
Preference elicitation for interface optimization

Citation
Gajos, Krzysztof and Daniel S. Weld. 2005. Preference elicitation for interface optimization. In
Proceedings of the 18th annual ACM symposium on User interface software and technology
(UIST '05), Seattle, WA, October 23-25, 2005: 173-182.

Published Version
doi:10.1145/1095034.1095063

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26563633

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:26563633
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Preference%20elicitation%20for%20interface%20optimization&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=b35e648543afbe7d903ccbc4e4f3050c&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

In Proceedings of UIST 2005, Seattle, WA, USA.

Preference Elicitation for Interface Optimization

Krzysztof Gajos and Daniel S. Weld
University of Washington
Seattle, WA 98195, USA

{kgajos,weld}@cs.washington.edu

ABSTRACT
Decision-theoretic optimization is becoming a popular tool
in the user interface community, but creating accurate cost
(or utility) functions has become a bottleneck — in most
cases the numerous parameters of these functions are cho-
sen manually, which is a tedious and error-prone process.
This paper describes ARNAULD, a general interactive tool
for eliciting user preferences concerning concrete outcomes
and using this feedback to automatically learn a factored cost
function. We empirically evaluate our machine learning al-
gorithm and two automatic query generation approaches and
report on an informal user study.

ACM Classification D.2.2 [Design Tools and Techniques]:
User Interfaces, H1.2. [Models and principles]: User/Machine
Systems

General TermsAlgorithms, Human Factors

KEYWORDS: optimization, utility elicitation, active learn-
ing

INTRODUCTION
Recent years have revealed a trend towards increasing use of
optimizationas a method for automatically designing aspects
of an interface’s interaction with the user. In most cases, this
optimization may be thought of asdecision-theoretic— the
objective is to minimize the expected cost of a user’s interac-
tions or (equivalently) to maximize the user’s expected util-
ity. For example, theBUSYBODY system [19] mediates in-
coming notifications with a decision-theoretic model of the
expected cost of an interruption, which is computed in terms
of the user’s activity history, location, time of day, number
of companions, and conversational status. The LINEDRIVE
system [1], generates graphical representations of driving di-
rections by using optimization to find the optimal balance
between readability and fidelity to the original shapes, di-
rections and lengths of the individual road segments. The
RIA system [27, 28] chooses the best answer to a user query
by optimizing a cost function which offsets content quality
with quantity and other factors. There are many other exam-
ples [21, 16, 18, 25, 3, 10, 11], but as a final case our SUPPLE
system [13, 12] uses optimization to generate concrete user

interfaces from declarative specifications of a user interface,
the target device and the user model.

While decision-theoretic optimization provides a powerful,
flexible, and principled approach for these systems, the qual-
ity of the resulting solution is completely dependent on the
accuracy of the underlying cost (utility) function. Unfor-
tunately, defining a good cost function is a complex, time-
consuming, and error-prone task. While domain-specific
learning techniques have been used occasionally, most prac-
titioners parameterize the cost function and then engage in a
laborious and unreliable process of hand-tuning.

This problem is not unique to user interfaces. Economists,
medical researchers, and people in the fields of decision sup-
port and artificial intelligence have developed methodolo-
gies forutility (or preference) elicitation. But this work is
still young, and furthermore, there are significant differences
when preference elicitation is applied to the user-interface
context. One method usesgamble queries, asking the user
whether they prefer choiceX to a mixture of a probability
p chance of the ideal outcome and a(1 − p) chance of the
worst outcome. While this technique has elegant theoretical
properties, we do not believe users can coherently report their
preferences with respect to probability distributions over in-
terface properties. In some approaches users are asked to
pick numbers from an infinite, continuous range. For ex-
ample, Horvitz and Apacible propose asking users to assign
dollar amounts to quantify the cost of various outcomes [17].
We question this approach because it is so abstract; users will
likely report more accurate results in a concrete setting where
their context is visible. Other methods ask questions about
one parameter at a time, ignoring the interactions between
the parameters. Because these factors arenot independent,
undesirable outcomes are likely to occur.

This paper presents a fully implemented interactive system1

which uses a combination of two complementary interaction
techniques to solicit user feedback on concrete user inter-
faces or their parts. It thus frees the humans from having
to reason about numerous and unintuitive parameters, prob-
abilities or monetary values of different tradeoffs and moves
the discourse into the space of concrete outcomes. We make
the following contributions:

• We identify two types of interactions by which users can
conveniently provide feedback regarding their preferences:

1ARNAULD is named after Antoine Arnauld (1612–1694), a French
philosopher who first applied the principle of Maximum Expected Util-
ity [2].

1

example critiquingacquires implicit feedback from certain
types of user actions within the interface, andactive elici-
tationexplicitly asks the user to compare two alternatives.

• We investigate question-generation algorithms, proposing
two solutions: one based on analyzing concrete outcomes
and the other performing computation entirely in the pa-
rameter space. We evaluate both empirically, demonstrat-
ing fast learning for each.

• We describe a new machine learning algorithm, based
on maximum-margin techniques, for estimating the user’s
cost function from the feedback provided. Our empiri-
cal evaluation shows that our method is substantially faster
than a Bayesian approach yet produces equivalent results.

• We argue that ARNAULD is a general tool, applying
to most optimization-based systems. We demonstrate
ARNAULD ’s utility by integrating it with SUPPLE, and ex-
plain how ARNAULD can be used withRIA and context-
sensitive notifications.

• We present the results of a preliminary user study showing
that ARNAULD is a useful tool for designers with variety
of backgrounds.

Our paper continues by stating our guiding desiderata and
introducing SUPPLE as a running example. We discuss two
types of interactions which can be used as a source of prefer-
ence feedback by ARNAULD. We present an algorithm for
learning cost functions from this feedback, and two algo-
rithms for generating queries. An informal user study shows
that ARNAULD largely meets the desiderata and achieves
user acceptance. We argue that our approach is general, ex-
plaining how ARNAULD may be applied to a variety of other
optimization-based systems. We conclude with a discussion
of related work and our conclusions.

DESIDERATA
Utility theory stems from the notion ofpreferencesoverout-
comes[20]. Outcomes result from the choices of the system
or the user, and the user’s preferences are defined in terms
of an order,�, over these outcomes. This preference order
can be defined in terms of a real-valuedcost function, $, over
outcomes — one preferso over o′ (written o � o′) if and
only if o has lower cost:$(o) < $(o′). While people are ca-
pable of specifying preferences between concrete outcomes,
they have difficulty articulating a real-valued cost function.
Because applications typically need an actual cost function,
we seek a tool which can automatically construct a good one
from a set of concrete preference examples.

Depending on the application, this cost function might de-
note many things. In LINEDRIVE, cost measures the esti-
mated cognitive difficulty of a user reading a map [1]. In
the Automated Travel Assistant,ATA , cost reflect the unde-
sirability of a sequence of airline flights [21]. In the Respon-
sive Information Architect,RIA, cost measures the degree to
which a user is unsatisfied with the systems answer to her
query [27]. And in SUPPLE, cost measures the difficulty of
using different combinations of widgets for UI tasks.

Typically, these cost functions are defined in parameterized
form, and the parameters represent various tradeoffs. Many
decision-theoretic systems make strong claims to extensibil-
ity. However, while it may be easy to add new components to

these systems, it is often hard to pick cost parameters which
correctly integrate the new features. This creates a possi-
ble source of error that the designers of the original platform
cannot control. In general, it is very hard to choose parameter
values in a way which accurately orders a wide variety of out-
comes. Furthermore, many of these parameters reflectsub-
jectivejudgments, which are potentially controversial. Since
these parameters need to be set by humans, certain values
(or constraints on values) may be set incorrectly or inconsis-
tently — yet the overall system must degrade gracefully in
the face of such contradictions.

One of the advantages of the optimization-based approach
is the potential topersonalizethe application for individual
users, simply by defining separate cost functions for each
user. Thus, a tool facilitating the definition of cost func-
tions may do more than reduce the burden on developers —
it could enable wide-scale personalization capabilities.

In summary, choosing the appropriate weights for a parame-
terized cost function has long been acknowledged to be chal-
lenging. We conclude that any tool which facilitates the elic-
itation problem must satisfy the following desiderata:

1. Make itfastandeasyfor both developers and end-users to
find good values for the weighting parameters.

2. Output weights which arecorrect androbust, even in the
face of erroneous or inconsistent user feedback.

RUNNING EXAMPLE
ARNAULD is a general system, which can be used to define a
cost (utility) function for most optimization-based interface
applications. However, in order to make our discussion con-
crete, we explain preference elicitation in the context of a
specific application: SUPPLE.

SUPPLE is a fast and efficient UI toolkit for ubiquitous appli-
cations, that automatically generates user interfaces (at run
time) which are optimized for the specific hardware platform,
device characteristics and owner’s individual working style.

SUPPLE takes three inputs: afunctional specificationof the
interface, adevice modeland auser model. The functional
specification defines thetypesof data that need to be ex-
changed between the user and the application. The device
model describes which widgets are available on the device
and provides a cost function, which estimates the user ef-
fort required to manipulate these widgets with the interac-
tion methods supported by the device. Finally, a user’s typ-
ical activities are modeled with a device- and rendering-
independentuser trace. SUPPLE’s rendering algorithm com-
bines constraint propagation with branch-and-bound search,
to find the “optimal” concrete rendering of the interface. Op-
timality is decided with respect to a cost function, derived
from the information contained in the device model. The
original formulation of SUPPLE’s cost function casts it as
a weighted sum of per-element cost functions, that reflect
how well a particular concrete widget supports the opera-
tions usually performed on a particular abstract element of
the functional specification. The weights are derived from
the user model. The per-element cost functions, however,

(a) (b) (c)

Figure 1: Example critiquing in SUPPLE. (a) Initial rendering of a stereo controller. (b) The user asks SUPPLE to use a
slider instead of a combo box for controlling the volume. (c) The new rendering. Information recorded from this interaction
is used by ARNAULD to further improve SUPPLE’s cost function for future renderings.

were originally formulated as computationally opaque com-
plex functions. We have recently reformulated them as sums
of weightedfactorsf :

$(render(e)) =
K∑

k=1

ukfk(render(e)) (1)

Heree denotes an element of the functional specification and
render(e) denotes the concrete widget which the rendering
function render has chosen fore. Lastly, fk(render(e)) is
one of theK factors comprising the cost function anduk is a
corresponding weight. Factors can be either binary indicator
functions reflecting presence or absence of a property, or they
can return a non-negative2 real value to reflect the magnitude
of a property. For example, there are binary factors to indi-
cate that a widget is a checkbox or that it is a spinner assigned
to represent a numerical value. Continuous-valued factors in-
clude, for example, the downsampling factor for images and
maps, or the number of lines by which a list widget is too
short to accommodate the expected number of elements.

SUPPLEhas over forty factors, and the corresponding weights
had to be chosen manually to yield the desired solutions.
This process was tedious and error prone and had to be re-
peated every time a new kind of widget was added to any of
the platforms supported by SUPPLE.

USER INTERACTIONS
In this section we demonstrate two classes of interactions for
eliciting users preferences, which we encode as inequalities
of the formo � o′, indicating that user prefersoutcomeo to
o′. These preferences are used, as the next section explains,
to calculate a real-valued cost function, which is maximally
consistent with the preferences and which can be used to gen-
erate good interfaces in the future.

The first elicitation method, called example critiquing, is
well suited for both developers and end users, because such
critiques may often be derived implicitly from normal user
actions. The second, active elicitation, is a computer-driven
questioning process where the human operator is asked to

2Although SUPPLE requires factors to return non-negative values,
ARNAULD imposes no such restrictions.

make comparisons between different pairs of automatically
chosen interfaces.

Example Critiquing

In many interfaces, the user’s natural interactions provide in-
formation on their cost model; in these cases, one may learn
the cost function, without imposing any additional burden on
the user, using a process often calledexample critiquing. We
demonstrate this approach in the context of SUPPLE, which
has an extensive customization framework that allows both
designers and users to modify the structure, behavior and
appearance of the rendered user interfaces [12]. Amongst
other things, SUPPLE’s customization facility allows human
operators to right click on any part of a (desktop computer)
interface and choose from a selection of possible ways that
element can be rendered (Figure 1). We use ARNAULD to
automatically record all such customization requests and use
them to further improve the parameters of SUPPLE’s cost
function. We note, however, that often changes to one small
part of a user interface (e.g., causing light intensities to be
rendered with sliders instead of combo boxes) may cascade,
causing changes elsewhere (e.g., causing the top level pane
of the interface to be split into separate tabs, thus making
the navigation through the interface more difficult). Thus a
local improvement might lead to a global decrease in qual-
ity. In order to correctly learn the parameters of the objective
function (i.e., to account for these tradeoffs), it is important
to also record whether or not the user considers the result-
ing interface a global improvement over the previous version.
For this reason, when ARNAULD detects that critiquing has
caused non-local changes to the outcome, it requests feed-
back on the global result in addition to the local choice.

Active Elicitation

In some cases, the user’s natural actions provide insuffi-
cient feedback to learn a cost model. In these cases, the
computer must facilitate preference elicitation by generating
information-gathering questions to ask the user. Some re-
searchers advocate ranking multiple outcomes, but for sim-
plicity, we use binary queries, presenting users with pairs of
outcomes and asking which of the two (if either) they prefer.

(a) (b)

Figure 2: Two consecutive steps in the active elicitation process. (a) ARNAULD poses a ceteris paribusquery, showing
two renderings of light intensity control in isolation; this user prefers to use a slider. (b) Realizing that the choice may
impact other parts of the classroom controller interface, ARNAULD asks the user to consider a concrete interface that
uses combo boxes for light intensities but is able to show all elements at once, and an interface where sliders are used
but different parts of the interface have to be put in separate tab panes in order to meet the overall size constraints.

To keep questions simple for the user, we believe it is impor-
tant to emphasize so calledceteris paribus(everything else
being equal) queries, where users are asked to consider two
small differences in isolation (Figure 2(a)). However, when-
ever the local change between the two options causes cas-
cading, global changes, we also ask the user to compare the
entire outcomes (Figure 2)(b).

The key challenge for active elicitation is determining the
best questions to ask the user. We explain our question-
generation algorithm in two sections, but first we must ex-
plain how we use theanswersto these questions to learn a
cost function.

LEARNING FROM USER FEEDBACK
Now that we have described how to elicit a set of user pref-
erences over pairs of outcomes (e.g., o ando′), we formally
represent these preferences as constraints and use them to
infer the best values of the cost function’s underlying param-
eters. We observe that in every system we have studied, the
cost (or utility) of any outcome can be decomposed linearly
with respect to any class of parameters and consequently rep-
resented as

$(o) =
K∑

k=1

ukfk(o) (2)

wherefk(o) is a factor in the cost function. These factors
represent the presence, absence or intensity of various prop-
erties of the solution. For example, in SUPPLE, one factor
is used to indicate that a particular widget is a spinner while
another reflects how much an image was scaled from the de-
sired size. In a probabilistic system like [17], these factors
correspond to probabilities. Theuk is a non-negative weight
corresponding to factorfk — it is the values of these weights
that must be estimated.

Turning Feedback Into Constraints
We can quite naturally convert a user’s preferences over a
pair of outcomeso ando′ into a constraint by noting that if
o � o′ then the cost ofo′ must be greater than that ofo:

K∑
k=1

ukfk(o′) ≥
K∑

k=1

ukfk(o) (3)

Since the factor functions always return the same values for
the same outcomes, the goal is to find weight values,uk,
which satisfy the constraints. Consider the simple example
of Figure 2(a). In the rendering on the left hand side, all
factors are set to 0 exceptfcombo boxandfcombo box for number,
which are set to 1, indicating that a combo box has been used
and it was used to provide access to a numeric state variable.
On the right hand side, only two factors again are set to 1:
fslider andfhorizontal slider. Thus Equation 3 becomes:

ucombo box+ ucombo box for number≥ uslider + uhorizontal slider
(4)

While it is clear how to formally interpret user’s responses
to the active elicitation queries, the example critiquing feed-
back deserves additional attention. Note that if the user is
presented with an interface such as the one in right pane of
Figure 2(b) but she wishes SUPPLEwould render it as shown
in the left pane of Figure 2(b), she can proceed in two pos-
sible ways: she can use SUPPLE’s critiquing facility (as in
Figure 1) to tell it not to use the tab pane to organize the top
level of the interface, or she can request that the light inten-
sities be rendered with combo boxes instead of sliders.

In the first case, her feedback reflected her overall prefer-
ence for avoiding tab panes wherever possible. In the second
case, she downgraded the widget for the light intensity in or-
der to improve the overall interface. In order to formalize

the preference as a correct constraint, ARNAULD needs to be
able to determine which of the two was intended. To per-
form this disambiguation, we assume that the vast majority
of the feedback events will be of the first kind, where the
user’s preference for one widget over another will apply in
any situation.3

In some cases (e.g., [9]) it may be reasonable to assume that
if the user critiques an example by expressing a preference
for one outcome over another, then the preferred outcome
can be interpreted as being better thanall other possible out-
comes (rather than just the one it was explicitly stated to
dominate). Since this interpretation is not always correct,
ARNAULD takes the narrow interpretation.

Defining the learning problem
Our objective is to find values for each weight,ui, such that
all constraints (or as many as possible) are satisfied. To make
sure that the cost function is robust, we also wish to max-
imize the degree of satisfaction of the constraint,ci. This
degree of satisfaction is called themarginand denotedmci :

mci =
K∑

k=1

ukfk(o′
ci

)−
K∑

k=1

ukfk(oci) (5)

One way to find the weight values is with the Chajewska,
et al. approach [8], which finds the Bayesian estimate of
these values given user’s responses. This method relies on
Metropolis sampling, which is too slow for interactive use, as
we demonstrate later. Consequently, we propose a faster and
more direct technique which explicitly tries to maximizes the
margin through linear optimization.

Maximum Margin Learner
Our algorithm is based on maximum-margin methods from
support-vector machines [6]. The maximum-margin ap-
proach finds the factor-weight values which satisfy the most
constraints. Furthermore, these values are chosen so as to
maximize the difference between the two sides of the con-
straint inequality. At the same time, explicitslack variables
are used, which allow the optimization to succeed even in the
presence of contradictory or hard-to-satisfy constraints.

Formally, we reformulate the constraints from Equation 3 to
include the addition of a shared margin variablem and a per-
constraint slack variableξi:

K∑
k=1

ukfk(o′
ci

)−
K∑

k=1

ukfk(oci
) ≥ m− ξi for all ci (6)

Following standard practice, we constrain the margin to be
greater or equal than 1. Note that this causes

∑
ξi to be an

upper bound on the number of violated constraints. Thus we
formulate an objective function to be of the form:

maximize m− α
∑

ξi (7)

Whereα stands for a parameter that controls the tolerance
of the learner to a small number of violated constraints or
constraints satisfied by a margin smaller thanm.

3Another approach would be to provide a user interface mechanism for
disambiguating the two interpretations or attempting to automatically pre-
dict the user’s intention.

The set of parameters returned by this optimization satisfies
the maximum number of constraints and satisfies them by the
maximum possible margin. Further notice, that all the con-
straints and the objective function are linear and therefore we
can solve this problem using very fast linear programming
techniques.

Unlike a Bayesian learner [8], a max-margin algorithm can
utilize prior knowledge only if it is presented in the form of
constraints — it does not allow the knowledge to be summa-
rized in the form of concise statistics. To address this short-
coming, we extend our approach so that it can take into ac-
count prior knowledge. Suppose we have a prior belief (e.g.,
factory preset) that a weight for thekth factor isu′

k, then we
want any new valueuk to becloseto the prior value. We may
formalize this desire as the following optimization problem:

minimize m′ + α′∑ ξ′
k

subject to |uk − u′
k| ≤ m′ + ξ′

k for all k ∈ [1 . . .K]
(8)

Since this constraint is not linear, we rewrite it as a pair of
linear constraints:

uk − u′
k ≤ mprior + ξ′

k

u′
k − uk ≤ mprior + ξ′

k
(9)

Finally, we combine the prior knowledge and the knowledge
from the newly acquired constraints as our final objective
function:

maximize
N

N + N ′

(
m− 1√

N + K

N∑
i=1

ξi

)
−

N ′

N + N ′

(
m′ +

1√
N + K

K∑
k=1

ξ′
k

) (10)

We have replaced the previously undefinedα andα′ from
Equations 7 and 8 with one over the square root of the to-
tal number of constraints representing user’s preferences (in-
cluding both newly acquired preferences and the ones con-
tained in the prior). Additionally, we have weighted the
parts of the objective function corresponding to the new con-
straints and those in the prior.N ′ stands here for theequiv-
alent sample size— settingN ′ to 10 would mean that the
knowledge included in the prior should be treated with as
much weight as 10 new constraints. This allows us to encode
our certainty about the knowledge represented by the prior.

GENERATING QUERY EXAMPLES
As discussed previously, one way in which ARNAULD elicits
feedback from the user is by presenting her with two alter-
native outcomes and asking for a statement about her pref-
erence. It should be no surprise that the choice of ques-
tions asked might affect the number of questions necessary
to learn a good cost function. For example, repeatedly ask-
ing very similar questions will provide too little information
for the learning algorithm to make much progress. Unfor-
tunately, choosing theoptimalquestion from the perspective
of expected information gain is intractable [4]. Furthermore,
complex questions are usually harder for users to answer
than simple ones. Specifically, asking a user to compare

two vastly different outcomes may result in an ambivalent
response (“applesvs. oranges”), because of the vast num-
ber of tradeoffs. Thus, we seek heuristic query-generating
algorithms, that will ask simple and informative questions.

We assume that the user provides a set oftraining examples,
each being a sample input to their application. In the case
of learning the cost function for a SUPPLE device descrip-
tion, each training example is a functional specification of an
interface and a screen size constraint. ForLINEDRIVE, an ex-
ample would be a route, and forRIA an example would be a
set of information to be presented to the user. Note that each
example may be decomposed into primitiveconstituents, cor-
responding to the smallest portion of the example that can be
used as an argument to the cost function. With SUPPLEeach
element (node in the functional-specification tree) is a con-
stituent (for which a widget or a layout must be assigned and
costed). In order to generate simple, localized questions, we
restrict attention to queries about single constituents.

Weight-Based Question Generation
Our weight-based ranking algorithm applies to any applica-
tion that can enumerate the space of queries. Thus, when ap-
plied to SUPPLE, ARNAULD enumerates all pairs of different
renderings of anysingleelement in the interface specification
of an example (i.e., varying either a single widget or the lay-
out of one portion of the interface). These queries are ranked
via a computation in the space of possible factor weights, and
the best is chosen.

The key observation is as follows: if the cost function is
defined in terms ofK weights, then the constraints so-far
recorded define a sub-region of this space, and the region’s
centroid denotes theK weight values, which define the cur-
rent, best cost function. Every candidate query,(o ? o′), de-
fines ahyperplanein this space: the set of weight values that
cause$(o) = $(o′). Hence, an answer to the query (e.g., a
statement of the formo � o′) transforms the query into a
new constraint: the half-space to one side of the hyperplane
is consistent with the constraint while the other is not. It has
been shown that if a question is very good, then its corre-
sponding hyperplane falls very close to the region’s centroid.
This is intuitive, because no matter what the user answers,
the region containing the true cost function will be cut nearly
in half [24, 26].

But there may be several hyperplanes, each passing close to
the centroid, but oriented differently from each other, perhaps
even orthogonal; which is best? Intuitively, one would like
the constrained region to be approximately spherical. Thus,
if the region is already narrowly constrained along one di-
mension, the next cut should be orthogonal. Put another way,
on average the questions should equally constraineverydi-
mension of the weight space.

Our algorithm exploits these intuitions using a heuristic en-
coded as a modified distance function. We rank queries by
the distance between the corresponding hyperplane and the
centroid, but the distance function scales each dimension by a
value proportional to the number of constraints cutting along
that dimension. While our method is heuristic, it is fast to
compute and effective.

Outcome-Based Question Generation
This algorithm applies to applications satisfying the condi-
tion that each factor of the cost function corresponds to a sin-
gle constituent (hence the cost of an example may be written
as the sum of the costs of the example’s constituents). For in-
stance, in SUPPLE one may create a new example by taking
a constituent (element) from one functional specification and
considering that element in isolation (i.e., computing the best
rendering of an interface with a single widget corresponding
to that element).

Our outcome-based ranking algorithm first enumerates all
trainings example and uses the current cost function to
choose the best outcome for each example as a whole. Next,
for each constituente it notes what partial outcomeoe was
assigned to it in the solution that addressed the example
as a whole. Then, it iterates over all possible partial out-
comeso′

e that could have been assigned toe and computes
score(o′

e) = $(oe) − $(o′
e). Note that ifscoreends up be-

ing positive, then it means thatoe is a suboptimal local out-
come fore, and it was presumably chosen in order to allow
for a better solution in a different part of the interface. If
thescoreis negative thenoe was the better choice according
to the current cost function. Our algorithm chooses query
(o′

e ? oe) wherescore(o′
e) is the highest. For positive values

of score, this challenges the tradeoff that the interface gener-
ator made. For slightly negative values ofscore, it asks about
a close, second-best, local outcome — thus helping to either
spot incorrect choices or widening the margin between the
two options.

EVALUATION
We conducted a sequence of experimental studies to mea-
sure how well ARNAULD meets the desiderata, to evalu-
ate our learning method, and to compare our two question-
generation algorithms. Recall that we presented two require-
ments: 1) Make itfastandeasyfor both developers and end-
users to find good values for the weighting parameters; and
2) Output weights which arerobust, even in the face of in-
consistent or erroneous user feedback.

Informal User Evaluation
The first desideratum concerns ease of use for both develop-
ers and end-users, which we evaluate in a pilot user study.
In this study we observed four users using ARNAULD con-
nected to SUPPLE. Two of the four users represented devel-
opers — they were experienced contributors to the SUPPLE
project, but they were unfamiliar with ARNAULD. The other
two users represented “sophisticated users” — experienced
programmers who were unfamiliar with ARNAULD and who
had only cursory knowledge of SUPPLE. While these were
not typical end users, we do not believe ARNAULD is quite
mature enough for use by the novices. Soon, however, we
hope to perform studies on true end users.

We gave the “sophisticated user” group an overview of
SUPPLE’s behavior and its overall architecture followed by
instruction into the operation of ARNAULD, including the
ability to switch between the question generation (driven
by the domain-dependent algorithm) and example critiquing
modes. We then asked them to create a cost function for a
new SUPPLE interface platform, using ARNAULD until they

were satisfied that SUPPLEwas creating reasonable concrete
user interfaces.

We treated the “developer” group slightly differently, by first
asking them tomanuallyassign values to all parameters in
the cost function. (One of the subjects had done this in the
past but for a different set of parameters describing a differ-
ent interface platform.) We then instructed them in the use
of ARNAULD, and asked them to use it to construct the cost
function over again, from scratch. In addition to monitoring
their overall use of and satisfaction with ARNAULD, we also
recorded each preference response and compared them to
those that their hand-crafted cost functions would have gen-
erated. Interestingly, the subjects disagreed with their hand
crafted preference model 26% and 22% of the time respec-
tively. Additionally, in a further 12% and 9% of the cases
their hand crafted cost function disagreed less strongly (i.e.,
one expressed a preference while the other considered the
two options to be equivalent). This certainly shows how hard
it is to manually define a cost function.

All four subjects felt that ARNAULD was a much easier and
more accurate way to find a good set of cost parameters.
They attributed the improvement to being able to improve the
function in a rapid, iterative manner with immediately visible
feedback. The “sophisticated users” felt confident that they
could produce a robust set of parameters, while the devel-
opers felt that the tool let them arrive at the right result more
quickly and often helped them address trade-offs, which they
had missed when manually setting parameter values.

All users were able to produce robust cost functions in 10 to
15 minutes, while the SUPPLEdevelopers took 20 to 40 min-
utes to construct cost functions by hand. All users found the
tool generally easy to use, but some of them pointed out that
when ARNAULD was asking them to compare more complex
outcomes it was sometimes difficult to pinpoint all the differ-
ences (perhaps these should be color coded in the future?).
On the other hand, less than 10% of their answers to the auto-
matically generated queries were ambivalent, indicating that
the differences between presented alternatives were usually
easy to evaluate. Two of the users also commented that a
closer blending of the implicit and explicit approaches would
be desirablei.e., being able to modify the examples provided
in the active elicitation or being able to more quickly alter-
nate between the two modes. One user requested anundo
button which would reverse a critique or answer and also re-
move the corresponding input from the learner.

Comparison of Learning Methods
The first desideratum requires fast and easy operation, so we
consider the speed and accuracy of our learning algorithm,
comparing it against the Bayesian approach with Metropolis
sampling, proposed by [8]. When the Metropolis sampling
approximation was run long enough, both methods produced
essentially the same parameter weights. But our maximum-
margin approach not only produced exact answers, it was
also much faster.

Because Metropolis sampling is an anytime, approximation
method, one may trade solution quality for speed. Perhaps it
generates relatively good answers quickly? Figure 3 shows

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1000 10000 100000 1e+06

av
er

ag
e

er
ro

r
as

 p
er

ce
nt

ag
e

of
 s

td
ev

number of samples

Average sampling error

40 parameters

20 parameters

10 parameters

Figure 3: The sampling error of the Bayesian approach
diminishes with a huge number of samples, but is thus
too slow for interactive use: accurate answers require
106 samples (taking 40 seconds to compute), while
our maximum-margin algorithm returns exact answers
in less than 200ms.

the average error in the Metropolis sampling estimates, as a
percentage of the standard deviation of the underlying distri-
bution, for the cases where we need to estimate 10, 20 and
40 variables at a time. Our implementation of the Metropo-
lis algorithm can sample 25,000 times per second. But our
maximum-margin algorithm can produce an exact solution
in 40-200ms on a standard desktop computer.4 Thus, we can
draw only 5,000 samples in the time used by the maximum-
margin learner. When estimating 40 variables at once (as is
the case with SUPPLE), this sample-size produces an average
error of 17% of the standard deviation. The error goes down
to 12% and 8%, if we are willing to wait 1 or 2 seconds for
the result, respectively. The error stays above 2% unless a
million samples are drawn, which takes about 40 seconds.
We conclude that maximum-margin is the clear choice for
the fast, interactive use required by our first desideratum.

Comparison of Query-Generation Methods
Another aspect of the first desideratum concernshow many
questions need to be answered. Thus, we evaluate our query-
generation algorithms to see how many interactions are re-
quired in order to find a good set of values for the 40 param-
eters of the SUPPLEcost function.

In these experiments we simulate the user interacting with
ARNAULD ’s automated querying interface (but not with ex-
ample critiquing). We use a cost function defined by a pre-
viously validated set of weights (denoted thetargetfunction)
in order to simulate a user’s responses. When presented with
a query, the simulator registers a preference for the option
which has lower cost according to the target function. Af-
ter each response, ARNAULD updates the weights of the cost
functionbeing learned. The quality of the learned cost func-
tion is assessed at each step by using it to generate several
concrete interfaces. The target function is then used to score
those interfaces. We compute

4Apple Dual G4, 877MHz, 1.25GB RAM

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 10 20 30 40 50

di
st

an
ce

 fr
om

 id
ea

l

number of elicitation steps

Learning rate with different query generation algorithms

Weight-based query generation

Outcome-based query generation

Random query generation

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 10 20 30 40 50

di
st

an
ce

 fr
om

 id
ea

l

number of elicitation steps

Performance in the presence of input errors

Weight-based query generation; input error with p=0.1

Outcome-based query generation; input error with p=0.1

Random query generation; input error with p=0.1

(a) (b)

Figure 4: Rate of learning (all results averaged over 10 runs). The y-axis reflects how far from the ideal are the interfaces
generated using the currently learned parameter values (see text for detailed explanation) (a) for different query generation
strategies; (b) in the presence of input errors: at each step there was a 0.1 chance that the simulated user would give an
answer opposite from the one intended.

$(render(test interfaces, $′))/$(render(test interfaces, $))

where$ is the target cost function and$′ is the function be-
ing learned. In other words, we compute the ratio of the
true cost of the rendering guided by the learned cost func-
tion, and the true cost of the rendering guided by the true
cost function. This quotient reflects how far from the ideal
are the interfaces generated using the currently learned pa-
rameter values5. To make the testing fair, we use different
interface specifications to generate queries and to evaluate
the results. Queries are based on the classroom and Amazon
search interfaces (see [12] for screenshots of all the inter-
faces mentioned in this section), while evaluation was based
on a stereo controller, an email client and an interactive map-
based interface.

Figure 4(a) shows how the quality of the learned function
improves with the number of queries issued. Our outcome-
based and weight-based algorithms resulted in learned func-
tions performing almost identically to the target function af-
ter about 25 queries. As a control, we also evaluated a
random query generator, which resulted in a much slower
learning rate. In summary, both of our query-generation
algorithms require sufficiently short interactions to satisfy
desideratum one.

Sensitivity to Input Noise
Next, we evaluate ARNAULD against our second desidera-
tum: are the results robust even in the presence of input er-
rors and inconsistencies? For each query generation algo-
rithm, we repeated the experiment from the previous subsec-
tion, observing how the system behaved in the face of5% and
10% probability of an input error at each step (i.e., a situa-
tion where the response suggested by the target function was

5Since there exists a continuum of parameter values that may all produce
the same concrete outcomes, we evaluate the learned cost function based on
the cost of the results it produces (rather than the actual weight values)

flipped to its opposite). This simulates the user providing in-
consistent input or making a mistake. Figure 4(b) shows the
results for the10% error probability.

The outcome-based algorithm still generates an interaction
where nearly optimal results are obtained after about 25 in-
teractions. The weight-based algorithm tends to spread the
queries uniformly among all parameter values meaning that
after erroneous input is received, the system waits too long
before asking more about the affected weights. This delay
results in the algorithm performing noticeably poorer with
input errors present compared to the error-free condition.

The user can still arrive at a good set of weights by switching
to the example critiquing mode of interaction and directly ad-
dressing all the cases where the system makes mistakes. But
we conclude that our outcome-ranked question generation is
most consistent with our desiderata, and is the preferred ap-
proach, despite its slightly higher computational cost.

ARNAULD AS A GENERAL PLATFORM
Although we have only experimented with it in the context
of SUPPLE, we’ve argued that ARNAULD will benefit most
optimization-based interface systems. In this section we de-
fend those claims by considering two different systems and
showing how ARNAULD will facilitate their operation.

RIA, The Responsive Information Architect
RIA is a system that automatically decides first, what infor-
mation to present to the user [27], and second, how to best
match different pieces of information to different modali-
ties [28]. In the first phase, RIA balances certain tradeoffs
through the use of numerous, manually-tuned parameters re-
flecting different classes of information used to inform the
final decision.

RIA ’s objective function is particularly complex with many
of the different parameters being multiplied by each other.

Given ARNAULD ’s current restriction to linear systems, it
could not be applied to estimate all classes of parameters at
once. However, if all but one class of parameters are held
constant, then the objective function would become a linear
combination of the remaining class of parameters making it
amenable to learning with our approach.

Both interaction methods would be appropriate in this case
though a special interaction method would have to be pro-
vided to allow users to critique the information that was de-
livered through speech. Also for automated queries, speech
could be simulated with text for faster interaction cycles.

Context-Sensitive Notifications
The system described in [17] is designed to deliver notifica-
tions to a user in a manner that is sensitive to the user’s inter-
ruptability levels. It uses a decision-theoretic framework to
estimate the utility of delivering a particular piece of infor-
mation via the available modalities, conditioned on its esti-
mate of the user’s current interruptability. A primary focus of
the work is innovative machine-learning algorithms for esti-
mating the probability of the user being engaged in different
classes of activities [18]. In contrast the actual cost param-
eters, indicating the relative level of distraction incurred by
different modes of notification delivery, are obtained by ask-
ing users abstractly to assign different dollar amounts reflect-
ing how much they would be willing to pay to avoid such a
notification assuming certain level of interruptability.

The cost function driving this system relies on two classes of
parameters: the costs of interrupting the user using different
modalities, and the cost of delaying the delivery of a message
in hope that the user will be more interruptable later. These
two classes of parameters are combined in a linear manner
and thus can be learned together by ARNAULD.

Currently, this system learns its sensor model by first record-
ing the sensory inputs for a particular user and his environ-
ment, while also recording a video of everything that tran-
spired during that time. In order to train the system, the user
has to watch the video and annotate it with transitions be-
tween different attentional states or levels of interruptability.
During the same interaction, ARNAULD could ask the user
queries of the form: “If I were to deliver you an important
message at this point, would you have preferred if I had used
email or displayed a message on the screen?” or: “If I had
a message to deliver for you, would you have preferred if
I delivered it immediately by displaying it on the screen or
waited till later and called you on the phone?”.

The resulting system could be further tuned (personalized)
after deployment, if the user was given the option on com-
menting on whatever notifications were delivered. Exam-
ple critiquing could easily be supported for messages dis-
played on the screen but more specialized interfaces would
be needed to comment on messages delivered via email or a
real time phone call.

RELATED WORK
We place ARNAULD in the context of past work on prefer-
ence elicitation, user interaction, utility-function representa-
tion, as well as the reasoning and query generation mecha-
nisms.

User Interactions For Eliciting Preferences
Example critiquing has been used in several systems, notably
in two trip planning assistants: theATA system [21] and the
work presented in [23]. In both cases, the computer presents
the user with options based on the initial set of requirements
and the user refines their preferences by narrowing their re-
quirements, even concerning initially unspecified attributes
like stop over locations or the airline. The authors argue that
users will often be unaware of all the preferences they might
have and will not think to specify them until confronted with
a particularly disagreeable example. We adopt this example
critiquing approach in ARNAULD.

The work of [23] further highlights the distinction between
user’s fundamental objectives and the means of achieving
them, warning that if the system attributes do not reflect the
fundamental objectives, users will be unlikely to accurately
estimate the values of those attributes. In those cases where
the parameters of the system match the user’s objectives, di-
rect manipulation approaches with instant feedback may be
the right approach to explore the space of options. Thus,
most of the systems, which can benefit from ARNAULD, use
large sets of parameters, and the parameter semantics is of-
ten complex or unintuitive. For that reason in our work we
avoid direct manipulation of the parameter values and focus
on reasoning about concrete examples of system output.

Representation And Reasoning About User Preferences
Systems described in [23] use constraints to represent user
preferences. In order to accommodate inconsistent requests,
these systems use constraint solvers that allow partial satis-
faction of constraints, but no mechanism is provided to select
among different solutions at the same level of feasibility.

Chajewska, et al. [7] propose treating utilities as random vari-
ables. The constraints encoding user’s preferences are just
a means for constructing a Bayesian model to estimate val-
ues of utilities, using the Metropolis algorithm for inference.
This is the approach we have used in our Bayesian learner. It
is worth noting that other, potentially faster and more accu-
rate methods are available for inference in hybrid Bayesian
networkse.g., [22], but their implementational complexity
renders their application problematic.

Recently, an approach similar to ours was proposed for cal-
endar scheduling [14]. Unlike our approach, it is designed
for just one application and it uses standard SVM quadratic
optimization for estimating the parameter values.

Finally, [5] reasons about utilities in terms of minimizing
the maximum regret while representing uncertainty about the
value of utility parameters as hard intervals. Without further
refinement, this approach does not allow for inconsistent re-
sponses from the user.

Generating Optimal Queries
Much of the past work on generating optimal queries is based
on value of information(see, for example, [9, 4, 15]. In our
case it is computationally prohibitive because it requires hy-
pothesizing about how each potential query will impact the
presentation of future interfaces.

Our query generation algorithms are based on the ideas of
[26] and [24] who present heuristic approaches in the con-
text of SVM training that aim to select queries which would
maximally reduce the size of the remaining version space.

CONCLUSIONS
Decision-theoretic optimization has been adopted by a num-
ber of researchers to automatically generate various aspects
of user interfaces. Yet in almost all cases the numerous and
unintuitive parameters of the optimization’s objective func-
tion are chosen by hand — thus adding an unprincipled ele-
ment to an otherwise very principled approach.

In this paper we address this problem by presenting and eval-
uating interaction methods and algorithms that allowed us to
build ARNAULD, a system that interactively elicits user pref-
erences for the purpose of automatically learning parameters
of optimization-based systems.

Our interaction mechanisms and algorithms are applicable
to many systems and we intend to make ARNAULD and its
learning methods available for others to use. Furthermore,
we would like to ensure that it is compatible with toolkits
like GADGET [11] that promise to make it easy to embed
optimization in user interface systems.

AcknowledgmentsWe thank Pedro Domingos for suggest-
ing that we look for a discriminative approach and Deepak
Verma for help in formulating the optimization problem.
We also thank Mary Czerwinski and James Fogarty for use-
ful discussion and Donald Patterson, Desney Tan, William
Pentney and the anonymous reviewers for helpful comments
on drafts of this paper as well as our subject who pro-
vided feedback on the system. The customization infrastruc-
ture used for example critiquing was developed by Raphael
Hoffmann. This research is supported by NSF grant IIS-
0307906, ONR grant N00014-02-1-0932 and by DARPA
project CALO through SRI grant number 03-000225.
REFERENCES

1. M. Agrawala and C. Stolte. Rendering effective route
maps: Improving usability through generalization. In
SIGGRAPH’01, 2001.

2. A. Arnauld. The Art of Thinking. The Bobbs-Merrill
Company, inc., 1662.

3. G. J. Badros, A. Borning, and J. Stuckey. The Cas-
sowary Linear Arithmetic Constraint Solving Algo-
rithm. ACM Transactions on Computer-Human Inter-
action (TOCHI), 8(4), 2001.

4. C. Boutilier. A POMDP formulation of preference elic-
itation problems. InAAAI/IAAI, 2002.

5. C. Boutilier, R. Patrascu, P. Poupart, and D. Schuur-
mans. Constraint-based optimization with the minimax
decision criterion. InInternational Conference on Prin-
ciples and Practice of Constraint Programming, 2003.

6. C. J. C. Burges. A tutorial on support vector machines
for pattern recognition. Data Min. Knowl. Discov.,
2(2):121–167, 1998.

7. U. Chajewska and D. Koller. Utilities as random vari-
ables: Density estimation and structure discovery. In
UAI, 2000.

8. U. Chajewska, D. Koller, and D. Ormoneit. Learning
an agent’s utility function by observing behavior. In
ICML’01, 2001.

9. U. Chajewska, D. Koller, and R. Parr. Making ra-
tional decisions using adaptive utility elicitation. In
AAAI/IAAI, 2000.

10. J. Fogarty, J. Forlizzi, and S. E. Hudson. Aesthetic in-
formation collages: generating decorative displays that
contain information. InUIST, New York, NY, 2001.

11. J. Fogarty and S. E. Hudson. GADGET: A toolkit for
optimization-based approaches to interface and display
generation. InUIST’03, Vancouver, Canada, 2003.

12. K. Gajos, D. Christianson, R. Hoffmann, T. Shaked,
K. Henning, J. J. Long, and D. S. Weld. Fast and ro-
bust interface generation for ubiquitous applications. In
Proceedings of Ubicomp’05, Tokyo, Japan, 2005.

13. K. Gajos and D. S. Weld. Supple: automatically gen-
erating user interfaces. InIUI’04 , Funchal, Madeira,
Portugal, 2004.

14. M. T. Gervasio, M. D. Moffitt, M. E. Pollack, J. M.
Taylor, and T. E. Uribe. Active preference learning for
personalized calendar scheduling assistance. InIUI ’05 ,
New York, NY, USA, 2005.

15. D. Heckerman, E. Horvitz, and B. Middleton. An
approximate nonmyopic computation for value of in-
formation. IEEE Trans. Pattern Anal. Mach. Intell.,
15(3):292–298, 1993.

16. E. Horvitz. Principles of mixed-initiative user inter-
faces. InCHI ’99, New York, NY, USA, 1999.

17. E. Horvitz and J. Apacible. Learning and reasoning
about interruption. InInternational Conference on Mul-
timodal Interfaces, 2003.

18. E. Horvitz, A. Jacobs, and D. Hovel. Attention-
sensitive alerting. InUAI-99, San Francisco, CA, 1999.

19. E. Horvitz, P. Koch, and J. Apacible. Busybody: cre-
ating and fielding personalized models of the cost of
interruption. InCSCW ’04, New York, NY, USA, 2004.

20. R. L. Keeney and H. Raiffa.Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. John Wi-
ley and Sons, 1976. Republished in 1993 by Cambridge
University Press.

21. G. Linden, S. Hanks, and N. Lesh. Interactive assess-
ment of user preference models: The automated travel
assistant. InUser Modeling ’97, 1997.

22. T. P. Minka. Expectation propagation for approximate
bayesian inference. InUAI ’01, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

23. P. Pu, B. Faltings, and M. Torrens. User-involved pref-
erence elicitation. InIJCAI’03 Workshop on Configu-
ration, Acapulco, Mexico, 2003.

24. G. Schohn and D. Cohn. Less is more: Active learning
with support vector machines. InICML, 2000.

25. S. Shearin and H. Lieberman. Intelligent profiling by
example. InIUI ’01 , 2001.

26. S. Tong and D. Koller. Support vector machine active
learning with applications to text classification.Journal
of Machine Learning Research, 2:45–66, 2001.

27. M. X. Zhou and V. Aggarwal. An optimization-based
approach to dynamic data content selection in intelli-
gent multimedia interfaces. InUIST ’04, 2004.

28. M. X. Zhou, Z. Wen, and V. Aggarwal. A graph-
matching approach to dynamic media allocation in in-
telligent multimedia interfaces. InIUI ’05 , 2005.

