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Abstract

Accurate treatment of the long-range electron correlation energy, including dispersion

interactions, is essential for describing the structure, dynamics, and function of a wide variety of

systems. Among the most accurate models for including dispersion into density functional theory

(DFT) is the range-separated many-body dispersion (MBD) method [A. Ambrosetti et al., J.

Chem. Phys. 2014, 140, 18A508], in which the long-range correlation energy is computed from a

model system of coupled quantum harmonic oscillators. In this work, we seek to extend the

applicability of the MBD model by developing the analytical gradients necessary to compute MBD

corrections to ionic forces, unit-cell stresses, phonon modes, and self-consistent updates to the

Kohn-Sham potential. We include all implicit coordinate dependencies arising from charge density

partitioning, as we find that neglecting these terms leads to unacceptably large relative errors in

the MBD forces. Such errors would impact the predictive nature of ab initio molecular dynamics

simulations employing MBD. We develop a new efficient implementation of the MBD correlation

energy and forces within the Quantum ESPRESSO software package and rigorously test its

numerical stability and convergence properties for condensed phase simulations. Additionally, we

re-parameterize the MBD model for use with a wide variety of generalized gradient approximation

exchange-correlation functionals. We demonstrate the efficiency and accuracy of these MBD

gradient corrections for optimizations of isolated dispersively bound molecular systems, as well as

representative condensed phase systems including adsorbed hydrocarbons, layered materials, and

hydrogen-bonded crystals. Where highly accurate reference geometries are available, we find the

DFT+MBD method significantly improves the predicted structures of these systems and

consistently outperforms popular pairwise-additive DFT-D dispersion corrections. Though

significant work remains in the benchmarking and testing of these contributions to the MBD

model, we are optimistic that these methodological developments will enable many exciting

discoveries of beyond-pairwise dispersive effects in organic materials.
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Introduction

A sound description of many forms of matter requires a robust theoretical explanation of

interactions at the atomic and molecular scales.† In an effort to explain the equation of state of

non-ideal gases, Johannes van der Waals first proposed the idea of an attractive interaction

between neutral atoms.3 These eponymously named van der Waals (vdW) forces, encompass three

separate interactions: orientation, induction, and dispersion. Orientation forces arise from the

electrostatic interactions between charge distributions with permanent multipole moments and

were first studied for dipole-dipole interactions by Willem Keesom. 4–7 Induction describes the

forces between a permanent multipole and an induced multipole; at the dipole level, induction was

first studied by Peter Debye in 1920.8,9 Dispersion forces stem from the interaction between the

instantaneous multipole moments of fluctuating charge distributions and were first described for

fluctuating atomic dipoles by Fritz London in 1930. 10 A rigorous treatment of dispersion forces is

often crucial for an accurate and reliable prediction of the structure, stability, and function of

many molecular and condensed-phase systems.1,11–13

London’s original description of dispersion interactions between noble gas atoms is based on a

simple application of second-order perturbation theory, where the Coulomb interaction is treated

with a multipole expansion (i.e. a Taylor series in R−1, where R is the internuclear distance). The

dispersion energy for the interaction of two atoms a and b that results from this calculation is

Edisp
ab = −

(
3
2

IaIb
Ia + Ib

αbαb

)
1
R6 = −C6

R6 , (1)

where Ia and Ib are the first ionization potentials of atoms a and b respectively, and αa and αb are

the dipole polarizabilities. Collapsing the prefactor into the “C6 coefficient” may be regarded as

the more general expression since it does not rely on assumptions about the electronic structure of

the two interacting bodies. In a similar fashion, the dispersion interaction between three dipoles

may be computed with third-order perturbation theory, yielding the well known

†See Ref. 1 for an authoritative modern reference on the theory of intermolecular forces and Ref. 2 for a
concise account of the history of the theoretical description of vdW interactions.
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Axilrod-Teller-Muto “triple-dipole” or “three-body” term, 14,15

Edisp
abc = C9

3 cos θ1 cos θ2 cos θ3 + 1
R3
abR

3
bcR

3
ac

, (2)

where θi are the angles between the three bodies and Rij are the relevant distances. Since the

three-body term dies off more quickly with distance (going as R−9), the pairwise interaction is

often assumed to be sufficient.

Although each of the three types of vdW interactions are important, dispersion interactions are

considered to be particularly influential for extended systems because polarizability tends to

increase linearly with the system size16–18 and the contribution of dispersion will never saturate.

The potential for dispersion forces to act at long-range was realized when Hugo Hamaker extended

the theory to macroscopic bodies and showed that the interaction between semi-infinite parallel

slabs decays quite slowly (as d−2 in the non-retarded regime, where d is the slab separation).19 A

decade later, Hendrik Casimir and Dirk Polder analyzed the influence of electromagnetic

retardation on dispersion forces‡ and developed a simple integral relation between the dynamic

dipole polarizability evaluated at imaginary frequency, α(iω), and the C6 coefficient.21 In the

1950s, Evgeny Lifshitz developed a continuum theory of vdW interactions between simple

geometric macroscopic bodies by deriving the interaction directly from Maxwell’s equations, thus

eliminating the approximations of pairwise interactions that had been made before. 22,23 Lifshitz

and coworkers later re-derived this theory with a more rigorous treatment of quantum

electrodynamics.24

Due to their long-range and scaling with system size, dispersion interactions can prove especially

impactful in modeling interactions in nanostructured systems where reduced dimensionality can

create large polarizable surfaces.25,26 Given their importance, improving the accuracy and

efficiency of techniques for representing these interactions has been a long standing area of focus in

chemistry and physics. Although the Lifshitz theory is tremendously successful and is still being

applied today,27 at the nanoscale this continuum treatment breaks down. Therefore, it is often

necessary to compute dispersion interactions using simple two-body models, such as classical

Lennard-Jones potentials28 used in forcefields, or pairwise models based on effective dipolar

interactions as originally proposed by London. In recent years, considerable attention has returned

‡See Ref. 20 for an elegant interpretation of the Casimir-Polder potential as an interaction between
dipoles that are induced by vacuum fluctuations of the electromagnetic field.
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Introduction

to the issue of non-additivity and many-body effects in dispersion interactions. 26,29–33

Dispersion interactions are inherently quantum mechanical in nature since they originate from

collective non-local electron correlations. Consequently, they pose a significant challenge for

electronic structure theory and often require sophisticated wavefunction-based quantum chemistry

methodologies for a quantitatively (and in some cases qualitatively) correct treatment. Many

highly accurate wavefunction-based methods, such as coupled cluster, are capable of accurately

capturing dispersion but their computational cost makes them prohibitively expensive for

molecular systems with more than ∼ 100 atoms, or for condensed phase systems. Over the past

decade, this challenge has been addressed by a number of approaches seeking to approximately

account for dispersion interactions within the hierarchy of exchange-correlation functional

approximations in Kohn-Sham density functional theory (DFT), 34–88 which is arguably the most

successful electronic structure method in widespread use today throughout chemistry, physics, and

materials science.89 See Refs. 69, 74, and 90 for comprehensive reviews of dispersion methods in

DFT and Ref. 91 for a detailed analysis of the physics behind the most popular models. Much of

the success of DFT is due to the accuracy that is provided by approximate exchange-correlation

functionals with very simple forms. However, the long-range and highly delocalized nature of

dispersion interactions, makes semi-local density functional theory (DFT) unsuitable for a

complete picture. One prominent failing of standard functionals is their inability to describe

long-range electron correlations. Indeed, density based dispersion corrections can largely reduce

the errors of their parent functionals when considering interaction energies. 73,76,92 As such, the

number of dispersion corrected DFT studies has increased dramatically in recent years. An

estimate of this trend is provided in Figure 1.

The numerous approaches to correct for dispersion in DFT may broadly be divided into four

levels of approximations, I, II, III, and IV, which will be discussed below. Our classification follows

the schemes introduced in the reviews by Grimme (Ref. 74) and Klimeš and Michaelides (Ref. 90).

At level I are methods that bind dispersively interacting systems at short range, but do not

describe the correct long-range asymptotics or give the correct shape of binding curves, such as the

local density approximation (LDA). Slightly more reliable, but still asymptotically incorrect, are

the class of highly-parameterized functionals that have been trained to reproduce the potential

minima of weak interactions (e.g. the “Minnesota functionals”51). Nevertheless, such functionals

can be quite accurate for general chemistry problems such as thermochemistry and reaction

barriers. Within pseudopotential based electronic structure methods, dispersion may also be

3
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Figure 1: The number of dispersion corrected DFT studies has greatly increased in recent years.
Left: An estimate of these trends is provided by tracking the number of papers whose topics contain
either “DFT” or “density functional theory” and either “dispersion”, “van der Waals”, or “vdW”.
Right: An alternative estimate is provided by the aggregate number of citations to the seminal works in
the field (Refs. 34–36,39,42–49,56,57,59,60,62–64,66,71–73,80,85). (Data from the Web of Knowledge,
August 2015. Years: 1990-2015.)

modeled by adding in correcting one-electron effective potentials (variously called DCACP, 43

LAP57 and DCP59,60), however these approaches suffer from the need for careful fitting and a lack

of transferability.

The second level of approximation, II, covers the class of pairwise-additive dispersion methods

(generally termed “DFT-D”) based on a pairwise summation over generalized interatomic London

(C6/R
6) dispersion contributions:

Edisp = −
∑
ab

Cab6
R6
ab

. (3)

DFT-D methods are subdivided into two categories, which we will distinguish as II(a) and II(b), in

recognition of the fact that some methods, level II(b), account for the local chemical environment,

while level II(a) methods do not. DFT-D methods are extremely popular, largely due to their

simplicity and low computational cost, thus making them worthy of a slightly more thorough

discussion. These methods suffer from three principle shortcomings. Firstly, the C6/R
6

dependence is only the leading term in the expansion of the dispersion energy, neglecting both

many-body effects (such as the ATM three-body term) and higher-order terms (such as C8/R
8

interactions). Secondly, the C6 coefficients must be tabulated, either from experimental data such

as ionization potentials and polarizabilities, 39–41,44 or by deriving them from theoretical

approximations.49,54,66,93–95 The third failing of early DFT-D methods was that the C6 coefficient

was kept constant, and thus unable to account for the influence of the local chemical environment.

The most popular DFT-D methods where proposed by Grimme in 2006 and 2010 and are known as

4



Introduction

DFT-D249 and DFT-D366 respectively. The popularity of these methods is difficult to overstate,

e.g., the four seminal papers44,49,66,77 on these methods each received 270-1,300 citations in 2014

alone (Data from the Web of Knowledge, August 2015.). Judging from the rate of citations to other

popular dispersion methodologies we estimate that Grimme’s method is used in > 65% of studies

employing dispersion inclusive DFT methodologies (see Figure 2). Another difficulty with simple

C6/R
6 corrections is that the dispersion correction must be damped out at short-range to prevent

it from diverging. The damping function must be chosen carefully for each exchange-correlation

functional because the short-range behavior of the exchange-correlation potential (particularly the

repulsive exchange) will dramatically impact the shape of the binding energy curve.

DFT-D schemes that seek to account for the local chemical environment are considered level

II(b) (these methods are sometimes classified as a separate level of approximation, see e.g. Ref.

90). Failing to do so when assigning C6 coefficients is a serious failing, e.g. the C6 coefficient of a

carbon atom can differ by up to 35% depending on its hybridization state. 41 Several schemes have

been proposed to address this problem, all of which exploit the concept that the polarizability of

an atom is proportional to its volume.16 In developing DFT-D3, Grimme et al. accounted for the

variation of C6 coefficients with hybridization states by interpolating between precomputed

reference values based on the number of neighboring atoms each atom has. The

Tkatchenko-Scheffler (TS) scheme62 exploits the proportionality between atomic volume and

polarizability more explicitly by rescaling reference C6 coefficients for isolated atoms by the

effective atom-in-a-molecule volumes that are extracted from a partitioning of the molecular charge

density. Perhaps the most computationally involved DFT-D method is the exchange-dipole

moment (XDM) model of Becke and Johnson.46–48,50,52,52,73,75,76 The XDM model extracts C6

coefficients by first scaling the atomic polarizabilities in a fashion similar to the TS model.

Subsequently, the dipole moment associated with the region of depleted charge around an electron,

known as the exchange-correlation hole, is averaged thereby accounting for the anisotropic charge

density of the local chemical environment. The XDM model suffers from high computational cost,

with limited benefit over simpler density dependent models such as TS.

The third level of approximation, III, is provided by non-local correlation functionals. These

functionals compute a non-local correction that is added to the correlation energy of a typical local

or semi-local functional:

Enl
c =

∫ ∫
drdr′ρ(r)Φ(r, r′)ρ(r′) (4)
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where ρ(r) is the Kohn-Sham density, and Φ(r, r′) is a non-local kernel chosen to yield the correct

O
(
1/|r− r′|6

)
asymptotic behavior as well as reducing to the appropriate form for homogeneous

charge densities. In the 1990s, several approaches were proposed, but were of limited use due to

the restriction to non-overlapping regions of electron density. 34–36 By far the most widely used

non-local correlation functional is the vdW-DF method proposed in 2004 by the groups of

Langreth and Lundqvist.42 Although the original vdW-DF method suffered from several problems,

such as overestimating equilibrium distances for dispersion bound complexes and predicting too

large dispersion energies, and was very computationally costly due to the double integration,

refinements of the choice of exchange potential improved its accuracy (termed vdW-DF2). 72 A

related model was proposed by Vydrov and Van Voorhis (now commonly termed VV10) which

substantially improved both the accuracy and computational efficiency of the non-local correlation

functional.61,64,71,96–98 Subsequent work has greatly improved the computational efficiency of both

vdW-DF263 and VV10,85 enabling their widespread adoption in both planewave and

Gaussian-type orbital (GTO) quantum chemistry software packages. Both vdW-DF2 and VV10

now offer self-consistent or non-self-consistent implementations, though the vastly greater

computational cost of computing these non-local corrections self-consistently is usually deemed to

be unwarranted given the accuracy of applying them as a posteriori corrections.99 The primary

advantage of non-local correlation functionals is that they do not depend on reference C6

coefficients or atomic polarizabilities, but the added computational cost is not always justified

given that the best DFT-D methods are often competitive on benchmark tests. A more serious

criticism is that they rely on the assumption that the dispersion energy is pairwise additive, and

thus the dispersion energy is constant without regard to whether or not a dielectric material

separates the two bodies. For quantitate comparisons of different dispersion inclusive DFT

methods we refer the reader to the many excellent reviews on this subject. 74,90,100–102

The fourth and final level of approximation, IV, regards the inclusion of beyond-pairwise, or

many-body, interactions. Many-body effects become increasingly important in the condensed

phase,103 so even if one were to construct a perfect pairwise interaction potential from high-level

wavefunction calculations, the properties of solids and liquids would deviate.

Although pairwise-additive methods are capable of reliably describing the dispersion interactions

in many molecular systems, it is now well known that both quantitative and qualitative failures of

pairwise-additivity can occur, as demonstrated recently in the binding energetics of molecular

trimers104 and host-guest complexes,105,106 conformational energetics in polypeptide α-helices,107
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Figure 2: Estimate of the relative popularity of different DFT+vdW correction schemes discussed herein
based on the total number of citations to the seminal works on those methods. (Effective Potential meth-
ods: Refs. 43,57,59,60, DFT-D (other): Refs. 39,44, DFT-D2: Ref. 49, DFT-D3: Ref. 66, TS: Ref. 62,
vdW-DF: Refs. 42,72, VV10: Refs. 71, XDM: Refs. 46–48, MBD: Ref. 80) Methods are colored accord-
ing to their level of approximation. (Data from the Web of Knowledge, August 2015. Years: 1990-2015.)

cohesive properties in molecular crystals, 108–110 relative stabilities of (bio)-molecular crystal

polymorphs,111–113 adsorption at metal surfaces,114,115 and interlayer interaction strengths in

layered materials,26,116,117 to name a few. In each of these cases, the true many-body nature of

dispersion becomes important, whether it is due to beyond-pairwise contributions to the dispersion

energy, such as the three-body Axilrod-Teller-Muto term, 14,15 electrodynamic response screening

effects,80,91,114,115,118,119 or the non-additivity of the dynamic polarizability. 120 Since

beyond-pairwise effects can have either attractive or repulsive contributions to the dispersion

energy,30,106,121 their inclusion can sometimes yield results that are qualitatively very different

from the predictions of pairwise methods. The usual pairwise sum of C6R−6 terms fails especially

for metallic systems, or those with reduced dimensionality in which long-wavelength charge

fluctuations can easily occur.29 As such, incorporating an appropriately non-local many-body

description of dispersion interactions into ab initio simulation methodologies becomes increasingly

important as nanostructured materials are investigated for their exotic electronic properties and

application in nanoscale devices.

Principally, two approaches have been suggested for modeling these many-body effects: (a) the

use of the adiabatic-connection fluctuation-dissipation (ACFD) theorem 35,84,122,123 to evaluate the
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exact correlation energy in the so called random phase approximation (RPA), 91,124,125§ or (b) the

use of an effective Hamiltonian which describes a simpler model system of coupled oscillators

whose many-body correlation energy can be solved exactly. Both of these approaches are actually

revivals of ideas that were once popular in the physics literature. Indeed, the RPA was originally

discarded as a poor starting place for constructing density functionals due to its problematic

short-range behavior (e.g. see Ref.126) and extreme computational cost (even treating simple unit

cells like graphite is challenging).91 Nevertheless, ACFD-RPA correlation has proven to give very

accurate lattice constants and elastic moduli for many crystals, including soft layered materials

that typically prove challenging for other dispersion methods, 127–130 and is attracting renewed

interest as a framework for constructing approximate correlation functionals. 131–133

The effective Hamiltonian models of dispersion that have recently been revived are closely

related to Langbein’s model of coupled quantum harmonic oscillators (QHOs), 134,135 and Bade’s

model of coupled quantum Drude oscillators (QDOs). 136 Similar models have been revived or

re-discovered many times (cf. Ref. 31 for a review on this subject and Refs. 137–139 for a modern

revival of coupled QDOs and Ref. 140 for a coupled plasmon approach.). Just as the TS method

assigns C6 coefficients using effective atom-in-a-molecule volumes, these oscillator models both

require coarse-graining the electron density to assign the polarizabilities of the atom-centered

oscillators. Building on the successes of the TS method, Tkatchenko et al.80,81,87,88,141 constructed

one of the most successful models for incorporating many-body effects into DFT, called the

many-body dispersion (MBD) model, in which the correlation energy is modeled at short-range by

a semi-local density functional and the long-range correlation energy is approximated after the

method of Langbein, using the zero-point energy of a model system of quantum harmonic

oscillators fully coupled to one another in the dipole approximation. This method provides a cheap

ab initio scheme for treating systems where pair-wise theories fail. The MBD model has

consistently enabled improved qualitative and quantitative agreement with experimental results

and wavefunction-based benchmarks.80,81,141 Notably, MBD correctly predicts the experimentally

known relative stabilities of polymorphs of molecular crystals such as glycine 111 and aspirin,112

which pairwise methods are unable to do. Beyond these demonstrated successes, one of the most

compelling features of the MBD model is that the correlation energy obtained from diagonalization

of the coupled oscillator Hamiltonian is provably equivalent to the full ACFD-RPA correlation

energy of a system of localized screened isotropic QHOs. 84,88 This equivalence gives additional
§In the quantum chemistry literature this is often called the direct RPA (cf. Ref. 123).
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tools for analyzing the approximations that are made in the theory and grounds the method within

the wider context of ACFD-RPA approximations to the correlation energy. Refs. 87, 119 and 142

offer recent perspectives on the role of non-additive dispersion effects in molecular materials and

the key successes of the many-body dispersion model.

0.1 Outline of the Dissertation

The principle contributions of this dissertation are in extending the applicability of the MBD

model by developing analytical forces, unit-cell stresses, phonon corrections, and self-consistency,

and by parameterizing MBD for use with a wide variety of exchange-correlation functionals. In

each chapter we will provide examples of these methods applied to different physical systems,

taking care to provide thorough details about the computational methodologies used in each case.

Although it is less precise to do so, within the field of quantum chemistry (specifically the subfield

that researches DFT), the terms vdW interaction and dispersion are often used interchangeably

while induction effects are sometimes referred to simply as polarization. In recognition of this, we

will occasionally use the terms “DFT+vdW” or “vdW inclusive DFT” to indicate DFT

methodologies that include a correction for dispersion effects. Except where otherwise appropriate,

all equations will be provided in Hartree atomic units (~ = me = e = 1/4πε0 = 1). Glossaries of

symbols, abbreviations, and unit conversions are provided in Appendix A.

In Chapter 1, we seek to motivate these contributions to the MBD model by examining two

examples of material specific studies in which the ability of DFT to model non-covalent

interactions significantly impacts the predicted properties of advanced functional organic materials.

We focus on organic electronics materials since the structure and properties of organic

semiconductors are heavily impacted by non-covalent interactions. In Chapter 2, we provide a

detailed introduction to the MBD model before developing the analytical energy gradients needed

to apply MBD corrected forces in structural optimizations. The developed methodology provides

an accurate and efficient scheme for geometry optimizations of systems with inter-, intra-, or

supra-molecular dispersion interactions, and the resulting geometries are shown to agree well with

high-level wavefunction theory references. We pay particularly close attention to the implicit

nuclear coordinate dependence arising from the partitioning of the charge density, an issue that

has largely been ignored in prior treatments of the MBD model. In Chapter 3, we discuss the

details of our new, efficiently parallel implementation of the MBD energy and analytic gradients,
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which has enabled their application to larger simulations of condensed phase materials. This

chapter highlights our efforts to improve the numerical stability and computational efficiency of

the MBD algorithm as it applies to periodic systems.

In Chapter 4, we present three areas of recent, and ongoing, development work. First, we

parameterize the MBD range-separation parameter to enable the use of a wide variety of

exchange-correlation functionals. Secondly, we derive the analytical MBD Hessian to enable future

studies of dispersion corrected phonon modes. Finally, we extend the MBD model to

self-consistently update the charge density, thereby enabling dispersion corrected band-structure

calculations and excitation spectra. Though significant work remains in the benchmarking and

testing of these contributions to the MBD model, we are optimistic that these methodological

developments will enable many exciting discoveries of beyond-pairwise dispersive effects in organic

materials.
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1
Dispersion Inclusive Density Functional Theory:

Applications in Advanced Organic Materials

1.1 Introduction

The development of high-performance organic semiconductor materials has been the focus of

significant research in the fields of chemistry and physics for more than 50 years, but for many

years these materials were seen as a research curiosity, unable to compete with traditional

semiconductor technologies.143 In the late 1980s, Tang and van Slyke demonstrated an efficient low

voltage thin film organic light emitting diode (OLED), 144 which sparked a revolution in the use of

organic thin films for new optoelectronic devices. Today, organic semiconductors are a multibillion

dollar industry, and displays based on OLEDs are available in consumer phones and televisions.

However, significant barriers to manufacturing and commercializing organic electronics materials

remain, both in terms of device efficiency and stability, and in ‘scaling-up’ from the research

laboratory to industrial application.145

The fundamental promise of organic materials lies in the ability to modify chemical structure in

a nearly infinite manner to control the properties of the resulting films. The key to exploiting this

promise of ‘rational design by chemical modification’, is to understand the electronic structure of

these materials since subtle changes in structure and composition can result in dramatic

alterations of bulk properties.143 Central to this challenge is understanding the relationships

between intermolecular packing and charge-transport or optoelectronic properties. 146 However,

understanding and controlling this relationship between chemical structure, bulk morphology, and

the resulting properties has proven exceptionally challenging for many materials.

In part, this is because organic molecular materials are held together by weak non-covalent

interactions, which makes them especially prone to polymorphism and leads to sensitive
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1.1. The Structure of Ni3(HITP)2

dependence on processing conditions and substrate properties. This has led to many strategies for

controlling thin film structure, such as nanoconfinement, 147 solution-shear processing,148

tempalting with self-assembled monolayers, 149 or using hydrogen- and halogen-bonding to assist

crystal engineering,150–152 to name a few. Such techniques have led to an ever expanding catalog

of high-performance organic semiconductor materials, but many organic molecular materials still

face poor stability.

Alternatively, by using covalent linkages to form crystalline porous polymers from organic

building blocks, it is possible to create structures with topologically predesigned skeletons; these

materials are called coordination polymers, or more recently metal-organic or covalent-organic

frameworks.153–157 However, even coordination polymers face the challenge of rationally modifying

properties while maintaining the desired structure since it is in no way guaranteed that tuning the

organic linker will preserve the desired topology. 157 In the domain of organic electronics, these

materials have typically been poor conductors since the linking groups are usually insulators with

little π-conjugation.158 In the quest for metal-organic frameworks (MOFs) with

high-conductivity158–161 or novel electronic properties,162 two-dimensional conjugated MOFs have

emerged as an attractive material class. Just as with organic molecular crystals, the interlayer

structure of these materials is dominated by van der Waals interactions.

In this chapter we will examine two examples of the role that non-covalent interactions play in

determining the structure and transport properties of novel organic electronics materials and

highlight the need for van der Waals inclusive density functionals when studying such materials.

These brief forays into single material studies are simply meant to highlight the kinds of problems

that one might wish to model in studying organic semiconductor materials, and the challenges that

arise for current approaches to treating non-covalent interactions in density functional theory.

Since understanding of a material’s properties must be derived from a model of its structure, we

first discuss an example of the theory-aided structure determination of Ni3(HITP)2, a novel

high-conductivity metal-organic framework reported by Sheberla et al. in 2014.160 Next, we discuss

a simple model of charge transport that has proven useful in explaining the behavior of different

polymorphs and structural families of organic semiconductors and apply it to understanding the

role of hydrogen-bonding in the charge transport of diketopyrrolopyrrole pigments. 163
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Chapter 1. DFT+vdW for Advanced Organic Materials

Figure 1.1: Hydrogen terminated molecular fragment
used to construct the model unit-cell of Ni3(HITP)2.
Nickel atoms are shown in green, carbon in grey, sulfur
in blue, and hydrogen in white.

1.2 The Structure of Ni3(HITP)2: a 2D Metal-Organic Framework

Largely due to the exciting properties of graphene, there has been considerable interest in recent

years in exploring the exotic electronic properties of two-dimensional (2D) materials. Motivated by

semiconductor-based device applications, there has been considerable effort to identify 2D

materials with non-zero bandgaps, primarily in two material classes: transition metal chalcogenides

such as MoS2, and 2D coordination polymers. Covalent-organic framework materials are attractive

due to the ability to prepare them with “bottom-up” solution-based processing methods and their

structural tunability. Recent efforts to synthesize high-conductivity covalent metal-organic

frameworks have focused on square-planar metal ions bridged by fully conjugated aromatic organic

moieties such as dithiolenes.164–166 Inspired by these approaches researchers in the Dincă group at

MIT synthesized a new metal-organic framework Ni3(HITP)2 (HITP =

2,3,6,7,10,11-hexaiminotriphenylene), which demonstrated very high electrical conductivity, vastly

exceeding that of previous conductive MOFs. The material was synthesized by linking Ni(isq)2
(isq = o-diiminobenzosemiquinonate) moieties into 2D sheets.

Elemental analysis and X-ray photoelectron spectroscopy (XPS) supported the expected

chemical structure. The material demonstrated relatively high crystallinity, with clear powder

X-ray diffraction (PXRD) peaks at 2θ of 4.7◦, 9.5◦, 12.6◦, and 16.5◦, indicative of long-range order

within the ab plane. A weaker, broad peak at 2θ = 27.3◦ was interpreted as a [001] reflection
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1.2. The Structure of Ni3(HITP)2: a 2D Metal-Organic Framework

corresponding to poorer long-range order in the c axis, as is typical for covalently linked layered

materials, with an interlayer spacing of ∼ 3.33 Å. According to the classification scheme of Koo et

al. Ni3(HITP)2 is a topology A framework having a ternary connector with a binary linker. 167

This topology has 6-fold symmetry. Previous reports of 6-fold symmetric COFs have demonstrated

a wide range of stacking arrangements.168–173 For a hexagonal layered material like this there are

two common structures: a staggered AA-1 layering like graphite, or an eclipsed AA arrangement

with adjacent sheets lying exactly on top of one another. For a hexagonal framework like this

though, there are two different types of staggering that one might consider, (i) staggering of the

hexagonal pore (+ 1
3a + 2

3b shift of one plane relative to the other), (ii) staggering of the benzene

ring (∼ 1
16 unit cell shift in the ab plane). We refer to the first as fully staggered (AA-1), and the

second as parallel-displaced (AB) stacking.

Simulations of the PXRD spectra indicated that an eclipsed (AA) or parallel-displaced (AB)

stacking in the c direction was more likely than a fully staggered (AA-1) structure. However, the

PXRD spectrum was unable to conclusively determine the structure. Ni K-edge extended X-ray

absorption fine structure (EXAFS) analysis revealed a spectrum that better agreed with a

simulated spectrum of the AB parallel-displaced stacking than the fully eclipsed AA.

To resolve the uncertainty in the structure of the Ni3(HITP) material, we performed molecular

mechanics (i.e. forcefield) and DFT calculations on numerous stacking arrangements. The large

aromatic organic bridging structure provided considerable surface area for attractive π − π

dispersion interactions, while the typical oxidation states of square-planar Ni indicated that the

metal center was likely to be charged, adding a significant repulsive penalty to the eclipsed

structure. We started our investigation with the construction of a model unit-cell. The PXRD

spectrum indicated a likely spacegroup of P6/mmm, with a = b ' 21.75 Å and c = 3.33 Å. We

optimized a hydrogen-terminated molecular fragment, shown in Figure 1.1, using the B3LYP

functional in a 6-31G(d) basis set174 with Grimme’s atom-pairwise third generation dispersion

correction66 and a Becke-Johnson damping scheme (D3BJ).77 In the optimized geometry the Ni

atoms formed two isosceles triangles with side lengths of 10.926 Å and 10.933 Å and angles of

59.96◦ and 60.02◦. This structure was then converted into fractional coordinates using a cell length

a = b = 21.86 Å, determined from the Ni–Ni distances of the optimized fragment. Since we do not

expect a 2D sheet of this material to have these squeezed angles, the unit cell was forced into

P6/mmm symmetry in Avogadro using a threshold of 1.7 pm (i.e., the maximum adjustment of

any coordinate to force this symmetry was 1.7 pm). An interlayer spacing of 3.3 Å was enforced
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Figure 1.2: Left: The two grids of fractional coordinate translations in the ab-plane that were sampled
by DFT calculations. Right: Example of a structure that is produced by a 1/16th lattice vector relative
displacement along both the a and b axes. The solid lines show the unit cell (blue) and displaced unit
cell (yellow), while the dashed lines highlight the Kagome lattices that are formed by the Ni atoms. No-
tice that this relative displacement pattern produces typical staggered benzene ring arrangement in the
connector fragment.

for consistency with the PXRD signal. To consider parallel-displaced structures the c-axis was

doubled to 6.6 Å.

A total of 82 different model unit cells for parallel-displaced structures were generated from the

two grids of relative translations in the ab-plane shown in the left-hand panel of Figure 1.2. DFT

single-point energy calculations were carried out on all 82 of these structures in VASP v5.29175–180

using the following three exchange-correlation functionals: LDA (local density approximation of

Perdew & Zugner),181 and PBE (Perdew-Burke-Ernzerhof),182,183 both with and without

Grimme’s second-generation (D2) dispersion correction. 49 Details of these computations can be

found in the supplemental information of Ref. 160. The total energy of each of these structures

was then used as a sample point for the energy of a potential energy surface (PES) that was

interpolated using 2D Lagrange polynomials over a tensor product grid of Chebyshev points which

were subsequently mapped back to the grid of original equally spaced translations (cf. Ref. 184 for

a modern treatment of Lagrange polynomial interpolation.). Interpolation over the finer grid is

expected to yield a more accurate representation of the potential energy surface in the region. The

resulting interpolated PESs are shown in Figure 1.3. As shown in the top left-hand panel, the PBE

functional showed strongly repulsive behavior making the fully eclipsed AA structure (zero

displacement) energetically unfavorably by more than 2 eV. PBE predicts such a significant

repulsion that that the energy should keep decreasing moving out to the largest sampled

displacements of ∼ 4 Å in the ab-plane. Simulations of the PXRD spectrum of these translated
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structures indicated that such large parallel displacements would result in very distinct spectral

features that were absent from the experimental spectrum. We therefore concluded that dispersion

interactions must be stabilizing a structure with less significant displacement.

Figure 1.3: Contour maps of the potential energy surface induced by different translations between A
and B layers of Ni3(HITP)2. Black dots correspond to locations of DFT single-point calculations. The
surface was produced by interpolation with 2D Lagrange polynomials on a grid of Chebyshev points. The
energy is normalized to zero at the minimum. Red lines indicate the ‘thermally accessible’ region within
2kBT ≈ 0.051 eV of the minima. Top Left: Potential energy surface of the PBE functional without
dispersion correction. Top Right: Potential energy surface of the LDA functional. Bottom: Potential
energy surface of the PBE-D2 functional. Note that the minimum obtained from the fine interpolation
grid at left is closer to a displacement of ∼ 1.8 Å in contrast to the minimum at ∼ 1.7 Å on the larger
grid at right.

In contrast to the uncorrected PBE functional, both LDA and the dispersion corrected PBE-D2

predict that the AB parallel-displaced sequence is the most stable.These functionals suggested that

the fully eclipsed AA structure is energetically unfavorable by ∼ 0.5 − 0.6 eV. It is well known that
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the LDA functional tends to over-bind and as a result can mimic attractive dispersion interactions,

such as the prediction of stable minimum between two graphite planes. As shown in the top right

and bottom panels of Figure 1.3, both LDA and PBE-D2 predict minima in the PES for relative

displacements of ∼ 1.6 − 1.9 Å along the a and/or b axis. In particular, an AB model wherein the

2D unit cell of one layer is slipped relative to a neighboring layer by slightly more than 1/16th of a

cell edge (∼ 1.8 Å) along the a or b vectors gave the lowest energy on the PBE-D2 PES. The

locations of these minima are consistent with the minima on the PES provided by the van der

Waals component of the Allinger MM2-1991 force field, 185 shown in Figure 1.4. Note that since we

are plotting only the van der Waals component, the repulsion away from AA stacking is less

significant. The full MM2 forcefield PES showed a strong repulsion favoring a relative

displacement of ∼ 3.5 Å between the A and B layers. We concluded that the point-charge model

being used for the Ni center was overly repulsive since the location of these potential energy

minima correspond to displacements that are clearly inconsistent with the experimental PXRD

spectrum in addition to the LDA and PBE-D2 functionals. Both LDA and PBE-D2 show fairly

flat minima, suggesting that the structure likely contains a disordered mixture of displacements to

these ‘parallel-displacement minima’, which is consistent with the PXRD signal indicating poorer

long-range order along the c direction.

Figure 1.4: Contour map of the potential energy surface of the van der Waals component of the MM2
force field for different translations between A and B layers of Ni3(HITP)2. The surface was produced by
interpolation with 2D Lagrange polynomials on a grid of Chebyshev points. The energy is normalized to
zero at the minimum. Red lines indicate the ‘thermally accessible’ region within 2kBT ≈ 0.051 eV of the
minima. For details about these calculations see the supplemental information of Ref. 160.
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Altogether, the PXRD, EXAFS, and DFT data evidence a hexagonal Ni3(HITP)2 structure

with slipped-parallel stacking and unit cell parameters a = b = 21.75 Å and c = 6.66 Å.

Determining a consistent structural model required the use of van der Waals inclusive DFT since

the incorrect form of the PBE correlation potential at long-range resulted in predictions that

significantly disagreed with the experimental evidence. The success of LDA for this system should

be regarded as a happy accident since there are no terms in its exchange-correlation potential that

correspond to dispersion interactions. Having seen that accounting for van der Waals interactions

is crucial for modeling the structural properties of organic materials, we now turn to an example

where the balance between dispersion and hydrogen-bonding interactions has an impact on the

functional properties of organic semiconductors.

1.3 Charge Transport in Hydrogen-Bonded Diketopyrrolopyrrole Pigments

Many electronics applications, from photovoltaics to light emitting diodes to transistors, depend on

one or more layers having high charge carrier mobility. Carrier transport in organic materials is

extremely sensitive to the phase of the wavefunction and the degree of overlap between frontier

orbitals on neighboring molecules, and as such the mobility acquires sensitive dependence on the

relative positioning of nearest neighbor molecules (Excellent reviews of this subject may be found

in Refs. 186–189). For many years the conventional wisdom in the organic semiconductor

community has been that maximizing charge carrier mobility requires maximizing intramolecular

π-conjugation, since delocalized charges are more mobile along the molecular backbone. Therefore,

many researchers in the field avoid the use of amine and carbonyl groups when designing new

materials as they interrupt conjugation.190,191 Recently, studies of hydrogen-bonded pigments,

such as indigo and its derivatives,192–195 diketopyrrolopyrrole-thiophene co-oligomers, 196

epindolidiones,197,198 quinacridone,197,199,200 and numerous azo-pigments have questioned this

paradigm, suggesting that equally high charge transport, and much greater stability, can be

achieved by appropriate use of hydrogen-bonding.

Many factors influence the charge carrier mobility of organic materials, including

disorder/morphology, molecular packing, charge-carrier density, temperature, and the presence of

impurities.186 Many π-conjugated molecules crystallize into a layered herringbone arrangement,

which leads to effective 2D transport within the plane containing π − π stacking interactions, while

transport between layers is limited by the weak electronic coupling between head-to-tail
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contacts.186 In highly crystalline samples of small molecule organic semiconductors, transport

through the π − π stacking pathways is often the mobility-limiting consideration, therefore

maximizing the charge transfer integrals between neighboring molecules can lead to the largest

practical increases in mobility.186 In this respect H-bond mediated crystal engineering can be used

to improve performance.

The family of diketopyrrolopyrrole (DPP) pigments was first developed for industrial dye

applications,201 but have gained significant attention in the organic electronics community in

recent years as building-blocks for high-performance transistors and photovoltaics. 202–204 The

polymers and small molecule DPP derivatives used in these applications typically eliminate

hydrogen-bonding by functionalizing the core with solubilizing alkyl chains, although both

Yanagisawa et al.199 and Lee et al.205 have recently reported measurements on DPPs containing

hydrogen-bonding NH groups. DPPs are used extensively as building blocks for semiconducting

polymers. However, relatively little attention has been paid to the semiconducting properties of

their native hydrogen-bonded pigment forms. The pigment form is particularly interesting because

it is produced at low cost at the industrial scale (e.g. DPP and chlorinated DPP are commercially

available for < 50 ¢/g).

To examine the semiconducting properties of DPPs in their native H-bonding form, we studied

three archetypical DPP pigments, diphenyl-DPP (also called Pigment Red 255, hereafter

abbreviated DPP), di(p-chlorophenyl)-DPP (also called Pigment Red 254, hereafter abbreviated

p-Cl DPP), and di(p-bromophenyl)-DPP (hereafter abbreviated p-Br DPP). p-Cl DPP is perhaps

most famously known as ‘Ferrari Red’ for its use in automobile coatings. The H-bonded crystal

lattice of these pigments supports close and relatively cofacial π − π stacking. H-bonded DPP

pigments crystallize in linear H-bonded chains, with each molecule displaying head-to-tail double

hydrogen-bonds to two neighbors.163,206,207 In DPP for example, these chains run parallel to each

other along the 〈1̄12〉 plane, while brick-wall type π − π stacking is visible perpendicular to the

〈1̄12〉 plane. The para-halogenated DPP derivatives show a sightly staggered H-bonding motif with

two linear H-bonded chains running along the 〈001〉 plane, and another two chains along the 〈002〉

plane. The H-bond length in all DPP pigments here, 1.7− 1.8 Å, is very short in comparison to

other pigment-forming molecules. For example, quinacridones have ∼ 2 Å, and indigos 2.1− 2.8 Å.

The interplanar spacing and intermolecular centroid-centroid distances for π − π stacking for all

three materials are shown in Table 1.1. Considering the crystalline packing in the π-stacking and

H-bonding plane (i.e the “charge transport plane”), all three materials are quite similar, though
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1.3. Charge Transport in Hydrogen-Bonded DPP Pigments

Table 1.1: Data on the single-crystal X-ray diffraction determined bulk structures of H-bonded DPP
pigments. The intermolecular π − π distance dπ−π is computed centroid–centroid.

Interplanar Intermolecular −NH · · ·O = Packing Space
Material dπ−π (Å) dπ−π (Å) bond length (Å) pattern group

DPP 3.3 (along a) 3.82 (along a) 1.82 brick-wall P1̄3.0 (along b) 6.52 (along b)

p-Cl DPP 3.0 (along a) 5.66 (along a) 1.74 pseudo P21/n3.3 (along c) 5.59 (along c) brick-wall

p-Br DPP 3.2 (along a) 5.63 (along a) 1.77 pseudo C2/c3.2 (along b) 5.63 (along b) brick-wall

the intermolecular centroid-centroid distances for π − π stacking become more symmetric moving

from DPP to the halogenated species. For intermolecular packing arrangements such as this, one

would expect a transport anisotropy, with charge transport favorably occurring along the π − π

stacking direction, i.e. perpendicular to the H-bonding direction. 186 Thus, considerable

experimental effort has been devoted to studying low surface energy hydrophobic substrates that

encourage the van der Waals contacts of the H-bonded pigment molecules to interact with the

surface and align in a “standing” orientation. This places the π − π stacking direction parallel to

the gate dielectric, encouraging high transport in transistors. 208,208 In this respect,

anodically-grown AlOx passivated with tetratetracontane (C44H90, TTC) is an ideal dielectric for

H-bonded pigments, including DPPs.197,209,210 Despite the preferential orientation occurring when

DPPs are grown on TTC/AlOx, charge transport may still be limited by the polycrystalline

morphology of such films. When incorporated into thin film organic field-effect transistors, all

three pigments showed carrier mobilities in the range 0.01− 0.06 cm2/V · s.163

1.3.1 Charge transfer integrals

Since organic materials are principally held together by weak noncovalent interactions, many

electronic properties are determined by the structure of an isolated molecule, together with a

description of electron-phonon coupling and polaronic effects. 211 Weak overlap of molecular

orbitals causes organic materials to have narrow electronic bands, and a site-based description of

transport based on the concept of small polarons becomes appropriate. 212–218 Many effects, such

as electronic polarization and static disorder, dynamic disorder due to electron-phonon coupling,

thermal broadening, trap states, and the role of charge injection and charge carrier density, all

20



Chapter 1. DFT+vdW for Advanced Organic Materials

contribute to the complex phenomenology of charge transport in organic

semiconductors.186,187,219–221 However, at the microscopic level, one of the principle parameters

governing charge transport is the amplitude of the charge transfer integral between adjacent

molecules, which describes the rate of incoherent tunneling. 222–224 Transfer integrals are highly

anisotropic, reflecting the low symmetry of the molecular packing environment and a high

sensitivity to the overlap and phase of frontier molecular orbitals.

A fully ab initio prediction of carrier mobility for organic materials thus requires: (a) a model of

the transport mechanism relevant for that material including the effects of temperature, carrier

density, and impurities, (b) a model of the microscopic morphology, and (c) dynamical simulations,

or a model of dynamical disorder. To separate out the effects of impurities and morphology, it is

often useful to model the intrinsic mobility of a perfectly crystalline material. At room

temperature, charge carriers in organic semiconductors are expected to be localized to a single or a

few molecules due to strong electron-phonon coupling. As a result, transport is frequently

described as a thermally activated hopping process where charges move from one molecule to

another through incoherent electron tunneling and the uncorrelated sequence of such charge

transfer events is well described by diffusion. 225 In this regime, fluctuations of the transfer integral

due to thermal motion are often the same order of magnitude as the average value, 226 making it

necessary to average over the trajectories of molecular dynamics simulations to achieve a high

quality prediction of intrinsic mobility.

In the following we will analyze a simplified static model that addresses the simulation

procedure for computing the transfer integrals and associated charge transfer rates at a given

geometry. We have found that this simple static model is often sufficient to produce an order of

magnitude estimate of a material’s intrinsic carrier mobility and is also suggestive of the relative

importance of different molecular contacts. In the case where charge carriers are localized to a

single molecule, the transport of an electron (or hole) from one molecule to another can be

modeled using the Marcus theory semiclassical rate k for non-adiabatic charge transfer (i.e. the

high temperature limit),186,219,227 which is calculated as:

ki = t2i

√
π

~2kBTλ
exp

[
− (λ+ ∆εi)2

4λkBT

]
, (1.1)

where λ is the internal reorganization energy calculated as the geometric relaxation energy of the

charged species, and t is the intermolecular transfer integral, and ∆ε is the difference in site
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1.3. Charge Transport in Hydrogen-Bonded DPP Pigments

energies (cf. Refs.186,219 for more discussion of this model). We calculate the charge transfer

integrals using the projective molecular orbital approximation. 228,229 In the Marcus theory model

of charge transport, the contribution of different “hopping pathways” may be evaluated from the

relative probability, Pi = ki/
∑
i ki, of hopping to the ith nearest neighbor molecule.

To better understand how the observed semiconducting properties correlate with the crystal

structure of the three DPP materials, we performed transfer integral calculations to estimate

mobilities in their X-ray determined bulk crystal structures. It is important to note that the bulk

crystal structure may differ quite significantly from the packing in the polycrystalline transistors.

Indeed, pentacene is a well-known example that crystallizes in a surface-induced polymorph that is

different from the known bulk polymorph.230 To address this concern, we performed out-of-plane

X-ray diffraction (XRD) measurements on vacuum evaporated films: ω − 2θ XRD shows a single

low-angle peak which corresponds, based on single-crystal diffraction data, to peaks from the 〈001〉

planes of the DPPs. This is a necessary but not sufficient condition to conclude that a thin film

has the same crystal phase as the “bulk” structure. Since the molecules orient anisotropically with

respect to the substrate (“standing” orientation with the longest lattice parameter perpendicular

to the substrate), a standard ω − 2θ XRD scan will only show peaks corresponding to that

orientation. However, out-of-plane scans of films provide data consistent with the known “bulk”

crystal phase. For example, for DPP, the 〈001〉 peak dominates the thin-film XRD spectrum,

which is consistent with the prediction based on the single-crystal data. Likewise the other peaks

are weaker due to preferential anisotropic growth. For further discussion, see the supplemental

information in Ref. 163.

Transfer integral calculations were performed at the DFT level with the B3LYP, 231,232

PW6B95,233 revPBE,234,235 and revPBE0 functionals234–238 using the Ahlrichs def2-TZVP basis

set239 coupled with an auxiliary Ahlrichs TZVP basis set 240 for the RI-JK approximation∗ to the

Coulomb and exchange terms.242,243 (See section A.2 of Appendix A for an explanation of these

DFT functional abbreviations.) All calculations were performed in the Orca v3 software

package.244 The transport properties collected in Table 1.2 (as well as Tables B.1 & B.2 in

Appendix B) also include corrections for dispersion computed self-consistently with the VV10

nonlocal correlation functional71 as implemented in Orca for the B3LYP, revPBE, and revPBE0

functionals. The exchange-correlation functionals were evaluated on a grid4 integration grid, while

the VV10 nonlocal correlation functional was evaluated with a vv10_grid3 integration grid.
∗Calculations with the PW6B95 functional employed the RIJCOSX approximation. 241
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p1=3.8p2=6.5

p3=7.3

Figure 1.5: Dominant charge hopping pathways for DPP considered in density functional theory trans-
port calculations. Distances between centroids are in units of Å. The calculated charge transfer integrals
show that both pathways along π − π stacking and H-bonding contribute significantly to charge transport.

By examining the charge transfer integrals we can determine which pathways, or

nearest-neighbor pairs, will contribute most strongly to the predicted mobility. The results of this

analysis for the B3LYP functional are presented in Table 1.2, while and results for the revPBE and

revPBE0 functionals are given in Tables B.1 and B.2 in Appendix B. The dominant contribution

to hopping transport in hydrogen-bonded DPP pigments occurs in the π-stacking and H-bonding

plane where the greatest overlap between frontier orbitals of neighboring molecules occurs. The

packing arrangement of this plane is very similar across all three pigments even though DPP forms

a more linear head-to-tail arrangement than p-Cl DPP and p-Br DPP. In Figure 1.5, we label the

hopping pathways that are the dominant transport directions in DPP. Paths 1 and 2 are π − π

interactions and path 3 is a hydrogen-bond interaction. The same labeling scheme is used for the

pathways in the transport plane of p-Cl DPP and p-Br DPP and the relevant distances are given

in Table 1.1. The structural and electronic perturbations introduced by Cl and Br substitutions

alter which pathway is dominant. For instance, these transfer integrals suggest that the electron

mobility of DPP will be dominated by the H-bond pathway, while p-Cl DPP and p-Br DPP show

stronger coupling in the π − π pathways. An important observation is that a substantial

contribution (12-70%) is made by pathways along the H-bonding direction in all three compounds.

The edge-to-edge contacts in molecular semiconductors normally have very low transfer integrals

and contribute negligibly to transport, in the case of DPPs, however, these values are considerably

higher. This is potentially significant, as not only π − π stacking contacts are expected to

contribute to conduction, but also the H-bonding contacts. This implies that the prevailing

understanding concerning orientation of π − π stacking domains, as described above, may require
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reconsideration with respect to H-bonded systems. Therefore, in the design of future H-bonded

derivatives of DPP, increasing H-bonding interactions may be a favorable approach. Though the

mobility values remain modest in comparison with more optimized DPP-containing polymeric

systems, in the 10−2 − 10−1 cm2/V · s range, our results suggest that H-bonded crystal engineered

materials deserve additional attention.

Table 1.2: Transport properties (calculated at the B3LYP/def2-TZVP level) for diketopyrrolopyrrole pig-
ments broken down into the dominant hopping pathways. d is the length of the pathway. P is the rela-
tive probability of hopping along the ith pathway and mi is its multiplicity, i.e. the number of symmetry
related pathways. |t| is the absolute value of the transfer integral. Values in parentheses have been cal-
culated with VV10 applied self-consistently. Results for the revPBE and revPBE0 functionals are given in
Tables B.1 and B.2 in Appendix B.

Pathway d (Å) m |te| (meV) Pe (%) |th| (meV) Ph (%)
DPP

p1 3.8 2 6.3 (7.4) 2.7 (3.6) 82.7 (84.4) 40.3 (40.2)
p2 6.5 2 13.8 (13.7) 12.9 (12.3) 23.4 (24.0) 3.2 (3.3)
p3 7.3 2 22.4 (22.8) 34.1 (33.8) 33.2 (34.0) 6.5 (6.5)

p-Cl DPP
p1 5.6 2 16.8 (16.2) 8.3 (7.9) 16.1 (16.3) 1.4 (1.3)
p2 5.7 2 23.4 (24.1) 16.3 (16.8) 88.6 (90.9) 41.2 (41.1)
p3 7.3 2 20.9 (21.2) 12.9 (12.6) 33.1 (33.7) 5.7 (5.7)

p-Br DPP
p1 5.6 4 31.2 (31.6) 18.8 (18.8) 21.5 (21.8) 8.9 (8.8)
p3 7.3 2 23.1 (23.4) 10.3 (10.3) 40.2 (41.0) 31.0 (31.1)

One feature of transfer integral predictions is that they are extremely sensitive to both the

overlap of the frontier orbitals of the dimer of interest and also to the relative phase of those

orbitals. As a result, they can be quite sensitive to small changes in either nuclear coordinates or

the long-range behavior of an exchange-correlation functional. For materials such as H-bonded

pigments, whose properties depend on a balance between two noncovalent interactions, namely

hydrogen-bonding and π− π interactions, errors in both the exchange and correlation potential can

have significant impact. (The balance between dispersion and exchange effects is especially well

documented in the extensive literature on ab initio predictions of the structure of liquid water,

e.g., see Refs.245–247 For a recent perspective on the accuracy of different DFT functionals, with

and without dispersion corrections, for describing H-bonds see Ref. 248.) Since transfer integrals

are a density derived property, only a density dependent correction scheme will alter the predicted
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transport rate.

Figure 1.6: Change in the amplitude of transfer integrals (|t|) for diketopyrrolopyrrole pigments upon
self-consistent application of the VV10 nonlocal correlation functional dispersion correction. Positive val-
ues indicate that DFT+VV10 predicted a larger transfer integral than the uncorrected DFT functional.
Top: electron transfer integrals. Bottom: hole transfer integrals.

To investigate how important changes to the intermolecular density arising from dispersion and

exact exchange are for charge transport in H-bonded pigments, we repeated the transfer integral

calculations with a self-consistent implementation of the VV10 nonlocal correlation functional

dispersion correction. The results are given in parentheses in Table 1.2 as well as Tables B.1 and

B.2 in Appendix B. Figure 1.6 shows the change to the transfer integrals for each hopping pathway

when self-consistent dispersion is included, while Figure 1.7 shows the same breakdown for the

impact of including exact exchange. Although the impact of the self-consistent dispersion

correction is small (∼ 0.5 − 3 meV), it is worth noting that this is only about half the difference

between changing from a GGA functional, revPBE, to the hybrid variant, (revPBE0), which

includes 25% exact exchange. Both the self-consistent application of VV10 and the inclusion of

exact exchange alter the transfer integrals for close-contact pairs (π − π and H-bonded) more
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significantly than they do the head-to-tail contacts since the frontier orbital overlap for these

contacts is greater. However, the relative percentage change due to dispersion is typically larger for

the head-to-tail contacts since the transfer integrals for these long distance pathways are much

smaller and are dominated by long-range interactions. Self-consistent application of VV10 has a

larger impact for the dominant π − π pathway (either p1 or p2) than it does for the H-bonded

pathway (p3), in accordance with our expectations. Given the small magnitude of these changes to

the transfer integrals and the large computational cost of applying VV10 self-consistently, we

would not recommend widespread adoption of self-consistent VV10 for exploratory transfer

integral calculations. However, since noncovalent interactions play a crucial role in determining the

structure of many organic semiconductors, and since transfer integrals are often very sensitive to

small changes in the nuclear coordinates, it may be worth investigating how self-consistent

dispersion corrections alter the electron-phonon coupling in these materials. Overall, we find that

noncovalent interactions play a surprisingly large role in determining the dominant transport

pathways in H-bonded DPP pigments. The linear hydrogen-bonding chains in these materials

suggests that nonlocal electron-phonon coupling effects are likely to play a larger role in the charge

transport properties than is typically observed in other π-conjugated small molecule organic

electronics crystals.186

Figure 1.7: Change in the amplitude of transfer integrals (|t|) for diketopyrrolopyrrole pigments in chang-
ing from a GGA functional (revPBE) to a hybrid variant (revPBE0) of the same functional, which con-
tains 25% exact exchange. Positive values indicate that the hybrid functional predicted a larger transfer
integral than the GGA functional. No dispersion correction has been applied.
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1.4 Conclusions

In this chapter we have highlighted examples of the role that non-covalent interactions can play in

determining the structure and electronic properties of organic electronics materials. These brief

investigations made use of two types of popular dispersion corrections presently available for use

with DFT, namely, a nonlocal correlation functional (VV10) and a C6 based semiempirical

correction (D2). The application of DFT-D type semiempirical corrections often prove sufficient

for many structural investigations, since they offer computationally cheap vdW forces, but they

typically do not allow for robust correction of density-dependent properties. Such schemes are

typically limited to pairwise or three-body dispersion corrections, which can be a significant

drawback for studying low-dimensional structures or highly polarizable extended systems. On the

other hand, nonlocal correlation functionals methods may be applied either non-self-consistently

(typically at a fraction of the computational cost of a GGA calculation), or self-consistently

(typically at greater computational cost than the underlying GGA calculation) if one wishes to

study density dependent properties. The ability to compute forces (i.e., energy gradients) and

interrogate how a method impacts density dependent properties are central tasks for many

investigations, and should be regarded as desirable features for a vdW correction scheme in DFT.

For instance, many of the optoelectronic properties of organic materials are strongly modulated by

electron-phonon coupling, which often has a significant nonlocal or many-body contribution. This

is especially true in two-dimensional materials such as graphene. 249 Investigating these properties

typically requires the use of a linear response formalism or the ability to run a dynamical

simulation and subsequently use spectral methods to extract the relevant quantities from the

correlation functions computed on the trajectory. With the ever expanding list of low-dimensional

materials, such as vdW heterobilayers, being studied by researchers in physics, chemistry, and

materials science, there are many systems of interest that are dominated by vdW interactions and

require large-scale density-dependent simulation methodologies. With these considerations in

mind, Chapters 2, 3, and 4 will be devoted to further developing the many-body dispersion model

for use in structural and optoelectronic studies of both isolated and condensed phase systems.
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2
Analytical Gradients for the Many-Body Dispersion

Model of Noncovalent Interactions

2.1 Introduction

Thus far we have seen that accurate treatment of the long-range electron correlation energy,

including dispersion, is essential for describing the structure and function of a wide variety of

systems and have discussed a few approaches for correcting these terms in density functional

theory (DFT). In recent years it has become increasingly apparent that accounting for the true

many-body nature of dispersion is beneficial when developing models for treating van der Waals

interactions in DFT.87 One of the most successful models for incorporating these many-body

effects into DFT is the many-body dispersion (MBD) model of Tktatchenko et al.80,81,141 which

approximates the long-range correlation energy using the zero-point energy of a model system of

quantum harmonic oscillators fully coupled to one another in the dipole approximation. Deriving

dispersion interactions from screened collections of quantum harmonic oscillators was a popular

technique in the 1970s and 1980s, and much of the formalism that is used in the MBD model is

due to Langbein,134,135 and Thole.118 The correlation energy derived from diagonalizing the

Hamiltonian of these oscillators is provably equivalent to the random-phase approximation (RPA)

correlation energy in the dipole limit (through the adiabatic-connection fluctuation-dissipation

theorem), and thus this scheme provides a computationally efficient mechanism for evaluating the

RPA correlation energy.84,88 Ambrosetti et al. further improved the model by incorporating a

range-separation scheme to avoid double counting the short-range correlation energy; this method

is termed range-separated many-body dispersion (MBD@rsSCS). 88 Although the MBD model has

been very successful as an a posteriori energy correction after the solution of the nonlinear

Kohn-Sham equations (i.e. a post-self-consistent field correction), computing the gradient of the
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MBD energy has previously been limited to finite difference techniques, which require calculations

at multiple nuclear configurations. In this chapter, we seek to extend the applicability of the MBD

model by developing analytical gradients of the MBD@rsSCS energy with respect to nuclear

coordinates, including all implicit coordinate dependencies arising from the partitioning of the

electron density into Hirshfeld effective atomic volumes.∗ This gives an accurate and efficient

scheme for MBD inclusive geometry optimizations and molecular dynamics simulations.

This chapter is principally divided into a theoretical discussion of the MBD model (section 2.2),

and a discussion of the first applications of analytical MBD forces to the optimization of isolated

molecular systems (section 2.4). We start by presenting a self-contained summary of the MBD

framework to clarify notation and highlight the different dependencies on nuclear coordinates

(sections 2.1.1-2.2.1). We then derive analytical nuclear gradients of the MBD correlation energy

(section 2.2.2).

Subsequently, we demonstrate the efficiacy of MBD forces for treating several representative

systems displaying intermolecular, intramolecular, and supramolecular interactions

(sections 2.4.1-2.4.3). For intermolecular and intramolecular interactions we consider conformers of

the benzene dimer and isolated small peptides with aromatic side-chains. We find excellent

agreement with the wavefunction theory reference geometries of these systems at a fraction of the

computational cost. To demonstrate the performace of our method on a larger system that would

be truly intractable to optimize with numerical gradient techniques, we optimized the C60@C60H28

buckcatcher supramolecular host–guest complex.

We finally examine the role of the implicit nuclear coordinate dependence that arises from the

partitioning of the electron density into effective atomic volumes (section 2.4.4) by comparing the

magnitude of MBD forces with and without these implicit derivatives. We find that the Hirshfeld

volume gradients contribute strongly to MBD forces and therefore negelecting them yields large

relative errors and is a wholly unacceptable approximation, despite previous assertions to the

contrary that have been made in the literature. 88,251

∗Tktatchenko et al. employ a Hirshfeld partitioning of the charge density to assign the parameters of
the coupled quantum harmonic oscillators in MBD, 250 but Silvestrelli has recently shown that maximially
localized Wannier functions offer a competitive alternative. 86
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2.1.1 Notation employed in this work

As the theory comprising the MBD model has evolved over the past few years, several notational

changes have been required to accommodate the development of a more complete formalism to

account for the various contributions to the long-range correlation energy in molecular systems and

condensed-phase materials. In this section, we provide a current and self-contained review of the

MBD model followed by a detailed derivation of the corresponding analytical nuclear gradients

(forces). Our discussion most closely follows the notation employed in Refs. 88 and 87 To assist in

the interpretation of these equations, we have also furnished a glossary of symbols utilized in this

chapter as part of the accompanying Appendix A. For a more thorough discussion of the MBD

model (including its approximations and physical interpretations), we refer the reader to the

original works80,88 as well as a recent review87 on MBD interactions in molecules and condensed

matter.

Throughout this chapter, all equations are given in Hartree atomic units

(~ = me = e = 1/4πε0 = 1) with tensor (vector and matrix) quantities denoted by bold typeface.

In this regard, one particularly important bold/normal typeface distinction that will arise below is

the difference between the 3× 3 dipole polarizability tensor,

α =


αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 , (2.1)

and the “isotropized” dipole polarizability, a scalar quantity obtained via

α = 1
3 Tr
[
α
]
. (2.2)

The Cartesian components of tensor quantities are indicated by superscript Latin indices ijk,

i.e., T ij is the i th, j th component of the tensor T. Likewise, Cartesian unit vectors are indicated

by êi. Atom indices are denoted by subscript Latin indices abc. The index p will be used as a

dummy index for summation. The imaginary unit is indicated with blackboard bold typeface, i, to

distinguish it from the Cartesian component index i. Quantities that arise from the solution of the

range-separated self-consistent screening (rsSCS) system of equations introduced by Ambrosetti et

al.88 will be denoted by an overline, i.e., X → X. This range-separated form of the MBD model
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has been termed MBD@rsSCS (which has also been denoted as MBD* elsewhere). For brevity we

will refer to this model as simply MBD.

The MBD model requires keeping track of several different quantities that are naturally denoted

with variants of the letter “R”, so we highlight these quantities here for the benefit of the reader.

Spatial position, such as the argument of the electron density, ρ(r), is indicated by r. The nuclear

position of an atom a (or QHO mapped to that nucleus) is indicated by Ra. The internuclear

vector is denoted Rab = Ra −Rb, such that the internuclear distance is given by Rab = ‖Rab‖. It

follows that the i th Cartesian component of this internuclear vector is Riab. Finally, the effective

van der Waals radius of an atom a is indicated by R vdW
a .

The dependence of the long-range MBD correlation energy, EMBD, on the underlying nuclear

positions, {R} = Ra,Rb,Rc, . . ., will arise both explicitly through the presence of internuclear

distance terms, Rab, and implicitly through the presence of effective atomic volume terms,

Va = Va[{R}], obtained via the Hirshfeld partitioning250 of ρ(r) (see section 2.2.1.1). As such,

these distinct types of dependence on nuclear positions will be clearly delineated throughout the

review of the MBD model and the derivation of the corresponding MBD ionic forces below. For

notational convenience, we will often use ∂c rather than ∇Rc
to indicate a derivative with respect

to the nuclear position of atom c.

2.2 Model Specification

2.2.1 Review of the many-body dispersion (MBD) model

The MBD formalism is based on a one-to-one mapping of the N atoms comprising a molecular

system of interest to a collection of N QHOs centered at the nuclear coordinates, each of which is

characterized by a bare isotropic frequency-dependent dipole polarizability, αa(iω). Derived from

the electron density, i.e., αa = αa[ρ(r)], these polarizabilities describe the unique local chemical

environment surrounding a given atom by accounting for hybridization (coordination number),

Pauli repulsion, and other non-trivial exchange-correlation effects (see section 2.2.1.1). To account

for anisotropy in the local chemical environment as well as collective polarization/depolarization

effects, the solution of a range-separated Dyson-like self-consistent screening (rsSCS) equation is

used to generate screened isotropic frequency-dependent dipole polarizabilities for each QHO, αa

(see section 2.2.1.2). The MBD model Hamiltonian is then constructed based on these screened

frequency-dependent dipole polarizabilities. Diagonalization of this Hamiltonian couples this
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collection of QHOs within the dipole approximation, yielding a set of interacting QHO eigenmodes

with corresponding eigenfrequencies {λ}. The difference between the zero-point energy of these

interacting QHO eigenmodes and that of the input non-interacting modes ({ω}), is then used to

compute the long-range correlation energy at the MBD level of theory (see section 2.2.1.3), i.e.,

EMBD = 1
2

3N∑
p=1

√
λp −

3
2

N∑
a=1

ωa. (2.3)

2.2.1.1 The MBD starting point: bare dipole polarizabilities

Mapping the N atoms comprising a molecular system of interest onto a collection of N QHOs is

accomplished via a Hirshfeld partitioning‖ of ρ(r), the ground state electron density. Partitioning

ρ(r) into N spherical effective atoms enables assignment of the bare frequency-dependent dipole

polarizabilities αa(iω) used to characterize a given QHO. Within the MBD formalism, this

assignment is given by the following 0/2-order Padé approximant applied to the scalar dipole

polarizability:253

αa(iω) = αa(0)
1− (iω/ωa)2 , (2.4)

in which αa(0) is the static dipole polarizability and ωa is the characteristic excitation (resonant)

frequency for atom a. The dependence of the bare frequency-dependent dipole polarizability in

Eq. (2.4) on ρ(r) is introduced by considering the direct proportionality between polarizability and

atomic volume,16 an approach that has been very successful in the Tkatchenko-Scheffler (TS)

dispersion correction,62 i.e.,

αa[ρ(r)](0) =
(
Va[ρ(r)]
V free
a

)
αfree
a (0) =

(∫
drwa(r)ρ(r)r3∫

dr ρfree
a (r)r3

)
αfree
a (0), (2.5)

in which V free
a and αfree

a are the volume and static dipole polarizability of the free (isolated) atom

in vacuo, respectively, obtained from either experiment or high-level quantum mechanical

calculations. Explicit dependence on ρ(r) resides in the effective “atom-in-a-molecule” volume,

Va[ρ(r)], obtained via Hirshfeld partitioning250 of ρ(r) into atomic components, in which the

‖Although there are numerous schemes for partitioning the electron density, the Hirshfeld prescription 250

has been shown to result in atomic partitions that most closely resemble the densities of the corresponding
free (isolated) atoms (by minimizing the Kullback-Leibler entropy deficiency of information theory). 252
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weight functions,

wa(r) = ρfree
a (r)/

∑
b

ρfree
b (r), (2.6)

are constructed from the set of spherical free atom densities, {ρfree
b (r)}. At present, we compute

the Hirshfeld partitioning and subsequently the MBD energy and forces as an a posteriori update

to the solution of the non-linear Kohn-Sham equations, i.e., without performing self-consistent

updates to ρ(r). Future work will address the impacts of computing the Hirshfeld partitioning

iteratively254 and using the MBD potential to update the Kohn-Sham density self-consistently. In

this regard, recent work on the self-consistent application of the TS method indicates that

self-consistency can have a surprisingly large impact on the charge densities, and corresponding

work functions, of metallic surfaces,114 so we anticipate that self-consistent MBD will be

particularly interesting for the study of surfaces and polarizable low-dimensional systems. For later

convenience, we rewrite Eqs. (2.4) and (2.5) to collect all quantities that do not implicitly depend

on the nuclear coordinates through Va[ρ(r)] into the quantity Υa(iω):

αa[ρ(r)](iω) =
[

1
1− (iω/ωfree

a )2
αfree
a (0)
V free
a

]
Va[ρ(r)] (2.7)

≡ Υa(iω) Va[ρ(r)]. (2.8)

2.2.1.2 Range-separated self-consistent screening (rsSCS)

Let A be a 3N × 3N block diagonal matrix formed from the frequency-dependent polarizabilities

in Eq. (2.7):∗∗

A(iω) =
N⊕
b=1

αb(iω) = diag[α1, α2, . . . , αN ]. (2.9)

This quantity will be referred to as the bare system dipole polarizability tensor. For a given

frequency, range-separated self-consistent screening (rsSCS) of A(iω) is then accomplished by

solving the following matrix equation87,118 (see Appendix C for the detailed derivation of

Eq. (2.11)):

A = A−A TSR A (2.10)

⇒ A =
[
A−1 + TSR

]−1
, (2.11)

∗∗The dipole polarizability tensor αa for a given atom or QHO is formed by populating the diagonal
elements (αxx, αyy, αzz) with the isotropic dipole polarizability in Eq. (2.7).
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where TSR is the short-range dipole–dipole interaction tensor, defined below in Eq. (2.34) and

section 2.2.1.4. The matrix A is the (dense) screened non-local polarizability matrix, sometimes

called the relay matrix.‡‡

Partial internal contraction over atomic sub-blocks of A yields the screened and anisotropic

atomic polarizability tensors (the corresponding molecular polarizability is obtained by total

internal contraction), i.e.,

αa(iω) =
N∑
b=1

Aab(iω). (2.12)

The static “isotropized” screened polarizability scalars, αa(0), that appear in the MBD

Hamiltonian in Eq. (2.17) and section 2.2.1.3 below are then calculated from αa(0) via

αa(0) = 1
3Tr

[
αa(0)

]
(2.13)

as described above in Eq. (2.2). Note that Eqs. (2.11)-(2.12) can be solved at any imaginary

frequency, iω, so we do not require the Padé approximant given in Eq. (2.4) to bootstrap from

αa(0) to αa(iω). However, the relationship between ωa and C6,aa, given in Eq. (2.15), is one that

is derived from the Padé approximant for the bare polarizability α(iω).

In the non-retarded regime, the Casimir-Polder integral relates the effective C6,ab dispersion

coefficient to the dipole polarizabilities of QHOs a and b via the following integral over imaginary

frequencies:21

C6,ab = 3
π

∫ ∞
0

dω αa(iω)αb(iω). (2.14)

By solving Eqs. (2.11-2.12) on a grid of imaginary frequencies {iyp}, a set of screened effective C6

coefficients, {C6}, can be determined by a Gauss-Legendre quadrature estimate of the integral in

Eq. (2.14). The screened QHO characteristic excitation frequency, ωa, is then calculated as

ωa = 4
3
C6,aa

[αa(0)]2 = 4
π

∑
p

gp

[
αa(iyp)
αa(0)

]2
, (2.15)

where gp and yp are the quadrature weights and abscissae, respectively. Scaling of the usual

Gauss-Legendre abscissae from [−1, 1] to the semi-infinite interval [0,∞) is discussed in the

accompanying Appendix C.

‡‡At this point, it is very important to note a difference in the notation relative to Refs. 87 and 84: our
matrix A is equivalent to their B or B, which was keeping with Thole’s original notation 118 for the relay
matrix.
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2.2.1.3 The MBD model Hamiltonian

The central concept in the MBD model is the Hamiltonian for a set of N coupled dipoles that

fluctuate within an isotropic harmonic potential U(xa) = 1
2maω

2
ax2

a, and acquire instantaneous

dipole moments, da = qaxa, that are proportional to the displacement xa from an equilibrium

position and charge qa on each oscillator. This Hamiltonian defines the so-called coupled

fluctuating dipole model (CFDM),30 and is given by:

HCFDM = −
N∑
a=1

∇2
xa

2ma
+

N∑
a=1

1
2maω

2
ax2

a +
N∑
a>b

d†aTabdb, (2.16)

where Tab is the dipole–dipole interaction tensor that couples dipoles a and b.

In the range-separated MBD model,88 T is replaced by a long-range screened interaction tensor,

T LR (as defined in section 2.2.1.4 and Eq. (2.36) below), and the fluctuating dipoles are mapped

onto QHOs, with effective masses ma =
(
αa(0) ω2

a

)−1 obtained from their respective static

polarizabilities and excitation frequencies. The corresponding range-separated MBD model

Hamiltonian is therefore:88

HMBD = −
N∑
a=1

∇2
µa

2 + 1
2

N∑
a=1

ω2
aµ

2
a +

N∑
a>b

ωaωb
√
αa(0)αb(0) µ†aT

LR
ab µb, (2.17)

in which µa = √ma ξa is the mass-weighted dipole moment†† of QHO a that has been displaced by

ξa from its equilibrium position. The first two terms in Eq. (2.17) represent the kinetic and

potential energy of the individual oscillators, respectively, and the third term is the two-body

coupling due to the long-range dipole–dipole interaction.

By considering the single-particle potential energy and dipole–dipole interaction terms in

Eq. (2.17), we can construct the 3N × 3N MBD interaction matrix, which is comprised of 3× 3

subblocks describing the coupling of each pair of QHOs a and b:

CMBD
ab = δabω

2
a + (1− δab)ωaωb

√
αa(0)αb(0) T LR

ab , (2.18)

where δab is the Kronecker delta of QHO indices.

The eigenvalues {λp} obtained by diagonalizing CMBD correspond to the interacting (or

††Since each QHO is assigned a unit charge (e = 1), the dipole moment µ is thereby equivalent to the
displacement vector ξ
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“dressed”) QHO modes, while ωa correspond to the modes of the non-interacting reference system

of screened oscillators. The MBD correlation energy is then evaluated via Eq. (2.3) as the

zero-point energetic difference between the interacting and non-interacting modes.

For periodic systems, we would replace all instances of the dipole–dipole interaction tensor by

Tab → Tab +
∑
b′

Tab′ (2.19)

where the sum over b′ indicates a lattice sum over the periodic images of atom b. Since this is an

additive modification of T, it will not qualitatively modify the expressions for the analytical

nuclear derivatives of the MBD energy. Hence, the derivation of the ionic forces presented herein

(and the accompanying chemical applications) will focus on the case of a non-periodic (or isolated)

systems. We note in passing here that the current implementation of the MBD energy and ionic

forces in Quantum ESPRESSO (QE) is able to treat both periodic and non-periodic systems. In

this regard, a chapter 3 and a forthcoming paper255 will describe the details of the implementation

and discuss the subtleties required to make the computation of well-converged MBD ionic forces

efficient for periodic systems.

2.2.1.4 The range-separated dipole–dipole interaction

Prior to range-separation, the 3× 3 sub-block Tab of the dipole–dipole interaction tensor T, which

describes the coupling between atoms a and b, is defined as:

Tab = ∇Ra
⊗∇Rb

vab, (2.20)

where vab is the frequency-dependent Coulomb interaction between two spherical Gaussian charge

distributions.256 This interaction arises due to the fact that the ground state of a (singly-occupied)

QHO has a Gaussian charge density:

vab(Rab, iω) = erf [ζab(iω)]
Rab

, (2.21)

where ζab(iω) ≡ Rab/Σab(iω), Rab = ‖Ra −Rb‖, and

Σab(iω) =
√
σa(iω)2 + σb(iω)2 (2.22)
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is the effective correlation length of the interaction potential defined by the widths of the QHO

Gaussians, as defined directly below in Eq. (2.23). As such, the dependence of T on the frequency

and (implicitly) on the nuclear coordinates both originate from Σab(iω) (see also Eqs. (2.7)-(2.8)).

In terms of the bare dipole polarizability, the width of the QHO ground-state Gaussian charge

density is given by:

σa(iω) =
[

1
3

√
2
παa(iω)

]1/3
(2.23)

=
[

1
3

√
2
πΥa(iω)

]1/3
[Va]1/3

, (2.24)

where αa(iω) = 1
3 Tr [αa] is the “isotropized” bare dipole polarizability and Eq. (2.8) was used to

make the effective volume dependence more explicit.

The Cartesian components of the dipole–dipole interaction tensor (with QHO indices

suppressed) are given by:

T ij(iω) =
[
erf[ζ]− 2ζ√

π
exp

[
−ζ2]]T ij

dip + 4√
π

RiRj

R5 ζ3 exp
[
−ζ2] , (2.25)

where Ri = Rab · êi is the ith Cartesian component of Rab, and Tdip is the frequency-independent

interaction between two point dipoles:

T ij
ab, dip = −3RiabR

j
ab +R2

abδ ij
R5
ab

, (2.26)

with δ ij indicating the Kronecker delta of Cartesian indices.

The range-separation of the dipole–dipole interaction tensor is accomplished by using a

Fermi-type damping function49,56,62

f(Zab) =
[
1 + exp [−Zab]

]−1
, (2.27)

which depends on Zab, the ratio between the inter-oscillator separation, and Sab, the scaled sum of

the effective van der Waals radii, RvdW
a and RvdW

b :

Zab ≡ 6
[
Rab
Sab
− 1
]

(2.28)

Sab ≡ β
[
RvdW

a +RvdW
b

]
. (2.29)
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Here, the parameter β is fit once for a given exchange-correlation functional by minimizing energy

deviations with respect to highly accurate reference data. 88 The short- and long-range components

of the dipole–dipole interaction tensor are then separated according to:

TSR = [1− f(Z)] T (2.30)

TLR = f(Z)T (2.31)

However, at long-range, the frequency-dependence in T dies off quickly, so when evaluating the

MBD Hamiltonian we replace Eq. (2.31) with the approximation

TLR ' f(Z)Tdip (2.32)

which is equivalent to taking erf [ζ] ' 1 and exp[−ζ2] ' 0. This has the added benefit of improved

computational efficiency since special functions such as the error function and exponential are

relatively costly to compute. As shown in Figure 3.2 in Chapter 3, these approximations hold true

to within machine precision for ζ > 6, and thus in practice by the time f(Z) has obtained a

substantial value, the frequency dependence in T has vanished, thereby justifying Eq. (2.32).

Likewise, for Z > 35, the Fermi damping function equals one to within machine precision. To avoid

numerical issues of underflow, our implementation of the short- and long-range dipole–dipole

interaction tensors checks Z and ζ, and where appropriate replaces T with Tdip or f(Z) with one.

The rsSCS procedure described in section 2.2.1.2 adds a further subtlety in that it modifies the

effective van der Waals radii in the definition of the Sab and Zab quantities above (see Refs. 80,87

for a more detailed discussion of these definitions). For the short-range interaction tensor (i.e., the

tensor used in the rsSCS procedure) the damping function utilizes effective van der Waals (vdW)

radii calculated at the Tkatchenko-Scheffler (TS) level: 62

RvdW,TS
a ≡

(
Va
V free
a

)1/3
RvdW, free

a (2.33)

where RvdW, free
a is the free-atom vdW radius defined in Ref. 62 using an electron density contour,

not the Bondi257 radius that corresponds to the “atom-in-a-molecule” analog of this quantity. To

indicate that the TS-level effective vdW radii are being used, the argument of the damping
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function for the short-range interaction tensor will be denoted with ZTS:

TSR =
[
1− f

(
ZTS) ]T. (2.34)

For the long-range dipole–dipole interaction tensor used in the MBD Hamiltonian in Eq. (2.17),

the damping function utilizes the self-consistently screened effective van der Waals radii: 80

RvdW
a ≡

(
αa(0)
αfree
a (0)

)1/3
RvdW, free

a , (2.35)

wherein the ratio α(0)/αfree(0) takes the place of V/V free thereby exploiting the proportionality

between polarizability and volume.16,87 To indicate that the screened effective vdW radii are being

used, the argument of the damping function for the long-range interaction tensor will be denoted

with Z:

TLR = f
(
Z
)
Tdip. (2.36)

This dependence on Z is why we use an overline on TLR above, and in Eqs. (2.17,2.18).

2.2.2 Derivation of the MBD ionic forces

With the above definitions in hand, we are now ready to proceed with the derivation of the

analytical derivatives of the MBD correlation energy with respect to the nuclear (or ionic) position

Rc of an arbitrary atom c. † These MBD forces are added to the DFT-based forces as calculated

by the Hellmann–Feynman theorem. As mentioned above in section 2.1.1, two distinct types of

nuclear coordinate dependence will arise: explicit dependence through Rab = Ra −Rb and implicit

dependence through V [{R}] (as moving a neighboring atom c will slightly alter the effective

volume assigned to atom a). Future work will address the effects of the MBD contribution to the

external potential when applied self-consistently, which will ultimately impact the electron density.

Our current work neglects these effects, and computes the MBD corrections non-self-consistently.

Having carefully separated out the implicit dependence on V in the relevant quantities above,

†It is very important to note that in this work we have only computed the Hellmann-Feynman derivative
of the total DFT+MBD energy. Specifically, when the MBD energy is computed non-self-consistently (i.e.
as an a posteriori correction), there is an additional force component that results from the gradient of the
molecular orbital coefficients (i.e., the non-self-consistency correction). 258–260 This term can be treated by
directly computing the “response” of the density by solving the coupled-perturbed-Kohn-Sham equations.
Alternatively, this term exactly vanishes if MBD is computed self-consistently, which is our recommended
approach.
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the derivation proceeds largely by brute force application of the chain and product rules. The

derivative of the MBD correlation energy given in Eq. (2.1.1) is governed by:

∂cEMBD = 1
2

3N∑
p=1

∂c
√
λp −

3
2

N∑
a=1

∂cωa, (2.37)

hence requiring derivatives of the screened excitation frequencies as well as the eigenvalues of the

matrix CMBD.

Since CMBD is real and symmetric, it has 3N orthogonal eigenvectors. We therefore do not

concern ourselves with repeated eigenvalues (see Appendix C for discussion) and take derivatives of

λp as:261

∂c
√
λp = ∂cλp

2
√
λp

(2.38)

∂cλp =
[
X T∂cCMBDX

]
pp

(2.39)

⇒
N∑
p=1

∂c
√
λp = 1

2Tr
[
Λ−1/2X T∂cCMBDX

]
. (2.40)

where X is the matrix of eigenvectors of CMBD and Λ = diag[λp] is the diagonal matrix of

eigenvalues. To evaluate this last line we require the appropriate derivative of the ab block of

CMBD, i.e.,

∂cCMBD
ab = 2δabωa∂cωa (2.41)

+(1− δab) [ωa∂cωb + ωb∂cωa]
√
αa(0)αb(0) T LR

ab

+(1− δab)ωaωb
[αa(0)∂cαb(0) + αb(0)∂cαa(0)]

2
√
αa(0)αb(0)

T LR
ab

+(1− δab)ωaωb
√
αa(0)αb(0) ∂cT

LR
ab .

To proceed any further we now need the derivatives of ω, α, and TLR. From Eq. (2.15), we find

that the derivative of the screened excitation frequency, ω, requires us to evaluate derivatives of

α(iω) (with α(0) as a specific case) as follows:

∂cωa = 8
π

n∑
p=1

gp

[
αa(iyp)∂cαa(iyp)

[αa(0)]2 − [αa(iyp)]2 ∂cαa(0)
[αa(0)]3

]
. (2.42)

The derivative of the screened polarizability, α, is calculated from the “isotropized” partial
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contraction of A (with the frequency dependence suppressed):

∂cαa = 1
3Tr

[
N∑
b=1

[
∂cA

]
ab

]
. (2.43)

Using Eq. (2.11) and expanding the derivative of the inverse of a non-singular matrix, we

have

∂cA = −A
[
−A−1 [∂cA] A−1 + ∂cTSR

]
A. (2.44)

Using Eqs. (2.8) and (2.9), we compute ∂cA as:

∂cA =
N⊕
a=1

diag [Υa ∂cVa] . (2.45)

In Eq. (2.45) we have terminated our chain-rule with ∂cVa, which has remaining implicit

dependence on nuclear coordinates. We regard ∂cVa as one of our three fundamental

derivatives since the Hirshfeld partitioning is typically computed separately from the rest

of the MBD algorithm. Discussion of how to compute ∂cVa may be found in Appendix C.

In considering the derivatives of the dipole–dipole interaction tensors we will encounter

both implicit and explicit nuclear position dependence through ζab. The derivatives of

TSR and TLR are fairly complicated, so it will help to consider first the damping function

in isolation. Here,

∂cf(Rab) = exp [−Zab]
[1 + exp [−Zab]]2

∂cZab (2.46)

∂cZab = 6
[
∂cRab
Sab

− Rab∂cSab
S2
ab

]
(2.47)

∂cSab = β
[
∂cRvdW

a + ∂cRvdW
b

]
, (2.48)

where ∂cRab is calculated as

∂cRab = ∇Rc‖Rab‖ = (δac − δbc)
Rab

‖Rab‖
, (2.49)
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and the effective van der Waals radii have only implicit nuclear coordinate dependence.

For TSR we require the derivative of the TS effective vdW radii:

∂cRvdW,TS
a = R

vdW, free
a

[V free
a ]1/3

∂cVa

3 [Va]2/3
, (2.50)

while for TLR, we require the derivative of the screened effective vdW radii:

∂cR
vdW
a = RvdW, free

a

[αfree
a (0)]1/3

∂cαa(0)
3 [αa(0)]2/3

, (2.51)

which was evaluated using Eqs. (2.43)-(2.45).

In the following we suppress the a, b, c atom indices where possible so that the Cartesian

indices i, j are highlighted. First we consider the derivative of Tdip, which is given by:

∂T ij
dip = −3

[
δ ij
R4∂R+ Rj∂Ri +Ri∂Rj

R5 − 5RiRj
R6 ∂R

]
, (2.52)

where ∂Ri is evaluated as:

∂cR
i
ab = ∇Rc ((Ra −Rb) · êi) = (δac − δbc)êi. (2.53)

Since the long-range dipole–dipole interaction tensor is approximated with the

frequency-independent Tdip (thereby eliminating ζ), Eqs. (2.46)-(2.51) and (2.52) provide

us with all of the quantities needed to evaluate ∂cTLR as:

∂cT
ij
ab, LR = T ij

ab, dip ∂cf
(
Zab

)
+ f

(
Zab

)
∂cT ij

ab, dip. (2.54)

The derivative of TSR is more complex since T depends on ζ:

∂cT ij
ab, SR = −T ij

ab ∂cf
(
ZTS
ab

)
+
[
1− f

(
ZTS
ab

)]
∂cT ij

ab, (2.55)
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in which the derivative of T ij is given below (see Appendix C for a detailed derivation):

∂T ij = −3
[
erf [ζ]− h(ζ)

2ζ

]
∂T ij

dip + ζ h(ζ)
[
−1

3∂T ij
dip −

δ ij
R4∂R

]
(2.56)

+
[
T ij

dip + R iR j

R5

[
3− 2ζ2

]]
h(ζ)∂ζ,

wherein we have defined the following function for compactness,

h(ζab) ≡
4ζ2
ab√
π

exp[−ζ2
ab]. (2.57)

The derivative of ζab is given by (with QHO indices restored to express ∂cΣab from

Eq. (2.22)):

∂cζab = ζab
Rab

∂cRab −
ζ3
ab [σa∂cσa + σb∂cσb]

R2
ab

, (2.58)

where ∂cσa is computed from Eq. (2.24) as

∂cσa =
[

1
3

√
2
π

Υa

]1/3
∂cVa

3 [Va]2/3
. (2.59)

We have now reduced the analytical nuclear derivative of the MBD correlation energy

to quantities that depend on three fundamental derivatives: ∂cRab, ∂cRiab and ∂cVa. The

expressions for ∂cRab and ∂cRiab have been given above in Eqs. (2.49, 2.53), and are

straightforward to implement. The computation of ∂cVa is outlined briefly in Appendix C.

2.3 Computational Details

2.3.1 Calculations in Quantum ESPRESSO

We have implemented the MBD energies and analytical nuclear gradients (forces) in a

development version of Quantum ESPRESSO v5.1rc2 (QE).262 Chapter 3 and a

forthcoming publication will discuss the details of our implementation, including the

parallelization and algorithmic strategies required to make the method efficient for

treating condensed-phase systems.255 All calculations were performed with the Perdew,
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Burke, and Ernzerhof (PBE) exchange-correlation functional, 182,183 and

Hamann-Schlueter-Chiang-Vanderbilt (HSCV) norm-conserving pseudopotentials 263–265

obtained from the FPMD pseudopotential repository266 (and converted to UPF format

using a modified version of qso2upf v1.2267). As a point of completeness, it should be

noted that, presently, the Hirshfeld partitioning in QE has only been implemented for

norm-conserving pseudopotentials, and thus the MBD method cannot be used with

ultrasoft pseudopotentials or projector-augmented wave methods (implementing the

charge density partioning for these methods would require careful treatment of both the

free atom reference volumes and compensation for the augmentation charges). All

geometry optimizations were performed using the quasi-Newton

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,268–271 with default parameters.

Cartesian coordinate geometry opmizations were performed in the PWscf module in

large simple cubic unit cells. Table 2.1 gives details of the convergence tolerances,

wavefunction kinetic energy cutoffs (Ecut), and unit cell sizes used for each system. Since

QE uses Rydberg energy units (1 Ry = 1
2 Eh), we report the tolerances in these units. All

QE calculations were run Γ point only using a charge density cutoff of 4× Ecut.

PBE+MBD@rsSCS jobs used 20 quadrature points for the Casimir-Polder integration. To

ensure a fair comparison with our implementation of the MBD model, all TS calculations

were performed as a posteriori corrections to the solution of the non-linear Kohn-Sham

equations, i.e. we turned off the self-consistent density updates from TS. In Figure 2.1 we

present the results of convergence testing with respect to the kinentic energy cutoff in the

planewave basis set expansion, showing that the total energy per atom was converged to

better than 0.3 meV/atom for each system.

2.3.2 Calculations in Orca

For comparison with the D3(BJ) dispersion correction of Grimme et al.66,77 we also

optimized structures using Orca v3.03.244 Redundant internal coordinate geometry

optimizations were performed with the PBE functional182,183 with the atom-pairwise
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Figure 2.1: Convergence of the total energy per atom with respect to kinetic energy cutoff (Ecut) of the
planewave basis expansion for Top: simulations of the C60 catcher complex, Bottom: the benzene dimer
(M1 configuration).

Table 2.1: Convergance tolerances and unit cell sizes used in PWscf geometry optimizations, reported in
Rydberg atomic units (1 Ry = 1

2 Eh).

Benze Dimer Peptides C60 Catcher
Escf (Ry) 10−8 10−8 10−8

Ecut (Ry) 400 145 110
Etot (Ry) 10−8 5 × 10−7 5 × 10−7

Ftot (Ry/a0) 10−4 5 × 10−4 5 × 10−4,
Cell Size (a0) 30 30 50
Grid Spacing (Å) 0.04 0.07 0.12

version of the D3 dispersion correction of Grimme et al.,66 using Becke-Johnson

damping.77 Orca v3.03 implements D3 in the DFTD3 v2.1r6 software, which does not

contain analytical gradients of the three-body term, so only atom-pairwise D3 was

considered. The geometric counterpoise correction (gCP) of Kruse et al. was employed in

all Orca calculations.272 We employed the Ahlrichs def2-TZVP basis set239 coupled with

an auxiliary Ahlrichs TZVP basis set273,274 for the RI-J approximation.275–277 All

calculations used the g4 final ingegration grid. All calculations used ‘tight’ SCF

tolerances; calculations on the benzene dimer and C60 catcher used ‘tight’ optimization

tolerances, while those of the peptides used default optimization tolerances. Table 2.2 lists

the tolerances corresponding to these two settings.
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Table 2.2: Convergance tolerances used in Orca geometry optimizations, reported in Hartree atomic units.

Benze Dimer Peptides C60 Catcher
Escf (Eh) 10−8 10−8 10−8

Etot (Eh) 10−6 5× 10−6 10−6

FMax (Eh/a0) 10−4 3× 10−4 10−4

FRMS (Eh/a0) 3× 10−5 10−4 3× 10−5

Max Disp. (a0) 10−3 4× 10−3 10−3

RMS Disp. (a0) 6× 10−4 2× 10−3 6× 10−4

2.4 Results and Discussion

To verify our implementation of the MBD energy in QE, we compared against the

implementation of the MBD@rsSCS model in the FHI-aims code278,279 by computing the

MBD energy of a single water molecule in a (10 a0)3 simple cubic unit cell. We find

agreement with the FHI-aims MBD code to within 10−11 Eh. These initial implementation

tests used a large kinetic energy cutoff (Ecut = 400 Ry or greater) for the planewave basis

set expansion as this cutoff directly corresponds to the density of grid points employed to

describe ρ(r), thereby defining the accuracy of the Hirshfeld partitioning. We next verified

the analytical nuclear gradients by computing numerical derivatives via the centered

difference formula for a strained conformation of the same water molecule. We find

agreement between our analytical forces and the numerical derivatives to within

10−4 Eh/a0, which is the level of accuracy that we expect for error propagation of finite

differences of the Hirshfeld effective volumes given the finite spacing between the grid

points describing ρ(r). We emphasize that 10−4 Eh/a0 is the approximate error threshold

of the centered difference numerical derivatives, not our analytical treatment.

To demonstrate the performance of this implementation of analytical MBD nuclear

gradients, we performed geometry optimizations on representative systems for

intermolecular interactions (benzene dimer), intramolecular interactions (polypeptide

secondary structure), and supramolecular interactions (C60@C60H28 buckycatcher

host-guest complex). We subsequently examined the importance of the implicit nuclear

coordinate dependence that arises from the Hirshfeld effective volume gradient ∂V for the
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computation of the MBD forces.

2.4.1 Intermolecular interactions:

stationary points on the benzene dimer potential energy surface

As the prototypical example of the π − π interaction, there have been a large number of

theoretical studies on the benzene dimer, using very high-level wavefunction theory

methods.95,280–300 Since the intermolecular attraction between the benzene dimer arises

primarily from a balance between dispersion interactions and quadrupole-quadrupole

interactions (depending on the intermolecular binding motif), the interaction energy is

quite small (∼ 2− 3 kcal/mol) and the potential energy surface (PES) is very flat.

Consequently, resolving the stationary points of this PES is quite challenging for both

theory and experiment. The prediction of the interaction energy in the benzene dimer

represents a stringent test of the ability of a given electronic structure theory method to

capture and accurately describe non-bonded intermolecular interactions. Historically,

three conformers of the dimer have received the most attention, namely the ‘sandwich,’

‘parallel-displaced,’ and ‘T-shaped’ structures. Using the high-level benchmark interaction

energy calculations as a guide, several studies have used a variety of more approximate

methods to examine the PES more broadly.291,293,298,300 By scanning the PES of the

benzene dimer with DFT-based symmetry adapted perturbation theory (DFT-SAPT),

Podeszwa et al.291 identified 10 stationary points, i.e., either minima (M) or saddle points

(S) of the interaction energy (see Figure 2.2). Most wavefunction studies of the benzene

dimer PES have used a fixed monomer geometry, assuming that the weak interactions will

produce very little relaxation of the rigid monomer.288 Using the highly accurate fixed

benzene monomer geometry of Gauss and Stanton,286 Bludský et al.95 performed

counterpoise-corrected geometry optimizations of these 10 configurations at the

PBE/CCSD(T) level of theory, with an aug-cc-pVDZ basis set. The resulting geometries

are among the largest molecular dimers to be optimized with a CCSD(T) correction to

date and represent the most accurate available structures for the dimer of this classic
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aromatic system.

S5 S7 S8S4S3S2S1M2M1 S6S5 S7S6S6

Figure 2.2: Top: Graphical depictions of the 10 configurations that correspond to stationary points on
the benzene dimer PES, following the nomenclature of Podeszwa et al. 291 (Mn = minima; Sn = saddle
points). Left: Change in inter-monomer distance R relative to the PBE/CCSD(T) reference for geome-
tries optimized with PBE+vdW methods: MBD (shown in blue), TS (shown in yellow) and D3 (shown
in green). PBE+MBD consistently predicts the correct inter-monomer distance. For the stacked config-
urations (M1, S2, S7, and S8) PBE+TS shortens the inter-monomer distance, while for T-shaped con-
figurations (M2, S1, S3, S4, S5, and S6) the inter-monomer distance is elongated. For all configurations
except the stacked S7 and S8 structures PBE+D3 predicts too long an inter-monomer distance. Right:
Root-mean-square-deviations (RMSD) in Å between the PBE+vdW and PBE/CCSD(T) 291 optimized ge-
ometries of these 10 benzene dimer configurations. The RMSD between the PBE+MBD and reference
PBE/CCSD(T) geometries (shown in blue) are uniformly small and consistent across all minima and sad-
dle points on the benzene dimer PES. For several Mn and Sn configurations, the PBE+D3 optimized
geometries (shown in green) agree quite well with the PBE/CCSD(T) reference, while the PBE+TS opti-
mized geometries (shown in yellow) have more significant deviations.

As a first application of the MBD analytical nuclear gradients derived and implemented

in this chapter, we performed geometry optimizations on these 10 benzene dimer

configurations at the PBE+MBD, PBE+TS, and PBE+D3 levels of theory. All of the

geometry optimizations performed herein minimized the force components on all atomic

degrees of freedom according to the thresholds and convergence criteria specified in

section 2.3 (i.e., frozen benzene monomers were not employed in these geometry

optimizations). The root-mean-square-deviations (RMSD in Å) between the PBE+MBD,

PBE+TS, and PBE+D3 optimized geometries with respect to the reference

PBE/CCSD(T) results are depicted in Figure 2.2.

From this figure, it is clear that the PBE+MBD method, with a mean RMSD value of

0.01 Å (and a vanishingly small standard deviation of 3 × 10−4 Å) with respect to the
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reference PBE/CCSD(T) results, was able to provide uniformly accurate predictions for

the geometries of all of the benzene dimer configurations considered. These findings are

encouraging and consistent with the fact that the PBE+MBD method yields significantly

improved binding energies for the benzene dimer as well as a more accurate quantitative

description of the fractional anisotropy in the static dipole polarizability of the benzene

monomer.87 This is also consistent with the finding of von Lilienfeld and Tkatchenko that

the three-body ATM term contributes ∼ 25% of the binding energy of the benzene dimer

in the parallel displaced configuration.121

With a mean RMSD value of 0.03± 0.01 Å and 0.05± 0.02 Å respectively, the PBE+D3

and PBE+TS methods both yielded a less quantitative measure of the benzene dimer

geometries with respect to the reference PBE/CCSD(T) data. Of the 7 benzene dimer

configurations for which the PBE+TS RMSD values were greater than 0.05 Å (namely

M2, S1, S3, S4, S6, S7, and S8), it is difficult to identify a shared intermolecular binding

motif among them. Intriguingely, PBE+D3 seems to fare better on sandwiched geometries

and it is only the T-shaped S4 and S6 which have RMSDs above 0.05 Å.

However, analysis of the inter-monomer distance (see Figure 2.2) reveals that PBE+TS

tends to shorten the inter-monomer distance, R, for stacked geometries (M1, S2, S7, and

S8) by an average of 0.03 Å relative to the PBE/CCSD(T) results, while it elongates the

inter-monomer distance by an average of 0.09 Å for T-shaped structures.

We believe that these observations can be explained by the fact that the

frequency-dependent dipole polarizability (FDP) in the TS model is approximated by an

isotropic scalar instead of an anisotropic tensor quantity. A consequence of this

approximation is that the in-plane components of the FDP in the benzene monomer are

underestimated while the out-of-plane component is overestimated. In the stacked

benzene dimer configurations, the inter-monomer distances are primarily determined by

the coupling of the induced dipole moment in the direction of the out-of-plane component

of one monomer with the induced dipole moment in the direction of the out-of-plane

component of the other monomer. As such, the interaction along the inter-monomer axis,
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R, is overestimated, which leads to TS predicting an inter-monomer distance that is too

short with respect to the available reference data. This effect is more apparent in the

sandwich-stacked configurations (S7 and S8) than the parallel-displaced-stacked

configurations (M1 and S2), which is also consistent with the fact that the argument

above would affect configurations in which the monomers are directly aligned (i.e., have a

rise and no run) to a much larger degree than those that are displaced (i.e., have a rise

and a run). For the T-shaped configurations, the situation is slightly more complicated

(and less clear than in the stacked cases). Here, the intermolecular binding motif balances

several components, e.g., the out-of-plane component on one monomer with the in-plane

component of the other monomer. From Figure 2.2, we also observed that D3, like TS,

shortens the inter-monomer distance for both S7 and S8. However, PBE+D3 elongates

the inter-monomer distance by an average of 0.06 Å for all other dimer geometries.

For both stacked and T-shaped structures, PBE+MBD performs much more

consistently, elongating the inter-monomer distance by a scant 5× 10−3 Å and 1× 10−3 Å

for stacked and T-shaped configurations, respectively. This is believed to be because

PBE+MBD captures the anisotropy (and screening) in the FDP of the benzene monomer.

The MBD model essentially fixes the issues with TS described above and is able to yield

consistent results for all inter-monomer binding motifs of the benzene dimer. In the MBD

case, the beyond-pairwise dispersion interactions might also play a role here, but their

effect is harder to estimate without explicitly calculating the decomposition of the MBD

energy and forces into individual n-body terms (n = 2, 3, · · · , N).

We note that RMSD values in the range of 0.03–0.08 Å, and errors on inter-monomer

distances of 0.05-0.10 Å, in the geometries of small molecular dimers (as found here with

the PBE+TS and PBE+D3 methods) are not unacceptably large in magnitude; however,

these differences will become even more pronounced as the sizes and polarizabilities of the

monomers continue to increase. In this regime, the MBD method—by accounting for both

anisotropy and non-additivity in the polarizabilities as well as beyond-pairwise many-body

contributions to the long-range correlation energy—is expected to yield accurate and
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consistent equilibrium geometries for such molecular dimers. As such, the combination of

DFT+MBD has the potential to emerge as a computationally efficient and accurate

electronic structure theory methodology for performing scans of high-dimensional PES for

molecular systems whose overall stability is primarily dictated by long-range

intermolecular interactions.

2.4.2 Intramolecular interactions: secondary structure of polypeptides

As a second application, we considered the intramolecular interactions that are

responsible for the secondary structure in small polypeptide conformations. In particular,

we studied 76 conformers of 5 isolated polypeptide sequences (GFA, FGG, GGF, WG, and

WGG), which are comprised of the following four amino acids: glycine (G), alanine (A),

phenylalanine (F), and tryptophan (W). This set of peptide building blocks includes the

simplest amino acids, glycine and alanine (with hydrogen and methyl side chains,

respectively), as well as the larger aromatic amino acids, phenylalanine and tryptophan

(with benzyl and indole side chains, respectively). Although each of these polypeptides

are relatively small (with 34-41 atoms each), a significant amount of conformational

flexibility is present due to the non-trivial intramolecular binding motifs found in these

systems, such as non-bonded side chain–backbone interactions and intramolecular

hydrogen bonding. In fact, it is the presence of these interactions that leads to the

formation of α-helices and β-pleated sheets—the main signatures of secondary structure in

large polypeptides and proteins.

Following a benchmark study by Valdes et al.,301 in which the geometries of these 76

conformers were optimized using second-order Møller-Plesset perturbation theory 302

(MP2) within the resolution-of-the-identity approximation 275–277,303–307 (RI-MP2) and the

fairly high-quality cc-pVTZ atomic orbital basis set,308 we performed geometry

optimizations on this set of conformers with several vdW-inclusive DFT approaches,

namely, PBE+D3(BJ),66,77 PBE+TS, and PBE+MBD. All of the geometry optimizations

performed in this section minimized the force components on all atomic degrees of
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freedom according to the thresholds and convergence criteria specified in section 2.3.

Treating the MP2 geometries as our reference, Figure 2.3 displays box-and-whisker plots

and cumulative distribution functions of the distributions of RMSDs (in Å) obtained from

geometry optimizations employing the aforementioned vdW-inclusive DFT methodologies.

In the top of Figure 2.4, the RMSDs for each peptide conformer are visualized as a bar

chart. Our starting geometries were taken from www.begdb.com, corresponding to the

RI-MP2/cc-pVTZ optimized structures given in the supplemental information of Valdes et

al.301 Table D.1 in Appendix D gives the correspondence between the structure indexing

scheme used in this work, the nomenclature of the begdb database (www.begdb.com) and

the nomenclature of Valdes et al.301

Here we find that the PBE+MBD method again yields equilibrium geometries that are

consistently in closer agreement with the reference MP2 data than both the PBE+TS and

PBE+D3 methodologies. For instance, the RMSDs between the PBE+MBD and MP2

conformers are smaller than 0.12 Å for all but one GGF conformer (34: GGF04), with an

overall mean RMSD value of 0.07± 0.03 Å. In contrast to the intermolecular case of the

benzene dimer, the PBE+TS method performs significantly better than PBE+D3 on the

same benchmark set of polypeptides, with overall mean RMSD values of 0.11± 0.07 Å and

0.20± 0.17 Å, respectively. In this regard, the whiskers in Figure 2.3 extend to RMSD

values that are within 1.5 times the interquartile range (i.e., following the original, though

arbitrary, convention for determining outliers suggested by Tukey 309), which highlights

the fact that there are several conformers for which both PBE+TS and PBE+D3 predict

equilibrium geometries that are significantly different than MP2.

Although MP2 is the most economical wavefunction-based electronic structure method

that can describe dispersion interactions, MP2 does not properly account for long-range

many-body effects and tends to grossly overestimate C6 dispersion coefficients,310 which in

general leads to an overestimation of the binding energies of dispersion-bound complexes

such as the benzene dimer. Since PBE+MBD should bind less strongly than MP2, we

expect the side-chain to backbone distance to elongate slightly for bent conformers.
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Conformers where the side chain is extended away from the backbone are expected to

show less deviation between MP2 and PBE+MBD as the side-chain backbone dispersion

interaction will be less significant for the geometry of the conformer.

Figure 2.3: Left: Box-and-whisker plots showing the distribution of root-mean-square-deviations
(RMSDs) in Angstrom between 76 conformers of 5 isolated small polypeptides optimized with
PBE+MBD (blue), PBE+TS (yellow) and PBE+D3 (green) compared against the MP2 reference geome-
tries of Valdes et al. 301 Whiskers extend to data within 1.5 times the interquartile range. 309 Note the need
for a broken axis to show the largest RMSDs of PBE+D3. PBE+MBD consistently outperforms both
PBE+TS and PBE+D3 in terms of yielding optimized geometries closer to the MP2 reference. Median
(maximum) values are: 0.06 (0.28) Å for PBE+MBD, 0.09 (0.52) Å for PBE+TS, and 0.14 (1.10) Å for
PBE+D3. Right: Empirical cumulative distribution function (CDF) showing the percentage of the 76
peptide conformers on which a given PBE+vdW optimization method achieves a RMSD below the value
on the horiztal axis. Once again PBE+MBD is shown in blue, PBE+TS is shown in yellow and PBE+D3
is shown in green.

Aside from the noticeable outliers, the PBE+vdW structural deviations in most of the

conformers correspond to small rotations or deflections of terminal groups and side chains

due to dispersion-based interactions, in contrast to the backbone which is constrained by

non-rotatable bonds. In the bottom of Figure 2.4 we present representative overlays of

this rearrangement, showing the MP2 (blue), PBE+MBD (red), and PBE+D3 (yellow)

geometries. In a) structure 17 (GFA03) is a conformer for which both PBE+MBD and

PBE+D3 give small/moderate RMSDs with MP2. Both PBE+MBD and PBE+D3 open

the cleft between the alanine and phenylalanine, also causing the amine on the backbone

to slightly rotate. The relative positioning of these structures is expected, given MP2’s

tendency to over-bind dispersion interactions and PBE+D3’s tendency to under-bind. In

b) structure 48 (WG03), again shows PBE+MBD agreeing well with MP2, but slightly

opening the backbone-side chain distance. However, PBE+D3 performs unfavorably on

this structure, yielding an RMSD of 1.10 Å.
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Structures where the side-chain lies farther off to the side of the backbone, such as 4

(FGG215) shown in panel d), show the smallest RMSDs between the PBE+MBD and

reference MP2 geometries with the PBE+MBD geometry lying almost exactly on top of

the MP2 geometry. However, FGG215 is again a structure where D3 does a poor job, this

time yielding an RMSD of 0.64 Å.

Figure 2.4: Top: Bar chart of the root-mean-square-deviations (RMSDs) in Angstrom between 76
conformers of 5 isolated small polypeptides optimized with PBE+MBD (blue), PBE+TS (yellow) and
PBE+D3 (green) compared against the MP2 reference geometries of Valdes et al. 301
Bottom: Overlays of the geometries obtained from geometry optimization with MP2 (blue) and
PBE+MBD (red) and PBE+D3 (yellow). In both a) GFA03 and b) WG03, the MBD correction opens
the cleft between the backbone and aromatic side-chain because MP2 over-binds dispersion interactions.
c) In GGF04, PBE+MBD rotates the phenylalanine and alanine groups together. d) In FGG215, since the
side-chain is farther away from the backbone, PBE+MBD matches the MP2 geometry almost exactly.
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The structure for which the PBE+MBD method has the largest RMSD, at 0.28 Å is 34

(GGF04), shown in panel c). As opposed to opening a cleft like in GFA03, PBE+MBD

rotates the phenylalanine and alanine groups together. This rotation occurs because the

terminal hydrogen on the glycine is attracted to the π-system on the phenylalanine. The

rigid nature of the glycine combined with the rotatable bond in the phenylalanine, forces

the phenylalanine to slightly rotate in response. The motion of the middle glycine solely

attempts to minimize molecular strain from these other two interactions. Both PBE+TS

and PBE+D3 methods show a similar rotation for this structure, though PBE+D3 rotates

the structure even farther than PBE+MBD. This concerted rotation is associated with a

very flat potential energy surface, as indicated by the fact that a second optimization run

with the same tolerances resulted in a slightly greater rotation.

Following Valdes et al., we classified the structures by the existence of an intramolecular

hydrogen-bond between the -OH of the terminal carboxyl group and the C=O group of

the preceding residue. The mean RMSD is strongly influenced by the high outliers, so the

median RMSD is a more representative measure for comparing these two groups of

conformers. The median RMSD for CO2Hfree (CO2Hbonded) structures is: 0.06 (0.07) Å

for PBE+MBD, 0.09 (0.09) Å for PBE+TS, and 0.14 (0.14) Å for PBE+D3. Overall, we

find that the presence of this intramolecular hydrogen bond does not strongly correlate

with which structures deviate more from the MP2 geometries. This finding was somewhat

unexpected since Valdes et al. asserted that dispersion interactions are more important in

determining the structure of the CO2Hfree family of conformers due to the peptide

backbone’s tendency to lie over the aromatic side chain.

Overall, we find excellent agreement between the MP2 and PBE+MBD geometries.

Where PBE+MBD deviates, we find agreement with physical and chemical intuition when

we take into account the well known tendency of MP2 to overestimate the magnitude of

dispersion interactions. The agreement between PBE+MBD and MP2 geometries is a

marked contrast to the inconsistent performance of PBE+D3 and PBE+TS which both

yielded numerous outliers. Although computational cost is not directly comparable
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between a Gaussian-type-orbital code and a planewave code, we are greatly encouraged by

the accuracy of our PBE+MBD geometry optimizations since optimizations with a

generalized gradient approximation functional such as PBE are substantially cheaper than

RI-MP2. Future work will explore the performance of MBD applied to hybrid functionals

to evaluate the role of error cancellation in the underlying GGA. 311 In addition, analytical

gradients of the three-body term in D3 are now available in more recent versions of

DFTD3, and this term should be included for a more thorough comparison of the role

played by beyond-pairwise dispersion interactions.

2.4.3 Supramolecular interactions: buckyball catcher host–guest complex

Noncovalent interactions are particuarly important in supramolecular chemistry, where

nonbonded interactions, such as dispersion, stabilize molecular assemblies. The large size

of supramolecular host-guest complexes typically places them outside the reach of

high-level quantum chemical methodologies and necessitates the use of DFT for geometry

optimizations and energy computations. However, the large polarizable surfaces that

interact in these systems requires a many-body treatment of dispersion to achieve a

chemically accurate description of supramolecular binding energies. 106,312 The C60

‘buckycatcher’ host–guest complex (also referred to as C60@C60H28) in particular has

received considerable attention as a benchmark supramolecular system in the hope that it

is prototypical of dispersion-driven supramolecular systems, and it has been studied

extensively both experimentally313–316 and theoretically.105,106,312,314,317–321 The C60

buckycatcher (denoted as 4a by Grimme) is one of the most well studied members of the

S12L test set of noncovalently bound supramolecular complexes. 320 This system has also

stimulated interest in novel hosts for fullerenes321–325 and scaffolding for endohedral

fullerenes.326

Much of the past computational work has focused on modeling the interaction energy of

the C60 buckycatcher complex and comparing these results to the experimental data on

thermodynamic association constants that have been extracted from titration
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Table 2.3: Selected distances of DFT+vdW optimized geometries of the C60@C60H28
host–guest complex and conformer a of the host alone compared to X-ray crystal struc-
tures of C60@C60H28·2PhMe 313 and the unsolvated buckycatcher. 316 The TPSS func-
tional does not identify conformer a, so these entries are left blank.

Complex Host a
Method Rc (Å) Rp (Å) Rt (Å) Rp (Å) Rt (Å)
PBE+MBD 8.312 12.992 6.303 13.263 6.394
PBE+TS 8.361 12.974 6.337 12.969 6.080
PBE+D3 8.454 12.987 6.286 11.640 6.215
TPSS+D3 8.392 12.748 6.288 – –
TPSS+D3a 8.361 12.822 6.303 – –
B97-D2b 8.335 12.798 6.299 11.152 6.216
M06-2Lc 8.136 12.703 6.382 11.844 6.322
X-rayd,e 8.484(3) 12.811(4) 6.418(5) 9.055(2) 6.44(3)

a Ref. 320, b Ref. 314, c Ref. 317, d Ref. 313, e Ref. 316

experiments.313–315 This complex is a challenging system for most dispersion correction

methods since the three-body term contributes approximately 10% of the interaction

energy.105,106 Motivated by this large contribution of beyond-pairwise dispersion, we

optimized the C60@C60H28 complex with PBE+MBD, PBE+TS and PBE+D3 to see how

significantly MBD effects impact the geometry. With 148 atoms this system also

represents a structure that would be too large to optimize with numerical MBD gradients.

The buckycatcher host is made of a tetrabenzocyclooctatetraene (TBCOT) tether and

two corannulene pincers (see inset of Figure 2.5). The conformation of the catcher is

determined by a competition between the attractive dispersion interactions between the

corannulene pincers and the strain induced by deformation of the TBCOT tether. 314 The

two lowest energy ‘open’ conformers of the catcher have the corannulene bowls in a

convex–convex ‘catching’ motif or in a convex–concave ‘waterwheel’ motif; following the

notation of Refs. 313,314,318, we term the ‘catching’ motif a and the ‘waterwheel’ motif

b. Mück-Lichtenfeld et al.314 identified two additional conformations c, where the

corannulene bowls face out, and d, where the pincers are ‘closed’ and there is a strong

π − π interaction between nested corannulene bowls (see Figure 1 of Ref. 314).

Interestingly, several of the functionals that have been used to study the buckycatcher do
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not identify some conformers. Notably, B3LYP does not identify conformer d, and

TPSS-D3 is prone to drive conformer a to a closed variant that has Rp = 5.53 Å. With

regard to the balance between dispersion and strain, conformer a is the conformer that

results when the C60 is removed from the pincers and the host is allowed to relax. We will

focus our discussion on the relaxed conformer a and the optimized complex.

8.45 Å

8.31 Å

Rc
Rt

Rp

Figure 2.5: Overlay between the geometry of the C60@C60H28 host–guest complex optimized with
PBE+D3 (red) and PBE+MBD (blue). The distance Rc between the C60 centroid and the plane bisect-
ing the tetrabenzocyclooctatetraene (TBCOT) tether (transparent green) is reduced from 8.45 Å with
D3 to 8.31 Å with MBD. The green arrow shows that the Rt distance is measured between terminal car-
bon atoms on the TBCOT tether. The yellow arrow shows that the Rp distance is measured between the
most separated carbon atoms of the central five-membered rings of both corannulene subunits.
Inset: The 2D molecular structure of the C60H28 buckycatcher host, with corannulene subunits shown in
blue and the TBCOT tether shown in red. Atoms used to define the Rt and Rp distances are marked in
green and yellow respectively. The black dot shows the centroid of the four atoms on the TBCOT tether
used to define the Rc distance.

To compare the size of the cleft between the corannulene pincers when the buckycatcher

is optimized with various DFT+vdW methods, we report the distance between the most

separated carbon atoms of the central five-membered rings of both corannulene subunits
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as a measure of the size of the cleft; we denote this distance as Rp (see Figure 2.5).

Closing of the cleft tends to be accompanied by outward deflection of the TBCOT tether,

so we also measure the distance between terminal carbons on the tether; we denote this

distance as Rt (see Figure 2.5). Likewise, we measure the distance between the centroid of

the C60 and the plane that bisects the TBCOT tether at the base of the buckycatcher (see

Figure 2.5); we denote this distance as Rc. In Figure 2.5 the 2D molecular structure of the

buckycatcher host and the 3D structure of the C60@C60H28 host–guest complex with the

three distances Rc, Rp, and Rt are highlighted.

Upon optimization with PBE+MBD we find that the corannulene pincers deflect

outward, as seen by the increased Rp distance relative to the starting

TPSS+D3/def2TZVP geometry from the S12L dataset.320 The Rp distance predicted by

PBE+MBD is larger than other results from vdW inclusive functionals (see Table 2.3),

which may be consistent with previous reports of three-body and higher order terms

substantially decreasing the binding energy of the C60@C60H28 host–guest complex.105,106

However, this deflection is accompanied by a reduction of the buckyball–catcher distance

Rc, which would suggest a tighter binding. Just as with the reduced cleft distances in the

peptides and the inter-monomer distance in the benzene dimer, we find that the

host–guest distance predicted by PBE+MBD (Rc = 8.31 Å) is smaller than that predicted

by PBE+D3 (Rc = 8.45 Å) and PBE+TS (Rc = 8.36 Å). For comparison, we also

optimized the complex with TPSS+D3/def2TZVP and found a buckyball–catcher

distance of Rc = 8.39 Å, which is slightly larger than the Rc = 8.36 Å in the previously

reported TPSS+D3/def2TZVP geometry in the S12L dataset.320 These results are

reported in Table 2.3 together with a comparison to previous vdW inclusive DFT results

and the corresponding distances from the X-ray determined crystal structures.

The X-ray structure for the complex is taken from C60@C60H28 co-crystallized with two

disordered toluene molecules, i.e. C60@C60H28·2PhMe.313 In the solid state the fullerenes

form columns along the a-axis, while the buckycatcher aligns back-to-back in the bc-plane.

These back-to-back interactions have fewer atoms that are in van der Waals contact, but
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could still push the corranulene units together slightly. Zabula et al. recently obtained an

X-ray crystal structure of the unsolvated buckycatcher which adopts an inter-locked

structure of conformer a.316 This inter-locked structure provides an attractive van der

Waals interaction between corranulene units, which causes cleft to close, and yields an Rp

distance of 9.055(2) Å with a corresponding outward deflection of the TBCOT tether

(Rt = 6.44(3) Å).

Perhaps the most unusual trend in Table 2.3 is the substantial opening of the cleft

between the corranulene subunits, and accompanying outward deflection of the TBCOT

tether, when the isolated host is optimized with the PBE+MBD method. Comparing the

Rp and Rt distances we find an ordering of PBE+MBD > PBE+TS > PBE+D3.

Mück-Lichtenfeld et al. previously found that the TBCOT tether is quite flexible,

resulting in a shallow bending potential (see Figure 2 of Ref. 314) as the Rp distance is

varied; using the B97-D functional and 6-31G? basis set, the energy of conformer b varies

by only ∼ 1.3 kcal/mol as Rp is scanned from 10-14 Å.314 Comparing the energy of the

buckycatcher in the strained conformer that it adopts when hosting the buckyball, to its

energy when fully relaxed, we see that at the PBE+D3/def2TZVP level this strain energy

is 1.02 kcal/mol. This is consistent with the shallow bending potential found by

Mück-Lichtenfeld et al. Given how flat this potential energy surface is, it is less surprising

that the three van der Waals corrections considered give such different relaxed Rp

distances for the isolated host.

The structure of the C60 buckyball does not vary significantly between different vdW

inclusive functionals. The PBE+MBD optimized structure of C60 has C-C bond lengths of

1.45192(5) Å for bonds within five-membered rings (fusing pentagons and hexagons), and

1.39804(3) Å for bonds fusing hexagonal rings; which compares favorably to the well

known gas-phase electron diffraction results of 1.458(6) Å and 1.401(10) Å.327 This result

is consistent with the short-range behavior of the range-separated PBE+MBD method

essentially reducing to the bare PBE functional, which does a good job of predicting C-C

bond lengths.
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On the whole we find that the PBE+MBD method yields structures that are

comparable to other vdW inclusive functionals but deviate more significantly from X-ray

determined crystal structure than the PBE+D3 results. Since we do not have ane

experimentally determined gas-phase structure or a wavefunction theory reference for the

C60@C60H28 host–guest complex, the deviation of the gas-phase PBE+MBD optimization

from the experimental crystal structure should not be seen as too damaging. Future work

will address the optimization of this full crystal structure.

In light of the lack of wavefunction theory geometries to compare against, we concluded

with a few comments about the computational efficiency of our method. Starting from the

TPSS/def2TZVP structures from the S12L dataset, we were able to optimize the 148

atom complex with the PBE+MBD method in 68 bfgs steps in about 415 cpu hours, while

the PBE+D3 optimization in Orca took 34 bfgs steps in about 450 cpu hours.‡ Given

that Orca uses redundant internal coordinates for geometry optimizations and the D3

correction is almost instantaneous to calculate, it is worth noting that the Cartesian

coordinates optimization in QE with the much more costly MBD correction is roughly

competitive.

2.4.4 The importance of Hirshfeld effective atomic volume gradients

Our derivation of the ionic MBD forces placed considerable emphasis on the importance of

including the implicit coordinate dependence arising from the gradients of the Hirshfeld

effective atomic volumes. To test how large a contribution ∂V terms make to the MBD

forces, we re-optimized the benzene dimers, this time setting ∂V = 0 explicitly. As shown

in Figure 2.6, neglect of the Hirshfeld volume gradients does not have a large impact for

this system where the dispersion forces are intermolecular; the mean RMSD becomes

(16± 5)× 10−4 Å. However, the numerical stability of the method was significantly

degraded and the optimization of M1 with ∂V = 0 proved unable to converge after several

hundred iterations.
‡The PBE+MBD optimization was run in about 2.75 hours on 170 Intel Xeon E5-2680 processors while

the PBE+D3 optimization was run in about 14 hours on 32 cores AMD Opteron 6376 Abu Dhabi processors.
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Figure 2.6: Root-mean-square-deviations (RMSD) in Å between the PBE+MBD and PBE/CCSD(T) 291

optimized geometries of 9 benzene dimer configurations using the full MBD gradient (shown in blue), and
the approximation where ∂V contributions are set explicitly to zero (shown in grey). Numerical instability
when ∂V = 0 prevented the optimization of M1 from converging.

The fact that the Hirshfeld gradients have mostly negigible impact on the benzene

dimer optimizations is expected since the Hirshfeld effective atomic volumes only change

when neighboring atoms are moved. Not only is the benzene monomer fairly rigid, but the

range separation that is employed to avoid double counting the correlation energy at short

range means that the long-range tensor TLR, and correspondingly the MBD correction, is

largely turned off within the benzene monomer (see Figure 3.2 in Chapter 3).

We expect a larger impact of Hirshfeld volume gradients for systems that are flexible

and large enough for the damping function to have ‘turned on’ the MBD correction. The

case of polypeptide intramolecular dispersion interactions matches both of these criteria.

The peptide structures are much more flexible than the benzene monomer and also have

the opportunity for cooperative addition of the Hirshfeld volume gradients along the

chain, i.e. the local Hirshfeld volume gradients acting at the nearest neighbor level can

propagate along the peptide chain and result in a larger change. We computed the MBD

forces on the final optimized geometries of all 76 peptide structures and analyzed the

atom-by-atom difference in forces computed with and without the Hirshfeld volume

gradients. § As shown in Figure 2.7, negelct of the Hirshfeld gradient causes a significant
§Since the TS method is also based on Hirshfeld partitioning, the Hirshfeld volume gradients are also

expected to be significant when computing the TS nuclear forces.
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Chapter 2. Analytical Gradients for Many-Body Dispersion

shift in the distribution of MBD forces in the peptides, with a tendency to increase the

forces from the lower peak from ∼ 2× 10−4 Eh/a.u. to ∼ 4× 10−4 Eh/a.u. Comparing the

Cartesian components of the MBD forces across all atoms in all 76 structures we find that

the deviations between forces with and without the Hirshfeld volume gradients

(F− F∂V=0) are approximately normally distributed with zero mean and a standard

deviation of 2× 10−4 Eh/a.u.. This leads to the norm of the force difference (∆‖F−F∂V ‖)

having a mean of (3.2± 1.7)× 10−4 Eh/a.u., and a mean of the difference of norms of

‖F‖ − ‖F∂V=0‖ = (−5± 17)× 10−5 Eh/a.u. Overall, neglect of the Hirshfeld gradients

increases forces and causes a long-tailed distribution of relative error, that is peaked at

∼ 20%, but extends up to 400%. This large distribution of relative errors has the potential

to significantly impact the predictive nature of ab initio molecular dynamics (AIMD)

simulations run at the MBD level of theory that do not properly account for the analytical

gradients of the Hirshfeld effective volumes. Given that this error would accumulate at

every time step, combined with the fact that the MBD correction was found to be quite

important in the geometry optimizations of the systems considered herein, we find the

neglect of the Hirshfeld effective volume gradients to be an unacceptable approximation in

AIMD. This finding is particularly true for large flexible molecular systems with significant

intramolecular dispersion interactions since this error can cooperatively increase along any

extended direction, i.e., along an alkane chain or polypeptide backbone.

2.5 Conclusions

By developing analytical energy gradients of the range-separated MBD energy with

respect to nuclear coordinates, we have enabled the first applications of MBD to full ionic

relaxations. By treating gradients of the MBD energy correction analytically, rather than

numerically, we have reduced the number of self-consistent calculations that must be

performed from 2× (3N − 6) to 1, enabling treatment of much larger systems. Our

derivation and implementation includes all implicit coordinate dependencies arising from

the Hirshfeld charge density partitioning. In the isolated molecule optimizations that we

63



2.5. Conclusions

10−5 10−4 10−3 10−2

‖F‖ (Eh/a.u.)

G
au

ss
ia
n
K
D
E

‖F‖
‖F∂V=0‖

0 100 200 300 400

‖∆F‖/‖F‖ (%)

G
au

ss
ia
n
K
D
E

−1.0 −0.5 0.0 0.5 1.0

∆Fx (10−3 Eh/a.u.)

G
au

ss
ia
n
K
D
E

0.0 0.2 0.4 0.6 0.8 1.0

‖∆F‖ (10−3 Eh/a.u.)

G
au

ss
ia
n
K
D
E

Figure 2.7: Top Left: Gaussian kernel density estimate of the distributions of the norm ‖ · ‖ of MBD
forces FMBD acting on each atom at the optimized geometries of 76 polypeptide structures. In blue the
forces are computed with full Hirshfeld gradients; in yellow forces were computed with Hirsheld gradients
∂V set to zero. Top Right: Gaussian kernel density estimate of the distribution of relative percentage
error ‖∆F‖/‖F‖ where ∆F is the error incurred by setting ∂V = 0. The distribution is peaked at ap-
proximately 20% but extends to values much greater than 100%. Bottom Left: Difference of force com-
ponents ∆Fx = Fx − Fx,∂V =0, with normal distribution N (0, 0.2) superposed and dotted line indicating
zero mean. The distributions for ∆Fy and ∆Fz are similar. Bottom Right: Norm of the difference of
forces, ‖∆F‖ = ‖F − F∂V =0‖, with dotted line indicating the peak at 0.3 × 10−3 Eh/a.u.
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Chapter 2. Analytical Gradients for Many-Body Dispersion

consider, the implicit coordinate dependencies that arise from the Hirshfeld volume

gradients results in significant changes to the MBD forces. The long-tailed distribution of

relative error that we observed indicates that any future AIMD simulations employing

MBD forces must include full treatment of the Hirshfeld volume gradients, or the

accumulation of error will negatively impact the simulation dynamics. Our careful

treatment of these volume gradients paves the wave for future work to address how a

self-consistent implementation of the MBD model will impact the electronic band

structures of layered materials and intermolecular charge transfer couplings in molecular

crystals.

Consistent with previous findings that a many-body description of dispersion improves

the binding energies of even small molecular dimers,87 we find that MBD forces

significantly improve the structures of isolated dispersively bound molecular systems. In

this regard, we find excellent agreement between PBE+MBD optimized structures and the

available reference data in our investigation of both the stationary points on the benzene

dimer potential energy surface and the secondary structure of polypeptides. Notably,

PBE+MBD consistently out-performed the the pairwise PBE+D3, and effectively

pairwise PBE+TS optimizations.

Many-body effects have previously been shown to be very significant in modeling

solvation and aggregation in solution30 and can lead to soft collective fluctuations that

impact hydrophobic association328 and the entropic stabilization of hydrogen-bonded

molecular crystals.112 We therefore anticipate that our many-body forces will be of

interest for solvated simulations, such as estimates of the thermodynamic properties of

metabolites329 and modeling novel electrolytes,330–332 and for numerous condensed phase

simulations of organic molecular crystals.

The first applications of MBD forces in this chapter were restricted to gas-phase

systems because computation of MBD gradients in the condensed phase, where periodic

images of the unit cell must be considered, is substantially more challenging from a

computational perspective. Converging the MBD energy in the condensed phase is
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substantially more memory and compute intensive due to a real-space supercell procedure

that is required to support long-wavelength normal modes of CMBD. The next chapter

describes the details of our implementation for periodic systems, including careful

treatment of parallelization and convergence criteria, and demonstrates the utility of MBD

forces for unit-cell optimizations.
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3
Many-Body Dispersion Forces for Condensed Phase

Simulations

3.1 Introduction

To date, much of the work on MBD has focused on the energetics of various molecules and

crystalline materials.80,81,87,88,111–113,119,141,142 In the previous chapter we presented the

first implementation of the relevant analytic gradients with respect to nuclear

displacements, which permitted fast and accurate MBD inclusive geometry optimizations

of gas-phase systems. Since dispersion energies largely scale with system size, dispersion

becomes extremely important when considering properties like the cohesive energy of

organic solids. In the present chapter we will describe a more efficient implementation of

the MBD energy and analytic gradients, which has enabled their application to larger

simulations of condensed phase systems. The infinite periodicity of solids, in contrast to

isolated gas-phase systems, raises several issues for the computation and convergence of

MBD energies and forces. In particular, convergence of the dipole interactions between

periodic images of the atoms in the unit cell, and the real-space supercell procedure that

is required to support long-wavelength collective dipole modes, have been discussed only

briefly in other treatments of range-separated MBD.88 Additionally, very little attention

has been paid to the numerical stability of the MBD algorithm when implemented for

extended systems. In this chapter we will carefully examine the MBD algorithm and

discuss our approach for parallelizing it for optimization of periodic systems. We start

with a brief overview of the MBD algorithm as it applies to condensed phase systems, this
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3.1. MBD Algorithm

time placing an emphasis on numerical aspects rather than the equations which define the

model. Subsequently, we will delve into numerical analysis of the MBD algorithm. The

chapter concludes with a few applications of MBD inclusive optimizations of extended

systems.

3.2 Algorithm Overview and Control Flow

As we saw in section 2.2.1 the MBD correlation energy is divided into two terms,

corresponding to the difference between the zero-point energy of the interacting QHO

eigenfrequencies ({
√
λ}) and that of the screened non-interacting modes ({ω}). To

facilitate discussion of the algorithm, we call these two terms the interacting and

non-interacting energies (or forces) respectively:

EMBD = 1
2

3N∑
p=1

√
λp︸ ︷︷ ︸

Eint.

− 3
2

N∑
a=1

ωa︸ ︷︷ ︸
Enon−int.

(3.1)

FMBD = −∂EMBD = −∂Eint.︸ ︷︷ ︸
Fint.

+∂Enon−int.︸ ︷︷ ︸
−Fnon−int.

(3.2)

Broadly stated, the MBD algorithm begins by initializing arrays with free atom reference

quantities. These quantities are then used to compute the Tkatchenko-Scheffler (TS) level

frequency-dependent terms, by weighting the free atom quantities by the Hirshfeld

volumes. The TS-level quantities are computed on an imaginary frequency grid to perform

the range-separated self-consistent screening (rsSCS) procedure used to compute the

screened dynamic polarizabilities, αa(iω). The non-interacting energy requires ωa, a

screened excitation frequency, which is computed from the screened dynamic polarizability

via the Casimir-Polder integral for the screened effective C6 coefficient:

ωa = 4
3
C6,aa

[α(0)a]2
= 4
π [αa(0)]2

∫ ∞
0

αa(iω)αa(iω) d(iω). (3.3)
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Since this integral does not have an analytic solution, we numerically evaluate it with

Gauss-Legendre quadrature scaled to the semi-infinite interval [0,∞).

ωa = 4
π [αa(0)]2

n∑
p=1

gp [αa(iyp)]2 (3.4)

where gp and yp are the quadrature weights and abscissae respectively. These quadrature

frequencies are returned in the subroutine generate_grid.

On each pass through the quadrature loop (see the bold arrow in Figure 3.1) the

running quadrature sums for ωa and ∂cωa are updated after the self-consistent screening

and contraction of the A matrix has computed αa at frequency iyp. At the end of the

frequency integration loop (exit diamond decision point in Figure 3.1), the final screened

excitation frequencies and their derivatives are summed over the atom index a to give the

non-interacting energy and forces, Eqs. (3.1) and (3.2).

Having computed the screened quantities, the interaction Hamiltonian (matrix CMBD)

is then built from the screened quantities and the long-range dipole–dipole interactions are

converged periodically. This Hamiltonian is then diagonalized and the interacting energy

and forces are computed, Eqs. (2.41,3.1, 3.1). Finally, the MBD energy and forces are

computed by taking the difference between interacting and non-interacting quantities.

The algorithm described above has been implemented with our gradients code in a

development version of the Quantum ESPRESSO (QE) software package, 262 which was

chosen for its preexisting implementation of the Hirshfeld partitioning and the derivatives

of these volumes. We have written the code in a modular fashion to allow ease of

incorporation into other packages: the only necessary inputs are the Hirshfeld volumes,

Hirshfeld volume derivatives, lattice vectors, and atomic coordinates. At the time of

writing, an energy-only variant of this module has been incorporated into the Octopus

software package,333,334 and we are working to distribute the module to developers of

FHI-aims278 and Q-Chem.335 We will release this code with QE, and separately as a

stand-alone module.
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Since the computation of the MBD energy and gradients entails several layers of nested

subroutines and requires complex parallelization strategies, we present a flowchart in

Figure 3.1 that graphically shows the program flow. The blue boxes in Figure 3.1 denote

parallelization over force components (atomic index c), and the yellow boxes denote

parallelization over independent 3× 3 sub-blocks of the dipole tensors (atomic indices

a, b). We refer to this later strategy as “ab” parallelization since we are distributing

quantities coupling “ab” pairs of QHOs. These two separate, but complementary,

parallelization strategies will be discussed in the remainder of this section, where we

provide an in-depth discussion of each algorithmic step with pseudocode and references to

the relevant equations from Chapter 2.

3.3 The Non-Interacting Energy

In the subections below we will describe the various subroutines used to compute the

non-interacting energy. In subsection 3.3.1 we describe the initialization from free atom

quantities. In subsection 3.3.2 we discuss the range-separated self-consistent screening

procedure used to compute screened quantities. In subsection 3.3.3 we discuss periodic

convergence of the dipole-dipole interaction. Finally, in subsection 3.3.4 we discuss the

quadrature scheme used to evaluate the Casimir-Polder integral.

3.3.1 Initialization and component decomposition

We begin by initializing arrays with free atom quantities and Hirshfeld effective atomic

volumes, and then assigning force components to each MPI process. The free atom

quantities are stored in a precomputed lookup table, and the Hirshfeld effective volumes

and their derivatives are computed using code in the TS-vdW module of QE. Because

each component is independent, for an N atom system communication is limited to

syncing a force vector of size 3N across all processes. In Figure 3.1 this parallelization

scheme is represented with the blue boxes. In instances where there are more MPI

processes than atoms, only the first N processes are assigned force components.
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Assign force components to each
MPI process. [Section 3.3.1]

c = {1, 2, 3} c = {4, 5, 6}

Compute the unique a,b pairs

a,b = {1, 2, 3}
Converge each set
of TSR( ω) and

∂TSR( ω) tensors

a,b = {4, 5, 6}
Converge each set
of TSR( ω) and

∂TSR( ω) tensors

a,b = {7, 8, 9}
Converge each set
of TSR( ω) and

∂TSR( ω) tensors

Eqs. 2.34, 2.55

Collect converged TSR( ω) and
∂TSR( ω) dipole tensors and distribute

rsSCS: Construct and
invert A and compute ∂cA

rsSCS: Construct and
invert A and compute ∂cA

Eqs. 2.11, 2.44

Compute α0,
∂cα0, ω, and ∂cω

Compute α0,
∂cα0, ω, and ∂cω

Eqs. 2.12,
2.43, 2.15, 2.42

yp = ymax

Compute non-interacting
energy and forces

Compute non-interacting
energy and forces Eqs. 3.13.2

Construct supercell, and unique a,b
pairs for supercell. [Section 3.4.1]

a,b={1, 2, 3}
Converge TLR

and ∂TLR tensors

a,b={4, 5, 6}
Converge TLR

and ∂TLR tensors

a,b={7, 8, 9}
Converge TLR

and ∂TLR tensors
Eqs. 2.36, 2.54

Collect TLR and ∂TLR

Construct CMBD

and ∂cCMBD
Construct CMBD

and ∂cCMBD Eqs. 2.18, 2.41

Compute interacting
energy and forces

Compute interacting
energy and forces Eqs. 3.13.2
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Figure 3.1: Parallelization flowchart for our MBD implementation. Blue and yellow cells
indicate parallelization over force components (c index) and independent dipole tensors
(ab indices) respectively. White cells indicate tasks on the head node.
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3.3.2 Self-consistent screening (rsSCS)

After initialization and assignment of force component MPI processes, the processes

summarized in the grey box in Figure 3.1 accomplish both the rsSCS procedure and

numerical evaluation of the Casimir-Polder integral to compute the screened oscillator

frequencies and atomic polarizabilities. Our implementation uses an algebraic scaling of

Gauss-Legendre quadrature abscissae to the semi-infinite interval [0,∞), but numerous

other schemes are possible. In section 3.3.4 we will examine the errors incurred by various

alternative schemes. Looping over the quadrature frequencies yp, (represented in the

flowchart by the loop testing if yp = ymax), we compute the screened atomic polarizabilities

at each frequency by constructing a relay matrix, A, and inverting it, Eq. 2.12.

This construction requires the computation of frequency-dependent polarizabilities

α(iyp), QHO widths σ(iyp), and vdW radii at the TS-level, RvdW, TS, all of which is

wrapped in a subroutine called EffectiveQuantities. While this subroutine involves

1: function EffectiveQuantities(αfree, ωfree, yp)
2: Compute Υa(iyp) with

[
1

1+(ω/ωfree
a )2

αfree
a (0)
V free
a

]
3: Compute α(iyp) with Υa(iω)Va
4: Compute ∂αTS(iyp) with Υa(iω)∂cVa
5: Compute RvdW, TS with R

vdW, free
a

[V free
a ]1/3

[Va]1/3

6: Compute ∂RvdW, TS with R
vdW, free
a

[V free
a ]1/3

∂cVa
3[Va]2/3

7: Compute σ(iyp) with
[

1
3

√
2
πΥa(iω)

]1/3
[Va]1/3

8: Compute ∂σ(iyp) with
[

1
3

√
2
πΥa

]1/3
∂cVa

3[Va]2/3

9: end function

computing quite a few quantities, it is extremely quick. For a system of 200 atoms, we

have seen that computing the effective quantities typically takes less than 0.01 seconds on

a single core of an Intel Xeon E5-2680 processor.

The rsSCS procedure is accomplished in a subroutine called Screen. This subroutine

builds the TS-level matrices A and TSR and solves for the screened polarizability through

matrix inversions. Derivatives of all quantities are computed as they become available,
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and collected in a manner that avoids extra loops. We have employed parallelism over

force components for ∂cA, and “ab parallelism” for TSR and ∂cTSR since each ab

sub-block is an independent 3× 3 matrix coupling QHOs a and b. These sub-blocks are

synchronized to the root process, which then distributes the correct derivative components

to each MPI process. It is important to note that while the force component based

parallelization cannot utilize more than N processes, the ab parallelization can.

1: function Screen(σ, RTS, yp)
2: Compute work distribution map for TSR and ∂TSR
3: Build TSR and ∂TSR with Eqs. (2.34, 2.25, 3.5, 2.55) (periodic convergence)
4: Gather TSR and ∂TSR
5: Distribute TSR and ∂TSR

6: Build A with
[
A−1(iω) + TSR(iω)

]−1

7: Build ∂A with −A
[
−A−1 (∂cA) A−1 + ∂cTSR

]
A

8: end function

3.3.3 Periodic convergence of dipole-dipole interactions

Since TSR acquires frequency dependence through the QHO width σ(iω), this tensor and

its derivative must be converged over the periodic lattice for each quadrature frequency.

In computing the elements of TSR
ab (iyp) with Eq. (2.34) we account for interactions with

periodic images of atoms in the simulation unit cell by considering the coupling between

atom a and all of the periodic images b′ of atom b,

TSR
ab → TSR

ab +
∑
b′

TSR
ab′ (3.5)

and similarly for the forces,

∂TSR
ab → ∂TSR

ab +
∑
b′

∂TSR
ab′ . (3.6)

The sum over periodic images b′ is accomplished by adding successive shells of the

simulation unit cell (see Figure 3.5 a), until each 3× 3 ab sub-block is converged to within
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a tolerance, δ, (typically 10−6 or 10−7):

∥∥∥∆TSR
∥∥∥

max
= max

ij
{|∆Tij |} ≤ δ, (3.7)

where ij are Cartesian indices, the ab′ indices on TSR have been suppressed for clarity, ∆

indicates the change due to adding a new shell, and ‖ · ‖max is the max norm, i.e. the

element-wise infinity norm. Once the max norm falls below δ, we assume that we have

reached convergence. It is well known that the spectrum of a Hermitian matrix, such as

CMBD, is stable against small perturbations (cf. Refs. 336–338). Since the interacting

energy is built from a sum of
√
λp, where {λp} are the eigenvalues of CMBD, by converging

TLR until the max norms of all 3× 3 sub-blocks fall below δ, we are guaranteed that the

MBD energy will achieve a related convergence. See section C.5 of Appendix C We

perform this analysis in lieu of an energy convergence cutoff, which would be prohibitively

expensive given that each energy computation requires a full matrix diagonalization in

addition to lattice summation of both the short- and long-range dipole tensors.

In considering how to converge the dipole-dipole tensor in the frequency-dependent

range-separated formulation, there is one additional subtlety that was overlooked in the

original FHI-aims implementation of MBD. The error function in Eq. (2.25) gives rise to

terms proportional to ζ exp
[
−ζ2] and ζ3 exp

[
−ζ2] in TSR. These terms, and the

exponential in the Fermi damping function, raise an important issue, namely avoiding

arithmetic underflow. The finite precision of floating point numbers means that when

evaluating functions like exp[−ζ2], it is easy to run into values that are smaller in

magnitude than the computer can actually store in memory. This can lead to loss of

precision as subnormal numbers are used to fill the “underflow gap” around zero. For

numerical stability, we therefore evaluate the Fermi damping function as:

1− f(Zab) =


1− [1 + exp [−Zab]]−1 Zab < 35

0 Zab ≥ 35
(3.8)
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and likewise for f(Z). The cutoff Z ≥ 35 is chosen since f(Z) = 1 to within machine

precision (εmach ' 2× 10−16) for Z & 36. Restated in terms of Eq. (2.28) this condition is,

Zab = 6
[

Rab
β
[
RvdW

a +RvdW
b

] − 1
]
≥ 35 (3.9)

⇒ Rab ≥
41
6 β

[
RvdW

a +RvdW
b

]
. (3.10)

Since β ' 0.83 for the PBE functional, this means that for interatomic distances Rab & 60

times the sum of the vdW radii of atoms a and b, the Fermi damping function has

completely turned the short-range dipole tensor “off” and the long-range dipole tensor

“on”. Similarly, we evaluate the frequency-dependent terms in Eq. (2.25) in such a way

that:

T =


T(iω) ζ < 6

Tdip ζ ≥ 6.
(3.11)

In addition to being sound practice numerically, these two cutoffs have a quite substantial

computational benefit since the exponential and error function are both substantially

more expensive than floating point multiplication or division and TSR is called on the

order of 107 − 108 times in a typical condensed phase MBD computation.

Note that since TSR is damped by the Fermi function, f(Zab) =
[
1 + exp [−Zab]

]−1
, the

underflow condition (Eq. (3.8)) often occurs within the simulation cell or within only a

few periodic images. Furthermore, since all the frequency dependence in TSR is contained

in ζab, and this cutoff condition is met much earlier than that on Zab, TSR reduces to the

frequency-independent f(ZTS)Tdip long before the Fermi function has turned “off” the

short-range tensor. In Figure 3.2 we show that this frequency independence is achieved at

quite short-range within a benzene molecule and plot contours of the various damping

functions on a graphene sheet. For graphene Sab = 2.96, so the underflow condition

Z ≥ 35 corresponds to Rab ≥ 20.7 Å. Before underflow is reached, the Fermi function

becomes competitive with the max norm tolerance δ, e.g. for graphene f(Z) ≤ 10−6 for

Rab ≥ 9.8 Å, which means that we cut off lattice summation for TSR at shorter length
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1− erf(ζ)

exp[−ζ2]

Figure 3.2: Top Left: Contours at 10−6 for damping functions exp
[
−ζ2] (purple) and (1 − f [Z]) (orange),

with ‖R‖ relative to the atom marked in red. Damping parameters Σ � 1.03 and S � 2.96 were computed
for a graphene nanoflake with the PBE functional. Top Right: Comparison of the three damping functions
with the same 10−6 contour indicated. The rapid decay of exp

[
−ζ2] relative to the Fermi damping function

demonstrates that the short-range dipole-dipole interaction tensor TSR reduces to the frequency-independent
Tdip well before the long-range tensor TLR has been fully “turned on” by the Fermi damping function.
Bottom: At left, the Gaussian charge densities of the QHO oscillators assigned to each atom in benzene have
been superposed and plotted on a logarithmic colorscale. One hydrogen atom is circled. In the middle panel,
the frequency-dependent portion of TSR, computed relative to the circled hydrogen atom, has been applied to
the sum of QHO charge densities and quickly dies out moving away from the hydrogen atom of interest. On
the right, the frequency-independent portion of TSR, is applied to the QHO charge density and dies off much
more slowly.
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scales than the underflow condition. Even with these cutoffs, the convergence of each TSR

block is the most computationally intensive part of the rsSCS loop.

After TSR and ∂TSR have been converged, the ab parallelized components are gathered

on the root process and redistributed to enable computation of A(iyp) and ∂A(iyp).

These are the principle output of Screen and are fed into Contract to compute the

scalar quantities α(iyp) and ∂α(iyp) to update the running sums of ω and ∂ω.

1: function Contract(A,∂A)
2: Compute αa with ∑N

b=1 Aab(iω)
3: Compute ∂cαa with ∑N

b=1 ∂cAab(iω)

4: Update ωa with 4
π

∑n
p=1 gp

[
αa(iyp)
αa(0)

]2

5: Update ∂cωa with 8
π

∑n
p=1 gp

[
αa(iyp)∂sαa(iyp)

[α0
a]2 − [αa(iyp)]2∂sα0

a

[α0
a]3

]
6: end function

We present the convergence of our MBD correlation energy as a function of δ in the

left-hand panel of Figure 3.3. These numerical tests were run on a three atom strained

water unit cell with quadrature size n, supercell cutoff rs, and DFT convergence

thresholds kept constant for all calculations. After roughly a cutoff of 10−4, every order of

magnitude decrease in δ appears to yield an order of magnitude improvement in energy

accuracy. While we only present results for a unit cell of strained water, similar trends are

observed in other systems. The implementation allows us to essentially set a desired

energy cutoff, and force the algorithm satisfy this bound. This stands in contrast to

previous schemes, which required the user to set two fixed cutoff distances heuristically.

Our implementation sets 10−6 as the default cutoff, which is used for all calculations in

this chapter unless otherwise stated.
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3.3. Periodic convergence of T

3.3.4 Casimir-Polder quadrature

To transform Gauss-Legendre quadrature from the interval xp ∈ [−1, 1], to the

semi-infinite interval yp ∈ [0,∞), we map the abscissa xp → yp and weights wp → gp with

an algebraic scaling:

yp ∈ [0,∞) yp = L
(1 + xp)
(1− xp)

xp ∈ [−1, 1] (3.12)

gp = − 2L
(1− xp)2wp (3.13)

There are many different possible transformations to [0,∞), but the algebraic mapping is

quite robust for quadrature of functions that decay algebraically in |x| as x→∞.339

Depending on the properties of the integrand, different mappings will yield optimal

quadrature, and indeed the subject of improving quadrature or spectral methods with the

use of conformal mappings is an active area of research (cf. Refs. 340,341). Since the

isolated atom dynamic polarizability is expected to decay as α(iω) ∝ 1
ω2 ,342 we found the

algebraic scaling to be preferable. We examined several numerical quadrature schemes to

assess the most accurate method of performing the Casimir-Polder integral.

Unsurprisingly, we found that Gauss-Legendre quadrature was more accurate than

Gauss-Laguerre or Gauss-Lobatto schemes.

The quadrature error can be adjusted by tuning both the scale parameter, L, and the

number n of quadrature points. Based on the available atomic dynamic polarizability

reference data in Derevianko et al.342 and the free atom reference quantities used in the

TS method, the quadrature method used in MBD should be able to integrate a response

function with excitation frequencies in the range of ωa ∼ 0.06 (potassium) to ωa ∼ 1.2

(neon) (see Figure 3.4). We found that a scaling parameter of L = 0.6 worked best across

a wide range of isolated atomic systems in numerical tests and also performed well when

integrating an analytic trial function corresponding to the Casimir-Polder integral of a

78



Chapter 3. Many-Body Dispersion Forces for Condensed Phase Simulations

10-2 10-4 10-6 10-8

δ

10-8

10-7

10-6

10-5

10-4

10-3

10-2

A
bs

ol
ut
e 
E
rr
or
 (E

h
)

0 10 20 30 40 50
Number of Quadrature Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

A
bs

ol
ut
e 
E
rr
or
 (E

h
)

Figure 3.3: Absolute error in the total MBD correlation energy for a periodic simulation of strained wa-
ter Left: as a function of changing the max-norm cutoff, δ, shown in blue. For reference we provide a
linear relationship with slope 0.6 (dotted line), and a horizontal yellow line showing the error achieved by
using a fixed 200 Å radius supercell cutoff as is done in the FHI-aims implementation of MBD. Right:
as a function of the number of quadrature points included in our scaled Gauss-Legendre scheme, shown
in blue. The energy converges to machine precision at 30 quadrature points. For reference we provide a
yellow point showing the error achieved with the 20-point quadrature scheme used in the FHI-aims imple-
mentation of MBD. Our quadrature scheme achieves the same error with fewer than half the number of
quadrature points.

single frequency dipole oscillator:

C6(ωa) = 3
π

∫ ∞
0

[
f

[ω2
a − (iω)2]

]2
d(iω) = 3

4
f2

ω3
a

. (3.14)

Using this scaling factor, we have explored the energy convergence as a function of

number of quadrature points. Our point of comparison for the quadrature convergence is

the MBD correlation energy computed with 450 quadrature points. In the right-hand

panel of Figure 3.3, we present a plot of the convergence for a periodic simulation of a

single strained water molecule in a small cubic unit cell. The correlation energy appears to

converge to machine precision with just 30 quadrature points. In integrating the trial

function of Eq. (3.14) we observed similar sharp dips and recoveries in the quadrature

error, corresponding to optimal tuning conditions where a small n quadrature scheme

happens to exactly integrate a given function. This tends to occur when the scale factor

and excitation frequency are equally balanced. To achieve convergence of 10−12Eh, we see
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Figure 3.4: Left: Dynamic polarizability α( ω) for hydrogen, potassium and neon. Notice the decay at
large imaginary frequency obeys the expected

(
1
ω

)2 behavior. Data from Ref. 342. Right: Quadrature
error achieved on the Casimir-Polder integral for a dipole oscillator (Eq. (3.14)) with n = 23 algebraically
scaled Gauss-Legendre points as a function of scale parameter L and excitation frequency ωa.

that we only need 20 quadrature points. Given how cheap this integral is in comparison to

the real-space supercell construction and diagonalization of CMBD, n = 20 quadrature

points represents a nice balance of accuracy and efficiency for the program default. It may

be desirable to use fewer quadrature points for larger clusters, gas phase molecular

dynamics calculations, where the Casimir-Polder integration loop will be a significant

portion of the MBD computation cost; in these cases the user may select a different value

of n through the keyword mbd_vdw_n_quad_pts.

While some quadrature schemes omit the zero point, yp = 0, it is important to involve

this frequency in the rsSCS loop since the MBD Hamiltonian requires the screened static

dipole polarizabilities {α(0)}. It is also important to check whether any of these static

polarizabilities have become negative, because this is unphysical and usually indicates that

at the vdW radii of at least two nuclei overlap and the geometry should be checked. If even

one element of the α(0) array becomes negative, our MBD implementation terminates the

calculation. At the end of the frequency integration loop (cf. Figure 3.1), we have the final

set of ω, and ∂ω, which through summation yield the non-interacting energy and forces.
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3.4 The Interacting Energy

With the computation of the non-interacting energies completed, our next task is to

construct the interaction Hamiltonian, CMBD. Construction of this matrix starts with

converging the long-range dipole-dipole interaction tensor, TLR, for all atom-atom pairs

using the same max-norm cutoff procedure that we described above for TSR (cf. Eqs. 3.5,

3.7). With the converged dipole tensors, we then loop over the upper triangle of the

Hamiltonian and fill it with the relevant precomputed screened static polarizabilities,

α(0), and screened excitation frequencies, ω. Finally, the interacting energy is computed

in the subroutine InteractingEnergy by diagonalizing CMBD and summing the square

root of the eigenvalues {λ}. The interacting forces require multiplying the derivative of

the Hamiltonian by the eigenvectors of the Hamiltonian, X , and their transpose, X>, on

either side, (cf. Eqs. 2.40 and 2.41). In pseudocode, the construction of CMBD and the

computation of the interaction energy proceed as follows:

1: function ConstructHamiltonian(α0, ω)
2: Compute work distribution map for TLR and ∂TLR
3: Build TLR and ∂TLR with Eqs. (2.36, 2.26, 2.54) (periodic convergence)
4: Gather TLR and ∂TLR
5: Distribute TLR and ∂TLR
6: Build CMBD with Eq. (2.18)
7: Build ∂CMBD with Eq. (2.41)
8: end function
1: function InteractingEnergy(CMBD,∂CMBD)
2: Diagonalize CMBD

3: Sum
√
λ [interacting energy]

4: Sum ∂λ with 1
2Tr

[
Υ−1/2X>∂cCMBDX

]
[interacting forces]

5: end function

After InteractingEnergy has computed the energy and forces due to the interacting

modes, the final expressions for EMBD and FMBD are evaluated by summing interacting

and non-interacting terms. Because these interacting modes can be thought of as normal

modes of the coupled fluctuating dipole model Hamiltonian, to converge the MBD energy

for a periodic system we need to construct a supercell that supports long-wavelength,
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3.4. The Interacting Energy

delocalized, modes. Ideally this procedure should be performed in k-space, but in the

present implementation we use a real-space construction.

3.4.1 The real-space supercell procedure

We now turn our attention to the construction of the supercell that is used to build CMBD

and TLR. If the simulation cell is less than rs on a side, a supercell is constructed from

the simulation cell, to enable long-wavelength normal modes of CMBD.

The supercell is constructed by tiling the simulation cell into the positive octant as

shown in Figure 3.5 c. The number of tilings in each direction are chosen by taking the

integer ceiling of the supercell cutoff rs divided by the lattice vector lengths:

na = drs/‖a‖e

nb = drs/‖b‖e (3.15)

nc = drs/‖c‖e

Some materials, such as graphite, have marked anisotropy in terms of which

crystallographic directions support collective dipole modes most strongly due to the

layered structure. In graphite ‖c‖ is larger than ‖a‖, so this tiling scheme will result in

more copies of the unit cell in the ab plane. As the supercell size is increased, it will tend

toward equal side-lengths, while maintaining the angular parameters of the simulation

unit cell, in contrast to a spherical cutoff construction. Since we do not know a priori

which crystal directions will support the most important long wavelength normal modes,

this tendency of the supercell toward equal side lengths is beneficial.

While we have no rigorous relationship between rs and the numerical uncertainty in the

MBD energy, we have observed that rs values in the range of ∼ 25− 30 Å are typically

sufficient to converge the MBD energy to within about 10−4 Eh (10 meV) for 3D systems.

However, Tkatchenko and coworkers have observed that 2D systems such as graphene, can

support much longer wavelength collective dipole oscillations, and may require a larger
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cutoff to appropriately resolve all modes. They attribute the difference in required

supercell size between two and three dimensional systems to the damping that is

introduced in 3D systems by coupling to the out-of-plane atoms.∗
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Figure 3.5: a) Lattice summation over successive shells of the unit cell to converge TSR. Periodic im-
ages of the central green atom are numbered with their shell index. b) Lattice summation over successive
shells of a 2 × 2 supercell to converge TLR. Periodic images of the atom marked in green are shown in
yellow and numbered with their shell index. c) Schematic showing that a 3 × 3 supercell (grey) is built
by tiling the unit cell (blue) into the positive octant, and will allow for longer wavelength normal modes.

We previously asserted that this supercell construction dominates the computational

cost of MBD because the most computationally expensive aspect is the matrix

diagonalization. We are now able to make this statement more concrete. Because the

system is periodic, the tiled atoms will have the same polarizabilities and characteristic

frequencies as their counterparts in the original unit cell. There are

Nsc = na × nb × nc × N atoms in the supercell, where N is the number of atoms in the

simulation unit cell. Given that matrix-matrix operations generally scale as N3, the

super-lattice construction carries an asymptotic computational cost of O(9N3
sc) and a

memory cost of O(9N2
sc). The memory cost for the ionic forces on the N atoms in the

original unit cell is then O(9N2
sc × 3N). For moderately sized systems (fewer than 10,000

atoms in the supercell), this memory cost is not a problem for our implementation when

run on computer clusters with 2GB or more of available memory per node. However, this

memory cost can represent a significant problem for smaller computer clusters or when an

insufficient number of MPI processes are requested. Future work will address a

∗Personal communications, May 2015.
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reciprocal-space algorithm for avoiding this real-space supercell procedure. Briefly, one

would construct a 3N × 3N matrix for each k-point of interest in the Brillion zone and

diagonalize each of them to compute the relevant contribution to the MBD energy (for a

total of (na × nb × nc)3 diagonalizations of a 3N × 3N matrix, rather than the single

3Nsc × 3Nsc matrix diagonalization corresponding to the real-space supercell). 137

Convergence with respect to the the supercell size is more difficult to automate than the

dipole-dipole interaction, because bigger unit cells cannot simply be added onto old ones as

a test for convergence. This means that the supercell cutoff radius rs is a very significant

adjustable parameter that should be investigated independently for any periodic material

that is studied with MBD. We have explored the convergence of the MBD energy as a

function of supercell size, and present the results for graphite and graphene in Figure 3.6.
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Figure 3.6: Convergence of the total MBD correlation energy as a function of supercell cutoff radius, rs,
for periodic simulations of graphite (left) and graphene (right). A tight max-norm cutoff of δ = 10−7 was
required to achieve numerical stability for rs � 30 Å.

These results seem to indicate that the MBD energy approaches 2 − 5 mEh of the

converged value within the first 10 Å tiling, but still trends downward for graphite and

upward for graphene. We extended the supercell cutoff for graphene out to much larger

distances than in graphite both because of past assertions that 2D systems support

longer-wavelength collective polarization modes than 3D materials (conveniently, the

computational cost of a 2D supercell is dramatically reduced since the number of atoms in

the cell only grows quadratically). At large supercell cutoffs the fluctuations occur on the

scale of hundredths of a milliHartree, which can usually be neglected given the

convergence tolerances used in the self-consistent field cycle of many simulations.
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3.5 The MBD Energy

We conclude our tour of the MBD algorithm with a brief comment about cancellation

error. Since the MBD correlation energy is computed by subtracting two large and nearly

equal quantities, namely the interacting and non-interacting energies, it is a textbook

example of a quantity that is subject cancellation, an error that occurs in floating-point

arithmetic in which the relative error committed in subtraction can be so large that most

of the digits become meaningless. In practice we observe that the MBD energy can be

converged to ∼ 10−4 Eh without too much difficulty. Furthermore, the system size for

which one would suffer serious loss of precision in the MBD energy is so large that one

would first encounter instability in diagonalizing CMBD, since for a large supercell CMBD

has columns that are close to linearly dependent. However, to get a feel for the MBD

algorithm it is useful to realize that both the interacting and non-interacting energy sums

grow linearly with system size (see Figure 3.7). If Bloch wave summation is used to

replace the real-space supercell construction in future MBD implementations, thereby

enabling application to much larger system sizes, it may become necessary to readdress

this issue of cancellation error and apply compensated summation techniques such as

cascading accumulators,343 pair summation, or Kahan summation.344
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Figure 3.7: Left: Interacting and non-interacting energy for graphene as a function of Nsc, the number
of atoms in the supercell. Both component of the MBD energy grow linearly with the number of atoms
in the supercell. Right: Interacting and non-interacting energy per atom for graphene as a function of
Nsc, the number of atoms in the supercell. As every atom in the supercell has identical non-interacting
screened frequencies ωa, the non-interacting energy per atom is perfectly constant. The interacting en-
ergy per atom converges quickly as the supercell grows to include hundreds of atoms.
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3.6 Unit Cell Forces and Stress

Thus far, we have limited our discussion of MBD forces to the gradients of EMBD with

respect to the nuclear coordinates, i.e. the ionic forces FMBD ≡ −∇REMBD. For a

periodic system, the Cartesian coordinates Rc of an atom c in the unit cell are written in

terms of the unit-cell vectors, stored in the matrix h, and the fractional coordinates, xc, as:

Ric =
∑
j

hji xjc (3.16)

Gradients of the MBD energy with respect to the unit-cell vectors are required to enable

MBD inclusive unit-cell optimization. These “unit-cell forces” will be labeled

HMBD ≡ −∇hEMBD.

In the context of evaluating the forces on a periodic system’s unit cell, we must consider

both changes in the size and shape of the cell. Since the fractional coordinates of the

atoms remain fixed while the lattice vectors change, we use the chain rule to convert the

Cartesian coordinate ionic MBD forces into gradients with respect to hji in fractional

coordinates,

∂EMBD
∂hji

=
N∑
c=1

∂EMBD
∂Ric

∂Ric
∂hji

=
N∑
c=1

∂EMBD
∂Ric

xjc (3.17)

⇒ [HMBD]ij =
N∑
c=1

Fi
cx
j
c, (3.18)

where HMBD is the 3× 3 matrix of unit-cell forces is built from the ionic MBD force

matrix FMBD by tracing out atom c.

Unit-cell optimizations are frequently performed at non-zero external pressure. The

stress due to a homogeneous deformation r→ (1 + ε)r is σ = − 1
Ω
∂E
∂ε , where Ω is the unit

cell volume. This stress can be computed from the ground state wavefunction via the

Hellman-Feynman theorem without needing to know how the electrons or the internal

coordinates will re-adjust.345–347 For evaluating the pressure in the unit-cell due to the
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MBD correction, we convert the unit-cell forces into components of the stress tensor,

σijMBD = − 1
Ω
∑
k

∂EMBD
∂hik

hjk ⇔ σMBD = 1
ΩHMBDh. (3.19)

The correction σMBD is an additive correction to the usual DFT stress tensor.

3.7 Computational Details

We have implemented the periodic MBD energies, analytical ionic forces, unit-cell forces

and stresses in a development version of Quantum ESPRESSO v5.1rc2 (QE).262 All

calculations were performed in the PWscf module with the Perdew, Burke, and

Ernzerhof (PBE) exchange-correlation functional,182,183 and

Hamann-Schlueter-Chiang-Vanderbilt (HSCV) norm-conserving pseudopotentials 263–265

obtained from the FPMD pseudopotential repository266 (and converted to UPF format

using a modified version of qso2upf v1.2267). Details of the convergence tolerances,

wavefunction kinetic energy cutoffs (Ecut = 1
2‖k + G‖2max), MBD parameters, and unit cell

sizes used for each system are given in tables 3.1 and 3.2. Since QE uses Rydberg energy

units (1 Ry = 1
2 Eh), we report the tolerances in these units.

Table 3.1: Convergence tolerances and unit cell sizes used in PWscf MBD
convergence calculations, reported in Rydberg atomic units (1 Ry = 1

2 Eh).

Strained water Graphene Graphite
Escf (Ry) 10−12 10−10 10−10

Ecut (Ry) 150 80 80
k-points Γ 4× 4× 1 4× 4× 2
MBD n 20 | variable 20 20
MBD δ variable | 10−6 10−7 10−7

MBD rs (Å) – variable variable
vacuum axis x,y,z z none

Cell Size (a0) a = 4.7243 a = 4.6466 a = 4.6466
c/a = 27.134 c/a = 2.700

Cell Shape cubic hexagonal hexagonal
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All geometry optimizations were performed using the quasi-Newton

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm,268–271 with default parameters.

Variable cell relaxations were performed using the modified cutoff procedure of

Bernasconi et al.348 in which (k + G)2 is replaced by,

(k + G)2 → (k + G)2 + qcutz

(
1 + erf

(
(k + G)2 − Ecfixed

)
q2σ

)
.

All calculations employing a Monkhorst-Pack k-point mesh were centered on the Γ point.

All calculations were run using a charge density cutoff of ρcut = 4Ecut. Calculations on

graphite and graphene used Marzari-Vanderbilt cold smearing with a Gaussian width of

0.2.349 Since the present implementation of the Hirshfeld partitioning in the TS-vdW

module can have errors with k-points, the graphite unit-cell optimization was run with a

4× 4× 2 supercell.

Table 3.2: Convergence tolerances and unit cell sizes used in PWscf geometry optimizations, and
variable cell relaxations, reported in Rydberg atomic units (1 Ry = 1

2 Eh).

Nucleobases on Graphene (7× 7) Ice Ic Graphite (4× 4× 2)
Escf (Ry) 10−8 10−5 10−7

Ecut (Ry) 100 150 80
Ecfixed (Ry) – 130 108
qcutz (Ry) – 200 30
q2σ (Ry) – 15 3
Etot (Ry) 10−8 10−5 10−7

Ftot (Ry/a0) 10−4 5× 10−4 5× 10−4

k-points Γ Γ Γ
MBD n 12 12 12
MBD δ 10−5 10−5 10−5

MBD rs (Å) – 10 10
vacuum axis z none none

Cell Size (a0) a = 32.53
ainitial = 24

c/a = 1.594
Cell Shape hexagonal cubic hexagonal
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3.8 Results and Discussion

Having thoroughly tested all aspects of the MBD gradients for periodic simulations, and

addressed their convergence with respect to numerical quadrature, periodic convergence of

the dipole-dipole interactions, and periodic convergence of the MBD energy using the

real-space supercell, we turn our attention to three example systems for demonstrations of

the performance of our code. By optimizing the ionic positions of nucleobases on top of a

7× 7 supercell of graphene, we demonstrate that the parallel implementation of MBD

forces can easily handle systems of > 110 atoms and correctly accounts for reduced

dimensionality. We next consider the unit-cell optimization of a 4× 4× 2 supercell of

graphite, and show that MBD gives results in closer agreement to the well known

experimental answer than the pairwise TS method. Finally, we optimize both the ionic

positions and unit-cell vectors of a 192 atom unit cell model of cubic ice and show that

again MBD outperforms TS with regard to agreement with the experimental cell

parameters. The primary purpose of these applications is to demonstrate the efficiency of

our new implementation of MBD for periodic systems as the efficacy of the MBD

methodology for treating molecular crystals has been discussed extensively

elsewhere.109–112,119,350

As a point of completeness we should point out that at present, the TS-vdW module in

QE, which is used to perform the Hirshfeld partitioning, has a few serious bugs when

treating k-point sampling of the Brilloiun zone. As a result, we have been limited in our

application of MBD gradients to unit-cell optimizations of systems with sufficiently large

simulation cells to be treated as Γ point only. As soon as this issue is resolved, we

anticipate benchmarking MBD gradients on unit-cell optimizations of many noncovalent

interaction dominated crystal systems, such as rare gas crystals and molecular crystals

from the sets of Binns et al.,351 Bj orkman et al.,116 and the well known X23 benchmark

set.108,109,352,353
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3.8.1 Physisorption of nucleobases on graphene

Understanding the interactions between carbon nanostructures and the DNA and RNA

nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) attracted

significant attention in recent years, with considerable effort devoted to predicting the

physisorption binding energies of each nucleobase on graphene and related

nanostructures .354–368 In a comparative study of vdW inclusive DFT approaches,

Le et al. found that although different methodologies disagree on the precise values of

binding energies, most methods agree that the ordering of interaction strengths of the

nucleobases on graphene follows the order G > A > T > C > U or G > A > C > T >

U,366 in agreement with the results of experimental titrations. 356,364

Table 3.3: Binding distances d (Å) between graphene and nucleobases optimized with DFT &
DFT+vdW methods.

PBE rPW86 M06-2Xb B97-Dc

Nucleobase MBD TSa,d,e D3d vdW-DF2d – –

A 3.416 3.29, 3.28, 3.27 3.38 3.37 3.137 2.99

C 3.303 3.27, 3.31, 3.23 3.38 3.38 3.124 2.89

G 3.350 3.26, 3.25, 3.23 3.33 3.33 3.132 2.87

T 3.463 3.29, 3.34, 3.23 3.42 3.41 3.103 2.94

U 3.365 –, 3.30, – 3.38 3.37 – 2.91

a Ref. 363, b Ref. 361, c Ref. 365, d Ref. 366, e Ref. 357

The potential energy surface (PES) for a nucleobase physisorbed on graphene is quite

shallow, with a energy differences of ∼ 0.04− 0.10 eV between the peak and the

valley.360,362 As a result, the equilibrium geometry adopted by the nucleobases when

adsorbed on top of graphene can vary somewhat depending on the starting configuration

and the method of treating dispersion interactions. For instance, Antony and Grimme

found a nearly perfect AB stacking for all nucleobases using B97-D, 365 while Gowtham et
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al. found a significantly rotated structure for guanine and cytosine (adopting more of an

AA stacking pattern) using LDA362 and Cho et al. found a rotated structure for thymine

using PBE+TS.357 Even for AB configurations, slight deviations from perfect AB base

stacking are expected, due to both the incommensurate five- and six- membered rings of

the bases with respect to the graphene lattice, as well as the presence of nitrogen

heteroatoms and side groups that alter the electronic structure. 362

All five nucleobases adopt a configuration with their planes oriented approximately

parallel to the graphene sheet (the methyl groups cause a slight tilt), with a separation of

3.0− 3.5 Å. As we saw in Chapter 2, the equilibrium distance for π − π stacked systems

can be quite sensitive to the details of a vdW inclusive functional. To demonstrate that

our periodic MBD gradients code works efficiently for systems of reduced dimensionality,

we optimized the adsorbed structures of all five nucleobases on top of a 7× 7 unit cell of

graphene (resulting in 110-113 atoms in the unit cell). Since it would be safe to optimize

such a system by holding the graphene plane fixed and letting only the nucleobase relax,

this application is not one that would be strictly out of reach for previous MBD

implementations. However, our aim here is to demonstrate that our parallelized periodic

MBD code can treat a large system quickly, without demonstrating unexpected

distortions, and properly accounting for the 2D periodicity of the system. The optimized

structures are shown in Figure 3.8 and the binding distances are stated in Table 3.3. We

find that the PBE+MBD optimized binding distances are larger than those of previously

reported DFT-D methodologies and are in closer agreement with the vdW-DF method.

Since there has not been an experimental or high-level wavefunction theory determination

of this binding curve, we cannot regard any of these methodologies as a benchmark value.

Burland et al. using the vdW-DF method together with the PBE functional find a binding

distance for Adenine of 3.5 Å359 while Le et al. find binding distances of 3.33− 3.38 Å.366

It is well known that the vdW-DF and vdW-DF2 methods† consistently provide small

overestimation of equilibrium distances for small vdW bound complexes, 72,99 so our
†The original vdW-DF method used the revPBE exchange functional, while vdW-DF2 uses rPW86

exchange.42,72
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present PBE+MBD binding distances may be seen as unfavorable. However, both MP2

and hybrid functionals such as B3LYP and wB97X-D have been shown to give binding

distances on the order of ∼ 3.5 Å,362,367 so while they are on the high side, our

PBE+MBD distances are within the range of other predictions. Since the minima found

in our optimizations are quite different from the typical AB stacking motifs found in other

studies, this system should be studied more carefully with MBD, by starting optimizations

from several initial configurations, before any firm conclusions can be drawn about how

the many-body methodology differs from effective pairwise treatments of this system.
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Figure 3.8: Top Left: Chemical structures of the five nucleobases. Remaining Panels: Top views of
the optimized structures of nucleobases adsorbed on graphene with the bonds in the nucleobase shown in
black for visual contrast.

3.8.2 Graphite unit cell optimization

The layers of materials such as graphite are held together purely by dispersion

interactions. Since the covalent bonds within the ab plane are much stiffer than the van

der Waals interactions in the c direction, graphite displays a strongly anisotropic

compressibility, which varies significantly with temperature. The thermal expansion of

graphite was studied quite extensively in the late 1940s and early 1970s, both as a simple

system of interest for testing physical models of heat capacity and lattice dynamics, and
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also for the material’s importance to the nuclear industry. 369–377 More recently, graphite

has received considerable attention as a material for benchmarking vdW inclusive DFT

methodologies since the prediction of the interlayer binding energy (or the closely related

exfoliation and cleavage energies) presents a particular challenge for many correlation

methods. Graphitic nanomaterials were among the first examples of systems for which

many-body vdW effects were realized to be qualitatively necessary. 26

Dobson et al. have recently shown that the interaction between graphene sheets as they

are separated shows many-body effects beyond those captured by the random-phase

approximation (RPA).117 In particular, they find that the long-distance

graphene-graphene dispersion interaction is substantially less than the RPA prediction

and is very sensitive to long-wavelength in-plane many-body modes that renormalize the

velocity of the massless Dirac fermions in graphene.117 Since MBD is formally equivalent

(through the adiabatic connection fluctuation dissipation theorem) to the RPA, 84,87,88 this

suggests that there may be many-body effects relevant to the properties of graphene and

graphite that the DFT+MBD methodology will miss.

Since the c-axis of graphite expands considerably with temperature, it is important to

use low temperature experimental data as a reference for comparison to electronic

structure predictions of the unit cell size at 0 K. In 1970 Bailey and Yates378 examined the

anisotropic expansion of well-ordered pyrolytic graphite down to 30 K; they find that the

linear coefficient of expansion in the c-direction is α‖ = (3.8± 0.8)× 10−6 K−1. Together

with the fact that α‖ must go to zero as temperature approaches 0 K, this indicates that a

low temperature measurement of the c-axis spacing of graphite should be a good proxy for

the zero temperature spacing without the need for significant extrapolation. Baskin et al.

measured the lattice constants of single crystal graphite at 4.2± 0.3 K and 78± 0.3 K

using Cu Kα (λ = 1.5418 Å) X-ray radiation and determined d(4.2K) = 3.3360(5) AA and

d(78K) = 3.3378 Å with a = 2.4589(5) Å at both temperatures.379 Using the expansion

coefficients of Bailey and Yates, we performed a nonlinear extrapolation of the 78 K

interlayer spacing and found that it is consistent with a value of 3.336 Å at zero
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temperature. Therefore, we take the 4.2 K measurement as our reference value.

c

a

Figure 3.9: The unit cell of graphite, with the bonding atoms expanded outside the cell to show the AB
stacking arrangement. The interlayer spacing is c/2 and the C–C bond distance is a/

√
3.

In considering the interlayer binding distance and exfoliation energy of graphite, GGA

functionals tend to predict very weak or no binding at all, while LDA functionals predict

approximately the right binding distance with too shallow a potential energy surface

(though LDA yields surprisingly good predictions considering that there are no terms in

LDA that should account for vdW interactions).380 Almost all vdW inclusive treatments

improve upon these deficiencies, though several authors have shown that inclusion of

self-consistent screening88,251 and many-body effects86,88 can substantially renormalize the

cohesive energy of graphite, bringing the predicted values into closer agreement with

experimental33,381,382 and quantum Monte Carlo estimates383 than is found with nonlocal

correlation approaches.85,86,116,359,380,384

We optimized the unit cell of graphite (shown in Figure 3.9) using a 4× 4× 2 supercell

with both PBE+MBD and PBE+TS.‡ Since the atoms reside in positions that are

constrained by the symmetry of the P63/mmc space-group and the hexagonal bonding

pattern of sp2 hybridized carbon, the primary quantity of interest in optimizing the

graphite unit cell is the interlayer spacing d = c/2. In Table 3.4 we compare our cell

parameters to those obtained by many different authors using a variety of functionals and

‡When k-point integration becomes available we will check whether these results are converged since a
4× 4× 2 supercell is somewhat smaller than desirable.
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vdW correction schemes. We note that PBE is quite good at reproducing the C–C bond

length of 1.42 Å and thus the a-axis length is well reproduced (results with the revPBE

functional are less compelling in this regard). As previously stated, in the absence of a

dispersion correction PBE predicts much too large an interlayer spacing d ∼ 3.9− 4.9 Å.

The large variance in reported values is due to the very flat potential energy surface

predicted by PBE. The revised GGAs, revPBE and PBEsol do better, but still have > 3%

relative error in the interlayer spacing. The vdw-DF and vdW-DF2 nonlocal correlation

methodologies tend to yield too large an interlayer spacing by ∼ 4− 13%. The nonlocal

correlation functional method VV10 and its revised variant both perform very well, giving

relative errors of ∼ 2% or less in the interlayer spacing. The outdated D2 method

performs reasonably well. Since the revisions to the D3 method included parameterizing

C6 coefficients that distinguish between different hybridization states, we expect that

PBE+D3 would perform as well or better than PBE+D2. We note that although the

effectively pairwise PBE+TS method does extremely well, the relative error is increased

when the self-consistently screened variant is used. This is surprising since the SCS

procedure makes such a drastic improvement to TS for predicting many other quantities.

The vdw-WF-QHO method of Silvestrelli et al. is, like MBD, based on coupled QHOs,

but extracts its charge density partitioning using maximally localized Wannier functions

rather that atomic Hirshfeld partitioning. Both vdW-WF-QHO and MBD perform

extremely well relative to the experimental value and agree quite closely with the RPA

result. Many more benchmarks of analytical MBD gradients for unit cell optimizations of

dispersively dominated crystals should of course be performed, but we find this

preliminary result quite encouraging since graphite has proven challenging for many vdW

correction methods.

3.8.3 Cubic ice (Ic) unit cell optimization

Correctly reproducing the experimental phase diagram of water ice has proven to be

extremely challenging for DFT because the energy differences between polymorphs are
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Table 3.4: Optimized interlayer spacing, d, and lattice vector ratio, c/a, of graphite reported with various DFT
and DFT+vdW methodologies. The relative percentage error εr is reported for both quantities. Note that we
have rounded d to two decimal places since many authors did not provide greater precision and leave c/a blank
where authors did not provide the optimized a value. Relative error in c/a is computed using the experimental
value of a = 2.4589(5) Å from Ref. 379.

d (Å) c/a εr(d) (%) εr(c/a) (%) Method Reference
3.3360(5) 2.713(1) Exp. (X-ray @ 4.2K) Ref. 379

3.34 – 0.1 PBE+RPA Ref. 129
3.35 2.710 0.3 -0.1 PBE+MBD present
3.33 – -0.2 – PBE+vdW-WF-QHO Ref. 86
3.38 2.744 1.2 1.1 PBE+TS-SCS Ref. 251
3.33 2.702 -0.1 -0.4 PBE+TS present
3.33 2.703 -0.3 -0.4 PBE+TS Ref. 385
3.34 2.715 0.1 0.1 PBE+TS Ref. 251
3.23 2.622 -3.3 -3.4 PBE+D2 Ref. 386
3.37 – 1.0 – PBE+D2 Ref. 116
3.45 – 3.3 – PBE+vdW-DF Ref. 116
3.91 – 17.0 – PBE Ref. 116
3.93 – 17.7 – PBE Ref. 380
4.25 3.451 27.2 27.2 PBE Ref. 387
4.42 3.579 32.5 31.9 PBE Ref. 386
4.90 3.982 46.9 46.8 PBE Ref. 388
3.46 – 3.7 – PBEsol Ref. 380
3.58 2.877 7.2 6.1 revPBE Ref. 384
3.55 – 6.4 – revPBE+vdW-DF Ref. 380
3.60 – 7.9 – revPBE+vdW-DF Ref. 116
3.76 – 12.7 – revPBE+vdW-DF Ref. 389
3.39 – 1.6 rPW86+VV10 Ref. 116
3.36 2.732 0.7 0.7 rPW86+rVV10 Ref. 85
3.41 – 2.2 – rPW86+rVV10 Ref. 86
3.48 – 4.3 – rPW86+vdW-DF2 Ref. 359
3.47 – 4.1 – rPW86+vdW-DF2 Ref. 116
3.57 – 7.1 – rPW86+vdW-DF2 Ref. 380
3.34 2.733 0.0 0.7 LDA Ref. 388
3.34 2.738 0.1 0.9 LDA Ref. 387
3.33 – -0.2 – LDA Ref. 129
3.38 – 1.2 – LDA Ref. 116
3.27 – -2.0 – LDA Ref. 380

3.234(3) – 3.0 LRDMC [2x2x2] Ref. 383
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small and arise from the competing effects of hydrogen-bonding and vdW

interactions.390,391 Experimentally, the phase diagram of ice up to pressures of ∼ 2 GPa

is well established, but a sound theoretical description of the cohesive properties of several

phases is still lacking.390 Ice has 15 known polymorphs,392 most of which are metastable

or high pressure phases, the most recent of which was discovered in 2009. 393 Past work

has shown that adding van der Waals corrections to DFT significantly improves the

performance of many functionals for optimizing the unit cells and evaluating the

thermodynamic stability of different polymorphs of ice, with small but significant

improvements arising from three-body or many-body dispersion. 390,391,394–396

Figure 3.10: Two views of a 64 water model of the unit cell of ice Ic.

At ambient pressure, cooling water yields a hexagonal structure known as Ih. At lower

temperatures, or when crystallized from supercooled water (hyperquenching), 397,398

confined in porous environments,399,400 or heated from a vitrified state,401,402 water

crystallizes in a related metastable phase with cubic symmetry, called Ic. Ice Ic forms

readily in many different environments, and is thought to exist in ice crystals in the upper

atmosphere.392,397,403–405 Structurally, Ih and Ic are quite similar, both containing layers

of six-membered rings in an armchair configuration, but the stacking between these layers

differs.406 This similar lattice packing yields nearly identical static lattice and harmonic

vibrational energies;407 it is only when anharmonic effects are considered that the relative
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thermodynamic stability of the Ih over Ic becomes apparent (Ih is more stable by a few

meV/H2O).408 Recently, a variety of spectroscopic and diffraction measurements, in

addition to large-scale molecular dynamics calculations, have suggested that when

supercooled water crystallizes to form “cubic ice,” it actually forms a stacking disordered

combination of ice Ic and Ih, rather than the pure form originally suggested by König,409

making the relationship between these two phases a fascinating puzzle. 398,405,406,410–413 It

should be noted that neither Ih or Ic is a proton-ordered state,414 so any theoretical

structure should be regarded as a model structure. The stacking disorder present in cubic

ice is further reason to consider any model of well-ordered Ic as a theoretical system.

Given the competition between hydrogen-bonding and dispersion forces, and the

cooperativity that influences both of these interactions, we regard computing the molar

volume of a metastable phase of ice to be a compelling check that our periodic MBD

gradients are performing well for condensed phase simulations. In contrast to graphite,

the thermal expansion of ice is small at low pressure,415,416 e.g., the cell volume of ice Ih

changes by 1.65% from 10-265 K.417 The density of ice Ic is almost identical to that of ice

Ih due to their similar packing structures.418 Santra et al. have already thoroughly

benchmarked the performance of PBE+MBD for studying the phase diagram of the

proton ordered polymorphs of ice, so in this work we only report the optimization of ice

Ic.391 Our aim is not to characterize the physical properties of ice, but rather to confirm

that the behavior of our periodic MBD gradients code yields a reasonable structure for the

chosen model of the Ic system. We used a 64 water model unit cell of ice Ic, shown in

Figure 3.10, that is large enough to not require k-point integration. Containing 192 atoms,

this unit cell is far larger than past numerical treatments of MBD gradients would have

been able to treat. We allowed all atom positions and unit cell vectors to relax. The

results of our optimizations are given in Table 3.5 and compared to the results of

experimental studies and other DFT+vdW treatments. Although “pure” cubic ice likely

does not exist due to the stacking faults present in the structure, the experimental molar

volumes suggested for ice Ih and ice Ic are very similar, so we feel comfortable using the
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value of V0 ∼ 19.3 cm3/mol as a reference. The bare PBE functional provides too dense a

structure, while various vdW corrections give larger molar volumes. We find that the

MBD treatment yields a surprisingly large difference of 0.1 cm3/mol difference in molar

volume relative to TS, which is on the same order of magnitude as the increase in molar

volume due to the zero-point motion of hydrogen.394 The molar volume predicted by

PBE+MBD is still considerably too small, which should not be surprising given the well

known tendency of PBE to over-bind hydrogen-bonds. The larger volume predicted by

vdW-DF2 is expected given the properties of both the nonlocal correlation functional and

the underlying rPW86 exchange functional. We are actively investigating other phases of

ice and our preliminary investigation of ice Ic with PBE+MBD suggests that there may

be exciting discoveries ahead for structural investigations using analytical MBD gradients

for condensed phase simulations.

Table 3.5: Unit cell parameters of ice Ic optimized with various DFT and DFT+vdW methodologies. We
report both the lattice parameter a, and the molar volume V0. The lattice parameter of our 64 H20 unit
cell has been divided by two for comparison to the conventional 8 H2O unit cell. Values in parentheses
have been corrected for hydrogen zero-point motion.

a (Å) V0 (cm3/mol) Method Reference

19.30 Exp. Ih @ 13K Ref. 415

19.36 Exp. Ih @ 99K Ref. 418

6.355 19.32 Exp. Ic @ 78K Ref. 419

6.358(4) 19.35 Exp. Ic @ 89K Ref. 418

6.350(8) 19.27 Exp. Ic @144K Ref.420

6.295 18.78 PBE+MBD present work

6.284 18.68 PBE+TS present work

6.249 (6.257) 18.37 (18.44) PBE Ref. 394

6.434 (6.476) 20.05 (20.44) rPW86+vdW-DF2 Ref. 394
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3.9 Conclusions

In this chapter we have presented a new implementation of analytical MBD forces for

large-scale condensed phase simulations, including all MBD corrections to unit-cell forces,

stresses, and ionic forces. Our new implementation uses a quadrature scheme that is six

orders of magnitude more accurate than the original FHI-aims MBD code. We have

thoroughly characterized the convergence and numerical stability of our implementation

and have eliminated the use of heuristic cutoffs for the dipole-dipole interaction tensors.

With appropriate parallelization MBD forces may now be used to relax the structures of

large (> 1000 atom) unit cells. We have made preliminary studies of the physisorption of

nucleobases on graphene, the interlayer binding distance of graphite, and the structure of

ice Ic and in all three cases find the performance of MBD forces to be encouraging for use

in condensed phase optimizations. Once the bugs in the Hirshfeld volume partitioning for

k-point sampling of the Brillion zone have been resolved, we are eager to benchmark MBD

for other solid state systems. We are especially eager to compare our new implementation

with the numerous numerical MBD optimizations that have been performed by the

Tkatchenko group109–112,119 since our code is substantially more numerically stable than

previous MBD implementations. This is a particularly relevant issue for solids since

numerical optimizations with MBD can be extremely sensitive to small perturbations of

the ionic coordinates,§ and many of the published results benchmarking MBD on

molecular crystals used geometries from pairwise methods. We look forward to

reexamining these systems in the future. The development of the MBD correction to the

stress tensor will enable the first MBD corrections to the phase diagrams of materials such

as ice or hydrogen-bonded pigments, which display competition between cooperative

hydrogen-bonding and dispersion interactions. The ability to optimize unit cells and relax

ionic coordinates with MBD will benefit many studies of novel functional organic

materials such as layered metal-organic frameworks or vdW heterostructures.

§Personal discussions with Johannes Hoja, May, 2015.
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Ongoing Developments for MBD

In Chapters 2 and 3 we presented the development and first implementation of analytical

MBD forces for optimizing nuclear positions and unit-cells in isolated and condensed

phase systems. Based on the successes of the MBD method for explaining many properties

of organic materials, we are optimistic that these forces will be quickly adopted for use in

many quantum chemical studies. However, there are three additional features that would

be desirable for MBD to be a truly effective tool for modeling novel organic materials.

Firstly, the range-separation parameter, β, has only been parameterized for three

exchange-correlation functionals, PBE,182,183 PBE0,236–238 and HSE,421–423 which limits

the adoption of MBD by a wider audience. Secondly, one of the most surprising effects

discovered with MBD is the entropic stabilization of aspirin by low-frequency many-body

corrections to the phonon spectrum arising out of the hydrogen-bond network of one

polymorph.112 The electron-phonon coupling in materials such as graphite and graphene,

can also be strongly renormalized (by up to ∼ 80%) by nonlocal exchange-correlation

effects.249 Since hydrogen- and halogen-bonds play such a crucial role in crystal structure

engineering and since electron-phonon coupling strongly renormalizes the charge carrier

mobilities of many organic semiconductors, enabling fast calculation of the MBD

corrections to phonon modes is desirable. This is most easily addressed through the use of

density functional perturbation theory (DFPT), which requires the analytical Hessian of

the energy. Finally, density dependent properties, such as interaction energies or the

transfer integrals that are commonly used to evaluate organic semiconductor materials,

require a self-consistent methodology. Self-consistent density updates using MBD will also
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enable the study of vdW corrections to excitation spectra by use of real-time propagation

methods. In this chapter, we will describe progress that has been made toward each of

these three goals and highlight a few of the remaining challenges.

4.1 Parameterizing MBD for Other Exchange-Correlation Functionals

The results presented in Chapters 2 and 3 exclusively used the Perdew-Burke-Ernzerhof

(PBE)182,183 exchange-correlation functional. Since PBE is a general purpose

non-empirical GGA functional that performs reasonably well for both molecules and

solids, it is a consistently ranked as one of the most popular functionals among DFT

practitioners.424 However, there are many other approximate functionals for exchange or

correlation, which have been designed with different applications in mind (cf. Refs. 89,425

and references therein for a general review of DFT functionals and Ref. 426 for a

discussion of popular GGAs). Unfortunately, no density functional is truly transferable in

the sense that it “always” provides accurate prediction for all systems of interest. 427 As

such, the development of correction schemes such as MBD is always accompanied by the

need to see how “nicely” they play with the existing zoo of functionals. For instance, the

exchange functional revPBE234,235 is generally too repulsive at the equilibrium separation

of dispersively bound dimers, which is why revPBE+vdW-DF tends to yield too large

intermolecular separations.428 Other popular GGA functionals have similar strengths and

weaknesses. For example, Becke ‘88 (B88)429 exchange is strongly over-repulsive, while

LDA,181 PW91430–432 and PBE182,183 give strong and weak spurious exchange binding

respectively.70,130 Previous authors have found that the non-empirical Perdew-Wang ‘86

(PW86)433 exchange is perhaps the best GGA functional for describing the repulsive part

of the exchange potential relevant to van der Waals interactions at short range. 70,434 Since

the short range behavior of different functionals varies greatly, use of the MBD model

with a new or preferred functional requires optimization of the MBD range-separation to

match the properties of the underlying exchange-correlation functional.

One of the strengths of the MBD model over other vdW corrections is that there is just
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a single adjustable parameter, β, which controls the damping function that range-separates

MBD for coupling to the underlying DFT functional. All semi-empirical vdW correction

schemes41,49,54,66,435 use a damping function to turn off the correction at short range, both

to avoid double counting the short-range correlation energy of the DFT correlation

functional, and to avoid the divergence in the interaction between point dipoles. The

value of the range-separation parameter, β, is determined for each exchange-correlation

functional by minimizing the deviations with respect to highly accurate benchmarks for

the interaction energies of noncovalently bound dimers. Ambrosetti et al.88 originally

optimized β for use with PBE, PBE0, and HSE against the S66×8 dataset, a collection of

dissociation curves for 66 molecular dimers designed to cover the types of noncovalent

interactions that occur in biomolecules (−OH · · ·π, −CH · · ·N , π − π, etc.).436

Optimizing β against a large dataset that contains non-equilibrium geometries is

preferable to avoid biasing the vdW correction toward equilibrium structures.

To enable MBD for use with other exchange-correlation functionals, we have worked

with Xavier Andrade to incorporate our MBD code into the Octopus software

package.333,437,438 Octopus has several advantages over QE for this development work;

principally, it uses the Libxc439 library of exchange and correlation functionals and

thereby supports a much broader range of functionals (including many that are popular in

Gaussian-type orbital (GTO) based quantum chemistry programs) than most periodic

simulation packages. Secondarily, since Octopus employs real-space grids,333,440 it can

more easily handle isolated systems. Finally, incorporating MBD into Octopus will pave

the way for self-consistent MBD to be used with the real-time propagation scheme of

time-dependent density functional theory (RT-TDDFT) and offers the potential for future

development to improve the parallelism.334,441,442 Unless otherwise specified, all

calculations in Octopus employed the default Hartwigsen-Goedecker-Hutter (HGH)

norm-conserving dual-space Gaussian pseudopotentials.443

At the time of writing, a development version of Octopus (code name Octopus

tetricus), contains a working Hirshfeld volume partitioning, and support for the
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Figure 4.1: Left: Grid spacing cutoff used in Octopus versus the effective equivalent wavefunction
cutoff (Eeff

cut). Note that the y-axis is in units of 100 Ry. Right: Total energy of an isolated benzene
molecule as a function of the effective wavefunction cutoff (Eeff

cut). The dotted line shows a quadratic
expansion to the complete basis set limit (Eeff

cut = ∞). Nonzero tick marks on the x-axis correspond to
wavefunction cutoffs equivalent to grid spacings of [0.10, 0.15, 0.20] Å.

Hirshfeld gradients is actively being developed. For optimizing the range-separation

parameter, β, we only need to compute interaction energies with MBD applied as an a

posteriori correction. This means that the interaction energies need only be computed

once with any given exchange-correlation functional so long as the Hirshfeld volumes

computed with that functional are saved for each molecule in the dataset. With the

Hirshfeld volumes on hand, the required ratios Va/V free
a can be computed and the MBD

energy can be calculated independently as a function of the range-separation parameter.

This scheme avoids unnecessary duplication of a large number of DFT single-point

calculations. The FHI-aims MBD code accepts as input a modified xyz geometry file

containing a column of Hirshfeld volume ratios Va/V free
a , so it is ideally suited to perform

these MBD calculations on a dense grid of β values.

To enable this calculation scheme, we modified a version of the FHI-aims standalone

MBD code to accept a custom value of β as an input parameter.279 In Chapter 3 we

alluded to the fact that the FHI-aims implementation of MBD@rsSCS contained several

numerical instabilities and used heuristic convergence cutoffs. These instabilities only

arise during computation of the MBD energy for periodic systems, so for isolated systems

the energy computed by our modified FHI-aims MBD code agrees with that of our QE

implementation to within 10−11 Eh.∗

∗To achieve this level of agreement with our MBD implementation it is actually necessary to modify a
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Our preliminary investigation has focused on GGA functionals since they are

substantially more computationally efficient than hybrid functionals in Octopus. We also

considered two local density approximation (LDA) functionals, SPZ 181,444,445 and

SVWNRPA.444–446 References and a list of abbreviations used to describe each functional

is provided in section A.2 of Appendix A. Since the LDA exhibits spurious over-binding

due to exchange,130 adding a dispersion correction on top of LDA is expected to degrade

the performance of LDA functionals, and if one insists on fitting dispersion correction

parameters to the S22 set or other reference data, unphysical negative coefficients will

result as the dispersion correction attempts to remove this over-binding. 447 We were

therefore unsurprised to see that the mean absolute error of LDA+MBD against the S22

set decreases monotonically as β is increased and would presumably reach its minimum at

β →∞, which would correspond to turning off the MBD correction. We note that the

reference CCSD(T) interaction energies in these benchmark datasets have all been

extrapolated to the complete basis set (CBS) limit. To achieve the best possible

comparison of the DFT interaction energies computed in Octopus with these benchmark

values, we considered a quadratic expansion to the complete basis set limit using grid

spacings of [0.2, 0.1, 0.08] Å. The results of such an extrapolation for an isolated benzene

molecule are shown in the right-hand panel of Figure 4.1. For ease of comparison to

conventional planewave codes, we convert from Octopus’s grid spacing cutoff ∆ (in Å) to

the effective equivalent wavefunction kinetic energy cutoff Eeff
cut (in Ry) as

Eeff
cut(Ry) = 2.764

∆2 . (4.1)

For most functionals we found that the complete basis set extrapolated results were

equivalent to those computed at the grid spacing of 0.08 Å, which is effectively equivalent

to a planewave kinetic energy cutoff of 432 Ry.

few errors in the FHI-aims MBD code such as unnecessary conversions between single and double precision
floating-point types and errors in a few hardcoded constants. When we refer to using the FHI-aims MBD
code, we actually mean using our in-house modified version of the code that has these bugs removed.
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We optimized the MBD range-separation parameter β by minimizing the mean absolute

error (MAE), mean absolute relative error (MARE), and mean absolute deviation (MAD),

with respect to the revised S22 set448 basis set consistent CCSD(T)/CBS benchmarks of

Takatani and coworkers.449 The resulting error curves as a function of β are displayed in

Figure 4.2 for a representative set of GGA functionals. For most functionals the error

surfaces are quite flat in the region of the minima. Optimal β values computed at the

0.08 Å spacing (and the corresponding minimum MAE, MAD and MARE) are given in

Table 4.1 for the complete set of GGA functionals considered. Since the interaction

energies in the S22 set span a large range (−0.5 : −21 kcal/mol), optimizing β against the

relative error should avoid biasing the optimization to the strongest interactions. Some

functionals display inconsistent behavior with regard to which value of β minimizes the

relative error vs. the absolute error. These are the same functionals that yield the largest

absolute and relative errors. This inconsistent behavior seems to occur for with

functionals that have overly repulsive exchange, such as B88, optX, or revPBE, which is

being compensated by turning on the attractive MBD dispersion correction at shorter

range (smaller values of β). The LYP correlation functional also seems poorly suited to

the MBD correction. The fact that the minimum absolute and relative errors is achieved

for different values of β may also be a sign that the S22 set is too small to achieve an

unbiased training. We also note that MOHLYP functional was optimized for transition

metal chemistry,450 which explains its generally poor performance on the S22 set.

Consistent with previous findings that the PW86 exchange functional avoids spurious

exchange binding (and is therefore a good candidate for the foundation of a vdW

corrected functional),71,72 we find that the combination of rPW86 exchange and PBE

correlation (abbreviated herein as rPW86) achieves the lowest error against the S22 set,

with an optimal MARE of 8.5% and MAE of 0.5 kcal/mol. The PBE and PBEsol

functionals are the next best performers. PW86 exchange pairs best with a slightly

shorter-ranged MBD (β = 0.76− 0.78) than PBE (β = 0.78− 0.81), while the ‘vdW

optimized’ versions of PBE, PBEκ = 1 and optPBE, yield even smaller β values. The
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Figure 4.2: Relative to the revised S22 set interaction energies of Takatani et al. 449 the DFT+MBD
method shown for a representative set of GGA functionals provides the following Top: mean absolute
error (MAE) as a function of the range-separation parameter, β, Middle: mean absolute deviation (MAD)
as a function of β, Bottom: mean absolute relative error (MARE) as a function of β.
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large value of β = 0.95 achieved for PBEsol is likely a reflection of the adjustments that

have been made to this functional to make it more compatible with condensed phase

simulations. We note that the optimal values of β obtained here for PBE are somewhat

smaller than the value of 0.83 reported by Ambrosetti et al. who optimized against the

larger S66×8 set. When we optimize PBE against the S66×8 set we find βopt = 0.87, but

the minimum is quite flat. The B97 and B97-3 functionals also perform well, but require

significantly smaller β ∼ 0.42− 0.49, likely indicating a slightly more repulsive exchange.

Overall, we find that the MBD model is able to compensate for the deficiencies of a wide

variety of GGA functionals, with regard to their ability to describe noncovalent

interaction energies. When the range-separation parameter is optimally tuned several

different GGAs are able to achieve mean absolute errors well below 1 kcal/mol.

Table 4.1: Optimal MBD range-separation parameter, β, for different exchange-correlation functionals
as determined by minimizing the mean absolute error (MAE), mean absolute relative error (MARE), and
mean absolute deviation (MAD) relative to the S22 benchmark set using DFT+MBD interaction energies
computed at a grid spacing of ∆ = 0.08 Å (equivalent to Ecut = 432 Ry). MAE and MAD are given in
kcal/mol.

Functional βMAE
opt MAE βMARE

opt MARE (%) βMAD
opt MAD

rPW86 0.78 0.5 0.76 8.5 0.78 0.5
PW86 0.78 0.5 0.75 8.6 0.77 0.5
PBE 0.81 0.6 0.81 9.9 0.78 0.6
PBEsol 0.95 1.0 0.95 11 0.86 1.0
PW91 0.86 0.7 0.86 13 0.80 0.6
PBEκ = 1 0.70 0.7 0.64 15 0.71 0.8
optPBE 0.71 0.9 0.61 17 0.73 0.8
B97 0.48 0.8 0.49 18 0.48 0.8
B97-3 0.42 0.8 0.42 18 0.42 0.8
mPW91 0.71 0.9 0.62 18 0.73 0.8
HCTH/407 0.64 0.8 0.66 22 0.67 0.9
XLYP 0.67 1.1 0.58 25 0.72 1.0
BP86 0.71 1.1 0.57 26 0.74 0.9
revPBE 0.59 1.3 0.42 27 0.70 1.1
BLYP 0.65 1.3 0.42 32 0.71 1.1
BPW 0.63 1.6 0.42 35 0.70 1.2
OLYP 0.49 2.7 0.39 47 0.66 1.9
BOP 0.51 2.3 0.39 42 0.68 1.5
MOHLYP 0.42 2.9 0.38 51 0.57 2.1
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We are presently working to benchmark MBD against larger datasets of noncovalent

interaction energies, such as the S66×8451 set of dimer dissociation curves and the 3B-69

set of three-body interaction energies.104 We are eager to see how the range-separation

parameter of MBD varies across a wider variety of functionals, including meta-GGAs and

hybrids.
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4.2 MBD Phonon Coupling: Analytical Hessians

4.2.1 Introduction

Many physical properties of solids, such as infrared and Raman spectra, heat capacity,

thermal expansion, temperature dependence of optical spectra, and many more, depend

on the quantum mechanical behavior of a solid’s lattice dynamics. The description of

these phenomena in terms of phonons dates back to the 1930s (cf. the seminal textbook of

Born and Huang452) and has become one of the corner stones of solid state physics. In the

framework of DFT, the lattice-dynamical properties of crystals are typically calculated

using a form of linear response theory453,454 called density functional perturbation theory

(DFPT).455–458 For an excellent review on this subject see Ref. 459. As usual, the

electronic and vibrational degrees of freedom of a quantum solid are decoupled using the

adiabatic (Born Oppenheimer) approximation.460 The vibrational frequencies are then

determined from the eigenvalues of the Hessian of the energy (also called the matrix of

interatomic force constants), scaled by the atomic masses:

det
∣∣∣∣∣ 1√
MaMb

∂2E

∂RaRb
− ω2

∣∣∣∣∣ = 0. (4.2)

For the moment we will continue to ignore the changes in the energy that would be

induced by applying the MBD correction self-consistently to update the Kohn-Sham

density. In the context of DFPT, this choice to treat MBD as an a posteriori energy

correction is important because the computation of second-order energy derivatives in

DFPT requires knowledge of the first order variation in the density.

As an a posteriori correction, the MBD contributions to the phonon spectrum simply

require second-order derivatives of the MBD correlation energy. Using numerical

differentiation, Reilly et al. have shown that MBD corrections to the phonon density of

states can have dramatic physical consequences for certain organic materials, such as

introducing low-frequency many-body modes that explain the entropic stabilization of the
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pharmaceutical polymorph of aspirin relative to a polymorph with a different

hydrogen-bonding network.112 Since numerical evaluation of second order MBD

derivatives via finite difference methods is both extremely computationally costly and

quite numerically sensitive, the analytical evaluation of the MBD Hessian is desirable.

Motivated by the potential significance of MBD phonon corrections to the study of

organic materials, we now turn our attention to computing second derivatives of the MBD

correlation energy with respect to the Cartesian coordinates of nuclei/ions. Just as we

encountered with the derivation of the analytical forces, the layered definitions inherent in

the MBD model result in rather lengthy expressions due to the chain-rule. To keep our

notation as compact as possible, we will define several symbols along the way, and will

focus on deriving the equations that would be necessary for implementing the MBD

Hessian in code, rather than assembling a final expression in one equation. Consequently,

our goal is to reduce these expressions to terms depending on either first derivative

quantities that have already been addressed in Chapter 2, or to derivatives of the

internuclear separation and the Hirshfeld effective volume. We adopt the notation

∂2 = ∂c∂d = ∇Rc ⊗∇Rd to indicate the Hessian computed with respect to the nuclear

positions of atoms c and d. It may be useful to refer back to the notation defined in

Chapter 2 section 2.1.1 and the equations in Chapter 2 section 2.2.2 before starting to

read this derivation. Just as we saw in Chapter 2 section 2.2.2, the MBD Hessian will

reduce to three “fundamental” second derivatives, ∂2Rab, ∂2Rkab, and ∂2Va, along with

their first derivative analogues ∂Rab, ∂Riab, and ∂Va. We remind the reader that

Rab = ‖Ra −Rb‖ is the internuclear distance and Va[{R}] is the Hirshfeld effective

volume, which depends on the nuclear coordinates {R} through the charge density

partitioning. The derivation of the MBD Hessian proceeds in a similar fashion to the

MBD ionic forces, so we will leave more of the calculus and algebra to the reader and

focus on the final expression for each required quantity.

As we did in Chapter 3, we break the Hessian of the MBD correlation energy into its
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interacting and non-interacting components

∂2EMBD = ∂2EMBD
int. − ∂2EMBD

non−int. = 1
2

3N∑
p=1

∂2
(√

λp
)
− 3

2

N∑
a=1

∂2ωa. (4.3)

The basic ingredients for computing these derivatives are the same as before, but now we

will have to compute the derivatives of the eigenvector matrix, X , in constructing the

interacting term (cf. Eq. 2.40). Through the matrix CMBD, (cf. Eq. 2.18), we will

encounter both first and second derivatives of the screened quantities, ωa and α(iω), as

well as the screened long-range dipole-dipole tensor TLR. As before, the derivatives of

screened quantities appearing in both CMBD and the non-interacting term above in Eq. 4.3

will take us through the rsSCS procedure with both A and TSR. In the subsections below

we will reduce the second derivatives of each of these quantities to expressions involving

the six “fundamental” first and second derivatives. We start with these fundamental

quantities since the implementation of Hirshfeld volume second derivatives will be one of

the more demanding aspects of future efforts to develop code for MBD Hessians.

4.2.2 Fundamental quantities: ∂2Rab, ∂2Rkab, & ∂2V

Recall from Eq. 2.53 that the gradient of a component of the internuclear distance vector

gives a difference of Kronecker deltas: ∂cRkab = (δac − δbc)êk. Making use of this relation,

the Cartesian components of the second derivative ∂2Rkab are

∂jd∂
i
cR

k
ab = (δac − δbc)

(Rd · êj)(êk · êi)
‖Rd‖

. (4.4)

Likewise, from Eq. 2.49 we have ∂c‖Rab‖ = (δac − δbc)Rab/‖Rab‖, which yields the second

derivative of the internuclear distance:

∂jd∂
i
cRab = (δac − δbc)(δad − δbd)

((êj · êi)
‖Rab‖

− (Rab · êi)(Rab · êj)
‖Rab‖3

)
. (4.5)
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We previously (cf. Eq. (2.5)) defined the Hirshfeld effective volume as

Va[{R}] =
∫

drwa(r)ρ(r)‖r−Ra‖3, where

wa(r) = ρfree
a (‖r−Ra‖)/

∑
b

ρfree
b (‖r−Rb‖) (4.6)

is the Hirshfeld weight factor. We now adopt a slightly different notation (which is also

used in Appendix C Eq. (C.1-C.4)) to make computing ∂2V more clear. The Hirshfeld

weight factor and volume are re-written by defining the sum of free-atom densities,ρsad,

and the Hirshfeld effective density, ρeff , as

ρsad(r) ≡
∑
b

ρfree
b (‖r−Rb‖) (4.7)

ρeff(r) = wa(r)ρ(r) = ρfree
a (‖r−Ra‖)
ρsad(r) ρ(r). (4.8)

Then, the Hirshfeld volume becomes Va[{R}] =
∫

dr ‖r−Ra‖3ρeff
a (r). To compute the

Hirshfeld volume second derivative, we start by dividing the first derivative, ∂icVa, into

two terms:

∂icVa =
∫

dr‖r−Ra‖3∂icρeff
a (r)︸ ︷︷ ︸

¶

−3δac
∫

dr
[
êi · (r−Ra) ‖r−Ra‖

]
ρeff
a (r)︸ ︷︷ ︸

·

(4.9)

So the second derivative is given by:

∂jd∂
i
cVa = ∂jd [¶]− 3δac ∂jd [·] , (4.10)

where the first term is:

∂jd [¶] =
∫

dr ‖r−Ra‖3 ∂jd∂
i
cρ

eff
a (r)− 3δad

∫
dr
[
êj · (r−Ra)‖r−Ra‖

]
∂icρ

eff
a (r), (4.11)
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and the second term is:

∂jd [·] =
∫

dr
[
êi · (r−Ra) ‖r−Ra‖

]
∂jdρ

eff
a (r) (4.12)

−δad
∫

dr
[
(êi · êj)‖r−Ra‖+ [êi · (r−Ra)] [êj · (r−Ra)]

‖r−Ra‖

]
ρeff
a (r).

If we define ra ≡ r−Ra and suppress the argument of ρeff , we can write ∂2V more

compactly as:

∂jd∂
i
cVa =

∫
dr ‖ra ‖3 ∂jd∂icρeff

a (4.13)

−3δad
∫

dr
[
(êj · ra) ‖ra ‖

]
∂icρ

eff
a − 3δac

∫
dr
[
(êi · ra) ‖ra ‖

]
∂jdρ

eff
a

+3δacδad
∫

dr
[
(êi · êj) ‖ra ‖+ (êi · ra)(êj · ra)

‖ra ‖
]
ρeff
a .

To construct the first term we need the Hessian of the Hirshfeld effective atomic density,

ρeff . Noting that the only term in the sum of atomic densities that depends on Rc is the

corresponding free atom density, ρfree
c , the gradient of ρsad simply picks out the relevant

free atom density gradient

∂icρsad =
N∑
b=1
∂icρ

free
b = ∂icρ

free
c . (4.14)

The present implementation of MBD forces combines Eq. (4.14) with the free atom

density gradient, ∂ρfree, in spherical coordinates to compute ∂ρeff . However, to keep the

notation more compact, in the following we represent the gradient of the Hirshfeld density

with ∂cρfree in Cartesian coordinates:

∂icρ
eff
a = 1

ρsad

[
ρeff
a − ρ δca

]
∂icρ

free
c (4.15)

= Jca ∂icρfree
c , (4.16)

where, in the first line we have suppressed the arguments of ρfree
a , ρfree

c and ρsad, and in the

third line we define Jca(r) to collect unperturbed density terms. The Hessian of the
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Hirshfeld effective density then follows as:

∂jd∂
i
cρ

eff
a = ∂jd

[
Jca

]
∂icρ

free
c + Jca ∂jd∂

i
cρ

free
c (4.17)

= 1
ρsad

[
ρ

ρsad
∂jdρ

free
a −

[
Jca + ρeff

a

ρsad

]
∂jdρ

free
d

]
∂icρ

free
c + Jca ∂jd∂

i
cρ

free
c .(4.18)

Since the free atom density, ρfree
c , is spherically symmetric, it can be evaluated in much

the same fashion as is used for the present Hirshfeld gradient code, where the derivative of

ρfree is evaluated by numerical differentiation in spherical coordinates of the splined free

atom density. The greater challenge for a future MBD Hessian implementation will be

evaluation of Eq. (4.13), where the spatial integration will need to be performed for each

Cartesian component of ∂jd∂icVa. However, this integral will be quite local and could likely

be evaluated on a truncated radial grid. These integrations will likely be much easier to

perform in real-space grid or GTO based quantum chemistry codes. Having taken care of

the fundamental quantities, we now turn our attention to building up the Hessian of

quantities appearing in the rsSCS procedure. In the discussion that follows we will place a

box around any of the six fundamental derivatives ∂V , ∂2V , ∂Rab, ∂2Rab, ∂Riab, or

∂2Riab to highlight terms that need not be further reduced.

4.2.3 The screened excitation frequency, ωa

To evaluate the second derivative of the non-interacting energy we simply require ∂2ωa.

Recall from Eq. (2.42) that the first derivative ∂cωa is

∂cωa = 8
π

n∑
p=1

gp

[
αa(iyp)
[αa(0)]2∂cαa(iyp)︸ ︷︷ ︸

¶

− [αa(iyp)]2

[αa(0)]3 ∂cαa(0)︸ ︷︷ ︸
·

]
. (4.19)

For compactness we suppress the atomic index a as well as the imaginary frequency

quadrature argument (iyp). Then, considering the derivatives of the first interior term we
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have:

∂d [¶] = α∂d∂cα+ ∂dα∂cα
[α(0)]2 − 2α∂dα(0)∂cα

[α(0)]3 . (4.20)

Likewise, the derivative of the second interior term is simply:

∂d [·] = [α]2∂d∂cα(0) + 2α∂dα∂cα(0)
[α(0)]3 − 3[α]2∂dα(0)∂cα(0)

[α(0)]4 . (4.21)

Grouping terms by the power of α(0) in the denominator and restoring the suppressed

quantities we have:

∂d∂cωa = 8
π[αa(0)]2

n∑
p=1

gp
[
αa(iyp)∂d∂cαa(iyp) + ∂dαa(iyp)∂cαa(iyp)

]
(4.22)

− 8
π[αa(0)]3

n∑
p=1

gp
[
[αa(iyp)]2∂d∂cαa(0)

]

− 16
π[αa(0)]3

n∑
p=1

gp
[
αa(iyp)

(
∂dαa(0)∂cαa(iyp) + ∂dαa(iyp)∂cαa(0)

)]

+ 24
π[αa(0)]4

n∑
p=1

gp
[
[αa(iyp)]2∂dαa(0)∂cαa(0)

]
.

To evaluate Eq. (4.22), we employ Eq. (2.43) from Chapter 2, and derive the Hessian of

the the screened dynamic polarizability, α(iω), below. ă

4.2.4 The screened polarizability, α(iω)

The principle output of the rsSCS procedure is the isotropic screened atomic

polarizability, αa(iω). As before (cf. Eq. (2.43)), we use the linearity of the trace to write

αa(iω) = 1
3Tr

[
N∑
b=1

[
A(iω)

]
ab

]
⇒ ∂2αa = 1

3Tr
[
N∑
b=1

[
∂2A(iω)

]
ab

]
. (4.23)

Recall from section 2.2.1.2 and Eq. 2.44 of Chapter 2, that for a given imaginary

frequency the rsSCS procedure builds the screened system polarizability tensor A(iω) by

inverting the short-range dipole tensor TSR(iω) and the bare system polarizability tensor,
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A(iω), such that

∂cA = −A
[
∂cA−1 + ∂cTSR

]
A. (4.24)

where we have suppressed the frequency-dependence and

∂cA−1 = −A−1 [∂cA] A−1, (4.25)

and ∂cA is evaluated as in Eq. (2.45). For compactness let B ≡ ∂cA−1 + ∂cTSR so that

∂icA = −ABiA. The Hessian of the screened polarizability tensor is then:

∂jd∂
i
cA = −

[
∂jdA

]
BiA−A

[
∂jdB

i
]
A−ABi

[
∂jdA

]
, (4.26)

where

∂jdB
i = ∂jd∂

i
cA−1 + ∂jd∂

i
cTSR, (4.27)

and

∂jd∂
i
cA−1 = −

[
∂jdA

−1][∂icA]A−1 −A−1[∂icA][∂jdA−1]−A−1[∂jd∂icA]A−1. (4.28)

To evaluate Eq. (4.28), we employ Eq. (2.43) and Eq. (4.25). Then, since A is fully

diagonal, and in Chapter 2 we carefully separated out the terms that do not depend on

the effective volume, the Hessian of A is computed directly from ∂2V as

∂jd∂
i
cA =

N⊕
a=1

diag
[
Υa ∂

j
d∂

i
cVa

]
. (4.29)

The final ingredient to evaluate Eq. (4.27), is the Hessian of the short-range

dipole-dipole interaction tensor. As we encountered before, derivatives of this tensor will

require accounting for both the implicit nuclear coordinate dependence arising through

the Hirshfeld volumes in the frequency-dependent QHO interaction potential, as well as

the explicit nuclear coordinate dependence arising from the point-dipole interaction.
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4.2.5 The frequency-dependent dipole-dipole tensor, T

Since derivatives of the full frequency-dependent dipole-dipole tensor, Tij(Rab, ζab),

become quite involved, we will again use the notation of section C.3 in Appendix C and

define three convenience functions, U , Wk`, and Tk`
dip to break the derivatives of T into

more manageable pieces. Let,

U ≡ erf [ζ]− 2√
π
ζ exp

[
−ζ2

]
(4.30)

Wk` ≡ Ψk` 4√
π
ζ3 exp

[
−ζ2

]
(4.31)

Ψk` ≡
(
RkR`

R5

)
(4.32)

Tk`
dip ≡ −3Ψk` + δk`

R3 ⇔ Ψk` = −1
3Tk`

dip + 1
3
δk`
R3 (4.33)

where all atomic ab indices have been suppressed and the function Ψ is used to contain

the explicit nuclear coordinate dependent term that is shared in W and Tdip. Since the

derivatives of Tdip and Ψk` are closely related, we specify the conversion in Eq. (4.33). As

before, ζab is the ratio of the internuclear distance Rab to the interaction potential length,

Σab. So, then the (k, `)th component of T (cf. Eq. (2.56)) is given by

Tk` = UTk`
dip + Wk`. (4.34)

The second derivative of this quantity is then

∂jd∂
i
cTk` = Tk`

dip∂
j
d∂

i
cU + U∂jd∂

i
cTk`

dip + ∂jdU ∂
i
cTk`

dip + ∂icU ∂
j
dT

k`
dip + ∂jd∂

i
cWk`. (4.35)

To evaluate Eq. (4.35), we will take the derivatives of each convenience function U , Ψ, W,

and Tdip in turn.
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In constructing the MBD forces, we previously defined a helper function

h(ζ) = 4ζ2
√
π

exp
[
−ζ2] so that ∂U = h(ζ)∂ζ. The second derivative of U is then evaluated as

∂h(ζ) = 2
[

1− ζ2

ζ

]
h(ζ)∂ζ (4.36)

⇒ ∂jd∂
i
cU = h(ζ)∂jd∂

i
cζ + 2

[
1− ζ2

ζ

]
h(ζ)∂jdζ ∂

i
cζ, (4.37)

where ∂ζ was originally evaluated in Eq. (2.58) and is repeated below in Eq. (4.38). The

second derivative of ζ is then:

∂icζab = ∂ic

[
Rab
Σab

]
= Σ−1

ab ∂
i
cRab − Σ−2

ab Rab ∂
i
cΣab (4.38)

⇒ ∂jd∂
i
cζab = −Σ−2

ab

[
∂icRab ∂

j
dΣab − ∂jdRab ∂

i
cΣab −Rab ∂jd∂

i
cΣab

]
(4.39)

+Σ−1
ab ∂

j
d∂

i
cRab + 2Σ−3

ab Rab ∂
i
cΣab ∂

j
dΣab.

To evaluate Eq. (4.39), we need the derivatives of the interaction potential length, Σab,

which are constructed from derivatives of the QHO widths σa and σb. Recall that

Σab =
√
σ2
a + σ2

b , so:

∂icΣab = Σ−1
ab

(
σa∂

i
cσa + σb∂

i
cσb
)

(4.40)

⇒ ∂jd∂
i
cΣab = Σ−1

ab

(
∂jdσa ∂

i
cσa + ∂jdσb ∂

i
cσb
)

+ Σ−1
ab

(
σa∂

j
d∂

i
cσa + σb∂

j
d∂

i
cσb
)
(4.41)

−Σ−1
ab

(
∂jdΣab ∂

i
cΣab

)

To compute the Hessian of the QHO width, we recall from Eq. 2.59 that

∂icσa =
[

1
3

√
2
π

Υa

]1/3 ∂icVa

3[Va]2/3
(4.42)

so we have:

∂jd∂
i
cσa =

[
1
3

√
2
π

Υa

]1/3
1

3
∂jd∂

i
cVa

[Va]2/3
− 2

9
∂jdVa ∂icVa

[Va]5/3

 . (4.43)
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Combining Eq. (4.42-4.43), we can evaluate (4.39). Then, together Eqs. (4.38-4.39) are

used to evaluate the second derivative of U in Eq. (4.37).

Having dealt with U , we now turn our attention to the second derivative of Wk`. We

start with the explicit nuclear coordinate derivatives that arise through ∂2Ψk`:

∂icΨk` = −1
3∂

i
cTk`

dip −
δk`
R4 ∂

i
cR =

R` ∂icR
k +Rk ∂icR

`

R5 − 5RkR`
R6 ∂icR (4.44)

∂jd∂
i
cΨk` = −1

3∂
j
d∂

i
cTk`

dip + 4δk`
R5 ∂

j
dR ∂icR −

δk`
R4 ∂

j
d∂

i
cR . (4.45)

With ∂icΨk` in hand, and again making use of h(ζ), the first derivative of Wk` is simply

∂icWk` = Ψk`
[
3− 2ζ2

]
h(ζ)∂icζ −

1
3ζh(ζ)∂icΨk` (4.46)

For the second derivative, we’ll need to consider terms like
[
3− 2ζ2]h(ζ) and ζh(ζ). We

start by referring to the first quantity as g(ζ), so that

g(ζ) ≡
[
3− 2ζ2

]
h(ζ) (4.47)

⇒ ∂icWk` = Ψk`g(ζ)∂icζ −
1
3
(
ζh(ζ)

)
∂icΨk`. (4.48)

Aside from the derivatives of g(ζ) and ζh(ζ), we already have everything we need to

construct ∂2Wk` from Eqs. (4.44), (4.45), (4.38), and (4.39):

∂jd∂
i
cWk` = Ψk`∂jdg(ζ)∂icζ + Ψk`g(ζ)∂jd∂

i
cζ + g(ζ)∂icζ ∂

j
dΨ

k` (4.49)

−1
3∂

j
d

(
ζh(ζ)

)
∂icΨk` − 1

3ζh(ζ)∂jd∂
i
cΨk`.

Considering ∂g(ζ), we have:

∂g(ζ) = [3− 2ζ2]∂h(ζ)∂ζ − 4ζh(ζ)∂ζ =
[
2g(ζ)

(
1− ζ2

ζ

)
− 4ζh(ζ)

]
∂ζ. (4.50)

where in the second line we have employed Eq. (4.36). The utility of this definition of g(ζ)
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arises more clearly when considering the derivative of ζh(ζ):

∂
(
ζh(ζ)

)
= g(ζ)∂ζ. (4.51)

Thus, in terms of Eqs. (4.51) and (4.50) we can rewrite Eq. (4.49) as:

∂jd∂
i
cWk` = Ψk`

[
2g(ζ)

(
1− ζ2

ζ

)
− 4ζh(ζ)

]
∂jdζ ∂

i
cζ + Ψk`g(ζ) ∂jd∂

i
cζ

+g(ζ)∂icζ ∂
j
dΨ

k` − 1
3g(ζ)∂jdζ ∂

i
cΨk` − 1

3ζh(ζ)∂jd∂
i
cΨk`. (4.52)

We leave the expansion of ∂2W in this form since an implementation of the MBD Hessian

in code is likely to benefit from the compact form offered by g(ζ) and h(ζ). It is worth

noting that both g(ζ) and h(ζ) are proportional to exp
[
−ζ2], so all terms in ∂2Wk` and

∂2U die off within the same ζ < 6 radius remarked on in our discussion of floating point

underflow in Chapter 3.

In considering derivatives of the point-dipole tensor Tdip we will suppress all atomic

indices (a, b, c, d) as a means of highlighting the Cartesian indices (i, j, k, `). Although the

atomic indices are suppressed, we maintain the convention that ∂i = ∂ic and ∂j = ∂jd. In

contrast to the fast damping due to exp
[
−ζ2] present in ∂2U and ∂2W, the Hessian of

the point-dipole tensor, Tdip, depends solely on the internuclear distance Rab and has

terms that are of the same order as those in the first derivative. To see this dependence it

is helpful to group the terms by their order in inverse powers of Rab, which we will denote

O(R−n). For example, all three terms in the first derivative of Tdip are of O(R−4)

∂icTk`
dip = ∂ic

(
δkl
R3

)
− 3∂icΨk` (4.53)

= −3
[
δk`
R4

]
∂icR − 3

R` ∂icRk +Rk ∂icR
`

R5

+ 15
[
RkR`

R6

]
∂icR . (4.54)
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The Hessian of Tdip is expanded below with term order, O(R−n), indicated in the margin.

∂j∂iTk`
dip =− 3

R` ∂j∂iRk +Rk ∂j∂iR`

R5

 O(R−4)

− 3
[
δk`
R4

]
∂j∂iR O(R−5)

+ 15
[
RkR`

R6

]
∂j∂iR O(R−5)

+ 12
[
δk`
R5

]
∂jR ∂iR O(R−5)

− 3

 ∂jR` ∂iRk + ∂jRk ∂iR`

R5

 O(R−5)

+ 15

R` ∂iRk +Rk ∂iR`

R6

 ∂jR O(R−5)

+ 15

R` ∂jRk +Rk ∂jR`

R6

 ∂iR O(R−5)

− 90
[
RkR`

R7

]
∂jR ∂iR O(R−5)

(4.55)

Notice that since ∂2Tdip contains a term of O(R−4), it can be said to be equally

long-ranged as ∂Tdip. Even though the second and third terms may appear to be O(R−4),

they are actually O(R−5) because ∂2R is O(R−1) (cf. Eqs. (4.5)). Likewise, ∂2Rk, ∂R,

and ∂Rk are all O(R0) (cf. Eq. (4.4) and surrounding discussion).

Through Eqs. (4.55), (4.52) and (4.37), and the equations that they depend on, we have

reduced ∂2T to the six fundamental derivatives. In the next subsection we will treat the

range-separation of both the short- and long-ranged dipole-dipole tensors.
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4.2.6 Range-separated dipole-dipole tensors, TSR & TLR

Recall the expressions for the first derivatives of the range-separated dipole interaction

tensors (cf. Eqs. (2.55) and (2.54)):

∂icTk`
SR = −Tk`∂icf(ZTS) +

[
1− f

(
ZTS

)]
∂icTk` (4.56)

∂icT
k`
LR = Tk`

dip∂
i
cf(Z) + f(Z)∂icTk`

dip. (4.57)

The second derivatives of these quantities are then:

∂jd∂
i
cTk`

SR = −Tk`∂jd∂
i
cf
(
ZTS

)
− ∂jdT

k`∂icf
(
ZTS

)
− ∂jdf

(
ZTS

)
∂icTk` (4.58)

+
[
1− f

(
ZTS

)]
∂jd∂

i
cTk`

∂jd∂
i
cT

k`
LR = ∂jdT

k`
dip∂

i
cf(Z) + Tk`

dip∂
j
d∂

i
cf(Z) + ∂jdf(Z)∂icTk`

dip (4.59)

+f(Z)∂jd∂
i
cTk`

dip,

where the appropriate effective vdW radii (cf. Eqs. (2.33), (2.50), (2.35) and (2.51)) are

used in the arguments of the Fermi damping function ZTS and Z.

We have already evaluated ∂2Tdip and ∂2T, so we proceed with evaluation of the

derivatives of the Fermi damping function. Suppressing the ab indices, the second

derivative of the Fermi damping function is easily calculated as (cf. Eq. (2.46)):

∂cf(Z) = e−Z

[1 + e−Z ]2
∂cZ = e−Z [f(Z)]2∂cZ (4.60)

⇒ ∂d∂cf(Z) = e−Z [f(Z)]2
[ (

2e−Zf(Z)− 1
)
∂dZ ∂cZ + ∂d∂cZ

]
. (4.61)

This is computed using the derivatives of Z (cf. Eq. (2.47)):

∂cZ = 6

 ∂cR
S
− R∂cS

S2

 (4.62)

⇒ ∂d∂cZ = 6

 ∂d∂cR
S

−
∂dS ∂cR + ∂dR ∂cS +R∂d∂cS

S2 + 2R∂cS ∂dS
S3

(4.63)
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which are constructed from the derivatives of Sab (cf. Eq. (2.48)):

∂cSab = β
[
∂cRvdW

a + ∂cRvdW
q

]
(4.64)

⇒ ∂d∂cSab = β
[
∂d∂cRvdW

a + ∂d∂cRvdW
q

]
(4.65)

The Hessians of the TS-level and rsSCS-level effective vdW radii are used to construct

∂2ZTS and ∂2Z respectively:

∂d∂cRvdW, TS
a = RvdW, free

a

[V free
a ]1/3

1
3
∂d∂cVa

[Va]2/3
− 2

9
∂dVa ∂cVa

[Va]5/3

 (4.66)

∂d∂cR
vdW
a = RvdW, free

[α0, free]1/3
(1

3
∂d∂cα(0)
[α(0)]2/3

− 2
9
∂dα(0) ∂cα(0)

[α(0)]5/3
)

(4.67)

Where the Hessian of α(0) has been computed above in section 4.2.4 and ∂cαa(0) is

computed in Eq. 2.43 of Chapter 2. We have now reduced the Hessians of all quantities

required to evaluate the range-separated dipole-dipole tensors (cf. Eqs. (4.58) and (4.59))

to the fundamental derivatives or previously derived expressions. Together these

expressions allow computation of ∂2ω, and in turn the Hessian of the non-interacting

energy:

∂2EMBD
non−int. = 3

2

N∑
a=1

∂2ωa (4.68)

The only remaining ingredient for the MBD Hessian is to evaluate the interacting

quantities, which require the second derivative of the interaction matrix, i.e. ∂2CMBD,

and of its eigenvalues, i.e. ∂2λ.
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4.2.7 Interacting quantities

We now turn our attention to the Hessian of the interacting energy

∂2EMBD
int. = 1

2

3N∑
p=1

∂2
√
λp (4.69)

Recall from Eq. (2.40) that the interacting forces were computed from

N∑
p=1

∂c
√
λp = 1

2Tr
[
Λ−1/2X T∂cCMBDX

]
, (4.70)

where Λ is the diagonal matrix of eigenvalues of CMBD and X is the matrix of

eigenvectors. Symbolically, the second derivative is equally straightforward,

N∑
p=1

∂d∂c
√
λp =1

2Tr
[
∂d
(
Λ−1/2

)
X T∂cCMBDX

]
+ 1

2Tr
[
Λ−1/2X T∂d∂cCMBDX

]
(4.71)

+ 1
2Tr

[
Λ−1/2∂d

(
X T

)
∂cCMBDX

]
+ 1

2Tr
[
Λ−1/2X T∂cCMBD∂dX

]
.

However, the second line of the above expression requires eigenvector derivatives, ∂dX ,

which must be treated with some care. Since CMBD is real, symmetric, and diagonally

dominated we assume for the moment that all of its eigenvalues are distinct.† There is a

rich literature on analytical and numerical treatments of eigenvalue and eigenvector

derivatives (cf. Refs. 261,461 simple derivations, Refs. 462,463 for treatment of repeated

eigenvalues and Refs. 464,465 for discussion of iterative methods for their computation).

The following treatment is therefore brief and specific to the case of real, symmetric

matrices with distinct eigenvalues and eigenvector derivatives. The eigensystem of

interest is: [
CMBD − ΛI

]
X = 0. (4.72)

†Numerically this can become problematic in very large supercells, but Hessians will become prohibitively
memory expensive faster than MBD forces, so it is likely that evaluating Hessians for periodic systems will
require converging the MBD energy in reciprocal space anyway, thereby eliminating some of the concerns
with diagonalizing a large CMBD matrix.
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Let xp be the pth column of X , i.e. the eigenvector corresponding to λp = Λpp. The

derivative of this eigenvector is then:261

∂
( [

CMBD − λpI
]
xp
)

= 0 (4.73)[
CMBD − λpI

] (
∂xp

)
= −

[
∂CMBD − ∂λpI

]
xp (4.74)

=
[
xT
p ∂CMBDxpI

]
xp − ∂CMBDxp︸ ︷︷ ︸

Dp

(4.75)

where in the last line we have defined the quantity Dp to collapse the right-hand side.

Note that since xT
pDp = 0, this system of equations is consistent even though the matrix

on the left-hand side of Eq. (4.74) has rank 3N − 1 (recalling that CMBD is a 3N × 3N

matrix, where N is the number of atoms in the simulation cell or supercell, full rank

would be n = 3N). To admit a unique solution, we then need an additional equation,

which expresses ∂xp in terms of a sum of all n right eigenvectors.

∂xp =
3N∑
q=1

ηqxq = Xη (4.76)

To determine the constants {ηq}, left multiply Eq. (4.75) by xT
q :

xT
q

[
CMBD − λpI

]
Xη = xT

q Dp (4.77)

⇒ [λq − λp] ηq = xT
q Dp q 6= p (4.78)

So we have determined the constants for all but q = p and have the expression:

∂xp = ηpxp +
3N∑

q=1,q 6=p

xT
q Dpxq
λq − λp︸ ︷︷ ︸

vp

(4.79)
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To determine the arbitrary constant ηp we consider the norm of the eigenvector. We

assume that the eigenvectors of CMBD are normalized to one, so:

xT
p xp = 1 ⇒ xT

p ∂xp = 0 (4.80)

Thus, plugging Eq. (4.79) into Eq. (4.80) determines ηp:

xT
p ∂xp = xT

p ηpxp + xT
p vp = 0 ⇒ ηp = −xT

p vp. (4.81)

Altogether the eigenvector derivative is:

∂xp =

 3N∑
q=1,q 6=p

xT
q Dpxq
λq − λp

− xT
p

 3N∑
q=1,q 6=p

xT
q Dpxq
λq − λp

xp (4.82)

where Dp ≡ ∂λpxp − ∂CMBDxp. Since these expressions require avoiding the divergence

that would occur for q = p in dividing by (λq − λp), we shall not re-assemble the

expression for ∂2√λ into the matrix expression of Eq. 4.71, but simply note that

Eq. (4.82) provides a prescription for the necessary computations.

The only remaining elements required for the interacting energy Hessian are to compute

∂λ
−1/2
p and ∂2CMBD. The former is trivially −1

2λ
−3/2
p ∂λp. It will be convenient to define

Kab ≡
√
αa(0)αb(0) so that we can compress expressions appearing in ∂CMBD and

∂2CMBD. Employing this notation, we re-write Eq. (2.41) such that the first derivative of

CMBD is

∂cCMBD
ab = 2δabωa∂cωa︸ ︷︷ ︸

¶

+ (1− δab) [ωa∂cωb + ωb∂cωa]Kab T LR
ab︸ ︷︷ ︸

·

(4.83)

+ (1− δab)ωaωb∂cKab T LR
ab︸ ︷︷ ︸

¸

+ (1− δab)ωaωbKab ∂cT
LR
ab︸ ︷︷ ︸

¹

,
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where in the second line we have used the relation:

∂cKab = [αa(0)∂cαb(0) + αb(0)∂cαa(0)]
2Kab

. (4.84)

Taking the derivative of Eq. (4.84) yields:

⇒ ∂d∂cKab = 1
2K
−1
ab

[
∂dαa(0)∂cαb(0) + ∂dαa(0)∂cαb(0)

]
+1

2K
−1
ab

[
αb(0)∂d∂cαa(0) + αb(0)∂d∂cαa(0)

]
(4.85)

−1
2K
−2
ab ∂dKab

[
αa(0)∂cαb(0) + αb(0)∂cαa(0)

]
.

The second derivative of CMBD simply requires brute force application of the product rule

and assembling the relevant expressions computed above ∂2α(0), ∂2ω, ∂2TLR and the

corresponding first derivatives computed in Chapter 2 (Eqs. (2.42),(2.43) and (2.54)).

Although these derivatives are not especially interesting, we expand them below for the

sake of having a complete derivation that will hopefully one day be implemented into

functional MBD Hessian code. The derivative of the first term in Eq. (4.83) is:

∂d [¶] = 2δab (∂dωa∂cωa + ωa∂d∂cωa) (4.86)

The derivative of the second term in Eq. (4.83) is:

∂d [·] = (1− δab)
[
∂d
[
ωa∂cωb + ωb∂cωa

]
Kab T LR

ab

+[ωa∂cωb + ωb∂cωa]∂dKab T LR
ab (4.87)

+[ωa∂cωb + ωb∂cωa]Kab ∂dT
LR
ab

]
,

where in the first line we have:

∂d
[
ωa∂cωb + ωb∂cωa

]
= ∂dωa∂cωb + ∂dωb∂cωa + ωa∂d∂cωb + ωb∂d∂cωa (4.88)
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and in the second line we make use of Eq. (4.84). The derivative of the third term in

Eq. (4.83) is:

∂d [¸] = (1− δab)
[(
∂dωaωb + ωa∂dωb

)
∂cKab T LR

ab + ωaωb∂d∂cKab T LR
ab (4.89)

+ωaωb∂cKab ∂dT
LR
ab

]
.

And finally, the fourth term is:

∂d [¹] = (1− δab)
[(
ωb∂dωa + ωa∂dωb

)
Kab ∂cT

LR
ab + ωaωb∂dKab ∂cT

LR
ab (4.90)

+ωaωbKab ∂d∂cT
LR
ab

]
,

where in the second line we again employ Eq. (4.84). Together Eqs. (4.86-4.90), along

with the definition of Kab, completely specify the Hessian of the interaction matrix CMBD.

We have thus reduced all terms required to compute ∂2EMBD to the six fundamental

derivatives and first order derivatives from Chapter 2.

4.2.8 Conclusions

We motivated this lengthy derivation of the analytical MBD Hessian by making some

broad observations about the great success of the phonon description of the quantum

theory of solids and more specifically referencing the work of the Tkatchenko group in

explaining the contribution of collective dispersion interactions to the phonon spectrum of

organic crystals with hydrogen-bond networks. Reilly et al. published a particularly

compelling study on polymorphism in aspirin,112 but personal discussions with other

members of the group have indicated that MBD makes large contributions ot the phonon

density of states for many organic molecular crystals. Implementing the analytical MBD

Hessian is likely to require several thousand lines of code and an efficient Hessian

implementation for condensed phase systems may require additional development efforts
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to converge the MBD energy in reciprocal space. However, given the large role that

electron-phonon coupling plays in determining the charge transport properties of organic

semiconductors, we are confident that there are many fascinating discoveries about

many-body dispersion effects that are waiting to be made from studying the impact of

MBD on phonon states in organic materials. In this respect, the MBD model is just

beginning to reveal its true value.

4.3 Self-Consistent MBD

In the introduction and in Chapter 1, we motivated the discussion of many-body

dispersion effects by noting that nonlocal correlation effects impact many properties of

organic semiconductors and low dimensional nanostructures. In the discussion of DPP

pigments, we found that self-consistent application of the VV10 nonlocal correlation

correction could impact density dependent properties such as charge transfer integrals.

Self-consistent dispersion corrections can potentially impact all properties that are derived

from the charge density, such as the dipole moment, but the greatest impact is expected

for properties that either depend very sensitively on the phase or overlap magnitude (such

as a transfer integral or interaction energy), or for the excitations of systems that are

dominated by dispersion interactions (such as the coupling between twisted vdW

heterostructures). At very short range, dispersion corrections are damped out, while at

very long range the density is so small that the effects of self-consistency are typically

negligible.92,99 It is for this reason that many vdW corrections have been applied very

successfully as a posteriori corrections to the self-consistent field solution.92

Thonhauser et al. found that although the change in the charge density is very small

(∼ 10−4electrons/Å3), self-consistent application of the vdW-DF nonlocal correlation

functional produces significant changes to the binding energy and forces in the argon

dimer.99 This “vdW bonding charge” indicates that for systems where the fragments are

pushed together more closely but the interactions are still dominated by dispersion,

self-consistent treatment of the vdW corrections are likely to be most important.
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Self-consistent application of nonlocal correlation functional methods such as vdW-DF or

VV10 can result in greater than 200% the computational cost of a generalized gradient

approximation functional such as PBE, while non-self-consistent application only cost an

additional ∼ 3%.366 Given this computational expense and the accuracy of using

dispersion methods as a posteriori corrections, nonlocal functionals are rarely employed

self-consistently. However, when one is interested in density dependent properties for

highly polarizable systems, such as graphitic nanostructures, it is important to have

self-consistent density dependent correction methodologies available. Unlike the nonlocal

correlation functional corrections, which derive their correction from nonlocal correlation

kernel defined at every point in space, MBD is based on a coarse-graining of the charge

density, namely, the Hirshfeld partitioning and assignment of QHOs. In this sense,

self-consistent MBD is more comparable to methods such as the dDsC method of

Brémond et al.92 or to self-consistent application of the TS correction.114 Ferri et al. have

found that self-consistent application of a vdW correction is particularly important for

electrodynamic screening at metal surfaces.114 Motivated by the potential for

self-consistent dispersion corrections to play a crucial role in studying density dependent

properties of layered materials, we have derived and implemented a self-consistent

formulation of MBD. As this is an active area of method development, the results

presented herein should be regarded as preliminary.
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4.3.1 Derivation of self-consistent MBD

To derive the MBD correction to the self-consistent field equations it will be useful to

review the basic equations of density functional theory. Within the Kohn-Sham framework

of DFT,466 non-interacting single particle states generate the same density as the true

interacting electrons. The total energy of this system, E, is expressed as a functional of

the density

E[ρ] = T [ρ] +
∫

dr vext(r)ρ(r) +

EH[ρ]︷ ︸︸ ︷
e2

2

∫
dr
∫

dr′ ρ(r)ρ(r′)
‖r− r′‖ +Exc[ρ], (4.91)

where T [ρ] is the kinetic energy, EH[ρ] is the Hartree (or Coulomb) energy, vext is the

external potential arising from the electron-nuclear Coulomb interaction as well as any

external electric or magnetic fields that are present, and Exc is the exchange-correlation

energy. Together, these last three terms make up the contribution of the local effective

potential, veff , in which the non-interacting Kohn-Sham particles move. As a result, veff is

called the Kohn-Sham potential, and it is given by the functional derivative with respect

to the charge density of the potential energy terms above

veff = vext + e2
∫

ρ(r′)
‖r− r′‖dr′ + δExc[ρ]

δρ
, (4.92)

where the last term is called the exchange-correlation potential, vxc. Since the MBD

correlation energy is a linear correction to the exchange-correlation energy

Exc[ρ]→ Exc[ρ] + EMBD
c [ρ], (4.93)

the self-consistent contribution of MBD to the density is found by computing the

functional derivative of EMBD
c with respect to the charge density, and adding this
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“dispersion potential,” vMBD
c , to the exchange-correlation potential:

vxc → vxc + vMBD
c = δExc[ρ]

δρ
+ δEMBD

c
δρ

(4.94)

All of the density dependence in the MBD correlation energy arises through the

Hirshfeld partitioning, which is why we denoted the Hirshfeld effective atomic volumes as

a functional of the density, V [ρ(r)], when they first appeared in Eq. (2.5). Having been

careful in Chapter 2 to separate out terms that depended on the Hirshfeld gradients, it is

a straightforward task to compute the dispersion potential by using the chain-rule to

express vMBD
c in terms of the derivative with respect to the Hirshfeld volume

vMBD
c = δEMBD

c

δρ
= ∂EMBD

c
∂V

δV

δρ
(4.95)

This is especially convenient since we reduced all gradients in Chapter 2 to the three

fundamental quantities ∂R, ∂Ri, and ∂V , which makes it easy to eliminate terms

depending on ∂‖R‖ or ∂‖Ri‖ since ∂Rab/∂ρ = 0. Therefore, ∂Tdip/∂ρ vanishes

completely (cf. Eq. (2.52)), so ∂TLR reduces to

∂T ij
ab, LR
∂Vc

= T ij
ab, dip

∂f
(
Zab

)
∂Vc

. (4.96)

Likewise, we modify terms that have mixed dependence on ∂V and ∂R, such as

Eqs. (2.47), (2.56), (2.54), (2.58), and (2.59). For instance, Eq. (2.56) becomes:

∂T ij

∂Vc
=
[
T ij

dip + R iR j

R5

[
3− 2ζ2

]]
h(ζ) ∂ζ

∂Vc
, (4.97)

where ∂ζ (cf. Eq. (2.58)) is reduced to

∂ζab
∂Vc

= − ζ
3
ab

R2
ab

[
σa
∂σa
∂Vc

+ σb
∂σb
∂Vc

]
. (4.98)

Many of the intermediate equations, such as Eq. (2.37-2.44), (2.55), (2.46), (2.51), or
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(2.48), remain wholly unmodified since they are expressed in terms of non-fundamental

quantities that contain Hirshfeld volume dependence. Terms that depend solely on ∂V ,

such as Eqs. (2.50), (2.59), and (2.45) remain essentially unchanged except for canceling

∂V , e.g. ∂A (cf. Eq. (2.45)) becomes:

∂A
∂Vc

=
N⊕
a=1

diag [Υaδca] , (4.99)

and ∂σ (cf. Eq. (2.59)) becomes:

∂σa
∂Vc

=
[

1
3

√
2
π

Υa

]1/3
δca

3[Va]2/3
, (4.100)

where the Kronecker deltas arise in Eq. (4.99) and (4.100) because ∂Vb/∂Va = δba.

Finally, the “fundamental” derivative for the dispersion potential is the functional

derivative of the effective volume integral. Recalling that ρeff(r) = waρ(r), this derivative

is quite simple (cf. Sec. 4.2.2):

Va =
∫

dr‖r−Ra‖3wa(r)ρ(r) (4.101)

⇒ δVa
δρ(r) =

∫
dr‖r−Ra‖3wa(r) =

∫
dr‖r−Ra‖3

ρfree
a (‖r−Ra‖)
ρsad(r) . (4.102)

4.3.2 Results and discussion

We have made these modifications to our MBD gradients code and implemented MBD

self-consistently in the PWscf module of QE. Since this development work was only

recently completed, we have not yet conducted a systematic evaluation of which properties

of dispersively bound systems are impacted by the self-consistent application of MBD, nor

have we conclusively eliminated all software bugs. We are also actively working to develop

scMBD in Octopus, where the ability to invert the Kohn-Sham potential may offer

additional insight into the scMBD method. As indicated in the introduction to this

section, we expect self-consistency to be a negligible correction to most systems since the
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charge density is typically small in the intermolecular region where the dispersion potential

will contribute. However, dispersion dominated properties such as the interaction energies

of aromatic molecules may strike the appropriate balance between being sufficiently

long-range for the MBD correlation energy to have been “turned on” by the damping

function while the charge density has not decayed so much that the self-consistent changes

to the density cannot influence properties significantly. In the discussion below we will

present our preliminary findings resulting from the first self-consistent MBD calculations.

A recent benchmark study by Řezáč et al. has examined the performance of many

electronic structure methods for computing three-body intermolecular interaction energies

on a diverse set of 69 molecular trimers selected from 23 molecular crystals, thus the

benchmark set is titled “3B-69”.104 The benchmark three-body interaction energies were

computed at the CCSD(T)/CBS level using the MP2+∆ CCSD(T) method.‡ This scheme

is estimated to provide results within ∼ 2% of converged CCSD(T)/CBS results. The set

covered structures that exhibit a variety of intermolecular interactions and packing

arrangements. The two-body and three-body interaction energies are defined as:

∆E2(AB) = E(AB)− E(A)− E(C) (4.103)

∆E3(ABC) = E(ABC)−∆E2(AB)−∆E2(AC)−∆E2(BC) (4.104)

−E(A)− E(B)− E(C)

They found that many popular density functionals corrected with the three-body

Axilrod-Teller-Muto term14,15 as implemented in the D3 dispersion correction, performed

quite poorly for reproducing these three-body interaction energies, largely due to an

inability of the underlying exchange-correlation functionals to reproduce many-body

exchange or polarization effects in a reliable manner.104 This is a particularly important

finding because polarization and cooperative hydrogen-bonding are often one of the
‡The Hartree-Fock energy is computed in an augmented correlation consistent aug-cc-pQZ basis set, 308,467

and the RI-MP2 correlation energy is extrapolated to the complete basis set limit (CBS) using aug-cc-
pVQZ/aug-cc-pVTZ basis sets. Finally, a correction at the CCSD(T)/aug-cc-pDZ level with the frozen
natural orbital (FNO) approximation was applied.
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largest sources of many-body non-covalent interactions, e.g. hydrogen bond cooperativity

can account for 30% or more of the binding energy of some water clusters.468

Figure 4.3: Left: Structure of the p-benzoquinone trimer (3B-69 ID: 21a). Right: Structure of the
cyclobutylfuran trimer (3B-69 ID: 23a). .

As a first test of the impact of self-consistency on MBD, we have selected a

p-benzoquinone trimer (ID: 21a) and the cyclobutylfuran trimer (ID: 23a) from the 3B-69

set since Řezáč et al. indicate that these are the trimers with the two largest contributions

of three-body dispersion, while differing significantly in their share of three-body

polarization.104 We computed the two and three-body interaction energies for these

trimers in PWscf using the PBE functional and Hamann-Schlueter-Chiang-Vanderbilt

(HSCV) norm-conserving pseudopotentials263–265 in a simple-cubic unit cell of side length

a = 40 a.u., with a kinetic energy wavefunction cutoff of Ecut = 150 Ry and a SCF

convergence tolerance of Escf = 10−8 Ry. All calculations were run at the Γ point. Since

PWscf is a planewave code, these interaction energies do not need to be corrected for

basis set superposition error. However, the planewave cutoff of 150 Ry may need to be

increased to yield fully converged interaction energies. For comparison we have also

computed the contributions of the two and three-body versions of the D3 dispersion

correction with ‘zero’ damping,66 using the standalone dftd3 v3.1r0 program.469

The results of the interaction energy calculations on p-benzoquinone are presented in

Table 4.2, while for cyclobutylfuran the results are presented in Table 4.3. We find that

self-consistency has no impact on the MBD dispersion energy, both for two- and
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Table 4.2: Interaction energies of p-benzoquinone (3B-69 ID: 21a) computed with the PBE functional
employing several dispersion corrections: self-consistent MBD (scMBD), non-self-consistent MBD (MBD),
self-consistent TS (scTS), non-self-consistent TS (TS), and D3 with zero damping without the three-
body term (D3(0)(2)) and with the three-body term (D3(0)(3)). Reference CCSD(T)/CBS values are
taken from Ref. 104. All energies are listed in kcal/mol. The percentage contribution due to vdW is listed
in parentheses.

Method ∆E2(AB) ∆E2(AC) ∆E2(BC) ∆E3(ABC)
PBE -0.551 -0.550 -3.997 0.428
PBE+D3(0)(2) -3.723 (85%) -3.722 (85%) -5.531 (28%) 0.429 (0.0%)
PBE+D3(0)(3) -3.634 (85%) -3.633 (85%) -5.585 (28%) 0.511 (16%)
PBE+TS -4.123 (87%) -4.123 (87%) -5.418 (26%) 0.338 (-27%)
PBE+scTS -4.127 (87%) -4.126 (87%) -5.419 (26%) 0.336 (-28%)
PBE+MBD -3.847 (86%) -3.847 (86%) -5.833 (31%) 1.076 (60%)
PBE+scMBD -3.847 (86%) -3.847 (86%) -5.833 (31%) 1.076 (60%)
CCSD(T)/CBS -3.580 -3.580 -5.125 0.332

Table 4.3: Interaction energies of cyclobutylfuran (3B-69 ID: 23a) computed with the PBE functional
employing several dispersion corrections: self-consistent MBD (scMBD), non-self-consistent MBD (MBD),
self-consistent TS (scTS), non-self-consistent TS (TS), and D3 with zero damping without the three-
body term (D3(0)(2)) and with the three-body term (D3(0)(3)). Reference CCSD(T)/CBS values are
taken from Ref. 104. All energies are listed in kcal/mol. The percentage contribution due to vdW is listed
in parentheses.

Method ∆E2(AB) ∆E2(AC) ∆E2(BC) ∆E3(ABC)
PBE -0.565 -0.393 -0.393 0.219
PBE+D3(0)(2) -2.469 (77%) -3.264 (88%) -3.264 (88%) 0.221 (1.1%)
PBE+D3(0)(3) -2.426 (77%) -3.196 (88%) -3.196 (88%) 0.308 (29%)
PBE+TS -2.880 (80%) -4.014 (90%) -4.014 (90%) 0.089 (-144%)
PBE+scTS -2.883 (80%) -4.017 (90%) -4.017 (90%) 0.088 (-151%)
PBE+MBD -2.889 (80%) -3.882 (90%) -3.883 (90%) 0.780 (72%)
PBE+scMBD -2.889 (80%) -3.882 (90%) -3.883 (90%) 0.780 (72%)
CCSD(T)/CBS -2.220 -3.093 -3.093 0.081
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three-body interaction energies. Self-consistent application of the TS method (denoted

scTS), yields negligible impact on the interaction energies. Consistent with the behavior

observed by Řezáč et al. for the PBE functional, bare PBE already over estimates the

three-body interaction energy due an overly repulsive description of exchange, 104 so the

beyond-pairwise dispersion corrections, which are additionally repulsive, worsen the

disagreement with the CCSD(T)/CBS reference. Surprisingly, TS yields a significant

negative contribution to the three-body interaction energies, which corrects for PBE’s the

over estimation of ∆E3(ABC). While TS is an effectively pairwise method, it does

incorporate some many-body effects through its dependence on the Kohn-Sham density,

which is why this method does not yield vanishing contribution to ∆E3(ABC).

The large difference between TS and MBD arises due to both self-consistent screening

and beyond-pairwise interactions. The three-body contribution to dispersion interactions

is typically repulsive, as can be seen by the positive contribution to the three-body

interaction energy being made by the three-body term in D3. In contrast, the TS

correction is always attractive, which causes the negative contribution to the three-body

interaction energies. The fact that non-self-consistent TS predicts such a large negative

contribution to the three-body interaction energy suggests that the interactions between

the molecules are strong enough to yield significant polarization of the dimer densities in

the presence of the third molecule. To exclude the possibility of periodic interactions

impacting these results we analyzed the dipole moments for p-benzoquinone and applied a

Makov-Payne correction470 (which corrects the electrostatics of a periodic simulation cell

to reproduce an isolated system). These tests confirmed that the 40 a.u. simulation cell is

large enough to isolate the system. As expected, self-consistency does not disturb the

dipole moment of the p-benzoquinone monomer, with both scMBD and MBD predicting a

negligible dipole moment to four decimal places.

Having only considered two trimers (for a total of 6 two-body interaction energies and 2

three-body interaction energies), we cannot make any general claims about the

performance of any of these methods. Given the small size of these structures, it is
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somewhat surprising that MBD accounts for 60-70% of the three-body interaction energy.

Clearly the 3B-69 benchmark set offers a stringent test of multiple aspects of a

DFT+vdW correction scheme, and the performance of MBD should be examined more

carefully across the entire dataset. We are very eager to explore self-consistent MBD on a

wider variety of systems, and also with functionals that have a superior description of

exchange relative to PBE. It would be particularly interesting to see how MBD performs

with hybrid or range-separated exchange hybrid functionals since the addition of a large

portion of exact exchange can significantly improve the description of three-body

interaction energies.104 The development of scMBD also paves the way for future studies

to assess the impact of dispersion corrections on linear response properties such as

absorption spectra through the use of real-time TDDFT propagation techniques.

Self-consistent application of MBD may yield larger changes for extended systems, such as

vdW heteromaterials. These materials will be particularly interesting to study with

real-time TDDFT coupled with scMBD since their optical and electronic properties are

influenced strongly by their vdW coupling. The strong impact of vdW interactions on the

properties of these materials, such as twist-induced van Hove singularities and second

harmonic generation,471–477 has recently gained significant attention and will be an

exciting avenue for future research into the many-body nature of dispersion interactions.
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The principle contributions of this dissertation were to extend the applicability of the

MBD model by developing analytical forces, unit-cell stresses, phonon corrections, and

self-consistent updates to the Kohn-Sham potential. We additionally re-parameterized

MBD for use with a wide variety of GGA functionals. In Chapter 1 we motivated this

method development effort by highlighting examples where gradient based information, in

the form of unit-cell optimizations and self-consistent application of a non-local correlation

functional, might be used in applying dispersion corrected DFT to study advanced

functional organic materials. In Chapter 2, we derived and implemented MBD forces for

nuclear coordinate relaxations and showed that proper accounting for the implicit

coordinate dependencies that arise from the Hirshfeld volume gradients resulted in

significant changes to the MBD forces. Consistent with previous findings on binding

energetics, we find that MBD forces significantly improve the predicted structures of

isolated dispersively bound molecular systems and consistently outperforms popular

pairwise-additive DFT-D based methods with regard to agreement with high-level

wavefunction-based reference geometries. By treating all gradients analytically, rather

than numerically through finite difference methods, we have enabled the DFT+MBD

optimizations of much larger systems.

In Chapter 3, we presented a new implementation of analytical MBD forces for

large-scale condensed phase simulations, including the corrections to unit-cell forces and

stresses. We eliminated the use of heuristic cutoffs for convergence of the dipole-dipole

interaction tensors and improved the numerical stability of the MBD algorithm. We have

made preliminary studies of the physisorption of nucleobases on graphene, the interlayer

binding distance of graphite, and the structure of ice Ic; in all three cases we find the

performance of MBD forces to be encouraging for use in condensed phase optimizations.

In Chapter 4, we described three areas of ongoing development work for MBD, the
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re-parameterization of MBD’s range-separation parameter to enable application of MBD

with other GGA functionals, the development of analytical second derivatives of the MBD

energy for use in correcting DFPT phonon simulations, and the development of

self-consistent MBD (scMBD). In agreement with the findings of Lee et al., our

preliminary investigation of different GGA functionals with MBD indicated that the

PW86 and rPW86 exchange functionals may offer slight improvements over PBE

exchange.72 The development of self-consistent MBD is too recent to have thoroughly

analyzed which properties and systems are impacted by self-consistent application of

MBD. However, we are excited about the possibility of employing this methodology with

real-time TDDFT propagation techniques to examine the impact of dispersion corrections

on the linear response properties of systems such as twisted vdW heteromaterials. Since

MBD forces are very efficient to evaluate for non-periodic systems, we are also eager to

explore the application of MBD in ab initio molecular dynamics simulations since

many-body effects often have a significant impact on aggregation in solution 30 and

hydrophobic association.328

Although the DFT+MBD method in its present form has been remarkably successful in

describing many systems where pairwise-additive models of dispersion fail, there are at

least four areas that should be investigated for future improvements.

• Improving the computational efficiency for periodic systems. The

real-space supercell procedure described in Chapter 3 represents a significant

computational overhead for converging the MBD energy in condensed phase systems.

Converging this energy in reciprocal space by the use of a Bloch wave expansion

would significantly reduce the computational cost of MBD for periodic systems.

• Improving the use of anisotropic response information. The MBD

interaction Hamiltonian is constructed by first computing a fully non-local screened

anisotropic dipolar response matrix A, and then contracting down to isotropic

atomic polarizabilities. This isotropization represents a significant loss of
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information about the local bonding environment. In principle, it is possible to

evaluate the MBD correlation energy from an integral expression for the ACFD-RPA

correlation energy, which could enable use of the fully anisotropic A rather than the

isotropized α.84,87,88 However, the range-separated Coulomb interaction must then

be evaluated for anisotropic QHOs rather than the isotropic Gaussian charge

densities that are currently used. This could prove computationally prohibitive and

is closely related to the next challenge.

• Incorporating higher-order multipoles. Presently, the MBD algorithm restricts

the response of the system to the dipole interaction between QHOs. Several

approaches to incorporate higher-order multipoles (quadrupoles, octupoles, etc.),

should be examined. By assigning more than one QHO to every atom it should be

possible to capture higher-order multipoles, but this approach will present challenges

for avoiding the unphysical behavior that occurs when trying to apply the

self-consistent screening procedure to QHOs that are spaced too closely (negative

response frequencies arise). Alternatively, the integral ACFD-RPA variant of

evaluating the MBD correlation energy can be employed with a multipolar response

function, but this is likely to encounter many of the difficulties presently associated

with direct RPA correlation energy calculations. Many of the nice properties of the

MBD model rely on the fact that the dipole coupling is analytically tractable.

Reexamining the multipole expansion of the screened interaction tensor used by

Langbein in his original oscillator model of dispersion could prove fruitful. 134 Future

extensions of the MBD model to incorporate finite temperature effects may also

benefit from considering Langbein’s expressions for the density of states and free

energies of coupled QHOs.

• Improved coupling to the DFT correlation functional. To reduce the

empiricism present in the range-separated MBD model, the coupling between the

long-range MBD correlation energy should be amended by re-deriving the DFT
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correlation functional in the presence of the long-range dispersion component, as is

done in the “dispersionless density functional” of Pernal and coworkers. 478

Alternatively, the correlation component of the functional could be range-separated

in an analogous fashion to functionals that employ range-separated exchange. 479–482

Given that range-separated exchange functionals have been quite successful in

describing charge-transfer excited states,483 our development of self-consistent MBD

in the Octopus code opens the interesting possibility of studying whether

long-range corrected correlation (i.e. scMBD) is compatible with long-range

corrected exchange (i.e. range-separated hybrids) and how these treatments work

together to influence non-local excited states.

• Description of metallic states. One of the primary advantages of non-local

correlation functionals over the MBD model is that they correctly reduce to the

local density approximation as the electron density converges to the homogeneous

electron gas. Properly treating metallic states therefore requires letting the

polarizability vanish in regions of slowly-varying electron density. It may be possible

to use the framework of non-local correlation functional methods to derive the

parameters of the localized oscillators directly from the electron density and its

gradient. This would have the advantage of eliminating the reliance on the free-atom

reference data and could improve the model’s ability to be extended to model

screening at metallic surfaces. Recently, Silvestrelli and Ambrosetti have successfully

employed a QHO based model for adsorption on metal surfaces by assigning the

oscillator parameters with maximally-localized Wannier functions. 86,484 Given the

importance of self-consistently accounting for dielectric screening in such systems, 114

it would be interesting to see how an extended scMBD model compares to existing

approaches such as the vdWsurf model.67,83

Although the methodological developments for the MBD model presented herein need

additional careful benchmarking, we are optimistic that these new tools will enable many
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exciting discoveries of beyond-pairwise dispersive effects in future studies of organic

materials.
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A
Glossaries

A.1 Energy Unit Conversions

Table A.1: Conversions for units of energy commonly used in quantum chemistry (NIST CODATA 2014 rec-
ommended values rounded to 7 significant figures).

Eh Ry eV kcal/mol

Eh 1 2 27.21137 627.5095
Ry 1/2 1 13.60569 313.7547
eV 3.674932× 10−2 7.349864× 10−2 1 23.060548

kcal/mol 1.593601× 10−3 3.187203× 10−3 4.336410× 10−2 1

A.2 Exchange-Correlation Functional Glossary

Table A.2: Glossary of exchange-correlation functional abbreviations appearing in this work.

Abbreviation Exchange Correlation References
SPW Slater Perdew & Wang Refs. 444, 445, 485
SPZ Slater Perdew & Zugner Refs. 181, 444, 445

SVWNRPA Slater Vosko, Wilk, & Nusair
(RPA variant) Refs. 444–446

PBE Perdew, Burke, & Ernzerhof (κ = 0.804) Refs. 182, 183
PBEsol Perdew, Burke, & Ernzerhof for solids Refs. 486
optPBE optPBE ∗ – Refs. 182, 183, 487
optB88 optB88 † – Refs. 182, 183, 487

f continued on next pageF

∗optPBE is a combination of PBE and RPBE with enhancement factor parameters µ & κ optimized for
the S22 dataset: µ = 0.175519 and κ = 1.04804.

†optB88 was reparameterized against the S22 dataset, giving µ/β = 1.2 and µ = 0.22 in its enhancement
factor.
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Table A.2: Glossary of exchange-correlation functional abbreviations (continued).

Abbreviation Exchange Correlation References
PBEκ = 1 PBEκ = 1 ‡ – Refs. 182, 183, 487

RPBE
revised PBE of
Hammer, Hansen, &
Norskov

– Refs. 488

revPBE revised PBE of
Zhang & Yang § – Refs. 234, 235

PW86 Perdew-Wang ‘86 – Refs. 433

rPW86 refitted
Perdew-Wang ‘86 – Refs. 433, 72

PBE0 PBE
+25%exact exchange PBE Refs. 182,183,

236–238

revPBE0 revPBE
+25% exact exchange PBE Refs. 234–238

BOP Becke ‘88 One-Parameter
Tsuneda et al. Refs. 429, 489

BP86 Becke ‘88 Perdew ’86 Refs. 429, 126
BPW Becke ‘88 Perdew-Wang ‘91 Refs. 429–432
PW91 Perdew-Wang ‘91 Perdew-Wang ‘91 Refs. 430–432
mPW91 modified PW91 Perdew-Wang ‘91 Refs. 430–432, 490
B97 Becke ‘97 Becke ‘97 Refs. 491
B97-3 Becke ‘97 Becke ‘97 Refs. 492

XLYP Xu & Goddard
extended exchange Lee, Yang & Parr Refs. 493–495

BLYP Becke ‘88 Lee, Yang & Parr Refs. 429, 494, 495
OLYP optX Lee, Yang & Parr Refs. 494–496
MOHLYP metal-optimized OptX 50% Lee, Yang & Parr Ref. 450
HCTH/407 Hamprecht, Cohen, Tozer, & Handy Ref. 497
TPSS Tao, Perdew, Staroverov, & Scuseria Refs. 498, 499
B3LYP Becke, three-parameter, Lee, Yang & Parr Ref. 231, 232
AM05 Adamo & Mattsson Refs. 500, 501

‡PBE exchange with the κ parameter in the enhancement factor set to 1.
§revPBE has κ = 1.245 in the enhancement factor.
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A.3 Abbreviation Glossary

Table A.3: Glossary of frequently used abbreviations appearing in this work.

Abbreviation Definition
vdW van der Waals
DPP diketopyrrolopyrrole
MOF metal-organic framework
FDP frequency-dependent polarizability
ACFD adiabatic-connection fluctuation-dissipation
RPA random phase approximation
DFT density functinonal theory
DFT+vdW dispersion corrected DFT
vdW-DF van der Waals density functional (non-local correlation method)
DFT-D pairwise-additive semiempirical dispersion correction

D3(BJ) Grimme’s third generation semiempirical pairwise dispersion
correction with Becke-Johnson damping

TS Tkatchenko-Scheffler pairwise dispersion correction
SCS self-consistent screening
rsSCS range-separated self-consistent screening
CFDM coupled fluctuating dipole model
MBD many-body dispersion, in this work we use the rsSCS variant
scMBD self-consistent many-body dispersion
QHO quantum harmonic oscillator
QDO quantum Drude oscillator
QE Quantum ESPRESSO
GGA generalized gradient approximation
LDA local density approximation
MARE mean absolute relative error
MAE mean absolute error
MAD mean absolute deviation
TDDFT time-dependent density functional theory
RT-TDDFT real-time TDDFT
SAPT symmetry adapted perturbation theory

CCSD(T) coupled-cluster with single and double with perturbative triple
excitations

MP2 second order Møller-Plesset perturbation theory
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A.4 Symbol Glossary

Table A.4: Glossary of symbols appearing in this work.

Symbol Description

Exc[ρ] exchange-correlation energy functional
Ex[ρ] exchange component of exchange-correlation energy functional
Ec[ρ] correlation component of exchange-correlation energy functional

vxc
exchange-correlation potential, computed from the functional derivative
δExc
δρ(r)

αfree
a (0) static free-atom polarizability formed with αfree

a (0) scalars on the diagonal
αa(0) Eq. (2.5): static bare polarizability, related to αfree

a (0) by the ratio Va/V free
a

αa(iω) Eq. (2.7): frequency-dependent bare polarizability tensor, calculated by
Padé approximant Eq. (2.4)

αa(iω) ‘isotropized’ bare dipole polarizability scalar, calculated as αa = 1
3Tr[αa]

A(iω) Eq. (2.9): bare system polarizability tensor, 3N × 3N block diagonal
matrix of αa(iω)

A(iω) Eq. (2.11): screened system polarizability tensor, solved at complex
frequency iω using

[
A−1 + TSR

]−1

αa(0) Eq. (2.13): screened static polarizability, calculated by partial contraction
of A(0)

αa(iω) Eq. (2.12): screened frequency-dependent polarizability, calculated by
partial contraction of A(iω)

ωfree
a

free-atom QHO excitation frequency, computed as:
ωfree
a = 4/3

(
C free

6,aa/
[
αfree
a (0)

]2)
C free

6,aa free-atom C6 coefficient (also called a Hamaker constant)

C6,aa
bare effective atomic C6 coefficient, computed by weighting C free

6,aa with(
Va/V

free
a

)2

C6,aa Eq. (2.14): screened effective atomic C6 coefficient

ωa
bare QHO excitation frequency, equals ωfree due to cancellation of Va/V free

a

factors
ωa Eq. (2.15): screened QHO excitation frequency
yp frequency grid for numerical integration
gp weights for numerical integration
σa(iω) Eq. (2.23): QHO width, calculated from the bare polarizability scalar

f continued on next pageF
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Table A.4: Glossary of symbols (continued).

Symbol Description

Υa(iω) Eq. (2.24): multiplicative prefactor to Va in defining αa
V free
a free-atom effective volume
Va Eq. (C.2): Hirshfeld effective atomic volume

Σab(iω) Eq. (2.22): effective correlation length of the interaction potential, defined
from QHO widths of atoms a and b

RRRa nuclear position of atom a

Rab internuclear distance between atoms a and b
Rab internuclear vector (RRRa −RRRb) between atoms a and b
Riab ith Cartesian component of the internuclear vector
r spatial position such as the argument of the electron density
ζ ratio between interatomic separation R and correlation length Σ
h(ζ) Eq. (2.57): function of ζ appearing in T

v(R, iω) Eq. (2.21): Coulomb interaction between two QHO Gaussian charge
densities separated by R with frequency-dependent widths

T Eq. (2.56): dipole interaction tensor between QHO Gaussian charge
densities

Tdip Eq. (2.26): dipole interaction tensor between point dipoles
TSR Eq. (2.34): short-range component of T, evaluated using f(ZTS)
TLR Eq. (2.36): long-range component of T, evaluated using f(ZvdW)

f(Z) Eq. (2.27): damping function for range-separation of the dipole interaction
tensor

Sab sum of effective vdW radii scaled by β
Zab ratio of interatomic separation Rab and Sab
RvdW,TS

a Eq. (2.33): effective vdW radii at the TS level
RvdW
a Eq. (2.35): screened effective vdW radii

ρ total electronic charge density
ρeff
a Eq. (C.1): Hirshfeld effective electron density asigned to atom a

ρsad sum of spherical free-atom densities ∑b ρ
free
b

HMBD Eq. (2.17): MBD model Hamiltonian
CMBD Eq. (2.18): MBD interaction Hamiltonian matrix
X matrix of eigenvectors of CMBD

λ vector of eigenvalues of CMBD

Λ diagonal matrix of eigenvalues of CMBD

f continued on next pageF
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Table A.4: Glossary of symbols (continued).

Symbol Description

L scale factor used in algebraic scaling of Gauss-Legendre points
δ max-norm convergence threshold used in periodic summation of T
rs supercell cutoff radius
na number of unit-cell tilings in the a lattice vector direction
nb number of unit-cell tilings in the b lattice vector direction
nc number of unit-cell tilings in the c lattice vector direction
Nsc number of atoms in the supercell
h matrix of unit-cell vectors
Ω unit-cell volume
σMBD MBD contribution to the unit-cell stress tensor
∂c gradient with respect to nuclear position of atom c, equivalent to ∇Rc

EMBD MBD correlation energy
Eint. “interacting mode” contribution to the MBD energy
Enon−int. “non-interacting mode” contribution to the MBD energy
FMBD MBD ionic forces: −∇REMBD

HMBD MBD unit-cell forces: −∇hEMBD

UMBD MBD wavefunction forces: −∇ρEMBD

∂2EMBD MBD Hessian: ∇R ⊗∇REMBD

Escf SCF energy convergence cutoff
Ecut planewave basis set expansion energy cutoff
β MBD range-separation parameter
B convenience function used in Eqs. 4.26 and 4.27
U Eq. 4.30: convenience function used in computing the derivatives of T
W Eq. 4.31: convenience function used in computing the derivatives of T
Ψ Eq. 4.32: convenience function used in computing the derivatives of T
g(ζ) function of ζ defined in Eq. 4.47 for computing the derivatives of W
Kab convenience function first used in Eq. 4.83

Dp
Eq. 4.75: convenience function used in computing eigenvector derivatives
in Section 4.2.7

∆E2 Eq. 4.103: two-body interaction energy
∆E3 Eq. 4.104: three-body interaction energy
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B
DPP Transport Properties with More Functionals

Table B.1: Transport properties (calculated at the revPBE/def2-TZVP level) for diketopyrrolopyrrole
pigments broken down into the dominant hopping pathways. d is the length of the pathway. P is the rel-
ative probability of hopping along the ith pathway and mi is its multiplicity, i.e. the number of symmetry
related pathways. |t| is the absolute value of the transfer integral. Values in parentheses have been calcu-
lated with VV10 applied self-consistently.

Pathway d (Å) m |te| (meV) Pe (%) |th| (meV) Ph (%)

DPP

p1 3.8 2 0.8 (2.2) 0.1 (0.4) 81.2 (84.2) 41.2 (41.2)
p2 6.5 2 13.2 (13.3) 15.4 (14.8) 20.4 (21.3) 2.6 (2.6)
p3 7.3 2 19.8 (20.3) 34.3 (34.5) 31.5 (32.5) 6.2 (6.2)

p-Cl DPP

p1 5.6 2 12.4 (12.5) 6.4 (5.8) 9.9 (10.2) 0.6 (0.6)
p2 5.7 2 18.2 (18.9) 13.8 (13.4) 82.2 (85.8) 41.5 (41.5)
p3 7.3 2 18.6 (19.0) 14.3 (13.5) 32.2 (33.2) 6.4 (6.2)

p-Br DPP

p1 5.6 4 24.7 (25.4) 17.9 (17.9) 13.9 (14.3) 5.1 (5.1)
p3 7.3 2 20.5 (20.9) 12.3 (12.2) 38.6 (39.7) 39.0 (38.9)
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Table B.2: Transport properties (calculated at the revPBE0/def2-TZVP level) for diketopyrrolopyrrole
pigments broken down into the dominant hopping pathways. d is the length of the pathway. P is the rel-
ative probability of hopping along the ith pathway and mi is its multiplicity, i.e. the number of symmetry
related pathways. |t| is the absolute value of the transfer integral. Values in parentheses have been calcu-
lated with VV10 applied self-consistently.

Pathway d (Å) m |te| (meV) Pe (%) |th| (meV) Ph (%)

DPP

p1 3.8 2 7.1 (8.6) 3.5 (4.8) 83.6 (86.0) 40.8 (40.8)
p2 6.5 2 13.5 (13.5) 12.6 (11.9) 23.0 (23.7) 3.1 (3.1)
p3 7.3 2 21.9 (22.4) 33.5 (33.0) 32.4 (33.3) 6.1 (6.1)

p-Cl DPP

p1 5.6 2 17.4 (17.5) 8.9 (8.4) 16.7 (17.1) 1.5 (1.4)
p2 5.7 2 22.8 (23.6) 15.2 (15.1) 88.2 (91.3) 41.1 (41.1)
p3 7.3 2 20.5 (20.9) 12.3 (11.8) 32.5 (33.2) 5.6 (5.4)

p-Br DPP

p1 5.6 4 27.5 (32.6) 17.7 (19.2) 24.4 (22.6) 10.6 (9.4)
p3 7.3 2 22.9(23.1) 12.2 (9.7) 39.7(40.4) 27.8 (30.1)

Table B.3: Reorganization energies of diketopyrrolopy-
rrole pigments calculated at the DFT/def2-TZVP level
of theory for the B3LYP functional. Results computed
with the PW6B95 functional are given in parenthe-
ses. The value marked with a star was computed in a
smaller def2-SVPD basis set.

Pigment λe (meV) λh (meV)

DPP 192 (210) 331 (365)
p-Cl DPP 203 (192*) 348 (376)
p-Br DPP 181 (192) 330 (360)
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C
Additional Mathematical Details

C.1 Repeated Eigenvalues of CMBD

In considering the derivative of λk, in Eq. (2.40) in Chapter 2, we assumed that CMBD

had 3N distinct eigenvalues. Due to numerical perturbations it is somewhat unlikely for

CMBD to have repeated eigenvalues, but we cannot assume this a priori. The procedure

for taking derivatives of repeated eigenvalues of a real, symmetric matrix, like CMBD, is

essentially first order perturbation theory where the perturbation is the action of the

derivative operator ∂c. Eigenvalue degeneracies are lifted by diagonalizing the

perturbation in the degenerate subspace. For a more algorithmic discussion of repeated

eigenvalue derivatives, see Andrew et al.463 or Friswell.462 Since CMBD is real and

symmetric, it is guaranteed to be diagonalizeable with orthogonal eigenvectors.

C.2 Computation of ∂V

Nuclear coordinate forces within a fully self-consistent O(N) implementation of the

Tkatchenko-Scheffler scheme were previously developed in QuantumESEPRESSO by R.

A. DiStasio Jr.502 A subroutine of the tsvdw module computes the Hirshfeld partitioning

into effective atomic volumes, Va, and the derivatives of that volume, ∂Va. The Hirshfeld

effective charge density of atom a is:

ρeff
a (r) = wa(r) ρ(r) = ρfree

a (‖r−Ra‖)
ρsad(r) ρ(r), (C.1)
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where ρ is the total molecular charge density and ρsad = ∑
b ρ

free
b is the sum of free-atom

densities. The effective volume is then:

Va =
∫

dr ‖r−Ra‖3ρeff
a (r). (C.2)

Integrations on spherical atomic domains, such as in Eq. C.2, are computed on subsets of

the real-space mesh. Using reference data for the free atom volumes, a radial grid cutoff

value is determined for each species such that the free atom volume obtained by numerical

integration up to this cutoff does not deviate from the reference value by more than 1.0%.

The effective volume derivative is evaluated as

∂cVa =
∫

dr ‖r−Ra‖3∂cρeff
a (r)− 3 δca

∫
dr (r−Ra)‖r−Ra‖ρeff

a (r) (C.3)

∂cρ
eff
a (r) =

[
ρfree
a ρ

[ρsad]2
− ρ

ρsad
δca

] [ r−Rc

‖r−Rc‖

]
∂ρfree

c (r)
∂r

. (C.4)

Note that the free-atom density is spherically symmetric, which is why we reduce

∂cρ
free
c (‖r−Rc‖) to a spherical coordinate derivative ∂ρfree

c /∂r. Likewise, Eq. (C.2) is

evaluated by mapping the radial form of ρeff
a to an linear/equispaced grid, which is then

interpolated using cubic splines. After interpolation, the derivative ∂cρeff
a at each grid

point is evaluated by numerical differentiation using Bickley’s 7-point formula. 503

C.3 Derivation of ∂Tij

To break the derivative of Tij into smaller pieces, we define some convenience functions:

U ≡ erf [ζ]− 2√
π
ζ exp

[
−ζ2

]
(C.5)

Wij ≡
(
RiRj

R5

)
4√
π
ζ3 exp

[
−ζ2

]
(C.6)

Tij
dip ≡ −3

(
RiRj

R5

)
+ δij
R3 (C.7)
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So in terms of these functions, Tij is:

Tij = UTij
dip + Wij (C.8)

⇒ ∂Tij = U∂Tij
dip + Tdip∂U + ∂Wij (C.9)

The derivative of Tij
dip is given in Eq. (2.52). Note that we can write ∂

(
RiRj/R5) in

terms of ∂Tij
dip as:

∂

(
RiRj

R5

)
= −1

3∂Tij
dip −

δij
R4∂R (C.10)

So the derivatives of U and Wij are:

∂U = 4√
π
ζ2 exp

[
−ζ2

]
∂ζ (C.11)

∂Wij =
(
RiRj

R5

)[
3− 2ζ2

] 4√
π
ζ2 exp

[
−ζ2

]
∂ζ − 4√

π
ζ3 exp

[
−ζ2

] (1
3∂Tij

dip + δij
R4∂R

)
(C.12)

Now define h(ζ) ≡ 4√
π
ζ2 exp

[
−ζ2].

⇒ ∂U = h(ζ)∂ζ (C.13)

⇒ ∂Wij =
(
RiRj

R5

)[
3− 2ζ2

]
h(ζ)∂ζ + ζ h(ζ)

(
−1

3∂Tij
dip −

δij
R4∂R

)
(C.14)

In terms of h(ζ) we can then write ∂Tij as:

∂Tij =
[
erf [ζ]− 1

2
h(ζ)
ζ

]
∂Tij

dip + ζ h(ζ)
(
−1

3∂Tij
dip −

δij
R4∂R

)
(C.15)

+
[
Tdip +

(
RiRj

R5

)[
3− 2ζ2

]]
h(ζ)∂ζ

Where the derivative of ζab is given in Eq. (2.58) in Chapter 2.
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C.4 Self-Consistent Screening: Deriving the Matrix Inversion Formulation

Self-consistent screening (SCS) is accomplished by solving the following non-homogeneous

system of linear equations at a given complex frequency iω (Eq. (17) in DiStasio et al.87):

αa(iω) = αa(iω)− αa(iω)
N∑
b 6=a

Tab αa(iω). (C.16)

To accomplish a range-separated self-consistent screening (rsSCS), we replace T with TSR

(see Ref. 88). The coupled set of equations represented by Eq. (C.16) can then be written

in matrix form as:

A = A−A TSR A (C.17)

Note that ζaa = 0 so Taa is naturally zero (cf. Eq. (2.25)). Thus, the sum ∑
b 6=a Tab αa is

accomplished by the product TSR A. Rearranging Eq. (C.17) and then left multiplying by

A−1 gives:

A + A TSR A = A (C.18)

A−1 [I + A TSR] A = A−1A (C.19)[
A−1 + TSR

]
A = I (C.20)

Left multiplying by the inverse of the bracketed quantity yields:

A =
[
A−1 + TSR

]−1
. (C.21)
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C.5 Bounds on the MBD Energy as TLR is Converged

In discussing periodic summation of TSR in Chapter 3, we introduced a max-norm

convergene condition, Eq. (3.7). The same condition is used to judge the convergence of

TLR over the periodic lattice. To understand a little about this convergence criterion

interactions impacts the MBD energy we refer to a theorem, resulting from the Weyl

inequalities,504 that bounds the spectral variations (i.e. eigenvalue perturbations) of

Hermitiam matrices.337

Theorem C.5.1 Let A and B be Hermitian matrices, with eigenvalues

λ1(A) ≥ · · · ≥ λn(A), and λ1(B) ≥ · · · ≥ λn(B) respectively. Then,

max
j
|λj(B)− λj(A)| ≤ ‖B−A‖.

This means that the spectrum of a Hermitian matrix, such as CMBD, is stable against

small perturbations. In other words, if B = A + E is a slightly perturbed version of A,

then the perturbation to any individual eigenvalue of A is bounded by the matrix norm of

the perturbation, i.e., ‖B−A‖ = ‖E‖. Spectral variation inequalities such as the theorem

above are usually proved with respect to unitarily-invariant matrix norms. 337 Although

the max-norm is not unitarily-invariant, it can be used to bound unitarily-invariant norms

such as the trace-norm. The trace norm (also called the p = 1 norm) is bounded by the

max norm as

‖A‖1 =
n∑
j=1

λj ≤ n‖A‖max (C.22)

and is closely related to the p =∞ norm, which is unitarily-invariant when applied to

Hermitian matrices. Since the p =∞ norm is the maximum absolute row (or column) sum

of a Hermitian matrix, and ‖ · ‖max is the elementwise maximum absolute value, we have

the following bound,

‖A‖max ≤ ‖A‖∞ ≤ n‖A‖max, (C.23)
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where n is the dimension of the matrix. The elements of the MBD interaction

Hamiltonian, CMBD, depend on both the screened quantities ω, α(0), and the long-range

dipole-dipole tensor TLR. When TLR is being converged periodically, the screened

quantities have already been determined. Since each periodic image, b′, of atom b will

have the same ωb and αb(0), only the off-diagonal elements of CMBD are impacted by

converging TLR, and the screened quantities are not involved in the periodic sum, i.e.,

∑
b′

CMBD
ab′ =

[
ωaωb

√
αa(0)αb(0)

]∑
b′

TLR
ab′ for a 6= b (C.24)

Furthermore, the perturbations to CMBD coming from each additional term in TLR
ab

preserve Hermiticity. So, the max-norm criterion applied to converging TLR
ab means that

the maximum error in CMBD is bounded by:

‖∆CMBD‖max ≤ δ ∗max
ab
{ωaωb

√
αa(0)αb(0)}. (C.25)

Applying our relation to the p =∞ norm and using the result of the eigenvalue

perturbation theorem, we have:

max |∆λ| ≤ ‖∆CMBD‖∞ ≤ 3Nδ ∗max
ab
{ωaωb

√
αa(0)αb(0)}. (C.26)

Since the MBD correlation energy is built from a sum of
√
λp, where {λp} are the

eigenvalues of CMBD, by converging TLR until the max norms of all 3× 3 subblocks fall

below δ, we are guaranteed that the MBD energy will achieve a related convergence. For

further discussion of this subject we refer the reader to classic texts on numerical analysis

and spectral variation inequalities (see e.g. Refs. 336–338).
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D
Structure Indexing of Polypeptide Conformers

Table D.1: Peptide naming conventions used in this work, the begdb database, and Ref. 301.

This work begdb Ref. 301 This work begdb Ref. 301

0 252_FGG55 FGG_055 38 228_GGF08 GGF_08
1 263_FGG80 FGG_080 39 230_GGF09 GGF_09
2 253_FGG99 FGG_099 40 225_GGF10 GGF_10
3 264_FGG114 FGG_114 41 229_GGF11 GGF_11
4 257_FGG215 FGG_215 42 224_GGF12 GGF_12
5 258_FGG224 FGG_224 43 222_GGF13 GGF_13
6 255_FGG252 FGG_252 44 221_GGF14 GGF_14
7 254_FGG300 FGG_300 45 226_GGF15 GGF_15
8 265_FGG357 FGG_357 46 214_WGG01 WGG_01
9 256_FGG366 FGG_366 47 211_WGG02 WGG_02
10 259_FGG380 FGG_380 48 209_WGG03 WGG_03
11 260_FGG412 FGG_412 49 208_WGG04 WGG_04
12 261_FGG444 FGG_444 50 210_WGG05 WGG_05
13 262_FGG470 FGG_470 51 206_WGG06 WGG_06
14 266_FGG691 FGG_691 52 215_WGG07 WGG_07
15 248_GFA01 GFA_01 53 207_WGG08 WGG_08
16 239_GFA02 GFA_02 54 217_WGG09 WGG_09
17 247_GFA03 GFA_03 55 219_WGG10 WGG_10
18 251_GFA04 GFA_04 56 216_WGG11 WGG_11
19 250_GFA05 GFA_05 57 220_WGG12 WGG_12
20 245_GFA06 GFA_06 58 218_WGG13 WGG_13
21 237_GFA07 GFA_07 59 212_WGG14 WGG_14

f continued on next pageF
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Table D.1: Peptide naming conventions (continued).

This work begdb Ref. 301 This work begdb Ref. 301

22 242_GFA08 GFA_08 60 213_WGG15 WGG_15
23 241_GFA09 GFA_09 61 195_WG01 WG_01
24 238_GFA10 GFA_10 62 194_WG02 WG_02
25 240_GFA11 GFA_11 63 191_WG03 WG_03
26 244_GFA12 GFA_12 64 204_WG04 WG_04
27 243_GFA13 GFA_13 65 205_WG05 WG_05
28 249_GFA14 GFA_14 66 193_WG06 WG_06
29 236_GFA15 GFA_15 67 197_WG07 WG_07
30 246_GFA16 GFA_16 68 202_WG08 WG_08
31 231_GGF01 GGF_01 69 198_WG09 WG_09
32 234_GGF02 GGF_02 70 192_WG10 WG_10
33 233_GGF03 GGF_03 71 203_WG11 WG_11
34 227_GGF04 GGF_04 72 201_WG12 WG_12
35 235_GGF05 GGF_05 73 200_WG13 WG_13
36 232_GGF06 GGF_06 74 196_WG14 WG_14
37 223_GGF07 GGF_07 75 199_WG15 WG_15
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