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ABSTRACT

Phononic crystals and acoustic metamaterials are heterogeneous materials that enable manipula-
tion of elastic waves. An important characteristic of these heterogeneous systems is their ability to
tailor the propagation of elastic waves due to the existence of band gaps — frequency ranges of strong
wave attenuation. In this Thesis, I report discoveries of three new types of band gaps: i) Band gaps
induced by geometric frustration in periodic acoustic channel networks; ii) Band gap induced by
high connectivity in periodic beam lattices; and iii) Topological band gaps in gyroscopic phononic
crystals that protects one-way edge waves. The investigations presented here shed new light on the
rich dynamic properties of phononic crystals and acoustic metamaterials, opening avenues for new

strategies to control mechanical waves in elastic systems.

iii



Contents

1 INTRODUCTION I
2 BAND GAr BY GEOMETRIC FRUSTRATION 5
3  BAND GAP BY CONNECTIVITY 16
4 TororoGgIicAL BAND Gar 26
5 CoNCLUSION 36
APPENDIX A SUPPLEMENTAL MATERIAL TO CHAPTER 2 40
A Calculation of dispersion relations for acoustic networks . . . . . .. ... 40
A.  Effect of the finite width of the air channels . . . . . . .. .. ... ... .... 48
ArPPENDIX B SUPPLEMENTAL MATERIAL TO CHAPTER 3 50
B Calculation of dispersion relations for beam lattices . . . . . ... ... ... .. 50
B.2 AdditionalResults . . . . . . . .. ... 53

iv



ArPPENDIX C SUPPLEMENTAL MATERIAL TO CHAPTER 4

C.1  DPolarization characteristics . .

C2  Bandinversion in gyroscopic hexagonal lattices . . . . . . .. .. ... ... ...

C.3 Topological phase diagram . .

C.4 Additional results for squarelattice . . . . . . .. ... oo L0

C.s  Formulation of gyroscope . .

C.6 Calculation of Chern numbers

REFERENCES

63
63
67
69
71
72

75

87



I.I

2.2

2.3

2.4

2.5

3.1

3.2

3.3

34

43

4.4

List of Figures

Two types of mechanisms to form band gaps in elastic system

Dispersion relations of periodic waveguide networks

Geometric frustration in acoustic networks . . . . .

Dispersion relations of networks with channel aspect ratio of 20

Pressure field distribution in finite-sized acoustic networks . . .

Experimentally measured and simulated transmittance of finite networks

Band structures of triangular periodic beam lattices

Band structures of periodic hexagonal and its variant beam lattices . . . .

Relation between band gap size and network connectivity . . .

Band gap size of periodic rhombic beam lattices

Ordinary and gyroscopic phononic crystals.
Edge modes in gyroscopic phononic crystal.
Transient response with topological edge modes

Topological square lattice . . . . . ... ... ...

vi

II

12

14

18

21

23

24

28

31

32

35



A

Ao

B.a

B2

Dispersion relations for acoustic networks of other lattices . . . . . . .. ... ..

Dispersion relations of networks with finite channel width . . . . . . ... .. ..

Unit cells and Brillouin zones of periodic beam lattices . . . . . . . ... ... ..

Band structures of lattices with differentjoints . . . . . .. ... L0000

Band structures of hexagonal variant periodic lattices . . . . . . . . ... ... ..

Symmetry in the band structures of periodic lattices . . . . . .. ... ... ...

Band structure for a periodic lattice with average connectivity 2 = 3.36. . . . . . .

Band structures for periodic lattices with average connectivity 2 = 4.615. . . . . .

Band structures for periodic lattices with average connectivity 2 = s.143. . . . . .

Dispersion relations of thombic lattices . . . . . .. ... .. ... .......

Modal polarization for the ordinary lattice . . . . ... ... ... ........

Modal polarization for the gyroscopiclattice . . . ... ... ... ... ... ..

Evolution of the dispersion bands during symmetry breaking . . . . .. ... ..

Band inversion during symmetry breaking . . . . ... ... 00000

Topological phasediagram . . . ... ... ... ... ... .. .. .. ..

Transient response of gyroscopic square lattice . . . . . .. ... ... ... ...

Schematic of a gyroscope

vii

47

49

ST
53
58
59

60

60
61

62

6s

66

68
70
71

73



Acknowledgments

I would like to first express my deep gratitude towards my advisor, Prof. Katia Bertoldi. Asa
mentor, she is motivating, supportive, and patient with students; as a group leader, she is know-
ledgeable, confident and persistent on pursuits. All my research projects are made possible with her
continuous guidance and repeated encouragements.

I am deeply in debt to my colleagues and friends in the graduate school, especially Sicong Shan,
Prof. Sung Hoon Kang, Prof. Jongmin Shim, Dr. Filippo Casadei, Dr. Farhad Javid, Sahab Babaee,
Jia Liu, Johannes Overvelde, Qihan Liu and Jianyu Li, who offered tremendous help during my
study here.

I highly appreciate the graduate courses and lectures I attended at Harvard, especially those in-
structed by Prof. Zhigang Suo, Prof. Joost Vlassak, Dr. David Knezevic, Prof. John Hutchinson,
Prof. James Rice, Prof. Ariel Amir and Prof. Michael Brenner. The intellectual interactions with
these great minds have been one of the most fun and inspiring experiences I had in my life.

I'am especially grateful to Prof. Joost Vlassak and Prof. David Clarke, who have generously
offered their laboratories for my experiments.

I would also like to thank all my collaborators Dr. James Weaver, Cangyu Qu, Dr. Samuel Shian,

viii



Dr. Elizabeth Chen, Dr. Jordan Raney, Lichen Fang, Francisco Candido, Yushen Sun, Joyce Zhu,
Xiuming Zhang, Sijie Sun, Yue Zheng, Kai Xu, Matheus Fernandes, Dr. Fatih Goncu, Dr. Patrick
Kurzeja and Dr. Ling Lu. I'have benefited substantially from the discussions and exchange of ideas
with them.

My graduate study would not have been possible without the devoted love and understanding
from my parents. I would like to give my special thanks to my wife Jing Ma, whose unconditional

love, deep care and constant supports enabled me to finish my thesis.

ix



10 achieve great things, two things are needed; a plan, and not quite enough time.

Leonard Bernstein

Introduction

Artificially structured composite materials that enable manipulation of elastic waves have received
significant interest in recent years, not only because of their rich physics, but also for their broad
range of applications 7546 An important characteristic of these heterogeneous systems is their ability
to tailor the propagation of elastic waves due to the existence of band gaps — frequency ranges of
strong wave attenuation.

In phononic crystals, band gaps are generated by Bragg scattering — the scattering of waves by a



(a) Bragg Scattering (b) Local Resonance

Figure 1.1: Two types of mechanisms to form band gaps in elastic system (a) 1D discrete model for phononic crystals; and
(b) 1D discrete model for locally resonant acoustic metamaterials.

periodic arrangement of scatterers with dimensions and periods comparable to the characteristic
wavelengths (a simple discrete example system in 1D is shown in Fig. 1.1a). In contrast, for acoustic
metamaterials, localized resonance within the medium is exploited to attenuate the propagation of
waves. In this case, The local resonant modes are designed to hybridize with the propagating wave
modes to produce a range of exotic behaviors, such as band gaps, negative refraction and negative
effective dynamic properties (a simple discrete example system 1D is shown in Fig. 1.1b).
Historically, the study of wave propagation in geometrically ordered media can date back to
Rayleigh’s treatment of wave propagations in geometrically ordered media in his book The The-
ory of Sound®®. Since then, this research topic has grown significantly into an emerging multi-
disciplinary area that encompasses concepts and techniques from both condensed matter physics
and acoustical engineering. The technical word, “phonon”, originally came from the study of vi-
brations of atomic crystal lattices. In general condensed matter physics, it is defined as the quantum
of vibrational energy and the quasi-particle representing sound in a solid. In recent years, the term
also gained popularity in studies on classical waves and acoustics, especially in the context of geomet-
rically ordered media”>#. After the discovery of the first complete phononic band gap by Sigalas
and Economou'®’ in 1993, a new term, “phononic crystal”, was then coined by Kushwaha and his
colleaguess®, differentiating it from its counterparts in electronics and optics. On the other hand,
“acoustic metamaterials” are typically associated with localized resonances, which was first demon-

8

strated in the pioneering work by Liu and his colleagues6 in 2000, and has since proliferated into a



rich subject with numerous applications.
During the last decade, there has been a fast growing number of research activities in the study
of phononic crystals and acoustic metamaterials. Their band gap properties have been exploited to

52,113,88,20, and

design devices for noise reduction®'»”7, vibration control 5+ and wave guiding
these practical applications have generated rising interest in the fundamental mechanisms and con-
trolling parameters of band gaps.

In this thesis, numerical simulations and experiments are combined to investigate three new types
of band gaps.

First, in Chapter 2, I demonstrate both numerically and experimentally a new type of band gaps
induced by geometric frustration in two-dimensional acoustic networks consisting of a periodic
array of narrow air channels. Interestingly, while resonant modes are ubiquitous in all network geo-
metries, we show that they give rise to band gaps only in the geometrically frustrated ones (i.e. those
comprising triangles and pentagons). Our results not only reveal a new mechanism to control the
propagation of waves in specific frequency ranges, but also open avenues for the design of a new
generation of smart systems to manipulate sound and vibrations.

Second, Chapter 3 shows that by tuning the average connectivity of a beam network, locally res-
onant band gaps can also be generated in structures without embedding additional resonating units.
In particular, a critical threshold for average connectivity is identified, far from which the band gap
size is purely dictated by the global lattice topology. By contrast, near this critical value, the detailed
local geometry of the lattice also has strong effects. Moreover, in stark contrast to the static case, we
find that the nature of the joints is irrelevant to the dynamic response of the lattices. Our results
not only shed new light on the rich dynamic properties of periodic lattices, but also outline a new
strategy to manipulate mechanical waves in elastic systems.

Third, Chapter 4 reports a new type of phononic crystals with topologically nontrivial band

gaps for both longitudinal and transverse polarizations, resulting in protected one-way elastic edge



waves. In our design, gyroscopic inertial effects are used to break the time-reversal symmetry and
realize the phononic analogue of the electronic quantum (anomalous) Hall effect. We investigate
the response of both hexagonal and square gyroscopic lattices and observe bulk Chern numbers of
1and 2, indicating that these structures support single and multi-mode edge elastic waves immune
to backscattering. These robust one-way phononic waveguides could potentially lead to the design
of a novel class of surface wave devices that are widely used in electronics, telecommunication, and
acoustic imaging.

Finally, concluding remarks on all three new types of band gaps and the future outlook of the

research field of phononic crystals and acoustic metamaterials are given in Chapter s.



Any intelligent fool can make things bigger, more complex, and more violent.

1t takes a touch of genins—and a lot of conrage to move in the opposite direction.

Albert Einstein

Band Gap by Geometric Frustration

The content of this chapter will be published in Wang P, Zheng Y, Fernandes M, Sun Y, Xu K, Sun

S, Kang SH, Bertoldi K. Acoustic band gaps induced by geometric frustration. under review.



GEOMETRIC FRUSTRATION arises when interactions between the degrees of freedom in a lattice

1928 This phenomenon plays an important role

are incompatible with the underlying geometry
in many natural and synthetic systems, including water ice®, spin ice #»72%97:5825:85833,147,2 ol
loids #-10¢144:23:15 liquid crystals'#S and proteins'>'3*. Surprisingly, despite the fact that geometrical
frustration is scale-free, it has been primarily studied at the micro-scale™ and only very recently the
rich behavior of macroscopic frustrated systems”*', which can be easily fabricated and manipulated,
started to get explored.

Here, we investigate the effect of geometric frustration on the propagation of sound waves in
macroscopic acoustic networks comprising a lattice of narrow air channels. While an unfrustrated
square network transmits acoustic waves of any frequency, we demonstrate both numerically and
experimentally that in a triangular network geometric frustration provides a new mechanism to
generate sonic band gaps - ranges of frequency in which the waves cannot propagate through the
acoustic network. In fact, sonic band gaps have been previously achieved either by the Bragg-type

108,55,73,104,100

collective scattering and interference in ordered arrays of solid inclusions in air or by
resonant hybridization and energy localization in channels with embedded resonators*5%443* In
contrast, our results indicate that, by harnessing geometric frustration, hybridization band gaps can
be induced in networks of air channels without the need of embedding additional resonators.

We start by calculating the dispersion relation for acoustic networks comprising a periodic array
of narrow air channels of length L and cross-sectional width 7, for which # << L. In any individual

channel the free vibrations of the enclosed air column can be described by the 1D wave equation *,

which can be solved analytically yielding the resonance angular frequencies

nwe  2wC (2.1
Wy = —— = —, n=1,2,3... 2.1
L -

where ¢ is the speed of sound in the channel and we have assumed both ends of the channel to be



either open or closed. Difterently, for a periodic network of air channels the wave equation can only
be solved numerically because of the complex geometry. In particular, here we use the finite ele-
ment (FE) method and discretize the acoustic lattice into a number of 1D elements. The dispersion
relation for an acoustic network is then calculated by focusing on its unit cell, applying Bloch type

boundary conditions, and solving the discretized equation:

[K(k) — «*M]p = o, (2.2)

for wave vectors k within the first Brillouin zone (more details on the algorithm are provided in Ap-
pendix A). Note that in Eq. (2.2) w denotes the angular frequency of the propagating pressure wave,
p is a vector containing the nodal values of the acoustic pressure and K and M are the acoustic stiff-
ness and mass matrices, respectively.

In Fig. 2.1 we show the acoustic dispersion relations in terms of the normalized frequency Q =
w/w, = wL/(27¢) calculated for square and triangular acoustic networks. Both band structures are
characterized by equally spaced flat bands located at Q = 7/2 (7 being an integer, n = 1,2,3...),

a clear signature of the resonant modes with wavelength A = 2L /n localized in the individual air
channels. Interestingly, the dispersion relations also indicate that for the triangular network the odd
numbered resonant modes (i.e. 7 = 1,3, 5, ..) generate acoustic band gaps, highlighted by the grey
areas in Fig. 2.1(b).

To understand the dispersion plots reported in Fig. 2.1, we first note that, in general, a localized
resonant mode tends to hybridize with any propagating wave mode near the resonant frequency * o
resulting in the formation of a band gap due to the avoided crossing (see dashed red lines and shaded
red area in Fig. 2.2(a)). However, an exception occurs if the wave mode orthogonal to the resonant
one can propagate in the system, since the lack of any possible coupling between the two modes

prevents the hybridization process. As a result, a true crossing between the two bands arises (see
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Figure 2.1: Acoustic networks comprising a periodic array of narrow air channels: (a) square lattice and (b) triangular lat-
tice. Lattice configurations, unit cells (highlighted in red) and Brillioun zones are shown on the left. The calculated disper-
sion relations are shown on the right. The grey regions in (b) highlight the hybridization band gap induced by geometric
frustration.

intersections between solid red and blue/green lines in Fig. 2.2(a)) and no gap is formed.

Next, we apply this argument to the square and triangular acoustic networks. To this end, we
start by focusing on the resonant modes of the air column enclosed by a single channel. Since both
ends of the each channel are open, the pressure field of the fundamental resonant mode is given by
p(x) = posin(wx/(2L)) (po being a constantand x € [o, L]) and is symmetric with respect to the
center of the tube (see Fig. 2.2(b)). Consequently, the mode orthogonal to the fundamental one at
the same frequency/wavelength is anti-symmetric, p(x) = p, cos(w x/(2L)) (see Fig. 2.2(c)). While
this orthogonal mode can be supported by the square network (Fig. 2.2(d)), it is not compatible
with the triangular lattice (Fig. 2.2(e)), so that the system becomes frustrated. Importantly, our nu-
merical results indicate that such frustration results in the formation on an hybridization band gap
at Q) = o.5 - a phenomenon that has never been reported before.

In addition, we note that the absence of band gap in the vicinity of the flatband at Q@ = 1.0
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wave mode orthogonal to the second one for a single channel with open ends; the orthogonal mode shown in (g) can be
supported by both the (h) square and (i) triangular lattices.



is due to the fact that the mode orthogonal to the second resonant one can be supported by both
the square and triangular networks. In fact, the pressure field of the second resonant mode for the
individual channels, p(x) = p, sin(# x/L), is anti-symmetric with respect to the center of the
channel (Fig. 2.2(f)), so that the orthogonal mode, p(x) = p, cos(7 x/L), is symmetric (Fig. 2.2(g)).
It is easy to see that such orthogonal mode is geometrically compatible with both the square (Fig.
2.2(h)) and triangular (Fig. 2.2(i)) networks, as well as any other equilateral lattice geometry. Asa
result, no locally resonant gap appears at Q) = 1.0 in any acoustic network.

At this point, we also highlight the fact that the formation of locally resonant band gaps induced
by geometric frustration is a robust phenomenon. In fact, although in Fig. 2.1 we focus only on
the square and triangular geometry, we have also investigated the wave propagation in a number
of other acoustic networks and found that any lattice comprising triangles or pentagons is charac-
terized by frustration induced acoustic band gaps (see Fig. S1in Appendix A). Moreover, while the
results presented in Fig. 2.1 are for ideal acoustic networks made of 1D channels, we have also invest-
igated the effect of the finite width 7 of the tubes. To this end, we have performed FE simulations
using the commercial package ABAQUS/Standard and studied the dynamic response of lattices
comprising 2D rectangular channels of length L and width # meshed with 4-node bilinear acoustic
elements (ABAQUS element type AC2D4). The calculated band structures for the square and tri-
angular networks characterized by L/ = 20 are reported in Figs. 2.3(a) and (b), respectively, and
show that the dynamic response of the system is not significantly affected by the finite-width of the
channels (additional numerical results for networks comprising tubes with different values of L/#
are reported in Fig. S2 of Appendix A).

We also conduct steady-state analysis to calculate the transmission of finite size networks com-
prising 6 X 6 unit cells made of 2D rectangular channels with L/ = 20. In these simulations an
harmonic input pressure, p;us, is applied at the end of the central channel on the left edge of the

model. In Fig. 2.4 we report the steady-state pressure fields obtained for the square and triangular

10
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Figure 2.3: Effect of the finite width ¢ of the channels: band structures for (a) the square and (b) the triangular networks
characterized by L/r = 20. The grey regions in (b) highlight the hybridization band gap induced by geometric frustration.

networks at O = 0.4s (in the gap induced by geometrical frustration in the triangular network)
and Q = 0.95 (in the vicinity of the second resonant frequency of a single channel). The results
show that in the triangular network at ) = o.45 the acoustic energy is completely localized near
the excitation site and no signal is transmitted to the opposite end of the lattice (Fig. 2.4(c)) - a clear
indication of a band gap. Differently, in all other cases the acoustic waves are found to propagate
through the networks (Figs. 2.4(a), (b) and (d)).

Finally, to validate the numerical predictions, we fabricate samples of the square and triangular
acoustic networks comprising 6 X 6 unit cells (Figs. 2.5(a) and (b)). The individual air channels have
length L = 40 mm, a square cross-section of 2 X 2 mm (so that L/r = 20 and w, = 4 kHz) and
are engraved into an acrylic plate of thickness 8 mm with the use of a laser etching machine (KTiso,
Kern Laser Systems). A flat acrylic plate is then glued on the top of the etched plate to cover the air
channels. During the all the experiments, the sample is surrounded with sound-absorbing foams
to minimize the effect of the ambient noise. Moreover, an open channel on one of the edges of the
samples is connected to an input chamber containing an earphone (352C22, PCB Piezotronics) to

excite a broadband white noise signal between 1 kHz and 8 kHz and a microphone to measure the

II
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amplitude of the generated sound waves. Another microphone is then placed at an air channel
opening on the opposite side of the sample to detect the transmitted signal and the acoustic trans-
mittance is calculated as the ratio between the pressure amplitudes detected by the two microphones
(i-e- Pompm/_pinpm)-

The continuous red lines in Figs. 2.5(c) and (d) show the experimentally measured transmittance
for the square and triangular sample, respectively, while the blue dashed lines correspond to the
transmittance as predicted by steady-state FE simulations. First, we note that the transmittance for
the square lattice does not show regions of significant attenuation and fluctuates around -30 dB for
experimental data and around -20 dB for numerical results. Such low baseline value is mainly attrib-
utable to the dispersion of vibrational energy through the channel openings on the edges, while the
10 dB difference between experimental and numerical results is due to the dissipation in the viscous
boundary layers'?, an effect which is not accounted for in the FE simulations. Differently, for the
triangular network a significant drop (up to ~ —6o dB) in the transmittance is observed between 2.5
kHz and 6 kHz (i.e. for Q between 0.3 and 0.7), confirming the existence of the band gap induced
by geometric frustration predicted by our analysis.

In summary, we demonstrated both numerically and experimentally that geometric frustration
can be exploited to control the propagation of sound waves in networks of narrow air channels. In
fact, we found that in acoustic networks comprising triangles or pentagons sonic band gaps emerge
in the vicinity of the odd numbered resonant frequencies of the individual channels because of geo-
metric frustration. Remarkably, while sonic band gaps have been previously achieved either by
Bragg scattering in ordered arrays of solid inclusions in air’*®557%°+1°° or by mode hybridization
in channels with embedded resonators*%#+3*, our results reveal a new mechanism to suppress the
propagation of sound waves in specific frequency ranges. We also note that the frustration-induced
band gaps demonstrated in this study are characterized by a very peculiar feature: although they are

the result of resonance hybridization, their presence completely depend on the lattice geometry.

3
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This makes them very different from the locally resonant band gaps previously observed in metama-
terials comprising embedded resonators 112,68,139,443257  since those have been shown not to be af-

fected the spatial arrangement of resonators 67,125

, and also to be retained in the case of randomly dis-
tributed resonators®. Given the broad range of applications recently demonstrated for systems with
acoustic band gaps, including wave guiding1°1’148, frequency modulation **?', noise reduction”” and
acoustic imaging “*'4>*2, we expect geometrically frustrated acoustic networks to play an important
role in the design of the next generation of materials and devices that control the propagation of

sound.
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The important thing in science is not so much to obtain

new facts as to discover new ways of thinking about them.

William Henry Bragg

Band Gap by Connectivity

The content of this chapter was published in: Wang P, Casadei F, Kang SH, Bertoldi K. Locally res-

onant band gaps in periodic beam lattices by tuning connectivity. Physical Review B. 2015;91:020103(R)"**.
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LATTICE STRUCTURES have long fascinated physicists and engineers not only because of their out-
standing functionalities, but also for their ability to control the propagation of elastic waves. While
the study of the relation between the connectivity of these systems and their static properties has
along history that goes back to Maxwell. However, rules that connect the dynamic response to

the network topology have not been established. Generally speaking, the topology of structures
comprising a interconnected network of elastic beams can be effectively described by the coordin-
ation number (Z), which is defined as the average number of connections at joints. From a static
point of view, reducing z makes the structure less rigid until a critical threshold is reached, below

which deformation modes of zero energy emerge 77367

. A global stability criterion that purely
depends on 2z was first determined by Maxwell for pin-joined lattices comprising spring-like liga-
ments’’, and then modified to account for the nature (pin or welded) of the joints*#, the bending
stiffness of the struts32, self-stresses™®, dislocation defects®°, collapse mechanisms*” and bound-
ary modes?>"*>"#5°_In recent years, the dynamic response of periodic lattices has also attracted
considerable interest7*5*#4¢ because of their ability to tailor the propagation of elastic waves
through directional transmissions'*>”>">*> and band gaps (frequency ranges of strong wave atten-
uation)”+?>"" However, though several studies have shown that the wave propagation properties
of periodic lattices are highly sensitive to the architecture of the network'*7+9%149 '3 global cri-
terion connecting the frequency and size of band gaps to the lattice topology is still not yet in place.
In this letter, we study the effects of both the global coordination number (2) and the local geo-
metric features of periodic networks made of slender beams with finite bending stiffness on the
propagation of elastic waves. We consider two dimensional periodic lattices made of Euler-Bernoulli
beams supporting both bending and axial deformations. Each beam is made of a linear elastic iso-
tropic material, has length Z, mass per unit length 7, bending stiffness £7, axial stiffness £.4 and is

characterized by a slenderness ratio A = Ly/EA/(EI) = 20. However, it is important to note

that all results presented in the paper are not affected by this specific choice of A and that identical
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Figure 3.1: Band structures of triangular periodic beam lattices. (a) Dispersion relation of the triangular lattice with
welded joints. (b) Dispersion relation of the triangular lattice with pin joints. The lattice and unit cells with both welded
and pin joints are shown as insets. Bandgaps are shown as grey-shaded areas and the flat bands at their lower edge are
highlighted in red. The Bloch modes of the flat band (the third mode) at high symmetry points of the Brillouin zone (G, X
and M, see Appendix B) are shown in (c) and (d) for the case of welded and pin joints, respectively. A plot presenting both
band structures normalized by the same factor is included in Appendix B
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findings can be obtained for network of beams characterized by any value of A > 10. To study the
propagation of small amplitude elastic waves in such lattices, we perform frequency-domain wave
propagation analysis 7> within the finite element (FE) framework using the commercial package
Abaqus/Standard and Bloch-type boundary conditions are applied to the edges of the unit cell. We
then solve the frequency-domain wave equation for wave vectors in the Brillonin zone using a per-
turbation method. Details are given in Appendix B.

We start by investigating the propagation of elastic waves in the triangular lattice (characterized
by connectivity z = 6) with both pin and welded joints. Figures 3.1a and 3.1b show the band struc-
tures in term of the normalized frequency @/ @yeiged and @/ wpin, where wyeigea = 22.4\/£W
and wy;, = 7* \/W are the first natural frequency of the a single beam with both ends
fixed (welded) and free to rotate (pin), respectively. As previously predicted”?, the dispersion rela-
tions indicate that the structure is characterized by a band gap. However, while such band gap is
believed to be due to Bragg scattering, our analysis surprisingly indicates that it is generated by loc-
alized resonance, a fact that has not been clearly pointed out before. This important observation is
clearly supported by the fact that, regardless of the type of joints, the band at the lower edge of the
band gap is completely flat (see red lines in Figs. 3.1a and 3.1b) and located in correspondence of the
first natural frequency of the beams (i.e. @/wyei4es = 1and w/wp;, = 1). Furthermore, the Bloch
mode shapes of the flat band at the high-symmetry points G, X and M reported in Figs. 3.1c and 3.1d
confirm that each beam vibrates independently according to its natural mode. As a result, the vibra-
tion energy is localized by the single-beam resonant mode, preventing the propagation of the elastic
waves. In previous studies, the local resonance mechanism was typically realized in heterogeneous
systems comprising two *>*75, three ®*3%7 or four’ different constituent materials. Remarkably,
in periodic triangular lattices, even with a single material and building block, local resonances can be
exploited to generate band gaps, providing a foundation for the design of a new class of systems to

manipulate the propagation of elastic waves. Furthermore, our results also demonstrate that, in or-
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der to attenuate the propagation of elastic waves through localized resonances, it is not necessary to

38,66,05138,132,98,19 wichin the beam lattices. Such

embed additional resonating components”#' 434145
single-building-block and single-material system with locally resonant band gap has been previously
realized in one-dimensional setup only%.

Having demonstrated that the triangular beam lattice is characterized by a locally resonant band
gap regardless of the type of joints, we now investigate the dynamic response of the hexagonal lat-
tice, which has the same lattice symmetries of the triangular lattice but a much smaller coordination
number (i.e. z = 3). As shown in Fig. 3.2a, the hexagonal lattice with welded joints also exhibits an
almost flat band at the resonant frequency of the beams (i.e. w = wyes4.4). However, in this case
the flat-band resonant mode does not open a band gap regardless of the types of joints (identical
behavior is found in the case of pin joints, as shown in Appendix B). By comparing to the triangu-
lar lattice, we note that the absence of the locally resonant band gap in the hexagonal lattice could
arise either because of the low connectivity number z or the different angle o between connected
beams. To further inspect the contribution of the latter factor, by keepingz = 3 and varying o
from 27 /3 to & /3, we construct periodic lattices that are topologically equivalent to the hexagonal
lattice and study their dynamic response. As clearly shown in Figs. 3.2b- 3.2d, though the phononic
band structure evolves significantly as e changes, no band gap is observed. It is especially important
to note that for &« = 7 /3 the beams are arranged exactly as in the triangular lattice. However, the
network topology is different, as only three, instead of six, beams connect to each other at each joint
(see inset in Fig. 3.2d). Thus, these results conclusively show that the global topology of the network
described by the coordination number plays a crucial role in determining the existence of locally res-
onant band gaps. In addition, our analysis indicates that this conclusion is not affected by the nature
of the joints (additional results for pin joints are included in Appendix B).

Next, to further demonstrate the role of the coordination number on the formation of locally

resonant band gaps, we investigate a number of periodic beam lattices with 3 < z < 6, as shown
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Figure 3.2: Band structure of periodic lattices withz = 3 and welded joints. (a) Hexagonal lattice (¢ = z7r/3): (b)
Topologically equivalent lattice with o« = 7r/7.; (c) Topologically equivalent lattice with o« = 57r/12; and (d) Topologically
equivalent lattice with « = 7 /3. The lattice structures and unit cells used in the calculations are shown as insets. Note
thatforaa = 7r/3 the arrangement of the beams is the same as for the triangular lattice, but the connectivity is still

2 = 3. Infact, although for clarity the green-colored joints are drawn separately in the unit cell of d, they are positioned at
the same spatial location. No locally resonant band gap is found for any of the configurations. Results for the same lattices
with pin joints are provided in Appendix B.
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in Fig. 3.3a. These hybrid lattices are generated by considering enlarged unit cells of the triangular
lattice and randomly removing a number of joints and all beams attached to them. Alternatively,
lattices with z close to 3 are constructed starting with an enlarged unit cell of the hexagonal lattice
and filling some randomly chosen hexagons with six triangles. For each value of z multiple config-
urations are analyzed and, since these periodic lattices do not share the same spatial symmetry of the
triangular and hexagonal lattices, additional Bloch vectors are considered to determine the presence
of band gaps, as detailed in Appendix B. The results are summarized in Fig. 3.3b, where the width of
the band gap Aw is reported for different hybrid lattices with 3 < z < 6. Each circular marker in
the plot represents the average gap width of all configurations considered for that particular value of
2, while the corresponding error bar spans the range of observed Aw. Interestingly, for lattices with
low connectivity (i.e. 3.0 < Z < 3.7 - yellow region in Fig. 3.3b), no locally resonant band gap is
observed at w = Wiy

In contrast, when 4.6 < Z < 6.0 (red region in Fig. 3.3b), all considered lattices possess a locally
resonant band gap. In particular, for structures with a very high average connectivity (i.e. z > s.5),
the band gap width Aw is linearly correlated to the coordination number z. On the other hand, if
4.6 < z < 5.7, although alocally resonant band gap always exists, its size is not solely determined
by 2, but also affected by the specific arrangement of the beams within the unit cell. Finally, when
3.7 < 2 < 4.6 (orange region in Fig. 3.3b), depending on the local geometric features, the lattice may
either have or not have a locally resonant band gap.

The results presented in Fig. 3.3 not only confirm that the global topology of the lattice is the
leading factor in determining the existence of a locally resonant band gap, but also indicate that for
an intermediate range of Z the detailed geometry of the lattice plays an important role. To further
understand the effect of the arrangement of the beams in lattices characterized by intermediate val-
ues of 2, we also study rhombic lattices with 2 = 4 and investigate the effect of the angle 3 between

the beams at the joints. We start from the case of & = 7 /2, the well-known square lattice, which
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Figure 3.3: Dynamic response of periodic lattices with3 < z < 6. (a) Representative unit cells constructed either
starting from the triangular lattice and removing a number of randomly chosen nodes or starting from the hexagonal
lattice and filling a number of randomly chosen hexagons with six triangles. For two unit cellswithz = 4.615 also the
band structures are shown. b, Relation between normalized average band gap size A&)/wwelded and coordination number
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data point indicates the band gap range of frequencies spanned by all different configurations characterized by the same
value of 2.
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Figure 3.4: Normalized band gap width Aw/w* for rhombic lattices that are topologically equivalent to the square lat-
tice. The lattice structures and joint types used in the calculations are shown as insets. The results for lattices with both
welded and pin joints are reported. Note that w, = @, eiieq and wy, = Wpin foOr lattices with welded and pin joints,
respectively.

does not have a locally resonant band gap?*. However, as shown in Fig. 3.4, when the angle 3 is pro-
gressively reduced, a locally resonant band gap appears for rhombic lattices. Interestingly, we also
find that a maximum band gap width is achieved for & = 567 /180, regardless of the joint types.
Therefore, our results indicate that, when extended to the dynamic response of the beam lattices,
Maxwell’s rule can be relaxed. In fact, whilez = 4 represents the critical threshold below which a
lattice made of spring-like ligaments becomes unstable, the rhombic lattices at the threshold can still
possess a locally resonant band gap by carefully choosing the angle 9.

In summary, we have numerically investigated the dynamic response of periodic beam lattices.
We have found that, in highly connected lattices, the beams themselves act as mechanical resonators,
enabling the generation of locally resonant band gaps. Similar to the observation reported for the
effective static properties of lattices77>9+'>*%!"4 our results indicate that the presence and width of
the locally resonant band gap depends on the coordination number (i.e. average lattice connectivity,
Z). A reduction of Z results in a decrease of the band width, until a critical threshold is reached, be-

low which the band gap completely closes. On the other hand, we have found that, different from
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the ground state static properties 963011 the dynamic response of the system is not sensitive to the
type of joints. Under dynamic loading, the lattices are in an excited state characterized by a finite
level of energy, and the response is not qualitatively affected by the bending stiffness of the joints.
Moreover, we have also shown that the average connectivity is not enough to predict the dynamic
characteristics of a system when z is near the critical threshold. In fact, we identified a transition
region where the dynamic response of the lattices is sensitive to the detailed architecture of the net-
work. Our work paves the way towards the design of a new class of systems made of identical elastic
beams that can effectively attenuate the propagation of elastic waves at low frequencies by exploiting
local resonances. As an example, highly connected periodic lattices with beam length ~ 40 mm,
thickness ~ 2.0 mm, which are made of an acrylic polymer that can be easily 3D-printed (Young’s
modulus ~ 1.14 GPa, density ~ 1050 kg/m?), exhibit a locally resonant band gap in the audible fre-

quency range (i.e. at around s9o Hz and 1340 Hz for the case of pin and welded joints, respectively).
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No, no. These concepts (topological bundle theory) were not dreamed up.

They were natural and real.

Shiing-Shen Chern

God made the bulk; surfaces were invented by the devil.

Wolfgang Pauli

Topological Band Gap

The content of this chapter was published in: Wang P, Lu L, Berroldi K. Topological Phononic Crys-

tals with One-Way Elastic Edge Waves. Physical Review Letters. 2015;115:104302">°.
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TOPOLOGICAL STATES in electronic materials, including the quantum Hall effect™ and topolo-

gical insulators #%¢, have inspired a number of recent developments in photonics >, phonon-
146,115,

ics?% 17 and mechanical metamaterials "+5>°%* In particular, in analogy to the quantum an-

omalous Hall effect?®, one-way electromagnetic waveguides in two-dimensional systems have been
realized by breaking time-reversal symmetry 3534109,

Very recently unidirectional edge channels have been proposed for elastic waves using Coriolis
force in a non-inertial reference frame *?, but such a rotating frame is very difficult to implement in
solid state devices. Moreover, one-way propagation of scalar acoustic waves has also been proposed
by introducing rotating fluids*#'+>%. However, it is important to recognize that elastic waves in
solids have both transverse and longitudinal polarizations, while acoustic waves in fluids are purely
longitudinal. As a result, it is challenging to achieve topological protection for elastic waves on an
integrated device platform.

Here, we present a robust strategy to create topologically nontrivial edge modes for both lon-
gitudinal and transverse polarizations in a solid medium. In particular, we introduce gyroscopic
phononic crystals, where each lattice site is coupled with a spinning gyroscope that breaks time-
reversal symmetry in a well-controlled manner. In both hexagonal and square lattices, gyroscopic
coupling opens band gaps that are characterized by Chern numbers of 1and 2. As a result, at the
edge of these lattices both single-mode and multi-mode one-way elastic waves are observed to propag-
ate around arbitrary defects without backscattering.

To start, we consider a hexagonal phononic crystal with equal masses (7, = m,) connected by
linear springs (red and black rods in Figs. 4.1a and 4.1b). The resulting unit cell has four degrees of

freedom specified by the displacements of 7, and m, (U = [s", )",

™, y"]). Consequently,
there are a total of four bands in the band structure (Fig. 4.1c). Note that this is the minimal num-
ber of bands required to open a complete band gap, since the first two elastic dispersion bands are

pinned at zero frequency. The phononic band structures are calculated by solving the dispersion
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Figure 4.1: Ordinary and Gyroscopic Phononic Crystals: (a) Schematic of the hexagonal lattice. The blue and grey spheres
represent concentrated masses m, and m, = mz,, respectively. The red and black straight rods represent mass-less linear
springs with stiffness &, and k, = k,/zo, respectively. The dashed cell is the primitive cell of the lattice. (b) Unit cell for
the ordinary (non-gyroscopic) phononic crystal. (c) Band structure of the ordinary (non-gyroscopic) phononic crystal. The
inset is the Brillouin zone. (d) Schematic of a gyroscope with the top tip pinned to a mass in the lattice. (e) Unit cell for the
gyroscopic phononic crystal. (f) Band structure of the gyroscopic phononic crystal (&t; = o, = 0.3m,) with the Chern
numbers labeled on the bulk bands. The frequencies are normalized by w, = 4/ /e,/m,.
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equation 46

K(x) ~ MU =0 (41

for wave vectors u within the first Brillouin zone. Here, @ denotes the angular frequency of the
propagating wave and M = diag{m,, m,, m,, m,} is the mass matrix. Moreover, K is the 4 x 4
stiffness matrix and is a function of the Bloch wave vector «. The band structure of this simple
lattice is shown in Fig. 4.1c. As expected, in the long wavelength regime (near G-point) the first
and second bands correspond to transverse and longitudinal modes, respectively, while for short
wavelengths (near K-points) all modes are found to have mixed polarization (detailed analysis of the
modal polarization is given in Appendix C). Moreover, we observe a quadratic degeneracy between
the third and fourth bands at the center of the Brillouin zone and a complete gap between the
second and third bands due to the lack of inversion symmetry. However, this gap is topologically
trivial, since time-reversal symmetry is not broken and the Chern numbers of the bands are all zero.
In order to break time-reversal symmetry, we introduce gyroscopic coupling 80,1417 and attach
each mass in the lattice to the tip of the rotational axis of a gyroscope, as shown in Fig. 4.1d. Note
that the other tip of the gyroscope is pinned to the ground to prevent any translational motion,
while allowing for free rotations. Because of the small-amplitude in-plane waves propagating in the

phononic lattice, the magnitude of the tip displacement of the each gyroscope is given by

Uip = hsin 9 = b9 = @™ for 0] <1, (4.2)

where b and $ denote the height and nutation angle of the gyroscope (Fig. 4.1d) and © is the amp-
litude of the harmonic change in §. Interestingly, the coupling between the mass in the lattice and
the gyroscope induces an in-plane gyroscopic inertial force perpendicular to the direction of Uy,

14,37

Fy = tiw* alUyp, (4.3)
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where a is the spinner constant that characterizes the strength of the rotational coupling between

two independent inertias in the 2D plane. As a result, the mass matrix in Eq. (4.1) becomes,

o) io, o) o

~ —ia; O o o

M =M + : (4.4)
o o o i,
o) o —ia, O

where o, and a, denote the spinner constants of the gyroscopes attached to 7, and m,, respectively.
We note that the imaginary nature of the gyroscopic inertial effect indicates directional phase shifts
with respect to the tip displacements, which breaks time-reversal symmetry.

We now consider the band structure of the gyroscopic hexagonal lattice. Interestingly, we find
that the original band gap between the second and third bands first closes into a Dirac cone at the
K-points and then reopens as we gradually increase the magnitude of &, and «,. In particular, for
o, = a, = 0.07m, the gap is closed and a pair of Dirac cones at K-points emerges, while for o, =
a, = 0.3/m; the gap reopens, as shown in Fig. 4.1f. We also note that this topological transition at
o, = a, = 0.07m, isaccompanied by a band inversion” between the second and third bands
near the K-points (the complete process of this topological transition is shown in the Appendix
C). Since each Dirac point carries a Berry phase of 7 and there is a pair of Dirac cones in the first
Brillouin zone ", we expect the total exchange of Berry curvature between the two bands to be 277,
resulting in one chiral edge state in the gap between the second and third bands. Similarly, we also
observe that the quadratic degeneracy found for the ordinary lattice between the third and fourth
bands at the Brillouin zone center (see Fig. 4.1¢) is opened into a full band gap when gyroscopic

coupling is introduced (see Fig. 4.1f). Since such a quadratic touching carries a 27 Berry phase™,

"Note that on the boundary of the first Brillouin zone of the hexagonal lattice there are six Dirac points.
However, since at each point only one third of the Dirac cone is included in the first Brillouin zone, we have a
p y
pair of Dirac cones in total.
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Figure 4.2: Edge modes in Gyroscopic Phononic Crystal: (a) 1D band structure showing bulk bands (black dots) and
edge bands (colored lines). Red solid lines represent edge modes bound to the top boundary, while blue dashed lines
represent edge modes bound to the bottom boundary. (b) Modal displacement fields of top edge states with negative
group velocities. (c) Modal displacement fields of bottom edge states with positive group velocities

there should be one chiral edge state in the gap between the third and fourth bands. Importantly,
the fact that band gaps in Fig. 4.1f are topologically-nontrivial is confirmed by the non-zero Chern
numbers labeled on the bands (the calculations conducted to compute these topological invariants
are detailed in the Appendix C). Therefore, in the frequency ranges of these nontrivial band gaps,
we expect gapless one-way edge states, whose number is dictated by the sum of Chern numbers
below the band gap, in agreement with our intuitive arguments of Berry phase.

To verify the existence of such one-way edge states, we perform one-dimensional (1D) Bloch wave
analysis on a supercell comprising 20 X 1 unit cells, assuming free boundary conditions for the top
and bottom edges. In full agreement with the bulk Chern numbers, the band structure of the su-
percell shows one one-way edge mode on each edge in both band gaps. For modes bound to the top
edge (Fig. 4.2b), the propagation can only assume negative group velocities (red solid lines with neg-
ative slope in Fig. 4.2a). On the other hand, the modes bound to the bottom edge (Fig. 4.2c) possess
positive group velocities (blue dashed lines with positive slope in Fig. 4.2a). Since these edge modes
are in the gap frequency range where no bulk modes may exist, they cannot scatter into the bulk

of the phononic crystal. Furthermore, their uni-directional group velocities guarantee the absence
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of any back scattering and result in the topologically protected one-way propagation of vibration

energy.

Figure 4.3: Transient Response of a gyroscopic phononic crystal consisting of 20 X 20 unit cells with a line defect on the
right boundary: Snapshots of the displacement field at (a) t = 2.7, (b) ¢ = 127, (c) t = 22T, and (d) ¢ = 327, where
Ty = +/ ml//eI is the characteristic time scale of the system. Starting from # = o, a time-harmonic excitation force
F(1) = [F(2), F,(¢)] = [1, 1] Foe™“"is prescribed at the site indicated by the red arrow.

To show the robustness of these edge states, we conduct transient analysis on a finite sample com-
prising 20 X 20 unit cells with a line defect on the right boundary created by removing twelve masses
and the springs connected to them (Fig. 4.3a). A harmonic force excitation, Foe ™™, is prescribed at
a mass site on the bottom boundary (red arrow in Fig. 4.3a) with frequency within the bulk band
gap between the second and third bands (w/w, = 1.3). In Fig. 4.3 we plot snapshots of the ve-
locity field at different time instances, 2/ T, =2, 12, 22 and 32, where T, = +/m,/k, is the char-

acteristic time scale of the system. Remarkably, because of their topological protection, the edge

modes circumvent both the sharp corner and the line defect without any reflection. We note that,
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although the results presented in Fig. 4.3 are for an harmonic excitation with 45° inclination (i.e.
F(r) = [F(2), F(1)] = [1, 11F,e "), the one-way edge propagations are not affected by the
direction of the applied force (additional results are included in the Appendix C).

Next, we investigate the effect of the lattice geometry and start with an ordinary square phononic
crystal with masses 7, connected by springs with elastic constant &,. To make the lattice statically
stable, we add an additional mass 7, = m, at the center of each unit cell and connect it to its
four adjacent 7, masses by springs with elastic constant k£, = 2k, (See Figs. 4.4a). The band struc-
ture for this lattice (shown in Fig. 4.4b) contains a pair of three-fold linear degeneracies among the
first, second and third bands at the X points of the Brillouin zone. Note that this type of degen-
eracy, consisting of a locally flat band and a Dirac point, is known as the “accidental Dirac point”
or ”Dirac-like cones” ®+#. Interestingly, while this type of degeneracy was previously found to
occur at the Brillouin zone center and very sensitive to the system parameters, in our lattice it ro-
bustly appears at the X points when 7, = m,. Upon the introduction of gyroscopic inertial effects
(e, = a, = 0.3my), these three-fold degenerate points are lifted and a gap is created between the
second and third bands (Fig. 4.4c). The Chern numbers of two bulk bands below the gap is two,
predicting the existence of two topological edge states. The presence of multi- mode one-way elastic
waves is consistent with the fact that the Berry phase associated with such a three-band degeneracy
is 277 7%, resulting in a total exchange of Berry curvature of 47 when gapping two of these points in
the Brillouin zone . In Figs. 4.4d and 4.4, we plot the band structure of the corresponding 20 <1
supercell, highlighting the two one-way edge modes and their modal displacement fields.

To summarize, we demonstrated that gyroscopic phononic crystals can support topologically
non-trivial gaps, within which the edge states are unidirectional and immune to back-scattering.

The transient analysis confirmed that the propagations of such topological edge waves are robust

"Note that on the boundary of the first Brillouin zone of the square lattice there are four equivalent
X-points. However, since at each point only one half of the three-band degeneracy is included in the first
Brillouin zone, we have a pair of three-band degeneracies in total.
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against large defects and sharp corners. Moreover, we showed, for the first time, the multimode
one-way states (Chern number = £2.) in phononic systems, opening more avenues for the design

of future topological waveguides and devices. While in this study we developed a comprehensive
framework for the design and analysis of topological phononic crystals, we recently became aware of
a parallel effort in which time-reversal symmetry breaking in a gyroscopic system has been theoretic-
ally analysed and experimentally demonstrated *s.

107,56

Finally, we note that phononic crystals and acoustic metamaterials °®323%5725 that enable

46

manipulation and control of elastic waves have received significant interest in recent years”"4°, not

only because of their rich physics, but also for their broad range of applications ©93:119:49:9177:13,22:26,605370:29
Interestingly, the edge wave modes in phononic crystals are important in many scenarios 18,117,5,61
including vibration control™ and acoustic imagingze. However, most of reported studies have

focused on topologically trivial surface waves that can be easily scattered or localized by defects™.

Therefore, the work reported here could open new avenues for the design of phononic devices with

special properties and functionalities on edges, surfaces and interfaces.
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Figure 4.4: Square Lattice results: (a) Schematic of the square lattice. The blue and grey spheres represent concentrated
masses m, and m, = m,, respectively. The black and red straight rods represent mass-less linear springs with stiffness
k,and k, = 2.k, respectively. (b) Band structure of the ordinary (non-gyroscopic) phononic crystal. The insets are the
Brillouin zone and the unit cell. (c) Band structure of the gyroscopic phononic crystal (&, = ot, = 0.3m2,) with the Chern
numbers labeled on the bulk bands. Frequencies are normalized by w, = k,/ml. The inset is the unit cell. (d) 1D band
structure showing bulk bands (black dots) and two topological edge bands (red solid lines) bound to the top boundary.
Note that the edge bands that are bound to the bottom boundary are not shown here. (e) Modal displacement fields of the
edge states shown in (d).
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Nothing is too wonderful to be true if it be consistent with the laws of nature.

Michael Faraday

A picture is worth a thousand words; an equation is worth a thousand pictures;

and an idea is worth a thousand equations!

Conclusion

Phononic crystals and acoustic metamaterials provide many opportunities to manipulate sound and
vibrations. One of the most interesting of these is their ability to tailor the propagation of acoustic
and elastic waves through phononic band gaps - frequency ranges of strong attenuation. Although
there have been numerous studies focused on band-gap materials in the last two decades, only two
types of gaps have been demonstrated: Bragg-type gaps emerging from the collective scattering and

hybridization gaps created by embedded resonators. In this thesis, I report the discoveries of three
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new types of phononic band gaps, providing novel strategies for the design of next-generation smart
systems with targeted dynamic behavior.

First, as shown in Chapter 2, geometric frustrations in acoustic waveguide networks comprising
triangles or pentagons can induce band gaps in the vicinity of the odd numbered resonant frequen-
cies of the individual channels. The numerical and experimental results reveal that this new mech-
anism is different from that of embedded resonators in two aspects. On one hand, in conventional
designs of acoustic metamaterials, there has always been a clear distinction between the bulk matrix
material and the resonating unit. Acoustic networks with geometric-frustration gaps, on the con-
trary, comprise air channels that, surprisingly, function as both the matrix and the resonator. On
the other hand, locally resonant band gaps previously observed in metamaterials are not sensitive to
the spatial arrangement of resonators, and they can also be retained in the case of randomly distrib-
uted resonators. In contrast, the frustration-induced band gaps are fundamentally dependent on the
spatial configuration of the air channels and can be completely determined by the lattice geometry.
Besides these peculiar features, this study also provides the first demonstration for the geometric
frustration of continuous wave function in a macroscopic system which can be easily fabricated and
conveniently studied.

Second, band gaps in lattices of structural beams with finite bending stiffness are also found to be
anew kind in Chapter 3. Although these gaps have been previously predicted and are well known
to the research community, our new results indicate that they are also hybridization gaps caused by
the resonance mode of individual beams. Similar to the case of air channels in acoustic waveguide
networks, each beam in the lattices actually act as both a part of bulk matrix and an independent
resonating unit. This discovery compels the study to focus on the conditions for the formation of
the gaps in beam lattices of different configurations. However, the simple argument of geometric
frustration can not be directly applied to this case anymore. Since beams can support both axial

and flexural deformations, the waves in these lattices are vectorial in nature. Moreover, the flexural
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wave on each beam has a quadratic dispersion by itself, which further complicates the problem.
Extensive numerical studies eventually unearth the fact that the presence and width of the locally
resonant band gap in beam lattices depends on the average lattice connectivity of the network. The
gap always exists in lattices with high connectivity, and there is a critical threshold for the average
connectivity, from which the gap size is purely dictated by the global lattice topology. However, near
this critical value, the detailed local geometry of the lattice also has strong effects. Furthermore, The
rotational stiffness of the joints in the network is found to be irrelevant to the dynamic response of
the lattices. The new findings discussed here offer guidelines for the optimization of beam networks
for dynamic behaviors.

Finally, Chapter 4 provides a phononic analogue of the electronic quantum Hall effect, which
gives rise to robust edge states and further leads to the discovery of topological insulators. In partic-
ular, gyroscopic effects are introduced into typical two-dimensional phononic lattices comprising
point masses and linear springs. Topologically non-trivial phononic gaps for both longitudinal and
transverse wave-polarizations are created as a result of time-reversal breaking by gyroscopes. Nu-
merical methods are developed to calculate the topological invariant, Chern number, that charac-
terizes the system. Interestingly, elastic waves bound to the edges in topological phononic crystals
are shown to be strictly one-way and robust against any heterogeneity. In addition, multi-mode
topological edge waves are demonstrated by changing the configuration of base lattice. It is worth
pointing out that, although the spring-mass system investigated in Chapter 4 is nothing more than
a minimalistic “toy model”, it is fundamental to any topological band gaps, in a way similar to the
models shown in Fig. 1.1 of Chapter 1 for conventional types of band gaps. This study of topological
phononics provides a new concept and methodology for future scientific studies and technological
advances.

To summarize, the two systems discussed in Chapters 2 and 3 are different but related. Both are

based on lattice geometries and have resonant band gaps “spotaneously” created by lattice compon-
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ent in single-material designs without explicitly embedded resonators. The investigations on these
new gap-forming mechanisms, namely geometric frustration and lattice connectivity, can signific-
antly widen the range of possibilities for designing dynamic devices with novel properties in a much
simpler way than has been possible so far.

More importantly, the topological phononic band gap discussed in Chapter 4 possess a striking
and technologically promising property: the existence of edge waves traveling in a single direction
without any possible backscattering, regardless of the existence of defects or disorder. This phe-
nomenon does not occur in any ordinary wave devices, promising novel applications for vibration
isolators, modulators, and transducers. In fact, much like the scientific paradigm shift caused by
topological insulators in semi-conductor materials for electronics, the study of wave topology rep-
resents the new frontier of acoustic technology and will certainly revolutionize the research field
in the next few years. Discoveries and inventions in phononic crystals and acoustic metamaterials
have all been based on topologically-trivial gaps and wave modes in the last two decades. Now a new

topological era awaits.
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Supplemental Material to Chapter 2

A1 CALCULATION OF DISPERSION RELATIONS FOR ACOUSTIC NETWORKS

A1 FINITE ELEMENT FORMULATION

In this study we focus on acoustic networks comprising a periodic array of narrow air channels of

length L and cross-sectional width ¢, for which # << L. Therefore, in any individual channel the
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free vibrations of the enclosed air column can be described by the 1D wave equation 84

rp L0
or  Coe

(A.x)

where p is the acoustic pressure (the local deviation from the ambient pressure), ¢ is the speed of
sound in the channeland x € [o, L] denotes the position along the channel. Since for a periodic
network of air channels Eq. (A.1) cannot be solved analytically, we determine its solution numeric-
ally by using the finite element (FE) method.

To develop the FE formulation, we start by restating Eq. (A.1) in the weak form. We multiply

both terms in Eq. (A.1) by an arbitrary function w(x) and integrate over the domain [o, L],

L 2.
/ PP g - / 0. V. (A2)
o 8x2

Using integration by parts

’p op\ Owdp
Yo Ox ( ax) Oz Ox’ (&3)
Eq. (A.2) can be rewritten as
&p L op _ [Fowdp
o 81"dx ¢ [/0 Ox ( 8x> o , Ox 8xdx v, (A-4)

which, using the fundamental theorem of calculus, can be simplified to

L 0w op
) ) e 8x(9x} o, Yw, (Ass)

where I'is the boundary of the 1D channel and consists of the two end points. In the following,
the portion of the boundary where the p is prescribed is denoted by I', while the boundary where

Op/ Ox is prescribed is denoted by I'gy. Note that I),Ul's, = I'and IT,NT, = o. Next, we construct
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the arbitrary function w(x) so that w = o on T, and the pressure field so that p = p on T, yielding

L w 8p B ) B
_ | aros ] = o, Vwwith w = o on T}, (A.6)

p op
o 8t"dx CZ[ Ox |1

To numerically solve Eq. (A.6), we then construct a mesh, introduce an approximation for the
scalar fields p and w and formulate the discrete FE equations. Here, we discretize the 1D air channels
into a number of line elements of length L, and choose to approximate the fields in each line as a
linear function (so that each element has two nodes located at x¢ and x{). It follows that over each
element p and 0*p/OF* are approximated as

P =Nwa, 2 N (A7)

where d° and d¢ are vectors containing the nodal values of p and 8*p/9# and
N(e) = [ —x, ¥ — ] (49)

is the so-called element shape function matrix. Note that the superscript e has been introduced to
indicate that the functions pertain to element e. Moreover, according to the Galerkin method, we

use the same approximation also for w,
w(x) = N°(x)w°. (A.9)

Next, to efficiently integrate Eq. (A.6), we evaluate the integral over [o, L] asa sum of integrals over

individual element domains [x¢, x¢],
Z”“ w T p % durT dpf T
dx+ ¢ “—dx— | v = = o, (A.10)
— p dx dx dx re
=1 T 1 »
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where 7,; is the total number of line element used to construct the mesh. Note that in the equation
above we have taken the transpose of the arbitrary function wj this does not change the value of the
expression as w is a scalar, but it is necessary for consistency when we substitute matrix expressions
for w and its derivatives.

Substitution of Egs. (A.7) and (A.9) into Eq. (A.10) yields

nel " ) x§
Z wel / NNdxd® + cz/ B Bdxd’ — ¢ (N"po) =o, (A.1)
— . . dx ) re
——_— —— — —
Me K¢ fe
where
ON*
B¢ = e Lie[—l, 1. (Ax2)

Note that in Eq. (A.11) we have introduced the element matrices M and K¢

% L, |2 1 % |1 —I
:wz/IWNwz , wzf/fWFMZ :
- 6 e L,
1 I 2 1 —1I I
(A.13)
and the element vector f*¢
d
f%:ﬁ<N”]j , (Ar4)
dx )

a
which are the essence of the FE method formulation for this problem and serve as the building block
for its global implementation.

Since the element and global nodal vectors can be related as

d° = Ld, d‘ = Led, w¢ = L'w, (A.s)
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where L¢ is the gather matrix for a given element, which gathers the nodel quantities of each ele-
ment from the global nodal vector (note that L° is a Boolean and consists strictly of ones and zeros).

Substituting Eq. (A.15) into Eq. (A.11) we obtain

wl (i L'MeLed + Z[: LTKLd — zl: Lfof> =o. (A.16)

e=1 e=1 e=1

If we now define the global matrices M and K as

el el
M =) LML, K=> LKL, (A7)
and the global vector f as
Nel
f=> L7F (A.18)
Eq. (A.16) can be rewritten as
wT (M& L Kd- f) —o. (A.19)

Finally, since Eq. (A.19) has to be satisfied of all possible w, it follows that

Md+Kd-f=o, (A.20)

which represent the FE equations for the 1D wave equation.

A2 FREQUENCY-DOMAIN ANALYSIS

To calculate the dispersion relation for an acoustic periodic network, we focus on its unit cell spanned

by the lattice vectors a, and a, (highlighted in red in Fig. A.1). We then consider the wave motion

d = pe, (A1)
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where p is the vector of nodal amplitudes of vibration and w is the circular frequency. Introducing

Eq. (A.21) into Eq. (A.20) we have

(K—«"M)p = o, (A22)

which is a generalized eigenvalue problem. Note that here we consider a unit cell in isolation from
other unit cells, and thus the global vector f has been set to zero.
Next, we apply Bloch-type boundary conditions, so that the pressure of each pair of nodes (here

denoted as 4 and B) periodically located on the boundary of the unit cell is related as

ps = paexp(ik - r43), (A.23)

where k is Bloch-wave vector and r 45 is the distance between the pair of nodes periodically located
on the boundary.

Finally, we solve Eq. (A.22) with (A.23) for a number wave vectors k lying in the reciprocal space.
Note that, since the reciprocal lattice is also periodic, we can restrict the wave vectors k to a certain
region of the reciprocal space called the first Brillioun zone (indicated by the dashed polygons in
Fig. A.1). In addition, we may further reduce the domain to the irreducible Brillioun zone (IBZ)
(indicated by the yellow areas in Fig. A.1) by taking advantage of reflectional and rotational symmet-
ries. Operationally, the band structures for the acoustic networks are constructed by calculating the
eigen-frequencies w(k) for k vectors on the perimeter of the IBZ and the band gaps (defined as fre-
quencies range in which the propagation of the waves is forbidden) are obtained by the frequency
ranges within no w(k) exist. Numerically, a discrete set of k vectors on the perimeter of the IBZ
needs to be chosen for the band gap calculations. For the simulations presented in this paper, twenty

uniformly-spaced points on each edge of the IBZ are considered.
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A.I.3 DISPERSION RELATIONS FOR ACOUSTIC NETWORKS

While in Fig. 2.1 of Chapter 2 we report the dispersion relations for square and triangular lattices,
we have also investigated the wave propagation in a number of other acoustic networks. In par-
ticular, in Fig. A.1 we report the dispersion relations for Kagome (see Fig. A.1(a)), hexagonal (see
Fig. A.1(b)), equilateral pentagonal (see Fig. A.1(c)), mixed pentagons and rhombi (see Fig. A.1(d))
and snub square (see Fig. A.1(e)) configurations. Interestingly, the results indicate that any lattice
comprising triangles or pentagons is characterized by frustration induced acoustic band gaps in the

vicinity of the odd numbered resonance frequencies for the individual channels.
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Figure A.1: Dispersion relations for acoustic networks comprising a periodic array of narrow air channels: (a) Kagome,

(b) hexagonal, (c) equilateral pentagonal, (d) mixed pentagonal and rhombic, and (e) snub square lattices. Lattice config-
urations, unit cells (highlighted in red) and Brillioun zones are shown on the left. The calculated dispersion relations are
shown on the right. The grey regions in the plots highlight the hybridization band gap induced by geometric frustration.
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A.> EFFECT OF THE FINITE WIDTH OF THE AIR CHANNELS

While the results presented in Fig. 2.1 of Chapter 2 are for ideal acoustic networks made of 1D chan-
nels, we have also investigated the effect of the finite width 7 of the tubes. To this end, we have per-
formed FE simulations using the commercial package ABAQUS/Standard and studied the dynamic
response of lattices comprising 2D rectangular channels of length L and width r meshed with 4-node
bilinear acoustic elements (ABAQUS element type AC2D4). The calculated band structures for the
square and triangular networks comprising comprising channels with different values of L/z are re-
ported in Figs. A.2 and show that the dynamic response of the system is not significantly affected by

the finite-width of the channels.
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Figure A.2: Effect of the finite width of the channels: band structures for the square and triangular networks character-
ized by different values of L/z‘. The grey regions in the plots highlight the hybridization band gap induced by geometric
frustration.
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Supplemental Material to Chapter 3

B.i CALCULATION OF DISPERSION RELATIONS FOR BEAM LATTICES

B.n.1 PERIODIC LATTICES AND UNIT CELLS

The propagation of elastic waves in beam lattices is investigated numerically by considering 2D peri-
odic lattices of infinite extent and focusing on their unit cell (i.e. a repeating geometric unit). The

unit cells used in this study are shown in Fig. B.1. Note that for hexagonal (Fig. B.1b) and rhombic
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(Fig. B.1c) lattices, the unit cells used in the calculations are not the minimum repeating units. In
both cases an enlarged rectangular unit cell is chosen to be able to investigate all topologically equi-
valent lattices (constructed by varying the angles between connected beams) using the same compu-

tational setup.

INONONONO
N N/NN/\/

welded joint
JAVATAVAVA LY B Y
VVVVV i
pin joint
kY
Y M
welded joint
G X k.
pin joint
ky
Y M
weidad joint
G X k.
pin joint l

Figure B.1: Periodic lattices (left column) and their corresponding unit cells (central column), Brillioun zones (right
column) and irreducible Brillioun zones (yellow shaded region) used in this study for: a, Triangular lattice; b, Hexagonal
lattice and its topologically-equivalent variants; and ¢, Square lattice and its topologically-equivalent variants (rhombic
lattices).
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Bz FREQLJENCY—DOMAIN ANALYSES AND BRILLIOUN ZONES

In order to obtain the dispersion relations of the propagating waves in the periodic lattices, fre-
quency domain analyses are performed via finite element (FE) simulations using the commercial
software ABAQUS/STANDARD. Preliminary calculations were performed using using both
Euler-Bernoulli beam elements (ABAQUS element type B23) and Timoshenko beam elements
(ABAQUS element type Bar). Since the two sets of simulations yielded identical results, we chose
to use Euler-Bernoulli beam elements for all the simulations. Bloch-wave* boundary conditions are

applied to the boundaries of the unit cells:

u(x +r) = u(x)e’kr, (B.x)

where u, X, r and k denote the degrees of freedom vector, position coordinates, spatial periodicity
in the lattice configuration and bloch-wave vector, respectively. Note that for two-dimensional beam
elements the vector u has three components, corresponding to two displacements (Ur and Uz2) and
one rotation (UR3).

Focusing on the propagation of small-amplitude waves, we solve the linearized wave equation by
using a perturbation method to obtain the dispersion relations w = w(k). Due to the translational
symmetry of the lattices, we only need to study w(k) for k vectors in the first Brillouin zone®™°.
Moreover, this domain can be further reduced by taking advantage of rotational, reflectional and
inversional symmetries of the Brillouin zone. This allows us to define the irreducible Brillouin zone
(IBZ)”, shown as the yellow triangle GXM in Fig. B.1a and yellow rectangles GXMY in Figs.
B.1b and B.1c. More details of mathematical formulation and numerical implementation are given in
our previous publications 75,

The phononic bandgaps are identified by checking all eigen-frequencies w(k) for k vectors on the

perimeter of the IBZ. The bandgaps (i.e. range in frequencies for which the propagation of waves is
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barred) are given by the frequency ranges within which no w(k) exist. Numerically, a discrete set of
k vectors on the IBZ perimeter needs to be chosen in the band-gap calculation. For the simulations
presented in this paper, twenty uniformly-spaced points on each edge of the IBZ are used for the

purpose of identifying band-gaps.
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Figure B.2: Band structures of a triangular periodic beam lattices with welded (dashed red lines) and pin (continuous
blue lines) joints. The frequency bands in the plot are normalized by w, = wpm/wz.

B.2 AppiTioNaL RESULTS

B.2.1 TRIANGULAR LATTICE — COMPARISON BETWEEN PIN AND WELDED JOINTS

The sound speed in the long-wavelength limit (i.e. the initial slope of the bands originated from
G, the center of the first Brillouin zone) is directly correlated to the static homogenized stiffness

of the structure. However, the slopes of the bands in Figs. 3.1a and 3.1b in Chapter 3 should not be
compared directly for that purpose, since they are plotted using different normalization factors (i.e.

the natural frequencies of a single beam with welded-welded and pin-pin boundary conditions,
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respectively). In fact, wyerdeqd and wpy, differ by a factor of 22.4/(3.14)* = 2.27. To facilitate the direct
comparison of the band structure reported in Figs. 1a and 1b, we normalized the band structure for
the case of both welded and pin junctions using the same factor, wo = @pin/#* = Wyeided/22-4-

These results are reported in Fig. B.2.

B.2.2 HEXAGONAL LATTICE AND ITS TOPOLOGICALLY EQUIVALENT LATTICES WITH PIN

JOINTS

In Chapter 3 we demonstrated that the dynamic response of the hexagonal lattice with welded joints
is characterized by no locally resonant bandgap. Furthermore, we showed that no band gap exists
in periodic lattices with welded joints that are still characterized by 2 = 3, but for which the angle
between connected beams, ., varies from 27 /3 to 7 /3 (see Fig. 3.2 in Chapter 3).

Here, we report the band structures for the same lattices as those considered in Fig. 3.2 in Chapter
3, but with pin joints. The results shown in Fig. B.3 indicate that the flat-band resonant mode does
not open a bandgap in this family of lattices even in the case of pin joints, confirming that the nature
of the joints does not significantly affect the presence or absence of locally resonant bandgaps. How-
ever, it is important to note that the nature of the joints affects the static response of the system. In
fact, the dispersion diagrams of the lattices with pin joints are characterized by a flat band at zero

frequency * (indicated by the green lines in Fig. B.3). This flat band atw = o corresponds to a

9 62,12,120,114,11 »72,

or “soft 77>+ mode predicted by the Maxwell’s Rule” and describes the ground

“floppy
state behavior of the lattice. Essentially, the existence of these zero-energy modes indicates that the
lattice is not stable in a static sense and will collapse under infinitesimal perturbations. On the other

hand, the full dispersion relation, including the “elevated flat bands” at w/ Wpin = 1, defines the

excited state response of the lattice under finite-energy dynamic loading. Interestingly, our results

"Note that such zero-frequency band is not present in the dispersion relation of a triangular lattice with
pin joints (see Fig. 3.1b in Chapter 3), since in that case the network is stable according to Maxwell’s Rule”s.
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indicate that, differently from the ground state behavior, the excited state behavior of the lattices is
not significantly affected by the nature of the joints.

Finally, it is worth noting that the band structures of a periodic lattices withz = 3 and & = 27 /3
(i.e. hexagonal lattice, see Fig. B.3a) and & = 7 /3 (see Fig. B.3d) are identical. In fact, our numerical
calculations show that for any 8 in the range [o, # /2] the band structure of a periodic lattice with
o = 7 /2 + fis the same as that of a lattice with « = # /2 — 8. More examples highlighting this

symmetry are provided in Fig. B.4.
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B.2.3 PERIODIC LATTICES WITH3 <2< 6

To better understand the role of the coordination number on the formation of locally resonant
bandgaps, we investigated the dynamic response of several periodic beam lattices with average con-
nectivity 3 < z < 6 comprising an array of triangles and hexagons . While in Fig. 3.3b in Chapter 3
we summarized the results by reporting the evolution of the width of the bandgap Aw as a function
of the coordination number 2, here we show the dispersion relations for some of these lattices.

We note that, in general, these hybrid lattices do not possess rotational, reflectional and inver-

sional symmetries and that only the time reversal symmetry*® is guaranteed, yielding:

wk) = w(—k). (B.2)

Therefore, Bloch vectors spanning half of the Brillouin zone need to be considered to construct
the band structure. In practice, we calculate w(k) for 21 x 21 different k vectors in half of the Bril-
louin zone and use the symmetry argument (Eq. (B.2)) to map the results to the other half.

In Figs. B.s, B.6 and B.7 we show the band structures for periodic lattices withz = 3.36,2 =
4.615 and Z = 5.143, respectively. For z = 3.36 no locally resonant bandgap is observed (see Fig. B.s).
Differently, forz = 3.36 both configurations with (see Fig. B.6-top) and without (see Fig. B.6-
bottom) locally resonant bandgap are found. Finally, for the case of high average connectivity such

as z = 5.143 all considered lattices possess a locally resonant bandgap (see Fig. B.7).

"Note that the average connectivity can be easily calculated as the ratio between twice the total number of
beams and the total number of nodes of the unit cell.
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B.2.4 RHOMBIC LATTICES

In Chapter 3 we show that in rhombic lattices a locally resonant bandgap appears by progressively

reducing the angle 3 between the beams, regardless of the type of joints (see Fig. 3.4 in Chapter 3).
Here, we show the band structures for rhombic lattices with & = 7 /18 (see Fig. B.8-a2), & =

7 /6 (see Fig. B.8-b), & = # /3 (see Fig. B.8-c)and & = # /2 (square lattice - see Fig. B.8-d). Both

lattices with welded and pin joints are considered. Note that for the cases of pin joints the lattices are

characterized by a zero-frequency mode in the G — M direction (see green lines in Fig. B.8), since

the structures are isostatic and can be infinitesimally deformed without incurring any energy cost.
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Figure B.3: Band structures of periodic lattices withz = 3 and pin joints. The lattice structures and unit cells used

in the calculations are shown on the left. a, Hexagonal lattice (0 = 271‘/3); b, Topologically equivalent lattice with

a = 7r/2; ¢, Topologically equivalent lattice with ot = 57r/12; and d, Topologically equivalent withat = 7r/3. Note
that the arrangement of the beams in d is the same as in the triangular lattice, but the connectivity is stillz = 3. Infact,
although for clarity the green-colored joints are drawn separately in the unit cell of d, they are positioned at the same
spatial location. No locally resonant bandgap is found for any of the configurations. The zero-frequency floppy modes are
highlighted as green lines. Results for the same lattices with welded joints are provided in Chapter 3.
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Figure B.4: Symmetry in the band structures of periodic lattices with 2 = 3 and pin joints. All results are for pin-jointed
lattices that are topologically equivalent to the hexagonal lattice. Each row shows the dispersion relations for lattices
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Figure B.6: Band structures for periodic lattices with average connectivity 2 = 4.615.
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Figure B.7: Band structures for periodic lattices with average connectivity 2 = 5.143.
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Supplemental Material to Chapter 4

C.1 POLARIZATION CHARACTERISTICS

By calculating the dispersion relation for the lattices considered in this study, four Bloch modes (cor-

responding to four bands) for each k vector are obtained. Each Bloch mode takes the vector form
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U = [u", ', wy, u}’,"z], whose components are complex numbers:

U =u" = u;'f‘,e + iu;’f;-m, (C)
U, = u)' = uyy, + iy, (C2)
Uy = " = iy + i, (C3)
Uy =ty = uys, + inys,. (C.4)
(Css)
The full expression of each vibrational mode in real space is then given by
U = Re[Uexp (ik - r — iwrt)], (C.6)

whose components can be rewritten as

U; = RelUj] cos(Q) — Im[U]] sin(Q) = Ajcos(Q + B;), forj=1,..,4 (C7)

where QO = k - r — wrand the j-th components of the amplitude vector A and phase vector B are

defined as

(C.8)

A = \/Re[Uj}z + Im[U}J*, B; = arctan [Im[ljj]} .

R(U]

To better understand the polarization of the modes for the ordinary (non-gyroscopic) and gyro-
scopic hexagonal lattices, in Figs. C.1 and C.2 we plot the model displacement trajectories of 2, and
m, by varying Q) in Eqn. (C.7) from o to 2. Note that all the amplitudes have been normalized by
j:r{}i);w(Aj)

In particular, in Fig. C.1 we focus on the ordinary hexagonal lattice. As expected, in the long

wavelength regime (near G-point) all four bands are linearly polarized. The first and forth bands
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correspond to transverse modes, while the second and third bands are longitudinal modes. Difter-
ently, for short wavelengths (near K-points) all modes are found to have mixed polarization. Note
that in the Figure we report the modal polarization for four different wave vectors (Gx, K, K, and
K) pointing in the same (horizontal) direction, but with different wavelengths (as indicated in the
Brillouin zone on the top of the Figure). The results indicate a gradual transition from linearly po-

larized modes to modes with mixed polarization as the wavelength decreases.

Band 1
<

Band 2
<l

Band 3
<l

Band 4
c

0
u, u,

Figure C.1: Modal polarization for the ordinary hexagonal lattice (i.e. ¢, = o, = 0): Note that blue solid lines indicate
polarization of 772;, while the red dashed lines represent the polarization of 7z,. Results are reported for four K-space
points on the G-K line and the M point, as indicated in the Brillouin zone on the top of the figure.

In Fig. C.2 we then report the modal displacement trajectories for the gyroscopic hexagonal lat-
tice. By comparing the modal polarizations of the non-gyroscopic (Fig. C.r) and gyroscopic (Fig.
C.2) hexagonal lattices, we can clearly see that a band inversion between the 2nd and 3rd bands oc-
curs at K-points, indicating a topological transition. Furthermore, the modal mixing of the trans-
verse and longitudinal polarizations for the 3rd and 4th bands near the G-point (at the Gg-point)

also clearly indicates a topological transition occurring at the center of the Brillouin zone.
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Band 1

Band 2

Band 3

Band 4

Figure C.2: Modal polarization for the gyroscopic hexagonal lattice with e, = o, = 0.3m,: Note that blue solid lines
indicate polarization of 7z, while the red dashed lines represent the polarization of 7,. Results are reported for four
K-space points on the G-K line and the M point, as indicated in the Brillouin zone on the top of the figure.
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C.2 BAND INVERSION IN GYROSCOPIC HEXAGONAL LATTICES

In Fig. C.3 we report the evolution of the band structure for the gyroscopic hexagonal lattice con-
sidered in Chapter 4. The band structures show thatfora = a, = a, > o, anew topologic-
ally non-trivial gap between the 3rd and 4th bands is opened by lifting the quadratic degeneracy at
G-point (the center of the Brillouin zone). Furthermore, we see that the size of this gap increases
monotonically with a.

Differently, the gap observed in the ordinary (non-gyroscopic) lattice between the 2nd and 3rd
bands initially gets narrower for increasing values of a. It eventually closes at & = o.07m,, where
a pair of Dirac-like linear crossing cones in the first Brillouin zone emerges. Note that there are six
K-points due to six fold symmetry in the wave vector u-space, but only one third of the cone at each
K-point is included in the first Brillouin zone. Finally, for & > o.07m, a new (topologically non-
trivial) gap is opened by lifting the pair of Dirac-like cones, so that the system is characterized by two
topologically non-trivial gaps.

o,=0,=0.03m, o,=a,=0.05m, a,=0,=0.07m, o,=0,=0.09m, o,=a,=0.11m,

N

Normalized Frequency, u)/(n0

o

G K MM G K MM G K MM G K MM G K M
Wave Vector, gy Wave Vector, y Wave Vector, gy Wave Vector, y Wave Vector, y

=

Figure C.3: Evolution of the band structure for the gyroscopic hexagonal lattice as a function of «: Note that the grey and
yellow shaded areas highlight topologically trivial and non-trivial gaps, respectively.

Importantly, we also find that the topological transition is accompanied by a local band inver-

sion near K-points. In fact, the results shown in Fig. C.4 for the modal polarizations of 2, and m, at
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Figure C.4: Band inversion process during symmetry breaking demonstrated by the evolution of the modal polarizations
of 2nd and 3rd bands at K-points as a function of &t

K-points reveal that a local mode switching between the 2nd and 3rd bands occurs during the topo-
logical transition at & = o.07m,. For & < 0.07m, we find that the motion of 7, dominates for the
second band, while the motion of 7; dominates for the third band. A switch occur at &« = o.07m,,
so that when & > o.07m, we find that the motion of 72, dominates for the second band, while the
motion of 7, dominates for the third band. We note that similar band inversion during topological

phase change has recently been experimentally observed in one-dimensional acoustic systems ™.
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C.3 TOPOLOGICAL PHASE DIAGRAM

To better understand the process resulting in the formation of the topologically non-trivial gap
between the 2nd and the 3rd bands, we also investigate the effect of symmetry breaking for spa-

tial inversion (P) and time reversion (T). As shown in Fig. C.sa, for a non-gyroscopic lattice with
both P-T symmetries no gap is observed. Moreover, a Dirac-like crossing pair is found at the K
point between the 2nd and the 3rd bands. When the time-reversal symmetry is broken by adding
gyroscopes (Fig. C.sb) the Dirac-like crossing pair is lifted and a topologically non-trivial gap forms
(highlighted by the yellow shaded area in Fig. C.sb).

On the other hand, when only the P-symmetry is broken by removing three black springs in the
non-gyroscopic lattice (as shown in Fig. C.sc), the Dirac-like crossing pair is also lifted, but the emer-
ging gap (highlighted by the grey shaded area in Fig. C.sc) is topologically trivial. Next, when also
the T symmetry is broken by adding gyroscopes (Figs. C.sd and ¢), we find that the band structure
strongly depends on the relative strength of P-breaking and T-breaking. When P-breaking is domin-
ant, only topologically trivial gaps are found. By contrast, when T-breaking is dominant, topologic-
ally non-trivial gaps form. Finally, we note that when P-breaking and T-breaking are balanced (as in

Fig. C.sd) a Dirac-like crossing pair forms at the K point closing the band gap.
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Figure C.5: Topological phase diagram of the hexagonal phononic crystal. (a) Phononic crystal with both P and T symmet-
ries. The Dirac-like cones connecting the 2nd and 3rd bands at the K-point are protected by the PT symmetry. No gap is
formed. (b) Topologically non-trivial gap emerges between the 2nd and 3rd bands due to broken T symmetry. (c) Topolo-
gically trivial gap emerges between the 2nd and 3rd bands due to broken P symmetry. (d) When P symmetry breaking and
T symmetry breaking are balanced, the Dirac-like cones persist. (€) When the T symmetry breaking strength dominates
the T symmetry breaking strength, the Dirac-like cones are lifted to form a topologically non-trivial gap
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C.4 ADDITIONAL RESULTS FOR SQUARE LATTICE

a fg’ 1=5T,

Figure C.6: Transient Response of a gyroscopic phononic crystal consisting of 40 X 30 square unit cells with a line defect
on the top boundary: Snapshots of the velocity field at (a) ¢t = 575, (b) t = 157, (c) ¢ = 257, and (d) t = 357, where
Ty = +/ ml//e, is the characteristic time scale of the system. Starting from # = o, a time-harmonic excitation force
F(z) = [F(2), F(9)] =1, 1) F,e™ ™" is prescribed at the site indicated by the red arrow.
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C.s FORMULATION OF GYROSCOPE

The gyroscope considered in this study has its top tip of the rotational axis pinned to a concentrated
mass site in the phononic crystal, and the bottom tip pinned to the ground (Fig. C.7). Because of
this any translational motion is prevented, while they can free rotate. Each gyroscope has 3 degrees
of freedom described by the spin (), precession (¢) and nutation (%) angles with respect to the
vertical z-axis, as shown in Fig. C.7. Assuming constant spin and precession rates (\L =Y, ¢0=0

and \) = @ = o), its equations of motion can be written as 747

M, = I(§ — @*sin Ycos 9) + LD sin (D cos 3 + ) (C.9)
M, = (zly},(Df} c0s ) — L3(Dcos S+ ¥))sin & (Cuo0)
M, = L,D%sin & (C.ir)

where M., M, and A, are moments about the x, y and 2 axes, respectively, and 7y, L, and [, are
the second moments of inertia. Note that in the absence of external moments 4, = M, = oand
that for symmetric gyroscopes (as those considered in this study) I, = L, = I,.

Here we consider a small amplitude time-harmonic in-plane motion at the top tip of the gyro-

scope induced by the lattice vibration,
Unp = bsin(9) = b9 = hO™' for 0] <1, (Cr2)

where b is the height of the gyroscope. Under such assumption of small amplitude tip displacement

(sind ~ Jandcosd ~ 1), Eqn. (C.10) can then be simplified to provide the relation between

72



Figure C.7: Gyroscope: Schematic of a gyroscope with the top tip pinned to a mass in the lattice.

precession rate and spin rate,
. 1
2l — I,

Moreover, substitution of Eqn. (C.12) into Eqn. (C.9) yields,
(Io — 1,)®* + L,Y® — Lo* = o

which can be combined with Eqn. (C.13) to give

2l, — I,
I

Y =+1w

(C3)

(Cuxs)

Note that, for @ = o, then ¥ = o implies that the gyroscope is not spinning and there is no rota-

tional inertial coupling effect.

Finally, introducing Eqn. (C.15) into Eqn. (C.11), we arrive at

M, = +w381,, = +i* 1,

(C.16)

Next, we determine the gyroscopic force F, between the gyroscope and the concentrated mass

pinned at its top. £, is perpendicular to the direction of Uy, in the xy-plane and has to satisty the
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balance of moment about the z-axis:
M, = Fehsind = Fhd (Crz)

Combining Eqns. (C.16) and (C.17), we finally conclude that F, takes the form

wz

Fy= i LUy (C.18)
Therefore, when the mass connected at the top tip of the gyroscope is displaced by Uy, =

(14, 1], the effective gyroscopic inertial force is given as:

w?.

Fy = +i,_I.RU,, (C.19)

where R is the rotation matrix,

R = (C.20)

introduced to make the direction of 'y orthogonal to Uy.
Consequently, to take this rotational inertial effect into account, the mass matrix associated to

each mass is given by
~ m o
M = , (C.21)
—iot m
where « = =1,/ b* represents the inertia coupling with a phase shift dictated by the imagin-
ary multiplier 7. This imaginary nature of the gyroscopic inertial effect indicates directional phase

shifts between two independent directions of the tip displacements, which breaks time-reversal sym-

metry ',
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C.6 CALCULATION OF CHERN NUMBERS

We start by noting that the frequency-domain wave equation for a lattice is given by
K(u)U = &*MU, (C22)

where w is the Bloch-wave vector.

Solving Eqn. (C.22) on the unit cell for wave vectors w within the first Brillouin zone, we obtain
the dispersion relation @ = w(u) (eigenvalue) and the associated modal displacement vector field
U(u) (eigenvector).

For a two-dimensional (2D) lattice, we use a N, X N, grid that covers the first Brillouin zone in
the 2D u-space. The modal displacement associated to the 7-th band is then a vector field, U, (1) =
U, (u,, ) defined on a 2D discretized parametric domain.

In the following we focus on modal displacement associated to the 7-th band (for the sake of

simplicity, we drop the subscript 72) and define the modal inner product as follows:

(UIU) = Uw) - MUW) =3 U ()M, U2 (C23)

where U, and U, are components of vector U, and (-)* denotes the operation of complex conjuga-
tion.
Following an approach that is conceptually similar to the method proposed in*, we calculate the

Berry flux, F,,, for a small patch of the size A, X A, on the u-grid:

(U0 () (U) U ") (UE)UE") (UE")U W)
‘ /

~ i ( ,
)= 0 () (D017 e ) (Do) (€29

"

where o = (u, )t = (1, + Aty pa,), o = (, + Apey e, + Ape,) and 1 = (e, e, + Awe,).
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Here 2712 is defined within the principal branch of the logarithm function, such that

I~
—7 < ;Ez((ul’fu'z) S 1 \v/(u’l’[u’z ° (CZS)

As shown in Ref.*, we note that the denominator in Eqn. (C.24) cannot vanish in order for it to
be well defined. This condition can always be satisfied by a infinitesimal shift of the N, x N, grid
in pu-space.

Finally, the numerical Chern number can be calculated by integrating the Berry flux over the

entire first Brillouin zone:

C=—3"> Falprots,): (C.26)

H
In addition, we note that when two or more bands share degenerate point(s) in band structure
(e.g. the first and second bands always have a degeneracy at w — 0), their combined Chern number
should be calculated instead of individual ones.
To get the combined Chern number for the 7-th and 7-th bands, for instance, all four inner
products of the form (U(u)|U(w)) in the numerator of Eq. (C.24) need to be replaced by the

determinant of a2 X 2 matrix P (u, u'):

U, (0)[Un()) (U ()| U (4!
P, ) = (Un(@)|Un()) (Un()[Un()) | (Car)

(Un(@Un()) (Un()[Un())

If three or more bands are crossing each other, the matrix P(u, «') defined in Eq. (C.27) can be

easily generalized to a 3 X 3 or higher order matrix.
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