or type map.

C++ does not permit arbitrary constants in type maps: e.g. one cannot have what

C++ might call a \virtual static datum", which would require a pointer to the datum

in the type map. This makes it di�cult to have variables associated with a class used

as an abstract type (i.e. a formal type). For example, when coding a LISP interpreter

in C++, one might like to associated a di�erent free list with each derivative of the

abstract type \LISP object", but this is not directly possible in C++.

Because C++ does not explicitly put addresses of type maps in other type maps,

C++ cannot perform many base class to derived class strongly typed conversions as

e�ciently as it might.

Another limitation of C++ is that virtual function table addresses cannot be used as

copyable data type tags for tagged data. If a class Y inherits from a class X, X has

data and virtual functions, and Y has virtual function de�nitions but no new data,

copying a Y value into an X variable gives a copied value that points at the virtual

function table of X, not of Y. That is, the pointer to the virtual function table of

Y that was stored in the Y value is not copied; it is overwritten after the copy by a

pointer to the virtual function table of X.

C++ puts virtual function table addresses in objects, and does not permit virtual

function table addresses to be made part of pointers or otherwise passed separately.

As a consequence, many things are impossible with C++ that are possible with

HASKELL. For example, in C++ one cannot have an array of 16 bit scalars which

have operations determined by a virtual function table, without storing the address

of the table in every array element.

CHAPTER 3. DATA TYPES 106

C++ denotes type identi�ers stored in objects by pointers instead of by integer codes.

This makes it di�cult to copy objects to and from external memory, or to place objects

in memory shared by separately linked programs.

In summary, the notions of virtual object and type map are not really part of the

C++ language, and the C++ implementation of type maps is very incomplete.

3.4.10 Type Maps in Other Languages

HASKELL uses type maps passed to functions as separate arguments. These type

maps contain only function addresses and addresses of other type maps[Jon94, sec-

tion 7.5.1]. They do not contain component displacements or addresses of static data.

The use of type map addresses inside type maps is limited to static type matching,

and is not used for dynamic type matching.

Conceptually EIFFEL uses a matrix whose columns are type maps, one for every

actual type[MS94, page 7]. The actual type number is placed in the object. The

matrix is very sparse, and is packed by a mechanism that requires an extra vector

access. The component descriptors are either component displacements or function

addresses. There is no type matching operation: every object can be viewed in only

one way.

SATHER 0.5 uses hash tables. SATHER 0.6 uses type maps[MS94] that contain

function addresses, component displacements, static data addresses, and simple con-

stants. Objects contain type map numbers (or type map addresses) that designate

the type maps needed to consider the objects as having di�erent actual or formal

types. An object address points to a vector of these type map numbers, and the type

map is selected according to which view of the object is needed.

Neither EIFFEL or SATHER make provision for passing type maps as parameters or

using type maps with numeric values, as in our lattice element example on page 85.

None of the languages we have discussed include type information in component

descriptors.

None of the languages we have discussed make provision for placing type map ad-

dresses inside type maps for the purpose of dynamic type matching. Because doing

this automatically might take memory proportional to the square of the number of

types derived from a given type, a language should have features for specifying just

which dynamic type matches are to be done this way.

CHAPTER 3. DATA TYPES 107

3.5 Array Descriptors

An array descriptor describes a linear map from a list of subscripts to a displacement.

This displacement is then added to a pointer to get a pointer to an element in an array.

Or the displacement may be added to a component descriptor to get a descriptor for

an array element within an object.

The following is an example use of array descriptors from my past.

A system for running algorithms on medium resolution images is being

built. Many image operators, such as convolution operators, shrink the

image, so the output is smaller than the input. But the size of the image,

at medium resolution, is not big enough to withstand this shrinkage. So

some method of avoiding shrinkage is required.

Algorithmically, the method is to expand the input by mirror imaging, so

the output will be the same size as the original input. To e�ect this, an

input matrix of the right size is created, and sliced up into parts corre-

sponding to the original input and various mirror images of that original

input.

The software being used to handle arrays in this system treats array de-

scriptors as �rst class objects. With the help of array descriptors, the

parts of the expanded input matrix are presented as separate arrays to a

standard array copy routine that simply copies one array to another. This

array copy routine, by the way, is not so simple as to invite replicating its

code: it optimally handles arrays of any of 9 element types.

An R-CODE array descriptor is a vector of R-CODE dimension descriptors followed

by either a component descriptor or a 128-bit tagged pointer: see Figure 3.11. An

R-CODE array descriptor can be part of a type map, can be passed as part of an

argument list or a routine result list, and can be stored inside an object. R-CODE

assumes that an array descriptor will not be changed during use.

An R-CODE dimension descriptor is a 128-bit tagged value with the format given in

Figure 3.11. Given an integer subscript I and the dimension descriptor pictured in

the �gure, the check

base � I < limit

CHAPTER 3. DATA TYPES 108

Array Descriptor:

Pointer or Component Descriptor

Dimension Descriptor

Dimension Descriptor

.

.

.

Dimension Descriptor

Dimension Descriptor

Dimension Descriptor:

FFFF1C

16

(tag)

24

step

40

base

32

limit

32

Figure 3.11: Array Descriptors

is made to see if the subscript is legal, and if yes, the displacement

I � step

is generated and added to the displacement of the base element of the array. This

latter displacement is provided by the component descriptor or pointer that ends the

array descriptor.

Here I, base, and limit are all 32-bit signed integers, and step is a 40 bit signed

integer displacement in units of one bit. Just as for component descriptors and 128-

bit tagged pointers, R-CODE implementations do not store all 40 bits of the step:

they store only 32 bits in units of one byte or one bit depending on the type �eld in

the component descriptor or pointer that ends the array descriptor.

CHAPTER 3. DATA TYPES 109

3.5.1 Summary

R-CODE enhances the data types of machine hardware with several types that pro-

mote interoperability of hardware and software. Tagged types are included for lan-

guages like LISP. Type maps are included to allow software and data written by

di�erent people and at di�erent times to be mixed, and to allow one piece of code to

run on data of more than one actual type. Array descriptors make it easier to address

arrays in a strongly typed manner.

My hope is that this set of data types will advance the cause of languages that mix

the features of LISP and C, and the causes of object oriented programming and array

processing.

I also think it is clear that structures such as tagged data, type maps, and array

descriptors need to be standardized if programming languages are to interoperate.

Chapter 4

Execution Flow

4.1 Goals

As an intermediate programming language, the R-CODE virtual machine language

de�nes an instruction set and an execution
ow semantics for that instruction set.

Previous e�orts to de�ne intermediate representations for programs have generally

used a sequential execution
ow model. But R-CODE instead pursues a di�erent

goal:

G

�

: Execution
ow semantics should permit instructions to be reordered by

implementations as much as practical.

The primary reason for this goal is e�ciency. One consideration is the appearance

of superscalar processors that execute several instructions at once (see H

1

, page 13).

Another consideration is the fact that processors are becoming much faster than

main memory, relatively speaking, so there is an increasing need to move memory

load instructions as early in the instruction stream as possible (see the \memory

wall", page 14).

A secondary reason this goal is acceptable is the desire to switch to more functional

programming languages, because these languages are easier to understand and debug.

110

CHAPTER 4. EXECUTION FLOW 111

4.2 Requirements

Functional languages derive extra e�ciency from the fact that they can be executed

in data
ow order: each primitive operation (e.g. add) can execute whenever its inputs

are ready. To maximize the parallelism this permits, special hardware is needed to

detect when the inputs to an operation are ready (see, for example, the work of

Burton Smith[Smi78, ACC

+

90] and Arvind[Nik91, Pap90]).

But R-CODE must run e�ciently on existing sequential computers.

Therefore R-CODE uses a compromise. It is possible to compile a functional language

e�ciently for a sequential computer as long as all the variables are register-like, in

that they are local to a routine, cannot be aliased at runtime using pointers, and

therefore the compiler can �gure out at compile time when they will receive their

values. But variables that are global or are array elements addressed by general

subscripting cannot be handled e�ciently using data
ow execution order on existing

computers. So the compromise is:

F

7

: R-CODE will be a functional data
ow language with register-like vari-

ables that treats RAM memory as an I/O device.

F

7

leads to languages that are functional with respect to register-like variables, but

whose memory loads and stores have no certain order. To manipulate memory prop-

erly, a barrier operation is introduced, as in some modern functional languages (e.g.

the ID \-----" barrier[Nik91]), to force completion of part of a block of code be-

fore the rest of the block is executed. We call such a language a \register data
ow

language."

The operations of a functional language that involve registers can be mapped directly

to a register data
ow language. The operations that create values in memory require

the following algorithm:

1. Allocate an object and return a write-only pointer to it.

2. Write the components of the write-only object. These component write opera-

tions may be done in any order: no component is written twice.

3. Execute a barrier that ensures all of the above has �nished.

CHAPTER 4. EXECUTION FLOW 112

4. Convert the write-only pointer to a read-only pointer and discard the write-only

pointer.

5. Return the read-only pointer for use by the rest of the program.

Functional languages can handle most programming tasks easily and e�ciently. But,

on the other hand, they usually cannot express everything in a single program. They

cannot handle objects and arrays with changing state. They have trouble with al-

gorithms that require state maintenance, such as histogram computation or graph

tracing.

The barrier operation permits a register data
ow language to handle the necessary

non-functional language operations. Memory operations between barriers can be

reordered by the hardware, but operations on di�erent sides of a barrier and dynam-

ically within the same block cannot cross the barrier, and this introduces enough

sequentiality to maintain state.

In addition to barriers, atomic operations are helpful in parallelizing algorithms that

demand some sequentiality. For example, an atomic test-and-set bit operation can

be used in a parallel graph traversal to ensure no node is visited more than once.

As a more speci�c example, in computing a histogram one may use barriers and

atomic add operations as follows:

1. Allocate the histogram and return a write-only pointer to it.

2. Zero the components of the write-only histogram. These component zero oper-

ations may be done in any order: no component is written twice.

3. Execute a barrier that ensures all of the above has �nished.

4. Convert the write-only pointer to an \accumulate-only" pointer and discard the

write-only pointer.

5. Accumulate into the components of the accumulate-only histogram. Each ac-

cumulate operation is atomic, and the accumulate operations are pairwise com-

mutative, so these operations may be reordered without a�ecting the result,

even though many of them change the same component.

6. Execute a barrier that ensures all of the above has �nished.

CHAPTER 4. EXECUTION FLOW 113

7. Convert the accumulate-only pointer to a read-only pointer, and discard the

accumulate-only pointer.

8. Return the read-only pointer for use by the rest of the program.

The facts that pure functional languages can be translated easily into register data
ow

languages and that pure functional languages can handle most coding tasks mean that

users will not have to write explicit barriers very often. This means register data
ow

languages may be practical.

A register data
ow language has several operations that have side-e�ects. Memory

write operations are the most obvious of these. However, the subroutine return op-

eration also has side e�ects when it is inside a case statement. This is because the

case statement is selecting one of several possible returns from the routine, each with

a di�erent set of results. The side e�ect is the setting of the result list, which is

analogous to the writing of a variable.

Because there are side e�ecting operations in the language, control
ow operations

must be sensitive to this. A case statement, for example, cannot evaluate memory

write or subroutine return statements inside any case until it is certain that case has

been selected.

Because of the presence of memory write operations, subroutine returns must be

treated di�erently than they would be in a purely functional language. In a purely

functional language, once all the values are returned from a routine, the routine can

terminate. So a return statement can terminate its routine. But in a register data
ow

language, the return statement may not generally terminate other operations in its

routine because they may lead to memory writes.

The operation that throws an exception is roughly similar to a return operation, but

it does terminate all operations in routines being returned from.

The barrier operation holds up all operations in its block that follow the barrier until

all operations in the block before the barrier are done. Suppose a block executes a

return operation before the barrier. It seems most natural in this case to not execute

the part of the block after the barrier, on the grounds that the block has already

returned. Code before the barrier should execute even after the return operation, as

indicated above.

Memory read operations must not have side e�ects if we are to permit their speculative

execution inside case statement cases that have not yet been selected.

CHAPTER 4. EXECUTION FLOW 114

Routine calls may be speculative. An inlined routine may appear to execute specu-

latively even on a serial computer, because its instructions may become interleaved

with those of its caller, and some of these instructions may be executed speculatively.

Routine calls may execute in parallel. This will happen, even on a serial computer,

when two routines are inlined and their instructions mixed.

So a register data
ow language is a data
ow language in which memory operations

are input/output operations, there is a within block barrier operation, and other

operations are modi�ed accordingly.

The R-CODE computer is a virtual computer that executes a register data
ow ma-

chine language. The name \R-CODE" stands for \Register data
ow CODE".

The R-CODE machine language is built on certain principals that are introduced

in the next section. Subsequent sections discuss related work, R-CODE machine

language semantics, and implementation challenges.

4.3 Principals

The R-CODE virtual computer language register data
ow semantics are based on the

following principals, which will be elaborated as necessary in subsequent sections.

R-CODE is a virtual computer machine language, so the most basic language op-

erations are implemented by an R-CODE instruction. Thus I will use the word

\instruction" below as a synonym for \operation".

In reading the following principals it may help to think of the R-CODE machine

language as essentially a RISC language whose typical instruction has two input

registers and an output register.

4.3.1 Virtual Computer Representation

R-CODE represents programs in a virtual computer machine language, instead of as

a programming language.

Either a virtual computer machine language or a programming language can be used

to represent programs. There are several advantages to using a virtual computer

machine language.

CHAPTER 4. EXECUTION FLOW 115

1. The virtual computer can be simulated and used to explain to students how

computers work.

2. The virtual machine language is closer to actual hardware, and this makes

precise implementation easier.

3. The virtual machine language is similar enough to actual hardware that changes

in actual hardware can be promoted directly by features of the virtual machine

language.

For these reasons R-CODE takes the virtual computer approach, instead of the low

level programming language approach.

A main danger in the virtual computer approach is that instruction and data pack-

ing problems will adversely in
uence the semantics of the result. To combat this,

R-CODE uses very unpacked 64-bit virtual instructions and very unpacked 128-bit

virtual tagged register values.

4.3.2 Data
ow for Register Values

Values that can be stored in registers are computed using data
ow execution or-

der. Once a value is stored in a register, the register cannot be changed thereafter.

Each register value may be computed as soon as su�cient inputs to its computing

instruction are available. Any execution order which does this is permitted, unless

constrained by special instructions such as barriers and cases.

This permits code to be reordered unless prohibited by barriers or cases.

4.3.3 RAM Memory is an Input/Output Device

RAM memory is treated as an input output device. Memory instructions can execute

as soon as their register inputs are available. Memory read instructions do not wait

until the memory location being read has been written.

This permits memory instructions to be reordered unless prohibited by barriers or

cases. By not waiting for \empty" memory words to become \full", need for special

hardware is avoided.

CHAPTER 4. EXECUTION FLOW 116

4.3.4 Based on Cases, Calls, Returns, Barriers, and

Exception Throws

Normal execution
ow is controlled by the register data
ow principal and just �ve

other instructions: the case instruction that selects one of several cases to execute,

the subroutine call, the subroutine return, the barrier instruction, and the exception

throw instruction. Other constructs such as blocks and loops are equivalent to rou-

tines (see below). Still other constructs, such as coroutines and continuations, are

de�ned by minor extensions of the basic model.

Limiting the number of ways execution
ow may be controlled provides for an eco-

nomical abstract description of execution
ow rules.

Case instructions may select one of several return instructions to return from a sub-

routine. These return instructions each write di�erent values into the result list, and

therefore have a side e�ect.

4.3.5 Barriers are at Routine Top Level

A barrier instruction may appear at the top level of a routine to cause all instructions

before the barrier to be done before any instructions after the barrier is done. The

barrier instructions in a routine divide the routine into \partitions".

Barrier instructions may only be at the top level of a routine, and not inside cases or

partitions. But they may also be at the top level of blocks or loops, since these are

like routines: see below.

I do not know of any reasonable semantics for barriers inside cases, and so forbid

such.

4.3.6 Return Terminates Subsequent Partitions

A return instruction in one partition of a routine terminates subsequent partitions

of the routine. A return instruction does not terminate other instructions in its own

partition, and these other instructions may complete after the return instruction.

Because the order of instructions within a partition may be rearranged, it may be

necessary to execute some instructions within the partition after a return instruction

execution. But terminating subsequent partitions is appropriate because I believe it

is the semantics most users will expect.

CHAPTER 4. EXECUTION FLOW 117

4.3.7 Exception Catches are Cases Attached to Call

Instructions

A call instruction can optionally have an exception catch case. With respect to this,

the call instruction behaves like a case instruction, and selects the exception catch case

if and only if the call instruction receives an exception value list from an exception

throw.

Exception catch capabilities are normally attached to blocks. But in our scheme, call

instructions and separate routines play the role of blocks, so I add catch capability

to call instructions.

4.3.8 Exception Throws are like Returns with Termination

An exception throw instruction is like a return instruction, but with the following

di�erences:

1. An exception throw instruction communicates a list of exception values, whereas

a return instruction communicates a list of result values.

2. An exception throw instruction terminates all instructions in whichever routines

it is completing, whereas a return instruction allows instructions in the same

partition to complete after a return instruction executes.

4.3.9 Out-of-Line Equals Inline

Execution of out-of-line routines has the same semantics as putting the routine in-line.

This implies the implementation may start executing a routine before all of its argu-

ments have been computed, because the routine may be inlined, and its instructions

may be reordered and mixed with those of its caller. Also, code using a return value

may start executing before the routine is completely done. But conversely, the pro-

grammer cannot depend on this behavior: see \Either Strict or Non-Strict" below.

The R-CODE debugging interface makes execution of inline and out-of-line routines

look the same. However, inline routines often appear to execute in non-strict, or

data
ow, order, even on a sequential machine, so this principal implies the ability to

deal with non-strict execution order in debugging.

CHAPTER 4. EXECUTION FLOW 118

4.3.10 Blocks are Routines

A block provides a way of grouping instructions. Values can be returned from the

block with return instructions.

Semantically a block is just like a routine, and it should be possible to convert blocks

into routines and vice versa.

4.3.11 Loops are Tail-Recursive Routines

A loop is a block of instructions that repeats itself.

Semantically a loop is just like a tail-recursive routine that calls itself to iterate, and

it should be possible to convert loops into tail-recursive routines and vice versa.

4.3.12 Traps are like Subroutine Calls

An instruction trap occurs when an instruction is confronted with operands it cannot

handle. Instruction traps are semantically equivalent to subroutine calls, as if the

instruction had been turned into a call instruction. The subroutine called is selected

from a trap dispatch table, and can \emulate" the instruction by returning the proper

results. The subroutine can also throw an exception.

Traps di�er from explicit call instructions only in that implementations can optimize

them away (see \Eager but for Traps" below).

Traps may be used in languages like LISP to perform arithmetic operations on special

numbers, such as very long integers.

4.3.13 NaNs instead of Traps

Many conditionals are written using short-circuit AND instructions for which the �rst

operand must be true in order for it to be legal to attempt to compute the second

operand. For example, the �rst operand may test that a pointer is not NULL, and

then the second operand may use the pointer.

A great deal of sequentiality would be introduced if one could not attempt to compute

later operands to a sequence of short-circuit AND instructions before the �rst operand

has been computed. To avoid such sequentiality, instructions are de�ned to produce

non-signaling-NaN values when they are given illegal inputs, instead of trapping.

Traps still occur if the inputs are such that a software trap routine might compute a

CHAPTER 4. EXECUTION FLOW 119

value, or if the instruction is a control
ow instruction that involves side e�ects, such

as a case instruction using a value that must not be a non-signaling-NaN to select a

case.

If a short circuit AND instruction inputs a �rst operand that is false and a second

operand that is a non-signaling-NaN, the AND instruction simply outputs false. The

non-signaling-NaN is discarded, because it is an unneeded operand of a short circuit

instruction.

When a non-signaling-NaN is output by an instruction, this value says the instruction

could not execute. If a non-signaling-NaN is fed as input to an instruction that

controls side e�ects, it will cause a trap to the debugger, and examination of the

output of various previous instructions will reveal the original o�ending input.

Note that I assume a debugger interface that makes the virtual computer look real.

In the virtual computer, each instruction outputs to a register which is not changed

after it is initially set by the instruction, so these outputs will be available thenceforth

for inspection by the debugger.

4.3.14 Either Strict or Non-Strict

An implementation should be free to optimize code by not computing inputs that are

not required by an instruction before executing the instruction. For example, if the

�rst input to a boolean AND instruction is false, the second input is not necessary,

and need not be computed.

Inputs that are not required to execute an instruction are called \non-strict," so an

implementation is free to treat inputs as non-strict.

But an implementation should also be free to insist that all inputs to an instruction

be computed before executing the instruction. That is, code should not depend upon

unrequired inputs not being computed.

Inputs that must be computed before executing an instruction are called \strict", so

an implementation is free to treat inputs as strict.

The same holds for arguments to a subroutine, which an implementation is free to

treat as either strict or non-strict. In the non-strict case, the subroutine may start

to execute before all its arguments have been computed, and in the strict case, the

subroutine will not start until all its arguments have been computed.

Note that the freedom to not compute inputs before executing an instruction or

CHAPTER 4. EXECUTION FLOW 120

routine is not the same thing as the freedom to never compute inputs at all. See

\Eager but for Traps" below.

The freedom to view execution of routines as non-strict is used when the routines

are inlined and their instructions are reordered among the other instructions of their

caller.

4.3.15 Eager but for Traps

Data
ow languages can be \eager", meaning they compute everything as soon as

necessary inputs are ready, or \lazy", meaning they compute something only when

it is needed. Because memory write instructions have side e�ects, it is easiest to use

eager semantics.

Thus everything is computed sometime, unless it is in a disabled case of a case

instruction or it follows a barrier that is preceded by a return instruction execution.

As an optimization, an implementation can still suppress a computation if it can be

shown to be unneeded by any side e�ect producing instruction. In order to make this

useful, an implementation is permitted to suppress a computation whose only side

e�ect might occur because of an instruction trap. However, an implementation is not

required to suppress such computations.

In e�ect, the implementation is permitted to assume for the purposes of suppressing

instruction execution, that if an instruction does not have side e�ects, then its trap

routine will not have side e�ects.

4.3.16 Memory Reads have No Side E�ects

A memory read instruction may not have a side e�ect. It may be done zero or more

times without a�ecting other instructions.

Except, of course, that the time when a read instruction is done does a�ect the value

read.

4.3.17 Case Statements Propagate Permissions

The computer schedules instructions for possible execution. The scheduled instruc-

tions form an execution tree, whose nodes include routine calls, case instructions,

individual cases, and ordinary instructions (see Figure 4.3, page 134). In the follow-

ing discussion I ignore blocks, loops, and barriers.

CHAPTER 4. EXECUTION FLOW 121

Each node of the tree may have one of at least four states:

no permission

side-e�ect-free permission

side-e�ect permission

withdraw permission

These states are ordered, and nodes can only change from an earlier state in the list

to a later state in the list.

A case instruction selects one of several cases to execute, where each case is itself a

sequence of instructions. The case instruction works by propagating permissions to

its cases. It can initially propagate permission to execute side-e�ect-free instructions

to any case it choses, as long is the case instruction itself has this permission. Later,

when the case to be executed is known, \side-e�ect permission" is propagated to the

selected case to permit the execution of all instructions, including those with side-

e�ects, and \withdraw permission" is propagated to other cases to stop all instructions

from executing.

Tree nodes other than case instruction nodes propagate states down the tree toward

the leaves.

If a routine (or block or loop) is terminated by an exception, \withdraw permission"

is propagated down the tree from the routine execution node.

Side-e�ect-free permission allows arithmetic and memory read instructions to execute.

But memory writes, subroutine returns, and exception throws require side-e�ect per-

mission.

Permissions are propagated from a caller to the called routine execution. In particu-

lar, if a trap routine executed with side-e�ect-free permission decides to execute an

exception throw, that will be delayed until side-e�ect permission arrives (if it ever

does).

Note that barriers are not accounted for in the execution
ow model just given. They

add extra tree nodes and extra states. Blocks and loops, on the other hand, can be

treated by replacing them with equivalent routines.

By using permission propagation we can allow more instructions to be executed spec-

ulatively, allowing instructions in cases to be moved ahead of the computation of

which case to select.

The above sounds like permissions are propagated dynamically at runtime. But

CHAPTER 4. EXECUTION FLOW 122

when implemented on sequential computers, this is not true. Instead the permissions

are propagated statically by the compiler as it generates actual hardware code by

compiling R-CODE virtual instructions. The instruction execution tree is determined

by the program counter in such an implementation. The compiler uses the instruction

execution tree at each point of execution to select the next instruction to be executed,

and then computes a new instruction execution tree that will be valid just after that

instruction executes.

4.3.18 Flexible Value Lists

A value list is a list of register values used to communicate between routine executions.

Examples are argument lists, routine result lists, and exception value lists.

Value lists can be of arbitrary length and are received by special instructions. Value

lists can be received incrementally so a pattern can be matched to the value list and

code selected based on the case matched.

However, for e�ciency, value lists can have a signature that can specify the length

of the list and types of the values well enough to permit the value list to be stored

in real machine registers. Thus there are more constrained value lists that are very

e�cient, and more
exible value lists that are less e�cient.

Exception value lists often require the most
exibility. For example, it is desirable

for these to contain diagnostic error messages that can be printed to tell what went

wrong. When an exception is rethrown, it may be appropriate to make additions

to these messages. The catcher of an exception may or may not want to print the

messages.

Another use of
exible value lists is for argument lists for routines like those in an

operating system shell language, where there may be very long variable length lists

of �les or similar arguments.

On the other hand, argument and result lists for many subroutines, such as math

routines computing with a few real numbers (square root, sine, etc.), need to be very

e�cient.

4.3.19 Second Class Frame Pointers

Data can be \allocated in routine frames", but pointers to such data, which are called

frame pointers, can only be stored in registers and value lists. Furthermore, it must

CHAPTER 4. EXECUTION FLOW 123

be possible to �nd all such pointers at R-CODE run time.

This permits values of arbitrary size to be passed as argument, result, and exception

values; but permits the stack to be managed by a simple fast memory reclaimer.

4.3.20 Controllable Inlining

R-CODE routines should be inlined when they are compiled to machine code, and

not before. There must be some easy to use scheme to control when a routine is

inlined.

By delaying inlining until R-CODE is compiled, changes to inlined routines can be

handled more e�ciently.

4.4 Related Work

Several computers have been built with full/empty bits on memory words and load

instructions that delay until the word loaded is \full". Examples of such computers

are the Denelcor HEP[Smi78] and its modernization the Tera[ACC

+

90], and the MIT

Monsoon[Pap90].

Our notion of barriers is taken directly from Arvind's ID language[Nik91] which was

designed to run on the Monsoon. This notion arises because in a data
ow language it

must be possible to determine when a routine has �nished executing in order to free

the memory taken by the routine's frame. So there is a well de�ned notion of when

a routine execution is done. A barrier merely waits until some partition of a routine

is done before permitting the next partition to execute.

Notice there is some question about whether routines called by a given routine execu-

tion must be done for the given routine execution to be done. In some ID implemen-

tations this would not be necessary just for the purpose of freeing the routine frame.

This is because these implementations do not read data from routine frames: they

only write data to frames, and each routine execution knows whether all writes to its

frame are done yet. However, to make the ID barrier work properly, it is necessary to

de�ne a routine execution to be done only if all the routines it called are also done.

R-CODE similarly requires called routines to be done before a routine is done.

R-CODE control
ow is very similar to that of ID, with the following di�erences:

1. R-CODE is a virtual computer machine language, and ID is a programming

CHAPTER 4. EXECUTION FLOW 124

language.

2. R-CODE is optimized for sequential superscalar or very long word computers,

with scheduling done at R-CODE compile time, while ID is designed for special

hardware that does scheduling at run time.

3. R-CODE treats memory operations as I/O while ID provides
ow control based

on memory word full/empty bits.

4. R-CODE permits either non-strict or strict execution, while ID requires non-

strict execution.

5. R-CODE supports exceptions and ID does not.

6. R-CODE supports traps and ID does not.

7. R-CODE supports speculative execution more explicitly than ID.

Another thread of research on control
ow in functional languages is work on monads,

continuations, and similar constructs, which is discussed in [JW93]. The idea is that

there are \IO" functions that take as input a special kind of argument, a \world"

value, that contains the state of the world, and these IO functions produce as output

a normal value paired with a modi�ed world value. First there are primitive \IO"

functions, that call the operating system to perform actual input/output. Then there

are schemes for creating composite IO functions which are e�ectively sequences of

primitive IO functions, each with its output world connected to the input world

of the next. Simply forcing computation of the �nal world value of a composite IO

function will cause the sequence of primitive IO functions it represents to be executed

in strict sequential order.

The world value behaves something like the done
ag in implementations of ID. A fork

operation, in which two parallel computations on the world are spawned, is proposed

in [JW93, section 5.1]. A join operation, in which two parallel computations are both

required to complete in order to produce a �nal world, does not seem to be discussed

in the literature. It should be possible to introduce an operation to merge worlds to

produce a new world, however.

Introduction of forks and joins loses the safety of the language, since parallel paths

might con
ict and induce non-deterministic results. It might be better to try to build

world splitting and combining operations, that split a world into independent worlds,

CHAPTER 4. EXECUTION FLOW 125

and then combined modi�ed versions of these independent worlds into a modi�ed

version of the original world.

In any case, I feel that the join operation, which in ID and our work is implemented by

the barrier operation, is fundamental to parallelism, and languages need it to function

properly.

4.5 R-CODE Machine Language Control Flow

Semantics

The R-CODE virtual computer is a RISC style machine with a separate set of registers

for each routine execution. In the following sections we will give the semantics of the

R-CODE virtual computer that relate to control
ow.

4.5.1 R-CODE Basic Register Data
ow

R-CODE endows each routine execution with a vector of registers. Each register

is 128 bits, and stores tagged data. Registers are computed by instructions, each of

which take some registers as input. The output registers of an instruction are distinct

from the output registers of any other instruction. There are no \goto" instructions,

so each instruction can execute at most once, and each register can be set at most

once (loops are treated as tail-recursive routines). Each instruction contains a type

code that restricts the permitted values of its output registers, and permits e�cient

execution on untagged architectures. Instructions may be executed in data
ow order,

or they may be executed in sequential order, without di�erence except for side e�ects

involving non-register memory or I/O.

We will go into these considerations in more detail in the following subsections.

4.5.1.1 Registers

An R-CODE register holds a 128-bit tagged value: see Figure 4.1. Registers are

virtual; in an actual implementation most registers hold values of more restricted

types that are stored in a more compact format (see \Type Codes" below, page 128).

For example, an R-CODE register restricted to have a 32-bit integer value would be

stored in a 32-bit machine register or a 32-bit memory word in a routine execution

frame.

CHAPTER 4. EXECUTION FLOW 126

tagged value ::=
oating point j non-signaling-NaN j tagged-signaling-NaN

Tagged-Signaling-NaN:

tag

32

value

96

tag ::= integer j unsigned-integer j boolean j pointer j : : :

Figure 4.1: Tagged Register Values

The 128-bit tagged register value has the format of an IEEE 128-bit
oating point

number[Inc92, Table 3-5]. It may hold a standard
oating point value, including the

in�nities; or a non-signaling NaN value, as is specially discussed below (see \Non-

Signaling-NaNs", page 146); or a signaling-NaN value that represents a tagged value.

In other words, the R-CODE tagged data scheme is built on top of the IEEE
oating

point number scheme, using the latter's signaling-NaNs for tagged values that are

not
oating point numbers or \missing values", and using non-signaling NaNs to

represent missing values.

The types of tagged values represented by signaling-NaNs include:

boolean values (TRUE or FALSE)

64-bit signed integers

64-bit unsigned integers

pointers of various formats

other special values

See section 3.3.2 of Chapter 3 for a more complete description of R-CODE tagged

values.

4.5.1.2 Instructions

Typical R-CODE instructions are 64-bits formatted as in Figure 4.2. Typical instruc-

tions have a single output register whose values are constrained by the type code �eld

CHAPTER 4. EXECUTION FLOW 127

op

code

(01

16

)

8

type

code

8

source 1

register

number

16

source 2

register

number

16

arith

op code

8

arith

modi�er

8

arith op code ::= + j - j * j / j : : :

type code ::= BOOLEAN j INTEGER32 j : : : j TAGGED128

Figure 4.2: Example Arithmetic Instruction

associated with the register, as discussed below. The output register number is as-

signed according to the position of the instruction in its routine, and is not stored in

the instruction.

Typical instructions have two input registers whose numbers are �elds of the instruc-

tions. All register numbers are relative to the current routine execution frame. The

input register numbers must be less than the instruction's output register numbers.

This guarantees that strict execution order will work (see the \Either Strict or Non-

Strict" principal above).

The instruction contains an operation code and operation modi�er bits. A typical

operation code is \addition" and a typical modi�er is \round toward zero."

R-CODE instructions are virtual: they are not actually stored or interpreted by

implementations. They de�ne a language for representing programs that is to be

compiled into actual machine code.

Some instructions de�ne groups of other instructions. A case instruction is followed

in memory by its cases, each of which begins with a special 64-bit instruction word

followed by the instructions in the case. Routines are similarly organized into parti-

tions, and instructions that send or receive value lists also include groups of 64-bit

instruction words. We will not delve deeper into instruction formatting in this paper:

see [Wal].

CHAPTER 4. EXECUTION FLOW 128

4.5.1.3 Type Codes

Each register has an associated 8-bit type code that is stored in the instruction that

outputs the register. This type code constrains the possible values of the register. For

example, the type code might specify that the register can only hold 32-bit signed

integers. This would permit an implementation to use just a 32-bit hardware register

to hold the value of a 128-bit virtual R-CODE register.

The following is a list of R-CODE type codes:

boolean

32-bit signed integer

32-bit unsigned integer

32-bit
oating point number

64-bit signed integer

64-bit unsigned integer

64-bit
oating point number

64-bit tagged value

128-bit
oating point number

128-bit tagged value

various forms of pointer

other special data

The 128-bit tagged value type code means the value in the register is unrestricted.

R-CODE also supports 64-bit tagged values that are based on IEEE 64-bit
oating

point numbers and are designed for implementing LISP.

No matter what the type code is, a register can store a non-signaling-NaN value.

These values are used to indicate the instruction that output them had illegal inputs.

See \Non-Signaling-NaNs" below (page 146) for more details.

4.5.2 Frame Memory

Frame memory holds all the data necessary to support register data
ow execution,

but excluding the general heap memory. In the general heap memory objects may

be freely allocated and freely point at each other. This is not so in frame memory,

where objects may only be allocated with a stack or tree like discipline and may not

be pointed at except by registers and value lists (see below for value lists).

CHAPTER 4. EXECUTION FLOW 129

In implementations that are not parallel, frame memory is stack like. In implemen-

tations that are parallel, frame memory is tree like.

Frame memory has three parts.

Register Frames. Register frames hold R-CODE registers. There is one register

frame per routine execution.

Value Lists. Value lists are used for communication between routine executions.

The kinds of value list are:

Argument lists created by call instructions and received by called routines.

Result lists created by return instructions and received by call instructions.

Exception value lists created by exception throw instructions and received

by exception catches.

Frame Heap. The frame heap includes objects similar to those in the general

heap, except all pointers to frame heap objects must be stored in registers or in

value lists. The consequence of this last rule is that frame heap objects are allo-

cated with a stack or tree like discipline which permits very fast e�cient memory

reclamation.

The frame heap works with register frames to permit routines to have local values

that are full
edged memory objects, except for the restriction that pointers to

frame heap objects may not be stored in any objects.

The following sections describe the three parts of frame memory in more detail.

4.5.2.1 Register Frames

A register frame is a vector of registers. The registers in a frame have register numbers,

increasing from zero.

When an R-CODE routine is scheduled, a register frame is allocated for that routine

execution. When the register frame is created, output registers are allocated for each

instruction in the routine. These registers are allocated in the same sequence as the

instructions appear in the routine, so the numbers of the output registers of two

instructions are always in the same order as the instructions appear in the routine.

CHAPTER 4. EXECUTION FLOW 130

The number of registers in the frame is �xed by the number and kinds of instructions

in the routine, and is determined when the frame is allocated, and not changed

thereafter.

The types of values that can be stored in each register is determined by the type code

of the instruction which outputs to the register. This is also determined when the

frame is allocated, and not changed thereafter.

Each instruction may have input register numbers. These must be less than any

output register numbers of the instruction. This enforces the rule that strict execution

sequencing is permitted (see the \Either Strict or Non-Strict" principal above).

Register frames are organized as a tree: the parent of each frame is its caller's frame

(except that the root frame has no parent). If completely strict execution is used,

this register frame tree would be a stack. Here by strict execution we mean executing

instructions in the order they appear within a routine, not executing any part of a

routine until all its inputs are ready, and not using the results returned by a routine

until the routine is done.

But, in the presence of inlined routines and instructions reordered to match hardware,

routines will appear to execute non-strictly, even on existing sequential computers.

The R-CODE virtual computer is required to make inlined routines appear to the de-

bugger to have been executed out of line (by the \Out-of-Line Equals Inline" principal

on page 117 above). But then these routines will appear to be non-strictly executing

out of line routines, though they will in reality be inline routines whose instructions

have been intermixed with instructions from other parts of their caller.

The register frame tree is sometimes called the routine execution tree, as its nodes

can be thought of as routine executions, as well as register frames.

A register frame may be deallocated from memory when its routine is done, and when

any return list or expression value list this routine is sending to another frame in the

routine execution tree is no longer needed or has been re-attached to the receiving

frame.

4.5.2.2 Frame Heap

Many languages permit arrays to be allocated in a routine execution frame on the

\stack" with an array size not determined until execution of the routine. Some

languages (e.g. Ada [ANS83]) permit such arrays to be returned as result values to

CHAPTER 4. EXECUTION FLOW 131

the caller of the routine.

The frame heap addresses these needs. It is a heap where ordinary objects may be

allocated, as long as pointers to these objects are only stored in registers or value

lists. This restriction on where pointers to the objects are stored permits fast stack-

like memory reclamation to be implemented.

The reason such memory reclamation can be implemented is that when a routine

execution is done, all frame heap objects allocated by the routine execution subtree

rooted at the routine are either no longer in use, or are pointed to by the result list or

exception value list returned to the call instruction that scheduled the routine. Thus

a memory reclamation algorithm can merely compact the objects pointed at by the

returned value list, and free the rest of memory allocated by the execution subtree.

Since the values to be compacted are not visible until the value list is used, there is

no problem moving them and adjusting their addresses in the value list.

4.5.2.3 Value Lists

An R-CODE value list is a vector of register values. There are three kinds of value

list: argument lists, result lists, and exception value lists.

An R-CODE value list is constructed and sent by a call instruction (argument list),

return instruction (result list), or exception throw instruction (exception value list).

It is received by a routine execution (argument list), call instruction (result list), or

call instruction exception catch case (exception value list).

Exception value lists may be received by a call exception catch case, partly read, and

forwarded for further processing by an exception re-throw to another call exception

catch case, or by a call to a subroutine. The receiver of an exception value list may

known only enough about the list to decode the �rst part, and then pass the list on.

Argument lists may be received by a routine execution that similarly decodes and

uses the �rst part, and then after replacing the �rst part passes the list on to another

routine.

These capabilities suggest that value lists should be made fairly �rst class data in

R-CODE. However, for e�ciency reasons value lists may need to be restricted.

In R-CODE,
exible �rst class value lists are variable length vectors of tagged values

stored in memory. E�cient restricted lists are �xed length vectors of register values,

with each value being associated with an 8-bit type code, the same way as registers

CHAPTER 4. EXECUTION FLOW 132

are associated with a type code. R-CODE also supports hybrid lists, with a short

part in real hardware registers, followed by a variable length part in memory.

Speci�cally, an R-CODE value list is a vector called a \register value vector". Each

element of this vector is either a register value, or a pointer at or into a vector of

register values called a \memory value vector". Normally a value list either has no

pointers to memory value vectors, or only the last register value vector element is a

pointer to a memory value vector. However, while writing subroutines to manipulate

value lists, it is desirable to pass pointers into memory value vectors between routine

executions, and to permit this, register value vectors are allowed to contain several

pointers at memory value vectors.

A value list has a signature, which must be agreed upon by all the senders and

receivers of the value list. The signature consists of a �xed length vector of 8-bit

type codes, and an equal length vector of \memory vector
ags". The length of these

vectors is the length of the register value vector part of the value list.

Values in a value list are 128-bit tagged register values, virtually speaking. For each

signature position whose memory vector
ag is o�, the signature 8-bit type code

describes the permitted values of the register value vector element in that position,

in the same way that the 8-bit type code in an instruction describes the permitted

values of an instruction output register, but with one di�erence. The di�erence is

that an implementation is free to permit or disallow non-signaling-NaN values, unless

the value is a tagged value, in which case non-signaling-NaN values are allowed.

For each signature position whose memory vector
ag is on, the signature 8-bit type

code describes the permitted values for the elements of the memory value vector

pointed at by that the register value vector element in that position. Again, the

implementation is free to permit or disallow non-signaling-NaN values, unless a value

is a tagged value, in which case non-signaling-NaN values are allowed.

The receiver of a value list must allocate as many registers as there are type codes

in the value list signature. The associated values are copied into these registers if

their memory vector
ags are o�. Pointers to memory value vectors are copied if the

memory vector
ags are on.

New memory value vectors may be allocated by a routine, and made by copying from

other memory value vectors. Memory value vectors may be passed as the end of an

argument list, result list, or exception value list to another routine execution. The

length of a memory value vector must be determined when it is allocated, but the

CHAPTER 4. EXECUTION FLOW 133

vector may be written incrementally. Pointers into memory value vectors may be

passed as arguments and returned as result values in register value vectors.

Memory value vectors are like frame heap objects, but di�er in that they can hold

pointers to frame heap objects (if their type code permits).

4.5.3 Execution State

4.5.3.1 The Execution Tree

All scheduled instructions may be viewed as part of a tree, the instruction execution

tree. The nodes in this tree are as follows (see Figure 4.3 for an example):

Leaves. Instructions such as arithmetic operations are normally leaf nodes of the

tree, and have no children. However, if they trap, they become like subroutine call

instructions.

Calls. Call instructions have as children �rst the routine execution and second an

optional exception catch case. A call instruction acts in part like a case instruction

that may select the exception catch case if an exception value list is returned. If

the exception catch case is selected, it may return a result list for the call, or may

throw an exception itself.

Routine Executions. Routine executions have as children the partitions of the

routine being executed, in the order the partitions appear in the routine.

Partition. Partitions have as children the individual instructions of the partition.

Note that any instructions inside the cases of case instructions are excluded; only

the case instruction is directly a child of the partition, and instructions inside cases

are descendents of the case instruction.

Case Instructions. Case instructions have as children their cases.

Cases. Cases have as children the individual instructions of the case. Note that

as for partitions, if a case instruction is such a child, then the instructions inside

its cases are not such children.

We have excluded blocks and loops from this discussion. They are introduced below

by giving equivalences between them and routines.

CHAPTER 4. EXECUTION FLOW 134

main routine

execution

?

�

�

�

�

�

�

�

��

H

H

H

H

H

H

H

Hj

partition 1

?

partition 2

?

�

�

�

�

�

�

�

��

H

H

H

H

H

H

H

Hj

: : :

: : :

add

instruction

case

instruction

?

�

�

�

�

�

�

�

��

H

H

H

H

H

H

H

Hj

: : :

case 1

?

case 2

?

�

�

�

�

�

�

�

��

H

H

H

H

H

H

H

Hj

: : :

: : :

multiply

instruction

call

instruction

?

H

H

H

H

H

H

H

Hj

: : :

routine

execution

?

�

�

�

�

�

�

�

��

H

H

H

H

H

H

H

Hj

exception

case

?

: : :

partition 1 partition 2

: : :

Figure 4.3: Example Instruction Execution Tree

CHAPTER 4. EXECUTION FLOW 135

4.5.3.2 Tree Node States

Each node in the execution tree has one of the following states.

no permission

read-free permission

side-e�ect-free permission

side-e�ect permission

withdraw permission

done

These states are ordered, increasing from \no permission" to \done".

A node is said to be \withdrawn" if and only if it has \withdraw permission."

Nodes can execute and schedule children. Scheduling children involves adding nodes

to the execution tree. Execution involves setting output registers and performing

memory operations or other input/output. A node can schedule children before or

during its execution.

4.5.3.3 State Transition Rules

The following are general rules for assigning states to nodes.

1. When an instruction is scheduled, it is added to the execution tree and given

the \no permission" state.

2. The state of a node never decreases, but always increases from \no permission"

toward \done".

3. If a node has children, then it passes its state onto any child if that state is

higher than the child's current state and the child is not a case or partition.

4. If all the children (if any) of a node achieve the \done" state, and the node has

�nished its own execution, then the node is given the \done" state.

5. New nodes may be added to the execution tree (when instructions are sched-

uled), but not as children of withdrawn or done nodes, or of nodes that have

�nished their execution. Nodes may not be deleted from the execution tree.

CHAPTER 4. EXECUTION FLOW 136

6. A node can begin to execute when it is in a state with su�cient permission and

enough inputs are ready. For nodes other than those that involve side-e�ects

or read from memory, \read-free" permission is adequate to begin execution.

For memory read instructions, \side-e�ect-free" permission is required. For

instructions that involve side-e�ects, \side-e�ect" permission is required. One

of these three permissions with a higher state value is su�cient when only a

lower valued permission is required.

7. A node that is not withdrawn cannot complete its execution until all required

inputs are available to it. It need not require all its potential inputs.

8. During execution a node that is not withdrawn may decide to trap. If a node so

decides, it spawns a new routine execution child and behaves thenceforth like a

call instruction (with no call exception catch case).

9. If a node is withdrawn, it will quickly �nish execution (and then pass to the done

state as soon as its children are done). If the node has not begun execution,

it \�nishes execution" without having actually done anything. If the node has

begun execution, it will �nish execution without necessarily doing all of what

it would normally do.

An instruction is called an \atomic instruction" if, even when withdrawn, the

instruction's execution either does nothing or does what the instruction would

normally do. Unless speci�ed otherwise, instructions are not atomic. In partic-

ular, non-atomic memory write operations may write only part of the memory

they normally change.

The goal is to get all nodes in the execution tree labeled \done".

According to these rules, a node that is done or withdrawn cannot spawn new children.

As a consequence, a subtree all of whose leaves are done or withdrawn cannot grow.

All states tend to propagate down toward the leaves of the execution tree, except the

\done" state. Because a node may not become done until its children are done, this

state propagates up from the leaves.

4.5.3.4 State Maintenance

The state transition rules are intended to be applied at R-CODE compile time by

an R-CODE compiler, and not at run time, for superscalar and very long word com-

CHAPTER 4. EXECUTION FLOW 137

puters. This is to be done by assuming that out-of-line routine calls are strict, so all

scheduling really concerns only the code within a routine and the routines it inlines.

An important consequence is that the state of the execution tree is a function of

the program counter value on a superscalar or very long word computer. So the

state does not have to be maintained at routine run time in order to be presented by

the R-CODE debugging interface to debuggers. Instead, the program counter can be

merely \looked up in a table" to �nd the instruction execution tree state relevant to a

routine (but this table may be rather large, as noted in \Implementation Challenges"

below).

4.5.4 Cases

A case instruction selects one of several cases to execute. Each case is a group of

instructions.

A case instruction works by propagating permissions down a tree of scheduled in-

structions. A case instruction and its cases do the following:

1. When the case instruction is scheduled, it allocates registers for itself and its

cases, and schedules its cases.

2. When the case is scheduled, it is allowed to schedule its children unless the case

is withdrawn. However, a case is not required to schedule its children unless it

has received side-e�ect permission.

3. When a case instruction receives read-free permission it is allowed to propagate

that permission to any of its scheduled cases, but is not required to. Ditto with

side-e�ect-free permission.

4. When a case instruction can compute which case it will select, it propagates

withdraw permission to all other scheduled cases.

5. When a case instruction receives side-e�ect permission and can also compute

which case it will select, it propagates side-e�ect permission to that case.

6. If a case instruction receives withdraw permission, it propagates that to all its

scheduled cases that are not done.

CHAPTER 4. EXECUTION FLOW 138

7. If a case instruction receives an illegal input, such as a non-signaling-NaN that

the case instruction is not prepared to accept, the case instruction propagates

withdraw permission to all its scheduled cases that are not done, and schedules

a new routine execution child to execute the case trap routine. The state of the

case instruction is then propagated to this trap routine execution node, and the

case instruction thereafter behaves like a call instruction.

A case instruction may be con�gured to recognize a non-signaling-NaN as a

legal input and use it to select a particular case.

8. An instruction in (i.e. descended from) a case cannot input registers that are

the output registers of instructions in its sibling cases (i.e. cases with the same

parent case instruction).

Cases propagate new states down to their children as per the default rules for exe-

cution tree nodes. And both cases and case instructions become done when all their

scheduled children are done and the case instructions have executed, as per default

rules.

4.5.5 Barriers

A routine is divided into partitions. Each partition is a sequence of instructions (just

like a case of a case instruction). The partitions may be thought of as being separated

by barrier instructions, though no such instructions are actually encoded in R-CODE.

Routines execute by propagating permissions down trees of scheduled instructions. A

routine execution and its partitions do the following:

1. When the routine execution is scheduled it allocates registers for its partitions

and schedules the partitions.

2. When the partition is scheduled, it is allowed to schedule its children unless

the partition is withdrawn. However, a partition is not required to schedule its

children unless it has received side-e�ect permission.

3. When a routine execution receives read-free permission it is allowed to propagate

that permission to any of its scheduled partitions, but is not required to do so.

CHAPTER 4. EXECUTION FLOW 139

4. When a routine execution has side-e�ect permission, it must propagate that

permission to its �rst scheduled partition that is not done, provided no partition

is withdrawn. When that partition becomes done, this process repeats.

5. If a routine execution receives withdraw permission, it propagates that to all

its scheduled partitions that are not done.

6. If a partition executes a return instruction, then withdraw permission is propa-

gated to all subsequent partitions of the routine execution being returned from.

7. If a partition is withdrawn, all subsequent partitions of the same routine exe-

cution are withdrawn.

Partitions propagate new states down to their children as per the default rules for

execution tree nodes. And both routine executions and partitions become done when

all their scheduled children are done, as per the default rules.

4.5.6 Calls and Returns

A call instruction has an optional exception catch case. A call instruction that has

no exception catch case cannot receive an exception value list. A call instruction

with an exception catch case behaves like a case instruction that performs the call to

determine whether to select the exception catch case, and selects that case only if an

exception value list is returned.

The steps in executing the call and the routine it calls are as follows when the call

does not receive an exception value list:

1. When the call instruction is scheduled, it allocates a set of registers for its

argument list, for the address of the routine being called, for the result list to

be returned by that routine, for exception values if an exception catch case is

present, and for the exception catch case if that is present.

2. A call instruction with an exception catch case may chose to schedule the case

and propagate read-free permission to it any time after the call instruction is

scheduled and before the call instruction is done or withdrawn.

3. The address of the routine being called is computed.

CHAPTER 4. EXECUTION FLOW 140

4. The routine execution is scheduled, by allocating its register frame and schedul-

ing all the partitions of the routine.

5. The routine and its caller execute according to permissions propagated from the

call instruction to the routine execution. The routine may read values from the

argument list after they have been computed. Not all values in the argument

list need have been computed by this time.

6. A return instruction in the routine is given side-e�ect permission. This speci�es

the routine execution result list as the list of registers speci�ed by this return

instruction to hold results.

7. The routine and its caller execute. The routine may read more values from the

argument list after they have been computed. The caller may read values from

the result list after they have been computed. Not all values in the result or

argument lists need have been computed by this time.

8. The routine execution becomes done, because each of its partitions becomes

done. The routine's register frame is reclaimed, except for the result list, which

may be still in use by the caller, and is detached from the called routine's register

frame and re-attached to the caller's register frame.

9. If a call instruction has an exception catch case, then when the routine execu-

tion child of the call instruction becomes done, and no exception value list has

been returned to the call instruction, the call instruction propagates \withdraw

permission" to the exception catch case (if it has scheduled it).

It is quite possible for several result lists to be attached to the caller's frame at one

time. The caller may make calls in order to process the �rst such list, and these calls

may create more result lists.

If the call instruction receives an exception value list, what happens is as given above

with the following modi�cations and additions:

1. If a call instruction receives an exception value list, it may or may not receive a

result list. The routine execution may or may not execute a return instruction.

Also, some result values may be received, but others not received. This is

because a return instruction may have been executed, but only some result

values may have been computed before the exception throw.

CHAPTER 4. EXECUTION FLOW 141

2. If a call instruction receives an exception value list, and the call instruction is

not withdrawn, it waits till the routine execution is done, and then propagates

side-e�ect permission to its exception catch case.

Note that by propagating only read-free permission to the exception catch case,

and by waiting for the routine execution to be done before propagating side-

e�ect-permission, we have the e�ect of a barrier between the routine execution

and the exception catch case execution (except that if the routine returns it

does not stop the catch case).

3. A call exception catch case, once selected by an exception value list, executes

like a normal case instruction case. However, if it does not rethrow the excep-

tion or throw a new exception past its parent call instruction, it must provide

result values for its parent call instruction. It does this with a special return in-

struction. If the special return instruction attempts to return some result value

that has already been returned by the routine execution, the special return in-

struction traps, and cannot be continued. It is possible for the exception catch

case to discover which result values were returned by the routine execution.

A call instruction without an exception catch case cannot receive an exception value

list.

The rules just given are based on an optimistic strategy that assumes exceptions

will not be frequent. Thus the caller does not wait to see if a routine will have an

exception before using results from the routine. So if a routine has an exception it

may also have results. But if a routine has an exception and no results, results must

be provided if execution is to continue from the call instruction. In general, exception

catch code that tries to return its own results is likely to assume that no results were

returned, and it will be an error if some are.

4.5.7 Exception Throws

An exception throw instruction does the following:

1. The exception throw instruction waits until it has side-e�ect permission and

until all its inputs are available.

CHAPTER 4. EXECUTION FLOW 142

2. A search is made through the ancestors of the exception throw instruction for

a call instruction with an exception catch case.

All the nodes discovered during this search before the found call instruction are

given withdraw permission (which then propagates down other branches of the

tree).

However, if during the search a node is found that already has withdraw per-

mission, the exception throw instruction aborts and �nishes execution without

any other e�ect.

3. The inputs to the exception throw instruction are used to construct an exception

value list which is sent to the found call instruction.

Note that if more than one exception throw happens in the same routine execution,

all but one exception value list will be discarded.

4.5.8 Blocks

A block instruction introduces a block of instructions that are equivalent to a routine

called by the block instruction. Thus blocks are inlined routines.

A block instruction is like a call instruction except for the following.

1. When a block is scheduled, it allocates registers for the partitions in the block,

and after these allocates the result and exception value registers that a call

instruction would allocate.

2. Block instructions do not have arguments. Instead, the instructions of a routine

simply reference registers allocated before registers of the block. Since these

are read-only, the block could be made into a routine with these passed as

arguments.

Block instructions can have exception catch cases, like call instructions.

A common programming construct is to return to a block that is an ancestor of the

current block. To permit this, R-CODE provides a special block return instruction

that returns results to the N 'th ancestor block up the execution tree. Note, however,

that if a return to the N 'th ancestor block is executed, returns to the N � 1'st,

CHAPTER 4. EXECUTION FLOW 143

N � 2'nd, : : : , 1'st ancestor blocks must still be executed, to get all the intervening

block instructions to complete. These N separate block return instructions may be

executed in any order.

Thus, returning from each of a set of nested blocks is viewed as an independent

activity.

4.5.9 Loops

A loop instruction introduces a block of instructions that are equivalent to a tail

recursive routine called by the loop instruction.

A loop instruction is like a call instruction except for the following:

1. When a loop is scheduled, it allocates registers for the partitions of several

executions of the the loop, and after these allocates the result and exception

value registers that a call instruction would allocate.

2. The loop instruction has arguments like a call instruction that become the

arguments of the �rst iteration of the loop.

3. The loop can execute a loop continue instruction that is like a call in that it

starts the next execution of the loop, and passes arguments to that execution.

However, the loop continue instruction arranges that the next execution of the

loop will return directly to the loop instruction if it executes a normal return,

and not to the previous execution of the loop.

The new loop execution becomes a child of the loop instruction in the execution

tree, and not of the loop continue instruction execution.

4. If a loop execution executes a return instruction, this returns results to the loop

instruction. Similarly if the loop execution executes an exception throw, the

throw behaves normally using the loop instruction execution as the parent of

the loop execution.

5. Loop instructions can have exception catch cases. If an exception throw is

caught by the loop instruction, all loop executions that are children of this loop

instruction are withdrawn.

CHAPTER 4. EXECUTION FLOW 144

A loop instruction provides registers for some number of loop executions. When all of

these have been scheduled, the �rst loop execution must be \done" so its registers can

be reclaimed before the next loop execution can be scheduled. Thus the maximum

number of simultaneous loop executions is decided when R-CODE machine language

is generated, and not when R-CODE is compiled. Actually, this is not the real

maximum number of simultaneous loop executions: it is only the apparent maximum

number presented by the debugging interface, and restricts debugging more than

actual execution.

4.5.10 Inlining

R-CODE routines are optionally inlined when they are compiled to machine code.

In R-CODE, each routine is given a inlining priority, which is higher if the routine is

better o� inlined. Each call is given an inlining enable level. A call is inlined if the

called routine can be identi�ed at compile time and the call enable level is less than

or equal to this routine's priority.

Typically all calls in one routine are given the same enable level, but this is not

required.

There needs to be some way to suppress inlining within inlined routines, i.e. recursive

inlining. This is done by giving each routine and each case of a case instruction an

inlining enable increment. When a routine is inlined, its increment is added to the

enable level of all call instructions inside the routine. When a case is inlined, its

increment is added the enable level of all call instructions inside the case.

This proposal is rather experimental, and will have to wait serious usage to see how

well it works.

4.5.11 Localizing

To localize a set of routines within a parent routine means to compile special versions

of the localized routines which can only be called by the parent or by one of the other

routines in the set being localized. The directed call graph of the set of routines to

be localized (excluding the parent) may not have any cycles.

Localized routines may be implemented to use part of their parent's register frame,

instead of having their own register frame. This is hidden inside an R-CODE imple-

mentation, but makes for some increase in e�ciency.

CHAPTER 4. EXECUTION FLOW 145

Localization is similar to inlining, but is useful when a routine is called several times

by its parent.

In R-CODE, routines are given a localization priority that is separate from the rou-

tines' inlining priority. This is compared with call instructions' inlining enable level

to determine whether the routine should be localized. A routine is localized if any

one call by the parent or by another localized routine indicates it should be localized.

If the set of routines to be localized contains a call cycle, this is considered a com-

pilation error. Implementations should break the cycle in some unspeci�ed way and

warn the user. Any recursive chain of routines should contain a routine that is not

localizable.

Implementations should perform obvious optimizations such as inlining any localized

routine that is called only once and removing arguments to localized routines that

are the same for every call to the routine within its parent.

4.5.12 Coroutines

In R-CODE, coroutines are implemented by a \coroutine channel". A coroutine

channel holds a pointer to a call instruction execution that is waiting for results.

Coroutines work as follows:

1. To start a coroutine, a special coroutine start instruction is used that calls

the coroutine and places a pointer to the coroutine start instruction execution,

which is a form of call instruction execution, in a coroutine channel.

A pointer to the coroutine channel is passed as an argument to the coroutine.

2. Once started, the coroutine or one of its subroutines can then \call" the corou-

tine channel. This has the e�ect of taking the call argument list and using it

as the result list for the call instruction execution pointed at by the channel. It

then resets the channel to point at the execution of the instruction that called

the channel.

3. Once a coroutine has called its channel, and the previous caller of the channel

has received a return, then the previous caller can call the channel to call the

coroutine back. This also resets the channel to point at the execution of the

instruction that called the channel.

CHAPTER 4. EXECUTION FLOW 146

4. When the coroutine returns, its result values are sent to the call instruction

execution pointed at by the coroutine channel.

5. When the coroutine is called by the start instruction, the coroutine execution

is attached in the execution tree to some call instruction execution designated

by the start instruction. This designated call instruction execution must be

an ancestor of the start instruction, and is typically the parent of the routine

execution containing the start instruction execution.

6. If the coroutine throws an exception, the execution subtree rooted at the corou-

tine execution is given withdraw permission, but withdraw permission is not

propagated to the parent of the coroutine execution, and the exception value

list is not sent to that parent or one of its ancestors.

The exception value list is saved until the coroutine channel points at a call

instruction execution that is not in the coroutine execution tree. Then the

exception value list is returned to that call instruction execution.

A coroutine may be localized (see \Localizing" above) if it does not pass the pointer

to the coroutine channel to any non-localized routine, and if the coroutine execution

is to be a sibling in the execution tree of the routine executing the start instruction.

In this case a call graph is made of calls that pass the coroutine channel pointer,

and all routines connected to the coroutine in this call graph are allocated separate

register space in the routine execution frame of the start instruction.

Non-localized coroutines cause the routine execution tree to cease to be stack-like.

Localizing coroutines preserves any stack-like nature of this tree.

4.5.13 Non-Signaling-NaNs

R-CODE instructions that do not normally have side e�ects output IEEE non-

signaling-NaNs when they cannot produce more reasonable results. They do this

instead of trapping, if there is no possibility that a trap routine could produce a

reasonable result.

The R-CODE short circuit boolean AND instruction will accept a non-signaling-NaN

as a legal second input if the �rst input is false. Thus the second input can be

computed in parallel with the �rst input, even if the �rst input must be true in order

for the second input to be legal. If the �rst input computes to false, the second input

CHAPTER 4. EXECUTION FLOW 147

may compute to a non-signaling-NaN, but this will not a�ect the �nal result, which

is false.

R-CODE case instructions can have an optional case that is selected by a non-

signaling-NaN input. If they do not have such a case, they trap when given a non-

signaling-NaN input, and this trap routine cannot return: it must throw an exception

or invoke the debugger.

Whether or not the output of an instruction is a non-signaling-NaN can be thought

of as an additional piece of state for the instruction execution node that is part of

the instruction execution tree. However, unlike the rest of the instruction execution

tree state, this extra piece may not be a function of the program counter value for

a superscalar or very long word computer implementations. When it is not, the

implementation must manipulate
ags at run time to indicate non-signaling-NaN

outputs, and this causes ine�ciencies. Hopefully this will not be necessary often.

IEEE non-signaling-NaNs can contain many bits of information. R-CODE ignores

this extra information, and may not preserve it when copying non-signaling-NaN

values. This permits R-CODE implementations to use a single bit to represent the

presence or absence of a non-signaling-NaN in a particular R-CODE register.

4.5.14 Traps

An instruction traps when it �nds it has inputs that it cannot process and either it

makes no sense to output a non-signaling-NaN or there is some possibility that a trap

routine might be able to compute some other output for the instruction.

An instruction trap is just like a subroutine call. The routine to be called is selected

from a dispatch table using the instruction operation code and input arguments, as

appropriate. The routine may return values to emulate the instruction, if appropriate.

More speci�cally, when an instruction �nds its inputs are such that it should trap,

it may schedule the trap routine just as if the instruction were a call instruction.

If the trap routine returns, the result values are placed in the output registers of

the instruction, and the instruction is done. Instructions that trap behave like call

instructions that do not have exception catch cases.

The implementation of traps is conceptually like turning instructions into case in-

structions which have a non-trapping and a trapping case. To permit all the desired

traps and trap routine returns, extra code may be needed for some instructions on

CHAPTER 4. EXECUTION FLOW 148

some hardware. An implementation might have various optimizations for this, such

as modes where certain trap routine returns are disallowed, and modes where the

extra code is computed on the
y when �rst needed, and then cached for possible

future use.

In most cases, traps are considered an unusual circumstance, but in some cases they

are not. For example, arithmetic operation traps on signaling-NaN tagged values

might become the standard way of implementing rational numbers in LISP.

4.5.15 Continuations

R-CODE has a special continuation call instruction that makes the new routine exe-

cution a child of the parent of the current routine execution, instead of a child of the

continuation call instruction execution. A routine execution that executes a contin-

uation call may not execute a routine return. The new routine execution created by

the continuation call becomes responsible for returning results to the common parent.

One e�ect is that a call instruction may have more than one routine execution as a

child, though only one is supposed to return.

Exception processing is extended so that if an execution sets the state of any routine

execution of a call instruction execution to withdraw permission, then the states

of any other routine execution children of the same call instruction execution are

withdrawn.

If more than one routine execution attempts to return to the same call instruction

execution, the result values are unde�ned, but at least one of the return instructions

will trap so a debugger can intervene.

4.5.16 Recording State

The state of the execution tree must be recorded for the sake of the debugging inter-

face. This is done in the R-CODE virtual registers.

When a typical R-CODE arithmetic instruction is scheduled, it is copied into its

output register. The 64-bit instruction �ts in this 128-bit register with a special tag

indicating it is an instruction waiting to execute. When its inputs become available,

it executes and replaces itself in its output register by its result.

CHAPTER 4. EXECUTION FLOW 149

More complex instructions like case instructions record their state in their output

register or registers.

Although these state changes mean that R-CODE registers are not simply unchanging

constants, the state changes are monotonic, leading from \less done" values to \done

values."

All of this is, of course, virtual. It is only visible through the debugging interface, and

is just the means this interface has of presenting the execution tree state to debuggers.

4.6 Implementation Challenges

To �rst order approximation, it is very easy to compile R-CODE for existing com-

puters. Strict sequential execution semantics is used for out of line subroutine calls,

and inlining is done in R-CODE before translation to real machine language. Instruc-

tions are issued in any order consistent with the above register data
ow semantics

and strict execution of out of line calls. The type codes in instructions are used to

generate e�cient code that does not really produce 128-bit tagged values. Execution

tree state is computed by the compiler as a function of the implementation program

counter.

However, at second look there are some challenges.

4.6.1 Simulating the R-CODE Computer

The debugging interface needs to make the code execution look like it was done on a

real R-CODE computer. Fortunately, there is no speed requirement for doing this.

The debugging interface may need remarkably little saved register frame state to

reconstruct the virtual register frame contents. For a simple routine, all the debugging

interface needs is the values of the arguments and any values read from memory or

returned as result values from out-of-line routine executions. Everything else can be

computed by simulation, including the execution tree state.

However, a lot of extra information is required about a routine to perform this re-

construction when the debugger interface is invoked during execution of the routine.

Although this information is computed when each routine is compiled, it may be so

voluminous that saving it all may not be a good idea. Instead, it can be dynami-

cally recomputed as needed, and a cache maintained of the information for routines

CHAPTER 4. EXECUTION FLOW 150

recently examined using the debugger interface.

4.6.2 Non-Signaling-NaN Outputs

Instructions on existing computers do not simply output non-signaling-NaNs or some

equivalent when confronted by illegal inputs, but instead are likely to trap, or set an

over
ow
ag. Therefore it is important not to execute them if their production of a

non-signaling-NaN would not cause a trap at some point in the routine execution. In

some cases it may not be possible to arrange this, and the over
ow
ag will have to

be saved for later use.

For example, if given a short-circuit AND instruction whose output is not a�ected by

a non-signaling-NaN second input if the �rst input is false, the �rst input computation

needs to be done before any part of the second input computation that might trap.

On the other hand, if the production of a non-signaling-NaN by an instruction, such

as an add instruction, is guaranteed to cause an irrecoverable trap later, such as a

case instruction trap because the case selection cannot be computed, then the add

instruction can be executed and the trap made to look as if it happened later.

4.6.3 Trap Implementation

A number of issues occur when implementing traps that work as if the trapping

instruction turned into a subroutine call.

First, some computers may not save enough state to permit this, and there may

have to be code associated with the trapping instruction to assist in calling such trap

routines.

Second, some traps may need extra code associated with the trapping instruction to

permit traps to return properly.

For example, if a trap routine returns a non-signaling-NaN as the output value of

an instruction, this may need to be translated into an immediate second trap of

a downstream instruction that would trap if the �rst instruction outputs a non-

signaling-NaN.

Faithful execution of trap semantics may be inappropriate in many cases, and imple-

mentations should provide modes to disable the generation of the code required in

these cases.

CHAPTER 4. EXECUTION FLOW 151

4.7 Summary

R-CODE is to provide a new execution model for future programming languages

which minimizes unnecessary sequentiality while running well on both existing and

future computers. The future programming languages should be easy to program, but

need not be strictly compatible with existing programming languages. The R-CODE

model of non-memory data
ow plus barriers and I/O-like memory operations should

work well for languages in which most code is functional, but a small amount of code

is written using barriers and I/O-like memory operations.

Chapter 5

Shared Object Memory

5.1 Goals

Because there is a limit on the speed of a single processor, there is an ultimate need

for parallel computation in any application in which latency is a factor.

Memory speeds have not been increasing as fast as basic processor speeds. In fact

DRAM memory speeds have only been increasing at the rate of 7% per year, while

processor speeds have been increasing at 80% per year. This phenomenon, called the

\memory wall" (see page 14), will probably lead to computers in which a secondary

cache miss will cause a pause of a few hundred instruction-execution-times.

There are only two methods I know to cover long cache miss times. The �rst is

prefetching: predicting the need for a piece of memory far enough in advance, in this

case a few hundred instruction-execution-times in advance. The second method is

multi-threading: making a single processor look like several processors, so when one

pauses, another runs. The latter is the more widely applicable solution, and leads

to decomposing programs into a small number of threads that work together on a

common shared memory.

Now consider the situation where many computers reside in the same building, as

happens in schools. We may want these computers to work together on the same

problem, where problems of interest include compilations, text processing, games,

and simulations. The communication latency between computers is limited by the

speed of light, and as �ber optic communication with throughputs on the order of

152

CHAPTER 5. SHARED OBJECT MEMORY 153

1 gigabit per second is becoming inexpensive, the speed of light latency is probably

the only limit on inter-computer communications for these within-building systems.

This latency will likely be a few thousand instruction-execution-times within our time

frame (2005-2035 A.D., see C

1

, page 12).

This within-building situation leads to the idea of having many processors work on the

same problem by sharing an object memory,where it takes a few thousand instructions

to fetch an object. This memory is similar to disk, but this shared object memory

has a response at least 1,000 times faster than disk, albeit 10 times slower than local

memory.

Thus many computers in the same building should have a shared object memory, so

they can work on the same problem, and a single computer on a desktop may want

to run several threads simultaneously, with the threads sharing a memory that might

as well be organized as a shared object memory too.

Thus the goal of this chapter:

G

�

: Find a design for a shared object memory that can be used for communi-

cations between separate execution threads. Assume latencies of several

hundred to several thousand instruction-execution-times for fetching in-

formation from the shared object memory.

By chosing to use multiple heavy-weight threads to hide memory latency, I have

excluded the `micro data
ow' approach to handling long memory latency. This has

been done because special hardware is needed to make micro data
ow work well (see

the discussion in section 4.4), and because I feel the macro data
ow approach will be

su�cient. Macro data
ow is just data
ow in which the basic data items are larger,

typically at least a few hundred bytes each, and the basic operations are larger, at

least a few thousand instruction-execution-times each. To the best of my knowledge,

macro data
ow su�ces for most (but not all) computer applications, while micro

data
ow is necessary for only a small minority of applications. Micro data
ow may

be easier to program for matrix applications, but macro data
ow may well be easier

for text processing and compiling applications.

This chapter represents research into the possibilities of shared object memory, but

it is in a less �nished state than the research of previous chapters on other facilities

in R-CODE. There are more loose ends, a few of which I will identify below, and the

rest of which I do not know about yet.

CHAPTER 5. SHARED OBJECT MEMORY 154

5.2 Requirements

What kinds of operations can be performed on objects in shared object memory?

First, many objects will turn out to be read-only after they are created, just as many

�les are. The operations on these are creation, reading an object, and reading part

of a large object.

For functional programming, it is also convenient to have objects that go through

an initial write-only phase, during which many threads write them but cannot read

them. Then the objects are switched to read-only, after which they cannot be written.

A histogram is similar but undergoes an accumulate-only phase, during which many

threads may add to its elements. Then, when it is �nished, it is switched to read-only.

However, it seems unreasonable to expect all components of an object to be in the

same situation during one phase of the object. Some may be read-only while others

are accumulate-only, for example.

This thinking leads to the following:

F

8

: R-CODE will support a shared object memory in which individual ob-

ject components can be be marked as read-only, write-only, write-once,

or accumulate-only as part of the component type. Also, objects may

change types dynamically, so their components can, for example, switch

from write-only to read-only.

However, this approach is not always enough, so:

F

9

: R-CODE shared object memory will support atomic multi-object trans-

actions.

Special hardware will be necessary to make a real networked shared object memory,

but this is not available, even approximately, today. However, shared memory sym-

metric multi-processors have been available for some time, and are working their way

toward student computers (see H

2

, page 14). This leads to:

F

10

: R-CODE shared object memory will be e�cient on existing symmet-

ric multi-processors, but may require specially designed hardware for

e�ciency on a within-building network.

CHAPTER 5. SHARED OBJECT MEMORY 155

Lastly there is an issue which I have not currently addressed very well, and do not

list as a requirement, because I do not know whether or not it needs to be a separate

requirement. This is the issue of how to do searches e�ciently for the within-building

shared object memory. I simply have not yet studied this problem su�ciently.

There may be other such issues that I have not yet identi�ed.

5.3 Main Problems

There are several major problems that need to be solved by the shared object memory.

One of these is cache coherency: in a within-building system keeping caches coherent

seems unreasonable.

A second problem is thread synchronization: when a thread runs out of things to do,

it stops, and something must restart it and direct its attention to new things to do. In

a within-building shared object memory, searching for things to do may be ine�cient.

A third problem is write delay: in order to sequence writes to a shared memory, one

must wait for earlier writes to complete before doing later writes, but this wait time

can be unreasonably long for a within-building system.

A fourth problem is atomic transactions: threads need to perform operations that

that lock some data, read and write the data, and then unlock the data.

A �fth problem is hotspots: if every thread in a building tries to read the same

memory location or increment the same counter, the memory location to be read or

incremented becomes a bottleneck, or `hotspot'.

Shared object memory must o�er solutions to these problems, both on existing sym-

metric multi-processors, and on future within-building systems. In the latter case,

special hardware will be required, but it should be not be unnecessarily complex.

In the following subsections I introduce proposed solutions to each of these problems.

5.3.1 The Cache Coherency Problem

Symmetric multi-processors may have small incoherent primary caches, while within-

building systems will have large incoherent caches. Both systems may have write

bu�ers that delay writes, but I will assume these are small in both cases.

CHAPTER 5. SHARED OBJECT MEMORY 156

Most objects in shared object memory simply go through a write-only phase followed

by a read-only phase. One problem for incoherent caches is how to handle this phase

transition.

In a current symmetricmulti-processor, the phase transition is handled by instructions

that
ush delayed writes to memory and invalidate incoherent cache entries used to

read shared memory. These operations are fairly fast, and can reasonably be used to

implement phase transitions. One of the reasons these operations are fast is that the

larger caches in such a system are coherently maintained, although the cost of doing

this is beginning to become great enough that coherency is becoming an \option".

On future within-building computer systems, the local caches for a shared object

memory may be many megabytes in size, and will not be coherently maintained. The

caches are so large that invalidating an entire cache is unreasonable. One approach

is to have instructions that will invalidate only particular regions of the cache, but

even this might be time consuming.

A di�erent approach, which I propose for actual use, is a cache using virtual object

addresses that consist of an object number and a displacement within the object.

This has the advantage that objects can be moved in memory without modifying the

caches, and provides a necessary alternative to the address registers of section 2.4.2

(page 34) for permitting such movement. Keeping address registers coherent in such

a large distributed system would be di�cult, but with virtual address caching this is

not necessary.

The phase transition of an object is handled by giving the object a new object number

and invalidating the old object number. Because the new object number will not be

in the virtual address caches, there is no need to invalidate any cache entries.

Invalidating the old object number is only needed to detect serious programming

errors. Normally an optimistic system can be used that invalidates an object number

in a few thousand instruction-execution-times while the application program keeps on

running. This assumes programming errors will not occur just during this invalidation

delay; either they will not occur at all, or they will also occur outside the delay and

be found and �xed. Sometimes a pessimistic system that delays use of the new object

number until the old object is withdrawn may help debugging.

Some objects have some components that can change any time, and are therefore

volatile. We will discuss these in conjunction with thread synchronization in the next

section.

CHAPTER 5. SHARED OBJECT MEMORY 157

5.3.2 The Thread Synchronization Problem

There is a standard system for synchronizing threads that is commonly used for

symmetric multi-processors. This system, which I will call standard synchronization,

uses two operations, WAIT and NOTIFY. WAIT delays a thread until the thread

has been noti�ed by a NOTIFY. More precisely, when a thread executes a WAIT,

it stops until some thread has executed a NOTIFY targeted to the waiting thread

at some time since the waiting thread executed its previous WAIT (i.e., the WAIT

instruction execution previous to the current WAIT instruction execution).

Generally any thread can wait for some value to appear in memory by executing a

loop in which it �rst checks whether the value is in memory, and then, if it does

not �nd the value, does a WAIT followed by a repeat of the loop. We will call this

the standard synchronization loop. Any thread that writes the value into memory

must NOTIFY all the threads that might be waiting for that value after the value is

written.

It is up to the programmer to maintain lists of threads that might be waiting for a

value. As this can be a major e�ciency issue, there is no end to the ways of doing

this in di�erent situations.

Often considerable data is transmitted between threads by writing the data and then

writing a
ag that indicates the data has been written. The writer must
ush delayed

writes after writing the data and before writing the
ag, and then must
ush delayed

writes after writing the
ag to be sure the
ag is promptly visible. The reader must

invalidate incoherent caches before looking for the
ag, to be sure the
ag is promptly

visible. And the reader must invalidate incoherent caches after reading the
ag and

before reading the data, to be sure the data read is the data that existed when the

ag was written.

The reason I call this \standard synchronization" is that it is widely used both with

symmetric multi-processors and to synchronize any processor with its I/O devices

(the device registers are shared memory, and traps are noti�cations).

In a within-building shared object memory,most of the data goes through a write-only

to read-only phase transition as described above. Assuming virtual address caches

are used, it will not be necessary to invalidate caches in order to read current data.

However, invalidating the cache entry containing the
ag needs to be done in order

to see the current
ag value, as the caches in a within-building system will not be

coherent.

CHAPTER 5. SHARED OBJECT MEMORY 158

Invalidating the cache entries of
ags is a problem since each cache miss required to

check a
ag to see if there is work to be done will cause a multi-thousand instruction-

execution-time delay. To this problem I propose the following solution.

Certain object components, namely the
ags, are marked volatile in R-CODE so they

can be processed specially by the R-CODE compiler. For a within-building system

there is a separate special per-thread volatile cache for volatile components. This

cache is invalidated at the beginning of the standard synchronization loop.

The problem with standard synchronization loop using this cache is mostly that the

loop will want to look at many volatile values to decide what to do. Waiting for

one or two cache misses is not a problem, but waiting for 10 or 100 is ine�cient. So

we will try to process all these cache misses in parallel without changing the basic

structure of the standard synchronization loop.

To do this, instructions that read volatile values behave specially on a cache miss.

Instead of waiting for the cache to be loaded, they immediately return a special value

to indicate that the value is currently missing. We will call this special value the

missing value (it might actually be a non-signaling-NaN as in section 4.5.13).

The code that processes the volatile value should do the appropriate thing when

confronted with a missing value: namely nothing. The loop will go on to read more

volatile values. The �rst time through the loop will execute many read instructions

that cause cache misses and initiate within-building shared object memory reads. The

volatile component read instructions will return missing values, and the loop will �nd

nothing to do.

The volatile cache will remember whether it has delivered any missing values since

the beginning of each synchronization loop. If it has, then at the end of the loop, the

loop will repeat without doing a WAIT. It will continue doing this until the loop sees

no more missing values, at which time, if the loop has found no work, it will execute

a WAIT.

The volatile cache must be large enough to hold all the volatile values required by

one loop. Furthermore, cache entries must not be purged onced loaded during a loop,

so the cache should be fully associative. However, a large fully associative hardware

cache is not necessary; a smaller non-associative hardware cache could be supported

by a software, since the R-CODE compiler knows which read instructions are reading

volatile values, and can maintain a software cache of successes.

The advantage of all this is that most within-building network reads for volatile

CHAPTER 5. SHARED OBJECT MEMORY 159

values will be done in parallel, being scheduled by the cache misses occurring during

the �rst iteration of the loop. Thus the entire standard synchronization loop will

run in approximately a single within-building network latency delay: typically a few

thousand instruction-execution-times.

As an optimization, the loop can delay somewhat between successive iterations, if the

processor can switch threads fast enough to use the time e�ciently.

To improve the semantics, the volatile cache should deliver nothing but missing values

after it has delivered the �rst such value in a loop, even if it has actual values to

deliver. This ensures that work which was of lower priority and whose
ags are

therefore checked later in the loop is not scheduled ahead of work of higher priority

checked earlier in the loop, just because the higher priority
ag values arrived latter

through the building-wide network.

Among the many possible ways of handling the thread synchronization problem, I

have chosen this one because it is compatible with standard synchronization, and

because it requires only simple special hardware.

5.3.3 The Write Delay Problem

After an object created in the functional programming style has all its components

written, the object is converted to read-only, and a read-only pointer to the object

is returned to some potential user of the object. However, if the read-only pointer is

written to shared memory and then read and used by another processor, it is possible

the other processor will read some part of the object before the writes to that part of

the object are �nished. If this happens, the second processor will read wrong data.

On the other hand, if the original object creating processor were to wait until all

component writes completed before returning the read-only pointer, it would have to

wait a few thousand instruction-execution-times for a within-building system. This

is an unreasonable overhead for creating an arbitrary object.

When data is being written to be received by other processors, generally the data is

written �rst, and then some
ag is written to indicate the presence of the data. In

the above case, the read-only pointer might be the
ag. More commonly, a cluster

of new objects is created, and a
ag is written indicating the presence of the entire

cluster.

The solution I propose to the ine�ciency of waiting for writes to �nish is the following.

CHAPTER 5. SHARED OBJECT MEMORY 160

Code is separated into a partition that writes data followed by a partition that writes

ags. At the boundary between these particular types of partition, the processor

waits for all writes outstanding in the network to complete. Thus a single network

latency time delay will occur only when
ags are about to be written.

5.3.4 The Atomic Transaction Problem

An atomic transaction locks some data, reads and writes it, and then unlocks the data.

One problem with such transactions is that they are ine�cient if the lock/unlock

operations take very long, or if read-only atomic transactions have to wait on each

other's locks. A second problem is that all of the data involved is volatile, and

accessing it could take a long time in a within-building system.

One example of an atomic transaction is adding an item to a queue. Another example

is adding an item to a directory. A problem with the latter example is that searching

the directory to �nd out whether an item to be added is already there may involve

reading long lists and take a long time.

For symmetric multi-processors I propose an implementation of atomic transactions

based on the two counter locking scheme of Lamport[Lam77]. Sets of data are pro-

tected by count locks that consist of a pair of aligned 32-bit counters that can be

atomically read or written. The counters are called the pre-counter and post-counter.

The data sets may be as small as a queue header or as large as a big directory.

The pre-counter is incremented by a data set writing routine before it does the write,

the post-counter is incremented after the write is done, and the counters are equal

when no write is in progress. A reader reads and remembers the post-counter �rst,

copies information from the data set, and then reads the pre-counter and checks for

equality with the saved value of the post-counter. If there is inequality, the data read

may be garbage, and the reader retries.

The data read by a reader may not be consistent if reading was overlapped by a

write. A reader may check at any time to see if the data is consistent by reading

the pre-counter and checking for equality with the saved post-counter. If the two are

unequal, the data read may be inconsistent, and the the reader will fail.

An atomic transaction that updates one or more data sets goes through a read phase

followed by a write phase. During the read phase, the transaction reads and remem-

bers the post-counters of data sets, reads data from each data set after reading the

CHAPTER 5. SHARED OBJECT MEMORY 161

set's post-counter, and makes a deferred write list of the locations in the data sets to

be written and the values to be written.

During the write phase, the transaction raises to high priority on its local processor

to lock out competing transactions on that processor, acquires a test-and-set lock

for each data set to lock out competing transactions on other processors, tests the

data set pre-counters for equality with the saved post-counter values, and if there is

equality, performs the writes indicated by the deferred write list before clearing the

test-and-set locks and lowering to the normal priority level. If the counter equality

test fails, the transaction must retry.

Read-only transactions, and the read phase of updating transactions, do not lock out

each other. The write phase of a transaction is the only part that con
icts with other

transactions, and it is very short, since the writes are pre-planned by the deferred

write list. However, this is an optimistic locking scheme, and it can thrash in the

presence of a large number of writes, so it may be desirable to detect thrashing and

have a transaction do something special when thrashing occurs, such as reserving

data sets for a time interval normally long enough to include the read phase of the

transaction.

The next problem is how to do all this in a within-building shared object memory.

The following solution is quite simple.

The lock counters and components of the data sets being locked are treated as volatile

components, and cached in the volatile cache. This cache is completely invalidated

just before each read of a post-count. This guarantees that all components read after

the post-count will be at least as recent as the post-count. Here all volatile reads wait

for their data to be delivered before completing: they do not return missing values

as reads did in the standard synchronization loop above.

In the write phase, a test-and-set lock is set for each data set, and then the volatile

cache is invalidated again, the pre-counts are all read and compared with the saved

post-counts, and if the pre-counts are equal, the deferred write list data is writ-

ten, before clearing the test-and-set locks. Also, the write phase must occur at an

appropriate priority level to lock out transactions by di�erent threads on the same

processor.

As an example, for a queue with a count lock in the same object as the queue data

set components, there would be (1) a network read to obtain the object with the

post-count and data set elements, (2) a second network read to obtain the pre-count

CHAPTER 5. SHARED OBJECT MEMORY 162

in order to verify that the data set elements read are valid, (3) a network test-and-

set, (4) a third network read for the pre-count, (5) overlapping write operations to

process the deferred write list, and (6) a clear of the test-and-set lock. Thus a queue

operation would take about six network latency times. Some of the six steps just

given could be combined by optimizations: e.g. acquiring the test-and-set lock and

reading the pre-count.

For a simple operation like maintaining a small queue, it might be better to simply

do the test-and-set at the beginning, returning the object contents with the result

that tells whether the test-and-set was successful. It might also be possible to batch

clearing the test-and-set
ag with component writes in a single operation. But in the

more general case, as for a large directory with many objects involved in the locked

data set, the more general approach just described would have to be used.

5.3.5 The Hotspot Problem

A hotspot occurs when many processors attempt to read the same location, or perform

some accumulate operation such as addition on the same location.

To solve the hotspot problem for a building-wide system, I assume that network nodes

can be built that will combine requests from several processors into a single request

on the rest of the system, and when the response comes back from the single request,

will redistribute the response, appropriately modi�ed, to the original requesters.

For example, if a network node receives three requests to read the same block of

memory from three processors, it can make one request on the rest of the system to

read the memory, and then distribute the results to the requesting processors.

As another example, if a network node receives requests from two processors to add

to a memory location, it can sum the requests and send the sum to be added to the

location. If the result returned from such an operation is supposed to be the location

value before any addition, then when the node gets the result, it can send it to one

processor, and send to the second processor the sum of this result and the value added

by the �rst processor.

It is important in this latter scheme that the value returned by a request to accumulate

to memory be the value before the accumulate. Trying to return the value after

accumulation makes it impossible for a network node combining processor requests

to compute values to be send to processors unless the operation is invertible. Not all

CHAPTER 5. SHARED OBJECT MEMORY 163

operations are invertible: taking the maximum is not.

I assume that at some future time it will be reasonable to equip network nodes with

RISC processors with small amounts of memory. For example, a network node might

be a single integrated circuit, and the RISC processor might be part of that circuit.

Accumulate operations can be implemented by functions whose only variable input is

the values they are combining. These functions may have small amounts of constant

input, such as small tables, that may be loaded into various network nodes to permit

these nodes to perform the accumulate operations.

The only thing that R-CODE does to compensate for hotspots is provide a design

that permits combining network nodes to be built easily.

5.4 Principals

R-CODE shared object memory is based on several principals that are described in

this section. These mesh somewhat with the discussion in the previous sections on

shared object memory problems.

5.4.1 The Ordered Partition Model

It is assumed that programs are divided into partitions that are executed in some well

de�ned order, but that memory operations within a partition are unordered. This

model conforms to the partition model in Chapter 4 (see section 4.5.5, page 138). It

also conforms to barrier models that are widely used in parallel programming (e.g.

the BSP model[Val90, GV94]).

5.4.2 Commutative/Associative Operations

The memory operations within a partition must be reorderable without changing the

semantics of the program. This means these operations must be commutative and

associative.

Operations on di�erent memory components have these properties. Thus if a partition

has as set of component write operations, all on di�erent components, these operations

commutate and associate.

CHAPTER 5. SHARED OBJECT MEMORY 164

Strictly read operations have this property. If all operations on one component in a

partition are read operations, all these read operations commute and associate. They

will all return the same value.

Typical accumulate operations, such as addition or taking the maximum, commutate

and associate, even on a single component.

5.4.3 Type Change

Individual objects are expected to go though phases whose boundaries are marked by

object type changes. Each phase must complete before the next phase starts. The

phases may be implemented by the partitions mentioned above.

For example, a typical functional programming object will have a write-only phase,

followed by a read-only phase. In the write only phase, one write operation is executed

for each component. In the read-only phase, each component may be read as often

or as little as desired.

A histogram may go through three phases: write-only, accumulate-only, and, after it

is complete, read-only.

5.4.4 Per Component Access Disciplines

There are di�erent disciplines for accessing a component within an object phase.

Example disciplines are read-only, write-only, and accumulate.

Di�erent components of an object may have di�erent access disciplines within the

same phase of the object. Thus some components may be read-only, while others are

write-only, and still others are accumulate.

5.4.5 Volatile Component Caching

A volatile object component is a component that may change value independently of

the thread looking at it.

Volatile components are handled by a special volatile cache. This cache is not auto-

matically coherent with shared memory, and has a special cache invalidate instruction

to clear the cache.

CHAPTER 5. SHARED OBJECT MEMORY 165

Special attention must be paid to organizing the program and the volatile cache to

avoid unreasonable delays due to volatile cache misses.

5.4.6 Probabilistic Error Detection

Fatal errors, such as accessing an object that has been deleted, or accessing an object

whose type has changed using an obsolete virtual address, are assumed not to occur

in perverse patterns. Therefore, methods of detecting these that have a high but not

perfect probability of detection should usually su�ce.

5.5 Related Work

The use of small incoherent primary caches has been pioneered by several computer

companies, for example Digital Equipment Corporation[Sit92].

Alternate methods of thread synchronization that involve read instructions which wait

for empty words to become full may be found in the work of Burton Smith[Smi78,

ACC

+

90] and Arvind[Nik91, Pap90].

The notion of a shared object memory with caches that use the virtual address of the

objects has been explored in the MUSHROOM project[WW93].

5.6 R-CODE Shared Object Memory Semantics

In this section we will give some details of the R-CODE implementation of shared

object memory.

5.6.1 Access Disciplines

In R-CODE, each component load or store treats the component as having one of the

following access disciplines:

CHAPTER 5. SHARED OBJECT MEMORY 166

read-only

write-only

write-once

accumulate

transaction

volatile

Below we will describe how R-CODE speci�es which access discipline to use with a

particular load or store, and how each of the access disciplines behave.

5.6.2 Access Speci�cations

In R-CODE, the access discipline used to load or store a component is determined by

the access speci�cation that is part of the type �eld in the R-CODE pointer to the

component.

R-CODE component load and store instructions de�ne the component to be loaded

or stored by means of an R-CODE pointer, formatted as in Figure 5.1. This pointer

is a virtual value: in contains the relevant information, but the information is not

actually store in this form during program execution. The access speci�cation is part

of the type �eld of the pointer.

The rest of the type �eld includes the numeric type and size of the component being

accessed, and this information must be compiled into instructions on typical modern

computers. Similarly the access speci�cation must be compiled into instructions.

When either the type or access speci�cation information is not available at compile

time, load and store instructions turn into dynamic case statements that switch on

the type �eld value and compile new cases of themselves when they see new type

�eld values. This permits the type �eld information to be compiled into machine

instructions even when it is not known at compile time (see page 82 for more discussion

of dynamic case statements).

Some of the access speci�cations correspond directly to the di�erent access disciplines,

and some have a di�erent use. The READ-ONLY, WRITE-ONLY, VOLATILE,

WRITE-ONCE, and ACCUMULATE access speci�cations correspond directly to ac-

cess disciplines. The NEUTRAL and TRANSACTION access speci�cations are in-

puts to an operation which will be described below that combines a pointer to an

object or subobject with a component descriptor. The OPEN, OPEN-READ-ONLY,

CHAPTER 5. SHARED OBJECT MEMORY 167

R-CODE Pointer:

FFFF0C

16

(tag)

24

unsigned

displacement

40

type

32

object

number

32

Type:

8

access

speci�cation

24

rest of type

access speci�cation ::= NEUTRAL

j READ-ONLY

j WRITE-ONLY

j VOLATILE

j WRITE-ONCE + pl

j ACCUMULATE + pl

j TRANSACTION + pl

j OPEN

j OPEN-READ-ONLY

j OPEN-WRITE-ONLY

pl ::= priority level: 0 ... 15

Figure 5.1: R-CODE Pointers and Types

CHAPTER 5. SHARED OBJECT MEMORY 168

and OPEN-WRITE-ONLY are outputs from this combination operation, and are

used as component access speci�cations for the transaction access discipline. The

word \OPEN" signi�es that the transaction has obtained the required count locks

(by merely reading the post-count), so that the locks are \open".

Several access speci�cations include a priority level. These access speci�cations can-

not be used by any thread running at a higher priority level. Implementations are

therefore free to lock out other threads on the same processor by raising to the prior-

ity level indicated by the access speci�cation. Usually the operation governed by the

access speci�cation is short enough that the access speci�cation priority level can be

so high that any thread can use the speci�cation.

5.6.3 Access Speci�cation Combination

The component pointer used by a load or store instruction is usually created by com-

bining a subobject pointer with a component descriptor that describes how to access

a component of the subobject: see Figure 5.2. The component pointer output by this

combining operation takes its object number from the subobject pointer, and its dis-

placement from the sum of the subobject pointer and descriptor displacements. The

type of the output component pointer is taken from the component descriptor, except

for the access speci�cation, which is derived by combining the access speci�cations of

the subobject pointer and component descriptor according to the table in Figure 5.3.

The blank entries in this table are errors, as is any combination of access speci�cations

not listed in this table.

If the subobject pointer access speci�cation is NEUTRAL, the component pointer

access speci�cation is taken from the component descriptor. The exception to this

rule is that a TRANSACTION component descriptor produces an OPEN component

pointer, and also obtains a lock (see \The Atomic Transaction Access Discipline"

below, page 173).

READ-ONLY and WRITE-ONLY subobject pointers always force the access spec

of the component pointer to be READ-ONLY or WRITE-ONLY, respectively. This

feature is commonly used to initialize a subobject by using a WRITE-ONLY pointer

to make all its components WRITE-ONLY. This saves creating a separate type map

(see section 3.4, page 84) for initialization. The companion feature of forcing all

components to be READ-ONLY can be similarly used to implement an object type

CHAPTER 5. SHARED OBJECT MEMORY 169

R-CODE Pointer:

FFFF0C

16

(tag)

24

unsigned

displacement

40

pointer type

32

object

number

32

R-CODE Component Descriptor:

FFFF14

16

(tag)

24

signed

displacement

40

pointer type

32

lock

number

32

Combination of Pointer and Component Descriptor:

FFFF0C

16

(tag)

24

sum of

displacements

40

combined type

32

object

number

32

Figure 5.2: Combining R-CODE Pointers and Component Descriptors

.

CHAPTER 5. SHARED OBJECT MEMORY 170

Subobject Pointer Access Speci�cation

Component

Descriptor OPEN OPEN

Access WRITE READ WRITE READ

Speci�cation NEUTRAL ONLY ONLY OPEN ONLY ONLY

NEUTRAL NEUTRAL WRITE READ OPEN OPEN OPEN

ONLY ONLY WRITE READ

ONLY ONLY

WRITE WRITE WRITE READ OPEN OPEN

ONLY ONLY ONLY ONLY WRITE WRITE

ONLY ONLY

READ READ WRITE READ OPEN OPEN

ONLY ONLY ONLY ONLY READ READ

ONLY ONLY

VOLATILE VOLATILE WRITE READ

ONLY ONLY

WRITE WRITE WRITE READ

ONCE ONCE ONLY ONLY

ACCUM- ACCUM- WRITE READ

ULATE ULATE ONLY ONLY

TRANS- OPEN WRITE READ

ACTION ONLY ONLY

Figure 5.3: Access Speci�cation Combination

CHAPTER 5. SHARED OBJECT MEMORY 171

change that makes an entire object read-only without requiring an additional type

map.

Other details on the access speci�cations are given below with the discussion of par-

ticular access disciplines.

5.6.4 The Volatile Cache

R-CODE has a special per-thread cache for volatile components, called the volatile

cache. For a within-building system, this would be special hardware. For a symmetric

multi-processor with an incoherent primary cache and a cache invalidate instruction,

the primary cache e�ectively implements the R-CODE volatile cache.

The volatile cache is not coherent with shared memory. There is a special INVAL-

IDATE-CACHE instruction that clears the volatile cache. Writes may or may not

update the volatile cache.

Read instructions use the volatile cache when the access speci�cation for the compo-

nent being read is VOLATILE, WRITE-ONCE, ACCUMULATE, OPEN, or OPEN-

READ-ONLY (these last two are for transactions).

The cache has the following missing value capabilities that permit implementation of

standard synchronization loops as described in section 5.3.2 above.

Read instructions have an optional cache miss modi�er that indicates the instructions

should return a special missing value immediately instead of waiting if the volatile

cache su�ers a cache miss during a read. Even in this case the cache will issue shared

memory operations to �ll itself. Also, in this case, the cache will be big enough and

associative enough to hold all volatile data in a synchronization loop without losing

any due to cache entry con
icts. Special code may be compiled for read instructions

with a cache miss modi�er to provide software support to a hardware cache in order

to implement this size capability.

The cache sets a missing value returned
ag if it returns any missing values, and this

ag can be read and set. The cache has a missing value control
ag that if set causes

the cache to return only missing values if the missing value returned
ag is set, even

if the cache has actual non-missing values to return.

CHAPTER 5. SHARED OBJECT MEMORY 172

5.6.5 The Read-Only Access Discipline

A component accessed using the read-only access discipline can only be read. Fur-

thermore, it is assumed that such a component cannot be changed, and therefore

maintenance of cache coherence for such components is unnecessary if the cache uses

virtual addresses as described in section 5.3.1.

Read-only components can only be the result of an object type change in which a

previously writable component was made read-only.

5.6.6 The Write-Only Access Discipline

A component accessed using the write-only access discipline can only be written.

Furthermore, it is assumed that in general there will be at most one write of the

component within a program partition where memory operations are unordered.

Note there may be implementation di�culties in permitting two components to be

written independently if these are both part of the same byte, for example. To

overcome these, writes of unaligned parts of memory may be much slower than one

would expect.

There may be partitions of a routine that are specially marked so that they do not

start until all the write operations in the previous partition are done. This is the sole

method of sequencing writes.

5.6.7 The Volatile Access Discipline

A component accessed using the volatile access discipline can only be read. Only

caches that are coherent immediately after an INVALIDATE-CACHE instruction

can be used for such reads.

See sections 5.3.2 and 5.6.4 above for more details on reads using the volatile cache.

5.6.8 The Write-Once Access Discipline

A component accessed using the write-once access discipline can be read or written,

but must be a tagged datum that is initialized to the special OMITTED value.

CHAPTER 5. SHARED OBJECT MEMORY 173

A write to a write-once component will succeed if the previous value was the OMIT-

TED value, but will not write anything otherwise. In any case, the previous value is

returned, and can be checked to see if it was the OMITTED value or if it is equal in

the appropriate sense to the value that was to be written.

The access speci�cation used to write a write-once component contains a priority level.

Some implementations raise to this priority level or higher to write the component.

Threads of higher priority cannot write the component.

Reads of the component may attempt to read the component from the normal non-

volatile cache. If the value so read is the OMITTED value, then the read must read

the component from using the volatile cache. After a non-OMITTED value is read,

it will not change, and may be recorded in a non-volatile cache.

5.6.9 The Accumulate Access Discipline

A component accessed using the accumulate access discipline is written by using a

special accumulate routine. The component may also be read in a fashion identical

to that of the volatile access discipline.

An accumulate routine combines two component values and produces a new output

component value. The component values may be register values or contiguous subob-

ject values (i.e., aligned bit strings stored in memory). The accumulate routine can

take additional arguments that are constants, again either register values or contigu-

ous subobject values. It must be possible to copy the accumulate routine and these

additional arguments throughout a network to combine values, in order to apply the

method of section 5.3.5 above to control hotspots.

A write instruction to an accumulate component returns the previous value of the

component.

The access speci�cation used to write an accumulate component contains a prior-

ity level. Some implementations raise to this priority level or higher to write the

component. Threads of higher priority cannot write the component.

5.6.10 The Atomic Transaction Access Discipline

A component may be read or written inside an atomic transaction by using the

transaction access discipline.

CHAPTER 5. SHARED OBJECT MEMORY 174

Atomic transactions are initiated and terminated by special instructions. During an

atomic transaction, a list of acquired locks is kept. Every time a NEUTRAL subobject

pointer is combined with a TRANSACTION component descriptor to produce an

OPEN pointer, a lock designated by the descriptor and pointer is located, acquired,

and added to the lock list. It is also possible that the lock is already on the list, in

which case it need not be acquired a second time or added to the list a second time.

Thus an OPEN pointer is a pointer to a component whose lock has been acquired.

The lock acquired is identi�ed by the lock number in the component descriptor. Typ-

ically this lock is a component of the same object as the component being accessed.

An OPEN component may be read or written. Writes to an OPEN component do

not actually change the component, but instead make an entry in a deferred write list

which causes the write to be done when the atomic transaction terminates.

Locks in this system are acquired optimistically, meaning that con
icting atomic

transactions may acquire locks simultaneously. As a consequence, the values read

by an atomic transaction for OPEN components may be incorrect, because a di�er-

ent atomic transaction may have written those components since the current atomic

transaction acquired their locks. There is a validate operation that may be executed

at any time to see if the current atomic transaction is still valid, i.e. no OPEN

component has been written since its lock was acquired. At the end of the atomic

transaction, if the transaction is still valid, all delayed writes are done atomically;

whereas if the transaction has become invalid, it fails and no writes are done.

The OPEN-WRITE-ONLY access speci�cation is just like OPEN but excludes reads.

OPEN-READ-ONLY is just like OPEN but excludes writes.

When a TRANSACTION component descriptor is used to acquire a lock, a check is

made to be sure the current atomic operation was initiated at a priority level below

that speci�ed by the component descriptor.

Often an entire subobject inside some object is presented as a TRANSACTION com-

ponent of the containing object. Then an OPEN pointer to this subobject is computed

and the proper lock acquired, and this OPEN pointer is used to make OPEN-READ-

ONLY or OPEN-WRITE-ONLY pointers to components of the subobject without

acquiring additional locks. For example, a queue header might be such a subobject.

The actual locking scheme used it that described in section 5.3.4. The volatile cache

is implicitly used and cleared during an atomic transaction.

CHAPTER 5. SHARED OBJECT MEMORY 175

5.7 Summary

The goal of this chapter has been to de�ne a shared object memory that might

become a standard for writing parallel text processors, compilers, games, and simu-

lations. Unlike the other chapters in this thesis, the results presented here are more

preliminary, and it is more likely that there are either undiscovered
aws or a better

way.

Bibliography

[ACC

+

90] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Al-

lan Porter�eld, and Burton Smith. The Tera computer system. In Pro-

ceedings 1990 International Conference on Supercomputing, pages 1{6,

September 1990.

[ANS83] ANSI, Washington, DC. Reference Manual for the Ada Programming Lan-

guage, 1983.

[App94] Apple Computer. Dylan: Interim Reference Manual, 1994. Available by

http://www.apple.com and see `Technology and Research' and then Dylan.

[Bro84] Rodney A. Brooks. Trading data space for reduced time and code space in

real-time garbage collection on stock hardware. In 1984 ACM Symposium

on LISP and Functional Programming, pages 256{262, August 1984.

[CN83] Jacques Cohen and Alexandru Nicolau. Comparison of compacting algo-

rithms for garbage collection. ACM Transactions on Programming Lan-

guages and Systems, 5(4):532{553, October 1983.

[Coh81] J. Cohen. Garbage collection of linked data structures. Computing Sur-

veys, 13(3):341{367, September 1981.

[CPW74] S. S. Coleman, P. C. Poole, and W. M. Waite. The mobile programming

system, Janus. Software Practice and Experience, 4:5{23, 1974.

[Def94] Defense Research Agency, Attn. Dr. N. E. Peeling, St. Andrews Road,

Malvern, Worcestershire, UK WR14 3PS. TDF Speci�cation, 1994.

[Dig94] Digital Equipment Corp. Migrating to an OpenVMS AXP System: Plan-

ning for Migration, March 1994. Order No.: AA-PV62A-TE.

176

BIBLIOGRAPHY 177

[E

+

95] John H. Edmondson et al. Internal organization of the Alpha 21164, a

300-Mhz 64-bit quad-issue CMOS RISC microprocessor. Digital Technical

Journal, 7(1):119{135, 1995.

[F

+

95] David M. Fenwick et al. The AlphaServer 800 series: High-end server

platform development. Digital Technical Journal, 7(1):43{65, 1995.

[GV94] Alexandros V. Gerbessiotis and Leslie G. Valiant. Direct bulk-synchronous

parallel algorithms. Journal of Parallel and Distributed Computing,

22:251{267, 1994.

[H

+

92] P. Hudak et al. Report on the programming language Haskell. SIGPLAN

Notices, 27(5):Section R, 1992.

[Hay94] Barry Hayes. Key objects in garbage collection. Technical Report CS-TR-

94-1510, Stanford, August 1994.

[HC84] Tim Hickey and Jacques Cohen. Performance analysis of on-the-
y

garbage collection. Communications of the ACM, 27(11):1143{1154,

November 1984.

[HF92] P. Hudak and J. Fasel. A gentle introduction to Haskell. SIGPLAN No-

tices, 27(5):Section T, 1992.

[HMS92] Anthony L. Hosking, J. Eliot B. Moss, and Darko Stefanovic. A compara-

tive performance evaluation of write barrier implementations. In OOPSLA

92, pages 92{109, 1992.

[HW78] B. K. Haddon and W. M. Waite. Experience with the universal interme-

diate language Janus. Software Practice and Experience, 8:601{616, 1978.

[Inc92] Sparc International Inc. The SPARC Architecture Manual, Version 8.

Prentice Hall, 1992.

[Int94] International Computer Science Institute, Berkeley, California. The Sather

1.0 Speci�cation, 1994. Available by ftp to icsi.berkeley.edu.

[Jon94] Mark P. Jones. The implementation of the Gofer functional program-

ming system. Technical Report YALEU/DCS/RR-1030, Yale University,

Department of Computer Science, May 1994.

BIBLIOGRAPHY 178

[JW93] Simon L. Peyton Jones and Philip Wadler. Imperative functional pro-

gramming. In Symposium on Principles of Programming Languages, pages

71{84. ACM, January 1993.

[Lam77] Leslie Lamport. Concurrent reading and writing. Communications of the

ACM, 20(11):806{811, November 1977.

[M

+

91] Gerald Masini et al. Object Oriented Languages. Academic Press, 1991.

[Maca] Stavros Macrakis. From UNCOL to ANDF: Progress in standard inter-

mediate languages. http://www.osf.org and see Grenoble O�ce Papers.

[Macb] Stavros Macrakis. The structure of ANDF: Principles and examples. http:

//www.osf.org and see Grenoble O�ce Papers.

[Mey92] Bertrand Meyer. EIFFEL: The Language. Prentice Hall, 1992.

[MS94] Scott Milton and Heinz W. Schmidt. Dynamic dispatch in object-oriented

languages. Technical Report TR-CS-94-02, Australian National Univer-

sity, Canberra, January 1994.

[Nik91] Rishiyur S. Nikhil. ID language reference manual. Technical Report Com-

putation Structures Group Memo 284-2, MIT, July 1991.

[NOPH92] Scott Nettles, James O'Toole, David Pierce, and Nicholas Haines.

Replication-based incremental copying collection. In Y. Bekkers and J. Co-

hen, editors, Memory Management: IWMM 92, pages 357{364. Springer-

Verlag LNCS 637, 1992.

[NR87] S. C. North and J. H. Reppy. Concurrent garbage collection on stock

hardware. In Gilles Kahn, editor, Functional Programming Languages and

Computer Architecture, pages 113{133. Springer-Verlag LNCS 274, 1987.

[Org83] E. I. Organick. A Programmer's View of the Intel 432 System. McGraw-

Hill, 1983.

[Pap90] Gregory Michael Papadopoulos. Implementation of a general purpose

data
ow multiprocessor. MIT Press, Cambridge MA, 1990.

[Sit92] Richard L. Sites, editor. Alpha Architecture Reference Manual. Digital

Press, 1992.

BIBLIOGRAPHY 179

[SKW93] Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. Texas: An ef-

�cient, portable persistent store. In Anotonio Albano and Ron Morri-

son, editors, Persistent Object Systems, San Miniato 1992, pages 11{33.

Springer-Verlag, 1993.

[Smi78] Burton J. Smith. A pipelined, shared resource MIMD computer. In Pro-

ceedings of the International Conference on Parallel Processing, pages 6{8.

IEEE, August 1978.

[Str94] Bjarne Stroustrup. The Design and Evolution of C++. Addison Wesley,

1994.

[U

+

93] David Ungar et al. How to Use SELF 3.0. Sun Microsystems and Stanford

University, 1993. Available by ftp to self.stanford.edu or self.smli.com.

[Ume91] Kyoji Umemura. Floating-point number LISP. Software Practice and

Experience, 21(10):1015{1026, October 1991.

[UU94] Urs H�olzle and David Ungar. Optimizing dynamically-dispatched calls

with run-time type feedback. In Conference on Programming Language

Design and Implementation, pages 326{335. ACM, June 1994.

[Val90] Leslie G. Valiant. A bridging model for parallel computations. Communi-

cations of the ACM, 33(8):103{111, August 1990.

[VD93] Francis Vaughan and Alan Dearle. Supporting large persistent stores us-

ing conventional hardware. In Anotonio Albano and Ron Morrison, edi-

tors, Persistent Object Systems, San Miniato 1992, pages 34{53. Springer-

Verlag, 1993.

[Wal] Robert L. Walton. R-CODE documentation and papers. ftp://das-

ftp.harvard.edu/pub/walton/rcode/rcode.html and in Harvard University

Tech Reports to appear.

[Wil92] Paul R. Wilson. Uniprocessor garbage collection techniques. In Y. Bekkers

and J. Cohen, editors, Memory Management: IWMM 92, pages 1{42.

Springer-Verlag LNCS 637, 1992.

[WK95] Wm. A. Wulf and Sally A. KcKee. Hitting the memory wall: Implications

of the obvious. Computer Architecture News, 23(1):20{24, March 1995.

BIBLIOGRAPHY 180

[WW93] Mario Wolczko and Ifor Williams. Multi-level garbage collection in a high-

performance persistent object system. In Anotonio Albano and Ron Morri-

son, editors, Persistent Object Systems, San Miniato 1992, pages 396{418.

Springer-Verlag, 1993.

[YHS] Taiichi Yuasa, Masami Hagiya, and William Schelter. GNU Commonlisp.

ftp://prep.ai.mit.edu.

[Zor93] Benjamin Zorn. The measured cost of conservative garbage collection.

Software Practice and Experience, 23(7):733{756, July 1993.

Index

abstract type, 86

access discipline, 165

access speci�cation, 80, 99, 166

ACCUMULATE, 167

accumulate, 166

accumulate access discipline, 173

accumulate routine, 173

actual object, 86

actual type, 17, 85, 89

identi�er, 99

speci�cation, 95

speci�cation example, 96

actual type map, 89

address, 25

address register, 34

loading, 36

overhead, 39

storing, 37

ALIGNED, 102

aligned, 74

alignment, 99

of object, 75

ANY

the formal type, 93

argument list, 122, 129, 131

array descriptor, 18, 107

Arvind, 123, 165

ASCII Text Code, 4, 10

AT-CODE, 4, 10

atomic operation, 112

atomic transaction

problem, 155, 160

barrier instruction, 116, 138

barrier operation, 111{113

base

of array descriptor, 108

big endian, 74

bit �eld, 75

bitstring AND write barrier test, 62

block, 118

block instruction, 142

block return instruction, 142

Brooks, 42

C

1

, 12

C

2

, 13

C

3

, 13

C++, 87

de�ciencies, 104

cache coherency

problem, 155

cache miss

overhead, 39

cache miss modi�er, 171

call, 133

call cycle, 145

call instruction, 117, 139

case, 133, 137

181

INDEX 182

case instruction, 133, 137

case statement, 120

class

C++, 104

code generator, 8

Cohen, 24

compact, 27

component descriptor, 84

constant, 99, 100

contents, 98

non-constant, 100

component index, 100

component size, 81

component-ID, 90

cons cell, 14

overhead, 41

conservative garbage collector, 30

conservative pointer component, 30

constant component descriptor, 99

context, 12

contiguous subobject, 82, 103

continuation, 124

continuation call instruction, 148

conversion

dynamic, 103

endian, 75

static, 103

copy, 27

copy type, 81, 99

copy-on-mark, 55

copy-on-scavenge, 55

copying collector, 28, 55

the, 58

coroutine, 145

coroutine channel, 145

count lock, 160

create, 26

data types, 16

data
ow, 115

register, 125

deferred action bu�er, 63, 64

deferred write list, 161, 174

deletion

manual, 30, 69

demand object swizzling, 29

demand pointer swizzling, 29

detection

garbage, 43

dimension descriptor, 107

discontiguous subobject, 82, 104

displacement, 76, 98

�eld in pointer, 82

done state, 135

dynamic case statement, 17, 82, 94

DYNAMIC-CONVERT, 103

eager, 120

eager forwarding, 28, 57

EIFFEL, 87, 106

enable level

inlining, 144

endian

transmission between di�erent, 75

ephemeral garbage collection, 44, 69

ephemeral object, 44

ephemeral root, 44

ephemeral root pointer, 45

ERROR, 77

exception catch, 117

exception catch case, 139

exception throw, 117

exception throw instruction, 141

exception value, 117

INDEX 183

exception value list, 117, 122, 129, 131,

139, 140

execution
ow, 18, 116

execution tree, 120, 122, 133

node states, 135

transition rules, 135

F

1

, 16, 24

F

2

, 16, 24

F

3

, 16, 24

F

4

, 18, 73

F

5

, 18, 73

F

6

, 18, 72

F

7

, 19, 111

F

8

, 20, 154

F

9

, 20, 154

F

10

, 20, 154

oating point number, 73

fork, 124

formal component descriptor, 90

formal type, 17, 85, 89

formal type map, 89

format

memory unit, 76

forwarded, 28

forwarding, 28, 57

forwarding scenario, 28

frame, 26

frame heap, 129, 131, 133

frame memory, 128

frame pointer, 122

free block, 25

from-space, 28, 55

full garbage collection, 44

full/empty bit, 123

functional language, 18

G

�

, 1, 22, 72

G

�

, 1

G

�

, 71, 86

G

�

, 22

G

�

, 110

G

�

, 153

gap, 25

garbage collection, 16

garbage detection, 43

gc cycle, 68

gc time overhead, 68

generational garbage collection, 45

global memory

address registers in, 38

H

1

, 13

H

2

, 14

H

3

, 14

H

4

, 14

H

5

, 15

hardware trends, 13

HASKELL, 87, 88, 106

Hayes, 24

heap memory, 128

HEP, 123

high performance operation, 2

histogram

example, 112

H�olzle, 84

Hosking et al., 67

hotspot

problem, 155, 162

I

e

, 46, 47, 54

I

l

, 63

I

s

, 46, 47, 54

ID, 123

increment

INDEX 184

inlining enable, 144

inline, 117, 144

inlining

controlling, 123

inlining enable increment, 144

inlining enable level, 144

inlining priority, 144

instruction, 114, 126

instruction execution tree, 133

integer, 73

interoperate, 7

interrupt check, 41

INVALIDATE-CACHE

instruction, 171

invariant

ephemeral marking, 45

marking, 44, 46

join, 124

lattice element, 85

lazy, 120

lazy forwarding, 28, 58

length, 25

limit

of array descriptor, 108

LISP

oating point, 77

load convert, 103

load operation, 99

load-address operation, 99

load-root, 26

local heap, 63

localization priority, 145

localize, 144

lock list, 174

lock number, 174

loop, 118

loop instruction, 143

M bit, 46

M

1

, 11

M

2

, 11

M

3

, 11

manual deletion, 16, 30, 69

invalidating object number, 156

strongly typed, 30, 31

mapped type, 79

mark, 25

mark-copy-scavenge, 55

marked, 46

marked bit, 25

marking, 25

invariants, 46

marking algorithm

ephemeral conditions, 46

non-ephemeral conditions, 46

standard, 43

marking algorithms, 43

match
ag, 102

match type map, 86, 90, 99

memory, 25

memory management, 15

memory manager, 7

memory unit, 74

format, 76

memory unit size, 81, 82

memory value vector, 132

memory vector
ag, 132

memory wall, 14

methodologies, 11

Milton, 87

missing value, 158, 171

missing value control
ag, 171

INDEX 185

missing value returned
ag, 171

monad, 124

MONSOON, 123

Monsoon, 123

Moss et al., 67

move

dynamic, 16, 31

multi-process single-processor, 36

multi-processor

shared memory, 14, 20, 38, 154

MUSHROOM, 165

mutator, 26

mutator action time, 67

mutator test time, 67

Nettles et al., 34, 60

networks, 15

NEUTRAL, 167

no permission, 121, 135

NO-CONVERT, 103

non-signaling-NaN, 118, 146, 150

non-snapshot, 47

ephemeral detector, 45

non-strict, 119

North and Reppy, 34, 58

not-ephemeral-root, 44, 46

not-ephemeral-root bit, 44

NOTIFY, 157

NREVERSE, 51

null, 25

object, 25

object map, 31

hardware, 33

object number, 31, 77

o�set

within memory unit, 81, 82

OMITTED, 77, 172

OPEN, 167

OPEN-READ-ONLY, 167

OPEN-WRITE-ONLY, 167

operation, 114

out-of-line, 117

overhead

address register, 39

non-mutator, 67

subroutine call, 14

write barrier, 64

packing problem, 115

paging

an object, 19

partition, 133, 138

permanent, 46

permanent bit, 44

permanent object, 44

permission

propagate, 122

pointer, 25

128-bit tagged, 78

64-bit tagged, 77

pointer component, 25

polymorphic, 17

pop, 27

post-counter, 160

pre-counter, 160

priority

inlining, 144

localization, 145

priority level

for copying, 38

priority scheduling

when not allowed, 38

propagate

INDEX 186

permissions, 122

push, 27

R-CODE, 4, 7

feature selection, 15

RAM

as I/O device, 115

reach, 25

reachable, 25

read, 26

memory, 120

read barrier, 49

read barrier detector, 49, 50, 53

read-barrier-forwarding, 57, 60

read-free permission, 135

READ-ONLY, 167

read-only, 166

read-only access discipline, 172

real-time, 16

reduced pointer, 81

reference, 26

register, 125

register code, 4, 19

register data
ow, 114, 125

register data
ow code, 114

register data
ow language, 111

register frame, 129

register frame tree, 130

register number, 129

register value vector, 132

replication-forwarding, 59, 60

result list, 122, 129, 131

return instruction, 116

block, 142

special, 141

return operation, 113

root set, 25

routine execution, 133

routine execution tree, 130

routine map number, 79

routine type, 79, 83

S bit, 46

S-CODE, 3, 4

SATHER 0.5, 106

SATHER 0.6, 87, 106

scalar type, 79, 81

scanning, 25

scavenge, 25, 26

scavenged, 46

scavenged bit, 26

scavenger, 17, 64

Schmidt, 87

SELF, 84

shared heap, 63

shared memory

multi-processor, 14, 20, 154

shared object memory, 20, 153

side e�ect, 120

side-e�ect permission, 121, 135

side-e�ect-free permission, 121, 135

signature, 132

size, 98

slot, 29

Smith, 123, 165

snapshot, 47, 48

ephemeral detector, 45

snapshot detector, 53

source analyzer, 8

space, 27, 55

special return instruction, 141

stack, 26

standard synchronization, 157

standard synchronization loop, 157

INDEX 187

state

maintenance, 136

of execution tree node, 135

recording, 148

STATIC-CONVERT, 103

step

of array descriptor, 108

stopping

during object copying, 38

store a pointer, 47

store convert, 103

store operation, 99

strict, 119

subobject address, 103

subroutine

call overhead, 14

superscalar, 13

surface code, 3

sweep, 26

swizzled, 29

swizzling, 16, 29

demand object, 33

demand pointer, 33

swizzling scenario, 29

symmetric multi-processor, 154

synchronize, 64

T

e

, 49

T

ns

, 49

T

ss

, 49

tag, 77

tagged data, 18

tagged value

128-bit, 78

64-bit, 76

in register, 125

TERA, 123

termination, 117

thread synchronization

problem, 155, 157

to-space, 28, 55

top frame, 26

TRANSACTION, 167

transaction, 20, 154, 166

transaction access discipline, 173

transition rules

execution tree state, 135

trap, 118, 147, 150

trap
ag, 31

set for move, 31

two counter locking, 160

two level addressing, 31, 60

type

�eld of pointer, 79

type code, 128, 132

type map, 17, 18, 84

constancy, 94

issues, 86

type map number, 77, 79, 96

type matching

dynamic, 88, 89, 91

static, 88

type matching operation, 86, 88, 89

type variable, 95

type-change, 30

strongly typed, 30, 32

typeinfo in C++, 104

Umemura, 77

UNCOL, 8

Ungar, 84

unifying clausal grammar, 6

universal glue, 2

UNKNOWN, 102

INDEX 188

unsigned8, 81

used object, 69

V-CODE, 4, 9

value list, 122, 129, 131

virtual base, 104

virtual computer, 114

virtual function table

in C++, 104

virtual instruction, 78

virtual object, 86

virtual register, 78

visualization code, 4

visualization program, 9

vocalization code, 4

vocalization program, 9

VOLATILE, 167

volatile, 156, 158, 166

volatile access discipline, 172

volatile cache, 158, 171

WAIT, 157

Wilson, 24

withdraw permission, 121, 135

withdrawn, 135

within-building system, 153

write, 26

write barrier, 49

bitstring AND test, 62

R-CODE, 61

write barrier detector, 49, 50, 53

end thrashing, 51

ending, 50

write delay

problem, 155, 159

write-barrier-forwarding, 58, 60

WRITE-ONCE, 167

write-once, 166

write-once access discipline, 172

WRITE-ONLY, 167

write-only, 166

write-only access discipline, 172

