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Abstract

A growing body of evidence suggests that genetic variants that alter gene expression are responsible

for many phenotypic differences across individuals, particularly for the risk of developing common

diseases. However, the molecular mechanisms that underlie the vast majority of associations between

genetic variants and their phenotypes remain unknown. An important limiting factor is that genetic

variants remain difficult to interpret, particularly in noncoding sequences. Developing truly system-

atic approaches for characterizing regulatory variants will require: (a) improved annotations for the

genomic sequences that control gene expression, (b) amore complete understanding of themolecular

mechanisms through which genetic variants, both coding and noncoding, can affect gene expression,

and (c) better experimental tools for testing hypotheses about regulatory variants.

In this dissertation, I present conceptual and methodological advances that directly contribute

to each of these goals. A recurring theme in all of these developments is the statistical modeling of

protein-DNA interactions and its integration with other data types. First, I describe enhancer-FACS-

Seq, a high-throughput experimental approach for screening candidate enhancer sequences to test for

in vivo, tissue-specific activity. Second, I present an integrative computational analysis of the in vivo

binding of NF-κB, a key regulator of the immune system, yielding new insights into how genetic vari-

ants can affect NF-κB binding. Next, I describe the first comprehensive survey of coding variation in

human transcription factors and what it reveals about additional sources of genetic variation that can

affect gene expression. Finally, I present SIFTED, a statistical framework andweb tool for the optimal

design of TAL effectors, which have been used successfully in genome editing and can thus be used to

test hypotheses about regulatory variants. Together, these developments help fulfill key needs in the

quest to understand the molecular basis of human phenotypic variation.
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The laws of genetics had never depended upon knowing

what the genes were chemically and would hold true even

if they were made of green cheese.

Ed Lewis

1
Introduction

The fundamental goal of genetics is to elucidate the mechanisms that underlie heredity. For most of

the field’s history, progress was made in spite of almost complete ignorance of the molecular mech-

anisms responsible for linking genotypes to phenotypes. The discovery that DNA was the macro-

molecule that carried genetic information 1 and the subsequent determination of its double-helical

structure 2 provided fundamental clues about the molecular basis of genotype-phenotype relation-

ships. Several decades later, genetic linkage analysis 3 enabled the identification of the molecular basis

of disorders caused by mutations in a single gene, such as cystic fibrosis4 and Huntington’s disease 5.

Yet, itwas only after theDNA-sequencing revolution that beganwith the publication of the human

genome sequence in 20016 that it became possible to study the genetic basis of human traits on a large

scale. This technological revolution has created unprecedented scientific opportunities, but also deliv-
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ered many surprises. While a rapidly growing number of genetic variants have now been statistically

associated with phenotypes7, knowledge about the mechanisms through which such variants exert

their phenotypic effects has lagged behind. One of the most surprising insights was the realization

that over 80% of variants associated with complex phenotypes in humans affect noncoding DNA 8,9.

Developing improved capabilities for interpreting both coding and noncoding genetic variants is one

of the key challenges in genetics and genomics today.

In this section, I first provide an overview of the state of the field and describe the process through

which we have established that genetic variants that alter gene regulation play an important role in ex-

plaining phenotypic variation in humans. Next, I review key concepts related to transcription factors

and regulatory sequences. Finally, I explain how the individual projects described in this dissertation

represent important steps towards the ultimate goal of characterizing regulatory variation in humans

and understanding its contribution to phenotypic variation.

Genetic variation and and association studies

Most genetic variation between human individuals exists in the forms of single nucleotide polymor-

phisms (SNPs) 10, which involve a change in the identity of a singleDNAbase pair (bp) in the genome.

Each haploid human genome is composed of ~3 x 109 bp6. Due to a combination of chemical damage

and spontaneous errors in DNA replication and repair, each of these base pairs is subject to a muta-

tion rate of ~10−8 per generation 11,12. As a consequence, each individual is born with 40-80 de novo

single base pair mutations, with most of the variance being explained by the age of the father 13. This

mutational process, compounded over thousands of human generations, has created an extraordinary

amount of genetic diversity. Sequencing projects have now identified over 112 million unique SNPs 14,

a number that will continue to grow as more individuals are sequenced.

Genome-wide association studies (GWASs) have greatly facilitated the process of linking genetic

variants to common disease phenotypes. The typical study design for a GWAS involves selecting a
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group of individuals afflicted by a particular disease (cases) and a group of unaffected individuals (con-

trols) 10. Ideally, the populations are matched as closely as possible in terms of ethnicity, sex, and age

distribution in order tominimize the influence of confounders. In its simplest form, aGWAS involves

applying a chi-squared (χ2) test for each genotyped or imputed SNP to determine if one allele exists

at higher frequencies in the cases than in the controls. The underlying assumption is that an allele

occurring at higher frequencies in the cases than in the controls is more likely to be a risk factor for

a particular disease. The SNPs that pass a stringent threshold of genome-wide statistical significance

(typically, a P-value < 10−8) are then considered to be associated with the phenotype of interest. In

practice, a logistic regression is often the preferred method to test for SNP-disease associations, as it is

conceptually equivalent but allows covariates to be modeled. Additionally, the case-control study de-

sign can bemodified to study quantitative phenotypes, in which case the logistic regression is replaced

with a generalized linear model 10. Regardless of the study design, the main output of a GWAS is a list

of SNPs associated with the phenotype of interest and a corresponding level of statistical significance

for each SNP.

However, even a high degree of statistical significance does not imply that a particular SNP is causal;

i.e., that a SNP is actually involved in themolecularmechanism responsible for the phenotype. This is

partly due to linkage disequilibrium (LD), which describes the phenomenonwhereby alleles in physi-

cal proximity along a chromosome co-occur in non-randompatterns 15. The existence of LD is a result

of the positional bias of genetic recombination: if two SNPs are in sufficient proximity that essentially

no recombination events take place between them, the corresponding alleles will remain correlated

throughout subsequent generations. Therefore, without further evidence, SNPs identified in GWAS

can only be considered “tag SNPs” that indicate the presence of a genetic association with a putative

causal variant in the vicinity of the tag SNP. On average, a common SNP will have a surrounding re-

gion of LD (or “LD block”) extending for ~60 kb, although the exact number varies across loci and

between human populations 15. Therefore, while the tag SNP itself can in principle be the causal vari-
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ant, this can rarely be established without further analysis.

In limited cases, strong candidates for being causal SNPs can be identified within the LD block of a

tag SNP. The most common case involves the presence of a non-synonymous SNP (nsSNP) in a gene

of relevant biological function for the phenotype of interest 16. For example, a nsSNP causing aT300A

substitution in ATG16L1 was suggested as a candidate by a GWAS and later validated as increasing

the risk of developing Crohn’s disease 17. Another possible scenario is that the tag SNP is forming a

“synthetic association” by being in LD with a rare coding variant that was not genotyped in the same

study 18. While simulations have shown that synthetic associations are theoretically possible 18, later

studies have failed to find evidence that such associations between common and rare variants are a

widespread phenomenon 19.

Increasing evidence suggests that coding variants are unlikely to be responsible for the majority of

GWAS signals. Approximately 93%of reportedGWAS tag SNPs are located in noncoding sequences9.

While this number includes intronic variants, only 11% of intronic GWAS SNPs are in strong LDwith

coding SNPs. Instead, 76.6% of GWAS variants were found to be either within, or in complete LD

with SNPs in genomic regions of open chromatin, which are predominantly noncoding and often

associated with regulatory elements9. In a few cases, regulatory SNPs have been directly implicated in

disease mechanisms. For example, the rs12740374 variant creates a binding site for the transcription

factor C/EBP, which in turn alters the hepatic expression of the SORT1 gene 20. This SNP was found

to explain GWAS signals associated with higher low-density lipoprotein cholesterol and increased risk

of myocardial infarction. However, the vast majority of noncoding GWAS variants have not been

associated with such mechanisms.

These observations have highlighted apressingneed to developbetter approaches for studyingnon-

coding sequences. While nsSNPs often provide an intuitive hypothesis about the biological mecha-

nism behind the association, the process of generating and testing hypotheses about the effects of

noncoding variants remains significantly more challenging. Although intergenic sequences harbor di-
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verse elements that could be affected by genetic variation, such as many classes of noncoding RNAs 21,

alterations in regulatory elements are likely to account for a significant number of functional associa-

tions 22,23. Before fully describing the arguments for why regulatory variants are of particular interest,

I will review several key concepts about the molecular biology and computational modeling of tran-

scriptional regulation.

Transcription factors and models of binding specificity

The ability of multicellular organisms to respond to external stimuli and orchestrate complex devel-

opmental programs relies largely on exercising precise control of gene expression. Transcription fac-

tors (TFs) represent a broad category of proteins that have evolved to regulate the specific portions

of an organism’s genome that are transcribed at a given time and cellular state. In broad terms, TFs

can be classified into two groups: general and sequence-specific. General TFs encompass the pro-

teins that are required for forming the pre-initiation complex at eukaryotic promoters, which enables

the subsequent recruitment of RNA polymerase and the initiation of transcription 24. Meanwhile,

sequence-specific TFs bind to regulatory sequences in the genome to exert control over gene expres-

sion, most commonly through domains that participate in protein-protein interactions, leading to

trans-activation or trans-repression of their target genes. Throughout this dissertation, I employ the

“TF” designation to refer to sequence-specific TFs, unless otherwise specified.

The most widely used scheme for classifying transcription factors is based on the structure of their

DNA-binding domains (DBDs) 25. DBDs are largely responsible for enabling TFs to recognize their

target DNA sequences with high specificity. Classifying TFs by the structural classes of their DBDs

enables inference about homology relationships, likely modes of protein-DNA recognition, and in

some cases, the types of target sequences bound by a given TF. In addition, homologous proteins

within the same DBD class but with different binding preferences can be compared to identify the

amino acids involved indetermining sequence specificity 26–29. Finally,DBDs fromagiven class tend to
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have a high level of amino acid sequence similarity that allows their positionwithin a protein sequence

to be identified computationally 24.

DBDs’ ability to bind only certain DNA sequences with high affinity is derived from several bio-

physical factors. First and foremost, energetically favorable interactions between bases and residues,

particularly in cases where hydrogen bonds are formed, contribute significantly to the selectivity for

specific sequences 30. For example, alanine side chains in the major groove can form two hydrogen

bonds with guanine 31. However, base-residue interactions do not happen in isolation: the protein

backbonemay not be able to adopt a conformation that enables all favorable residue-base interactions

to happen simultaneously. In some cases, well-positioned water molecules can also mediate contacts

between bases and residues 32. The added contribution of these effects makes many TFs able to bind

a fairly degenerate set of sequences, the identity of which is not always easy to predict 33. Therefore,

even in this simplifiedmodel, DBD-DNA interactions can occur within a relatively complex energetic

landscape.

A significant amount of effort has been dedicated to developingmodels of the energetic landscapes,

or approximations thereof, of interactions between TFs and their binding sites. The core of most

models is the representation of TF-DNA binding as a kinetic process, in which a TF and a DNA

molecule, both in solution, form a complex at a rateKon and dissociate into free components at a rate

Koff (Eq. 1.1).

TF +DNA
Kon−−⇀↽−−
Koff

TF · DNA (1.1)

Often, it is sufficient to know the fraction of DNA sequences bound by TFs at equilibrium. In

such cases, the rate constants Koff and Kon can be combined to form an equilibrium constant, Kd =

Koff /Kon, which is commonly referred to as a dissociation constant. The value ofKd can be obtained

directly by measuring the concentrations of reactants and products at equilibrium. In addition, at

6



constant temperature, the value ofKd is directly related to theGibbs free energy (ΔG) of theTF-DNA

interaction (Eq. 1.2).

Kd =
Koff

Kon
=

[TF]eq[DNA]eq
[TF · DNA]eq

= e
ΔG
RT (1.2)

Although measuring Kd is conceptually simple, in practice it is often a laborious process, particu-

larly when many sequences are involved. Most TFs recognize DNA sequences in the 6-12 bp range 34.

Therefore, for a typical TF, it would be necessary to measure Kd values corresponding to ~46 - 412 se-

quences. Traditional approaches formeasuringKd values, such as electrophoretic mobility shift assays

(EMSAs) 35 or surface plasmon resonance 36 are too laborious to employ in such large scales. Microflu-

idic approaches, such as mechanically induced trapping of molecular interactions (MITOMI), enable

the simultaneous measurement of Kd values for thousands of DNA sequences 37. However, to date,

MITOMI has only been used to measure the binding sites of few TFs.

A more feasible approach is to avoid measuring Kd values for all sequences and instead model the

relative change in Kd value for a particular sequence relative to the optimal binding site (i.e., the se-

quence with the smallest Kd value). For each sequence S, a relative K′
d(S) value defines its relative

affinity compared to the dissociation constant of the optimal binding site, Kopt
d . Each value of K′

d(S)

is in turn associated with a change in free energy ΔΔG(S) (Eq. 1.3). In this transformation, informa-

tion about TFs’ DNA-binding affinity (i.e., absolute binding preference) is lost. However, informa-

tion aboutDNA-binding specificity (i.e., relative preference between different sequences) is preserved,

which suffices for many applications.

K′
d(S) = Kopt

d e
ΔΔG(S)

RT (1.3)

In practice, most models of TF binding preferences focus on describing these ΔΔG(S) values, or

equivalent representations thereof. However, instead of assigning a ΔΔG(S) value to each possible
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sequence S, most models rely on assumptions that reduce the number of model parameters. For ex-

ample, the widely used position weight matrix (PWM) model assumes that the free energy terms as-

sociated with the contacts between the TF and each possible base in the binding site can be broken

down into additive contributions. Then, the free energy term can be calculated as in Eq. 1.4, where sj

represents the identity of the nucleotide at position j in the binding site, ΔΔGi(sj) is the free energy

term associated with the substitution of sj at position i in the binding site, and L is the total length of

the binding site. In other words, the free energy contributions are modeled by a 4 x L matrix, each

describing the additive effect of substituting a given nucleotide at each position in the binding site.

ΔΔG(s) =
L∑
i=1

ΔΔGi(sj) (1.4)

This biophysical definition of PWMs has a corresponding statistical interpretation, which is how

PWMs are frequently reported in the literature. Through the Boltzmann distribution, the ΔΔG val-

ues can be converted into probabilities for observing each base at each position in the binding site.

Intuitively, these values describe the probability of observing a specific sequence S among the total

set of sequences bound by the TF, under the assumption that the library is randomly generated and

fully represents all possible sequences. In practice, this probabilistic representation of a PWM can

be estimated empirically by aggregating the sequences bound by the TF and counting the frequency

with which a given base appears at each position in the binding site. As a consequence, the proba-

bilistic representation is sometimes described as a position frequency matrix (PFM). A comparison

between the two is shown in Figure 1.1. Throughout this dissertation, I will use the term PFM to refer

exclusively to this frequency-based representation and energy matrix (EM) to refer to the free energy

representation described above. In most contexts, these mathematical representations are equivalent,

and I will simply refer to these models as PWMs.

Several concepts related to PWMs are used frequently in the literature, but unfortunately, are rarely
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
A 0.00 2.44 0.00 4.27 2.95 7.96 5.78 4.32
C 4.33 0.00 7.29 6.93 7.7 0.00 0.05 0.37
G 1.21 5.91 3.32 7.09 6.3 4.88 4.14 3.81
T 4.25 6.92 6.46 0.00 0.00 4.46 0.00 0.00


Energy matrix (kT)


A 0.754 0.080 0.963 0.014 0.049 0.000 0.002 0.008
C 0.010 0.917 0.001 0.001 0.000 0.981 0.482 0.399
G 0.225 0.002 0.035 0.001 0.002 0.007 0.008 0.013
T 0.011 0.001 0.002 0.984 0.948 0.011 0.508 0.580


Position frequency matrix

0.0
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Sequence logo

Figure 1.1: Positionweightmatrices and sequence logos. This figure displays the energymatrix (top), position fre-

quencymatrix (middle) and sequence logo (bottom) of the yeast TF Tec1 asmeasured by a protein-bindingmicroarray

(data obtained fromUniPROBE38).
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used consistently. Here, I use TF binding site “motifs” and PWMs as interchangeable, while using

“motif instance” or sometimes “motif match” to refer specifically to a genomic sequence that is pre-

dicted to be bound by a TF using a PWM model. In contrast, the “consensus” sequence corresponds

to the optimal binding site as predicted by the PWM. Another useful concept is that of a sequence

logo, or “logo” for brevity, which displays the parameters of a PWM in an information-theoreticman-

ner. In a sequence logo, the height of the letter stack at each position in the binding site corresponds

to the relative entropy, or information content (IC), associated with the multinomial probability dis-

tribution for that position. Intuitively, taller stacks indicate larger deviations from uniform (random)

distributions. The relative heights of the letters within each stack are in turn proportional to the fre-

quencies for each base in the corresponding position in the PFM. An example logo is shown in Figure

1.1.

Despite the apparent intricacies of protein-DNA interaction energy landscapes, PWMmodels have

been remarkably successful at predicting both in vitro and in vivo TF binding 39. However, there are

cases where PWMs are not the most appropriate model choice. For example, some TFs have energetic

interdependencies for contacting adjacent nucleotides40, which contradicts the main assumption of

the PWMmodel. To address such limitations, higher ordermodels, such as those that consider all pos-

sible di-nucleotide interactions, have been developed and employed successfully to improve binding

site predictions 39.

At the other end of the spectrum, TF specificities can be modeled without making strong assump-

tions by assigning a score to every possibleDNA k-mer (i.e., a sequence of length k). A disadvantage of

full k-mermodels is that they have a significantly higher number of free parameters compared toPWM

or di-nucleotidemodels. However, if appropriate data are available to fit a more complexmodel, such

an approach can be advantageous. For example, protein-bindingmicroarrays (PBMs) enable themea-

surement of the relative sequence preferences of a TF to all DNA 8-mers41. In statistical terms, the

choice ofTF specificitymodel represents the traditional bias-variance tradeoff42. Throughout this dis-
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sertation, I will employ both PWMand full k-mermodels, depending on the details of the application

and on the availability of sufficient training data. When models are properly selected, such decisions

can greatly facilitate computational analyses.

Transcription factors and regulatory elements

In order to modulate gene expression, TFs bind a wide range of sequences with regulatory functions,

including promoters, enhancers, silencers and insulators. Broadly, promoters are divided into two

parts: the core promoter, which is ~40 bp upstream of the transcription start site (TSS) and contains

the sequence elements necessary for the formation of the pre-initiation complex, and the proximal

promoter, which comprises a region of ~1-2 kb upstream of the TSS43. Proximal promoters often

contain binding sites for TFs, which can exert activating or repressive effects on transcription from

the nearby TSS upon binding.

Although promoters are an essential component of the regulatory machinery, spatiotemporally

precise control of gene expression is achieved primarily through the action of enhancers. Enhancer

sequences are typically hundreds of base pairs in length and located more distally from TSSs than

proximal promoters 34. A recurring feature in enhancer sequences is the presence of TF binding sites

clusters44, often formultiple distinct TFs. This architecture allows enhancers to integrate inputs from

multiple signaling pathways, which in turn facilitates the creation of precisely defined expression pat-

terns45. For example, stripe patterns created by gap enhancers in early Drosophila development are

achieved through a combination of binding by widely expressed activator TFs and spatially restricted

repressor TFs46.

While enhancer sequences show considerable heterogeneity, they also possess some important re-

curring features. An important consideration is that, due to the presence of nucleosomes, TFs only oc-

cupy a small fraction of genomic instances of their consensus sequence47,48. Therefore,most enhancer

sequencesmust typically become accessible to binding byTFs before robust transcriptional activation
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can be achieved. At its core, the underlying process is a competition between TFs and nucleosomes

for occupying the same DNA sequence49. Under the right conditions, such as when sufficient nu-

clear concentrations of specific TFs are reached, the equilibrium can shift in favor of TF binding over

nucleosome occupancy. This process is facilitated by a variety of mechanisms, such as favorable en-

ergetic interactions between TFs that lead to cooperative binding and the recruitment of chromatin

remodelers through protein-protein interactions with TFs44. A class of TFs known as pioneer factors

is able to directly bind nucleosomal DNA, which can in turn facilitate the recruitment of other TFs

to the same sequence 50. Another important feature of enhancer sequences is that, once bound, TFs

can form protein-protein interfaces that recruit co-activator proteins, as is the case in the well known

IFN-β enhancer 51.

Identifying the genomic sequences that function as enhancers in different cell types and conditions

has been one of the major goals of the genomic era. At first, these efforts were primarily driven by the

desire to understand enhancers’ role in development and their contribution tomorphological changes

throughout evolution. However, in light of observations about the abundance of GWAS variants in

noncoding sequences, identifying enhancers is increasingly seen as an essential task for identifying

putative causal variants and understanding their mechanistic consequences. As described earlier, LD

blocks around tag SNPs identified throughGWASoften extend for tens of kilobases 15. Genomic anno-

tations that delineate enhancer sequences can allow specific variantswithinLDblocks to be prioritized

for further study. If the tissue or cell-type specificity of those enhancers is known, such information

can provide further insights about potential mechanisms underlying the phenotypic association. To

provide a context for the advances described in Chapter 2, I will review the evolution of experimental

and computational methods for identifying enhancers and their applications in prioritizing noncod-

ing variants.
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Goal #1: Developing better tools to identify tissue-specific enhancers

Unlike protein-coding genes, transcriptional enhancers do not possess sequence properties that al-

low them to be easily identified by computational methods. Even before the full sequence of the hu-

man genome was published, several algorithms achieved satisfactory performance at identifying likely

protein-coding sequences inmammals 52,53. These algorithms typically relied on hiddenMarkovmod-

els (HMM) that were able to identify sequences depleted for stop codons while accounting for the

presence of introns. However, transcriptional enhancers lacked such prominent, consistent features

that would enable their computational identification. Therefore, while the protein-coding sequences

in the human genomeweremostly annotated by the time the human genome sequencewas published,

enhancer sequences have proven significantly more difficult to characterize.

Early algorithms for the prediction of transcriptional enhancers relied on identifying putative TF

binding sites in genomic sequences. Analyses of known enhancers revealed that clusters of TF mo-

tif instances were a recurring feature of enhancer sequences 54. These observations were used as the

basis of early methods to predict enhancer sequences, which achieved moderate success in predicting

developmental enhancers inDrosophila 55. Later computational methods incorporated other features,

such as the evolutionary conservation ofmotif instances 56 and the orientation and relative position of

motif matches 57.

However, several important limitations restricted the ability of computational approaches to be

applied on a large scale. First, such methods depend on knowing the combination of TFs that are

relevant for transcriptional activation in a particular cell or tissue type, along with the DNA-binding

specificity of thoseTFs. While such informationwas available for a subset ofwell studied systems, such

as theDrosophilablastodermor ahandful ofmammalian tissues, the lackof comprehensive knowledge

of cis-regulatory codes limited the applicability of computational methods.

Another difficulty lies in identifying whether genomic sequences require a specific “grammar” in
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order to become active enhancers. Generally speaking, there are two opposing models of enhancer

function: the enhanceosomemodel 58, which posits that most enhancers have precise requirements in

terms of the orientation, order and identity of TF binding sites; and the billboard model 59, in which

most enhancer sequences have a flexible architecture that functions regardless of the specific proper-

ties of their TF binding sites. In practice, it is likely that most enhancer sequences fall on a spectrum

between these two extremes 34. However, not knowing whether a particular sequence is sensitive to

grammar features makes predictions more difficult. Theses difficulties are compounded by the diffi-

culty in predicting TF binding sites in genomic sequences. As described before, most motif instances

are not actually bound in vivo60. Although evolutionary conservation can improve the ability to pre-

dict in vivo binding sites, conserved motif instances may not actually be bound in the tissue of inter-

est61,62. In practice, each of these limitations can lead to false positives and negatives and has limited

the applicability of methods to computationally predict enhancers.

Enhancer identification was greatly aided by the development of experimental methods to identify

TFs’ in vivo binding sites genome-wide. An essential milestone was the development of chromatin

immunoprecipitation (ChIP) followed by microarray quantification of the precipitated DNA frag-

ments (ChIP-on-chip)63. The typical protocol of a ChIP-on-chip experiment can be summarized as

follows: (1) bound proteins are cross-linked to genomic DNA within the nucleus; (2) the nuclei are

lysed and genomic DNA is fragmented by sonication; (3) an antibody that is specific for the protein

of interest is used to select for bound DNA fragments; (4) cross-linking is reversed; and (5) the abun-

dance of bound sequences is determinedby fluorescently labeling the fragments andquantifying them

through hybridization in a single-stranded DNA microarray.

In oneprominent study, theChIP-on-chip techniquewas applied successfully to identify enhancers

regulating the development of the D. melanogaster mesoderm64. Using ChIP-on-chip, Zinzen et al.

profiled the in vivo binding patterns of five mesodermal TFs (Twi, Tin, Mef2, Bap and Bin) at key

developmental timepoints. Sequences bound jointly by various combinations of these five TFs were
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tested for enhancer activity using in situ hybridization of a lacZ reporter driven by each sequence. The

genomic sequenceswith clusteredTFbinding sites often drovemesodermal expression inwell-defined

spatiotemporal patterns, highlighting the value of this approach for enhancer prediction.

Although such approaches, based on TF ChIP-on-chip, have led to significant insights, they also

have important limitations when it comes to identifying enhancers. First, such studies require knowl-

edge of the TFs involved in the regulation of the tissue or cell-type of interest. Evenmore importantly,

a successful experiment requires the availability of an antibody with sufficient specificity and avidity

for each TF of interest. In many cases, these are not available, significantly hampering the ability to

identify enhancers in many tissues. Additionally, ChIP-on-chip methods rely on the ability to quan-

tify sequences from most of the genome in a microarray with a limited number of probe sequences.

While DNA probes tiling most of the fly genome could be easily designed to fit on a microarray slide,

much larger mammalian genomes were tedious and expensive to assay in this manner, limiting the

applicability of ChIP-on-chip to identify mammalian enhancers. Finally, a significant fraction of se-

quences bound by TFs in vivo did not drive transcriptional activity in reporter assays65,66. Therefore,

such methods are expected to create a significant number of false positive enhancer predictions

The ability to use ChIP-based approaches to assayTFbinding in larger genomeswas enabled by the

development of ChIP-Sequencing (ChIP-Seq). Although most of the experimental protocol is sim-

ilar to ChIP-on-chip, instead of using microarray hybridization to quantify bound DNA sequences,

ChIP-Seq uses next-generation sequencing (NGS) to directly measure the abundance of bound frag-

ments67. The transition to sequencing-based assays enabled the genome-wide profiling of TF binding

in mammalian genomes at a higher resolution than is practically feasible by ChIP-on-chip. In many

cases, the genome-wide binding profiles of TFs have proven useful for enhancer prediction. For ex-

ample, genomic loci bound jointly by Oct4, Sox2 and Nanog, as identified by ChIP-Seq in mouse

embryonic stem cells, were found to often drive expression in embryonic development when tested in

reporter assays68.
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However, a key breakthrough was achieved by using ChIP-Seq to assay not just TFs’ binding sites,

but the genomic positions of other, more general indicators of enhancer activity. For example, p300

plays important roles as a transcriptional coactivator and as a histone acetyltransferase69. WhenChIP-

Seq was used to assay p300 binding in mouse embryonic tissues, it was discovered that p300-bound

sequences often drove expression in the corresponding tissue during embryonic development69. In

addition, the presence of certain histone modifications in the nucleosomes surrounding enhancer

elements was found to be predictive of enhancer activity70. For instance, the presence of a mono-

methylated lysine 4 in histone 3 (shortened as H3K4me1) was indicative of increased transcriptional

output of the associated sequence in reporter assays. Other histone modifications were later found to

be predictive of enhancer activity, such as H3K27ac and H3K9ac71. With the development of highly

specific antibodies for a large set of histone modifications, genome-wide identification of putative en-

hancer sequences became feasible, although contingent on the ability toperforma successfulChIP-Seq

experiment on the biological sample of interest.

Another important milestone was the development of sequencing-based methods to assay chro-

matin accessibility. The binding of TFs to DNA, as in enhancer elements, will lead to the displace-

ment of nucleosomes72. The enzyme Deoxyribonuclease I (DNase I) is an endonuclease that prefer-

entially cleaves phosphodiester bonds in DNA73. Importantly, DNase I’s cleavage rates are increased

in DNA sequences with lower nucleosome occupancy. Based on these principles, DNase-seq74 was

developed as a massively parallel, sequencing-based method to assay genomic regions of high chro-

matin accessibility, here called DNase hypersensitive sites (DHSs). Because a significant fraction of

TF-bound regions are thought to act as enhancers, DNase-seq has proven useful in creating large scale

maps of candidate enhancer regions across a wide range of tissues 23,72. However, an important lim-

itation is that not all DHSs function as active enhancers: insulator sequences bound by CTCF are

DNase I-accessible but do not drive enhancer activity75. Similarly, repressed enhancers also display

the characteristic features of DHS regions but are transcriptionally inactive76.
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The data obtained through ChIP-Seq and DNase-seq have been used to train more complex mod-

els that can be used to predict enhancer activity. For example, ChromHMM71 and Segway77 en-

able the unsupervised discovery of recurrent patterns of histone modifications and DHSs across the

genome. Certain patterns, or chromatin states, identified by suchmethods have been found to be asso-

ciated with enhancer activity. For example, the joint presence of the histone modifications H3K27ac,

H3K4me1 andH3K9ac in a genomic region is predictive of activity in luciferase assays71. Unsupervised

approaches based on profiling histone modifications and DHSs have been applied to predict candi-

date enhancers in a wide range of tissues, leading to identification of over 1 million putative enhancer

sequences 23.

However, while these methods have proven extremely useful for generating genome-wide maps of

putative regulatory elements, they have several important limitations. First of all, these techniques

measure features that are known to be correlated with enhancer elements, but do not directly assay

whether a sequence is capable of driving expression from a core promoter. In a sizeable proportion of

cases, genomic regions with histone marks characteristic of enhancer activity do not actually drive ex-

pression in reporter assays60,78. Additionally, thesemethods typically require large numbers of cells79,

which has limited their applications beyond cell lines and a subset of tissue types for which large sam-

ples can be obtained.

The method described in Chapter 2, enhancer-FACS-Seq (eFS), takes advantage of recent method-

ological developments in enhancer prediction while addressing their weaknesses. Chiefly, eFS enables

hundreds of candidate sequences to be assayed directly for tissue-specific enhancer activity in vivo.

The direct confirmation of transcriptional enhancement by a candidate sequence remains the “gold

standard” test for whether a sequence can be considered an enhancer69,80. Therefore, eFS occupies

an essential niche in the enhancer discovery and validation pipeline, where enhancers predicted by

genome-widemethods can be further screened for transcriptional activity and tissue or cell-type speci-

ficity.
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The eFS approach possesses important advantages over other competing methodologies. For ex-

ample, STARR-seq76, MPRA 81 and CRE-seq60 are all alternative approaches for enhancer screening.

However, uniquely among these methods, eFS allows screening experiments to be carried out with

relatively low (~10,000) numbers of cells. This feature is particularly useful for enhancer screening in

rare cell types, for which obtaining large enough samples to study by other methods may not be fea-

sible. In addition, eFs experiments are carried out in a more natural chromatin context (i.e., an actual

chromosome) whereas other methods rely on measuring expression from plasmids.

The advantages of eFs are likely to be particularly useful for the prioritization of causal noncoding

variants. For example, a significant number of tissue-specific GWAS enrichments have been reported

in samples of complex tissues 23, such as brain, lung, liver and pancreas, An approach like eFS can

potentially enable the screening of the enhancers in a more restricted subset of cells, allowing high

confidence associations between enhancer sequences and the cell-types or tissues in which they drive

expression. Importantly, having control over the exact sequences tested can allow genetic variants

to be assayed to determine if they cause changes in enhancer activity. In Chapter 6, I discuss both

the potential and the challenges of extending eFS to mammalian systems in order to assay candidate

enhancers and their genetic variants.

However, finding enhancers that may harbor causal variants for common disease is only the first

step. Several genetic variants may be present within an enhancer sequence, any of which could be re-

sponsible for the regulatory changes that lead to phenotypic differences. Themost natural hypothesis

is that at least one variant is disrupting a TF binding site that is necessary for proper enhancer func-

tion, or potentially creating a new binding site that causes aberrant activity. Indeed, several studies

have followed this line of reasoning to successfully link changes in TF binding sites with increases in

risk for developing type 2 diabetes 82, prostate cancer 83, obesity 84 and systemic lupus erythematosus

(SLE) 85.

However, despite the intuitive appeal of the “enhancer SNPdisrupts TF binding site”model, func-
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tional studies have have cast doubt on whether such variants can account for most differences in TF

binding across individuals. Kasowski et al. employed ChIP-Seq to compare the patterns of NF-κB

binding in 10 individuals and found that only 2-3% of differentially bound regions were associated

with changes in NF-κB motif instances 86. In a separate study, Reddy et al. looked at instances of

allelic imbalance in the ChIP-Seq signal of 24 TFs (i.e., differential binding between maternal and pa-

ternal chromosomes) 87. While differentially bound regions were enriched for SNPs that disrupted

motif instances, only ~12% of differences could be explained by changes in motif sequences. Yet, al-

lelic imbalances in binding have been shown to be heritable and frequently transmitted from parents

to children 88, implying that the mechanisms underlying such binding variation are likely to have a

substantial genetic component.

Goal #2: To better understand the in vivo determinants ofTF binding, using

NF-κB as a model system

As previously discussed, a significant gap exists between the binding patterns of TFs in vivo and what

would be predicted purely on the basis of motif matches in genomic sequences. Most prominently,

the vast majority of binding sites predicted purely on the basis of sequence are not occupied in vivo60.

At the same time, widespread binding has been observed at genomic loci that do not harbor motif

instances for the bound TF 89. A better understanding of the mechanisms that influence TF binding

in vivo is essential for bridging this gap. The discovery of additional features that can predict in vivo

binding could be used to fine tune predictions of genetic variants with functional consequences.

In this section, I will argue that studying the genomic binding patterns of NF-κB is of significant

value towards understanding both the in vivo determinants of TF binding and the transcriptional

regulation of immune responses. NF-κB is the name given to homo- and hetero-dimers of certain

proteins with Rel homology domains. In humans, there are five subunits of the NF-κB family, each

encoded by a different gene: RelA/p65, RelB, cRel, p50 and p52. NF-κB dimers play central roles
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in signaling pathways for many key biological processes, including immune responses, lymph node

development, synaptic plasticity, and cell-fate determination90.

NF-κB is an ideal target for the study of the determinants of in vivo TF binding patterns and how

they vary across individuals. First, the binding of NF-κB subunits containing RelA has already been

shown to vary significantly across individuals, with over 7.5% of bound loci being variable 86. Second,

different types of NF-κB dimers possess distinct binding specificities in vitro91, but how these speci-

ficities translate into in vivo binding differences remains poorly understood. Furthermore, because

NF-κB binds DNA in dimeric form, this creates an additional layer of complexity: certain binding

sites may be occupied by some dimers but not others. Because certain NF-κB dimers act primarily as

activators (e.g., RelA:p50) whereas others act as repressors (e.g., p50:p50)92, mechanisms that alter the

preferences of dimers for specific binding sites could lead to transcriptional changes.

In addition, the exact sequence of NF-κB binding sites has been shown to affect transcriptional

output through allosteric mechanisms. The identity of the central nucleotide in the traditional κB

binding site can modulate co-factor recruitment, and therefore the extent of transcriptional activa-

tion, without significantly changing binding affinity93. For example, p52 homodimers in complex

with Bcl3 generally recruit coactivators when occupying sites with G/C central bases, but recruit core-

pressors when binding sequences with central A/T bases94. Whether other properties of binding site

sequences influence dimer recruitment and transcriptional output remains mostly unknown.

There are also abundant reasons for studying NF-κB binding for biomedical reasons. First, NF-

κB activation has been associated with a range of autoimmune and inflammatory diseases, including

rheumatoid arthritis, atherosclerosis, asthma and inflammatory bowel disease95. Genetic variants that

disrupt anNF-κB binding site in an enhancer element regulating TNFAIP3 have been associated with

increased risk of developing SLE 85. Furthermore, NF-κB activation has increasingly been proposed as

a mechanism linking inflammation to cancer through the induction of tumor promoting cytokines,

such as IL-6 or TNF-α96. Yet, despite considerable progress in understanding the signal transduction
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pathways that lead to NF-κB activation, little is known about how those signals are integrated into

NF-κB’s functions in the nucleus. Identifying the subunits that regulate specific pro-inflammatory

genes is of significant therapeutic interest.

Another key question about NF-κB relates to the roles played by each of the subunits and the dif-

ferent dimers they can form. The five NF-κB subunits share an N-terminal Rel-homology domain,

which functions as both a DBD and a dimerization domain90. RelA, RelB and c-Rel all possess C-

terminal transactivation domains. In contrast, p50 and p52 have C-terminal ankyrin repeats, which

typically have trans-repressive effects97. Yet, despite the similarities in domain structure across sub-

units, each of them exhibits a distinct knockout phenotypes98. For example, rela-/- mice die during

development as a consequence of TNF-α induced cell death, while relb-/- mice are viable but have

deficiencies in lymphoid organs, dendritic cells and T-cells98.

The signaling mechanisms that result in NF-κB activation have been traditionally divided into the

canonical and noncanonical pathways. The canonical pathway is associated with rapid immune re-

sponses (particularly inflammation)99, while the noncanonical pathway is associated with secondary

lymphoid organogenesis, B-cellmaturation and survival, anddendritic cellmaturation 100. The canon-

ical pathway is primarily regulated through the phosphorylation and subsequent degradation of sev-

eral inhibitors (IκBα, IκBβ and IκBε) that sequester NF-κB dimers in the cytoplasm. The noncanoni-

cal pathway, in contrast, is primarily controlled by the expression and processing of the p100 protein,

which is the precursor for p52 100. Whereas p105 is constitutively processed into p50 101, the processing

of p100 into p52 depends on post-translational modifications triggered by specific signaling events 102.

Canonical pathway activation is associatedwith the formation ofRelA:p50, c-Rel:p50, and c-Rel:c-Rel

and RelA:RelA dimers, while noncanonical activation leads primarily to the formation of RelB:p52

and p52:p5299. Although this scheme is conceptually clear and appealing, there is evidence of crosstalk

between the two pathways, primarily through the action of IκBδ, which is noncanonically regulated,

upon RelA dimers99. Furthermore, the extent to which the nuclear functions of NF-κB reflect the
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two pathway paradigm remains unclear.

For these reasons, it is important to study NF-κB binding in a cell type where both the canonical

and noncanonical pathways are active, and therefore, all subunits are present in the nucleus. Immor-

talized lymphoblastoid cell lines (LCLs) can be created by infecting primary B cells with Epstein-Barr

Virus (EBV) 103. In LCLs, the EBV-encoded protein LMP1 mimics the action of CD40 and activates

the canonical and noncanonical NF-κB pathways 104. In addition, studying the features that direct in

vivoNF-κB binding can be facilitated by performing experiments in a cell line for which complemen-

tary functional data are already available. TheGM12878LCLwas selectedby theENCODEproject for

extensive profiling 22, includingTF and histonemodificationChIP-Seq andRNA-sequencing. There-

fore, GM12878 represents an ideal system in which to study the complexities of NF-κB genomic bind-

ing and its connection to signaling pathways.

In the work described in Chapter 3, we examined the patterns of NF-κB binding by generating

and analyzing high-quality ChIP-Seq data for all five subunits in GM12878. This dataset is the first re-

ported instancewhere the binding sites of all subunits has been simultaneouslymapped genome-wide.

Analyzing these data provided several new insights into the determinants of NF-κB binding, includ-

ing newly appreciated dependencies on flanking sequences and putative modes of indirect binding

through recruitment by other TFs. This expanded model of binding determinants is likely to be use-

ful in identifying additional genetic variants that may affect NF-κB binding. More generally, these

results highlight the value of detailed in vivo profiling for TFs that are potentially relevant to specific

cell types or phenotypes. In Chapter 6, I discuss the implications of these observations and describe

how these data have already been used in other studies to identify regulatory variants that affect the

risk of developing allergies.
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Goal #3: To better understand trans regulatory variation in humans by sys-

tematically characterizing coding variants in transcription factors

Thus far, I have proceeded under the implicit assumption that differences in TF binding across in-

dividuals are primarily caused by changes in the sequences within or close to the binding sites. The

notion that the local sequence context of TF binding sites is important in distinguishing bound vs.

unbound motif instances is supported by functional evidence. For example, White et al. found that

84-bp sequences containing Crx motif instances were significantly more likely to drive expression in

reporter assays when they were bound in retinal cells than when they were not60. However, other

lines of evidence suggest that many, if not most, differences in TF binding across individuals cannot

be explained by local sequence variation. For instance, ~2/3 of NF-κB binding sites that are variable

across individuals lack any genetic variants within 200 bp 86.

Studies analyzing the inheritance patterns of gene expression levels have reached similar conclu-

sions. The expression levels of most human genes have been found to be heritable across a wide

range of tissues 105. The proportion of variance that can be explained by additive genetic effects, also

called the narrow-sense heritability (h2), has been estimated at 15-35% 106. However, variants detected

through statistical approaches (described below) have been unable to explain the majority of the ob-

served heritability 107,108.

These observations imply the presence of genetic variants that affect TF binding and gene expres-

sion across individuals, but have remain undetected thus far. Before explaining why such variants

may have been missed by current methods, I will first introduce some useful concepts. A commonly

used dichotomy for regulatory variants distinguishes those that act in cis and those that act in trans.

There are a few, mostly overlapping definitions for these two classes. For example, Gaffney defines

cis variants as those that exclusively modulate the expression of one allele, while trans variants affect

both alleles 106. Alternatively, cis variants can be defined as those affecting a gene whose TSS is located
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within a certain distance of the associated variant (typically < 1 Mb), whereas trans variants encom-

pass all other regulatory variants. Throughout this dissertation, I employ Gaffney’s definition, but in

practice the distinction will be irrelevant for the vast majority of cases.

The predominantmethod for finding genetic variants that alter transcript levels is called expression

quantitative trait loci (eQTL) mapping. At its core, eQTL mapping is a form of GWAS, where the

expression level of each transcript is modeled as a quantitative phenotype. Similarly to GWAS, the

typical outcome of an eQTL mapping study is a list of tag SNPs are deemed to affect expression of at

least one transcript at a level of confidence that exceeds a genome-wide statistical significance thresh-

old 109. As a consequence of mapping studies in multiple populations and tissue types, over 40,000

eQTLs have now been identified in humans (NCBI eQTL browser).

However, because of considerations related to statistical power, eQTLmapping studies have been

strongly biased in terms of the types of variants they identify. In theory, any of millions of genetic

variants observed in humans could have an effect on the expression of each of the ~20,000 human

genes. If all such pairwise combinationswere tested for statistical associations, themultiple hypothesis

testing burden would be enormous 110. Therefore, in practice, most eQTL studies have focused on

genetic variants located in relative proximity (< 1 Mb) to the gene whose expression they modulate.

This approach can significantly boost statistical power at the expense of strongly favoring the detection

of cis over trans eQTLs variants.

Other factors contribute to the challenges of finding trans variants through eQTLs mapping. For

example, computational approaches to correct for batch effects may sometimes incorrectly remove

signals for eQTLs that affect large numbers of loci 111. Similarly, eQTLmapping assumes that the total

amountofRNAis comparable across samples. Therefore, eQTLmapping is not suited for identifying

variants that cause widespread changes in absolute mRNA levels, an effect that has been observed, for

example, when the concentration of c-Myc is varied 112. Finally, there is evidence that the effects of

trans eQTLs that affect signaling pathways may remain hidden when assaying steady-state expression
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levels, as is the case in most studies 106.

Yet, the inability of cis variants to explain most of the observed heritability suggests that finding

trans variants is likely to be important for the goal understanding the landscape of heritable regula-

tory variation. Because of the limitations of statistical methods described above, new approaches are

needed in order to ascertain the prevalence and effects of trans variants. One potential approach is to

develop methods to predict likely trans variants computationally and then validate them experimen-

tally. However, such a strategy depends on the ability to identify genetic variants that are likely to have

regulatory consequences.

Genetic variants that alter TF binding sites are regarded as a commonmolecularmechanismunder-

lying cis-regulatory variation. An intuitive trans counterpart involves genetic variants that changeTFs’

DNA-binding preferences. For example, a coding mutations in a TF’s DBD could rewire transcrip-

tional networks by altering the genomic sequences that are bound at high occupancy. The relative

importance of such cis and trans regulatory mutations has been extensively debated in evolutionary

and developmental biology 113, without any consensus being reached.

In humans, many nsSNPs that alter TFs have been identified through large-scale sequencing stud-

ies. However, studying the consequences of coding variants in a systematic manner poses significant

challenges. As previously discussed, eQTL mapping is statistically underpowered for detecting asso-

ciations in trans. In the case of nsSNPs, this problem is further compounded by typically low minor

allele frequencies 114, which further reduces statistical power. In theory, techniques such as ChIP-Seq

could be used to study whether specific mutations alter the in vivo binding patterns of TFs. However,

the throughput of such experimental approaches is low. There are thousands of variants that could

potentially be tested and it remains difficult to predict which variants are likely to have an effect. As

such, detailed functional studies have only beenperformed for a handful ofTFmutationswith known

Mendelian disease associations 115.

In Chapter 4, I describe a combined experimental and computational approach to study coding
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variants that affect theDBDs of humanTFs. BecauseDBDs tend to be highly conserved both in terms

of structure and amino acid sequence, co-crystal structures of protein-DNA interfaces and metrics of

evolutionary conservation can be used to prioritize specific variants for experimental testing. In the

aforementioned study, we show that protein-binding microarrays can be used to compare the bind-

ing properties of reference and alternative alleles across many TFs. We compare the DNA-binding

perturbations caused by known Mendelian disease mutations and nsSNPs found in predominantly

healthy individuals. This approach enables us to identify variants with potential regulatory and phe-

notypic consequences based on in vitro binding data. In addition, we develop a framework to identify

additional, untested variants that are likely to affect DNA-binding. This work represents the first sys-

tematic study of coding variation in human TFs. The methodological advances and results derived

from it are likely to be of significant value for future efforts to understand the contributions of TF

nsSNPs to regulatory variation. In Chapter 6, I discuss the potential implications of widespreadDBD

variation in humans for understanding the heritability of gene expression.

Goal #4: Develop better tools to test hypotheses about the causality and

phenotypic effects of regulatory variants

Thus far, I have described several approaches for identifying putative regulatory variants, such as

eQTL mapping, enhancer assays and — in the case of coding variants — PBMs. Ultimately, the gold

standard test for the causality of regulatory variants is to experimentally show that a specific sequence

change alone can account for expression differences.

Traditionally, reporter assays have played a prominent role in testing the effects of putative cis regu-

latory variants. In a typical reporter assay, the enhancer sequence is placed upstream of a reporter gene

whose expression levels can be quantified optically, either through enzymatic reactions that create vis-

ible products (e.g., lacZ) or by fluorescence intensity (e.g., GFP). However, determining that a genetic

variant alters the expression of a reporter gene driven by a core promoter is only the first step in un-

26



derstanding the function of a variant. In order to obtain insights into the etiology of disease-causing

variants, it is often necessary to link the presence of a regulatory variant to a molecular phenotype.

Furthermore,multiple lines of evidence support amodelwhere polygenic effects on gene regulation

are prevalent. These effects encompass the additive influence of multiple eQTLs with small effects

acting on a given gene 106 and the influence of trans-acting variants, as described in Chapter 4. Because

reporter assays typically assay contiguous DNA fragments up to a few kilobases in size, testing the

combined regulatory effects of all genetic variants that affect a given gene is not always feasible.

Clearly, the optimal scenario in which to test the effects of regulatory variants involves measuring

the in vivo expression of genes when specific combinations of regulatory variants occur in their nat-

ural, chromosomal context. Because regulatory variants are sometimes tissue-specific 116, it is ideal to

perform such experiments in a cell- or tissue- type that is relevant to the organismal phenotype of

interest.

The ability to systematically assay the molecular phenotypes of regulatory variants in vivo will de-

pend on being able to edit genomic sequences efficiently and specifically. In the last few years, signifi-

cant progress has been made towards that goal. Here, I briefly review the technological developments

that have contributed towards making genome editing a viable approach for studying regulatory vari-

ation.

Methods for editing genomic sequences almost universally rely on the DNA replication and repair

machinery that is naturally present in organisms. Several biological processes that take place during

cell replication or DNA-damage repair can be used, under the right conditions, to replace genomic se-

quences with the sequence found in a template DNAmolecule. Under many physiologic conditions,

template sequenceswith sufficient homology to a target locuswill be incorporated into genomicDNA

at a small rate as part of the process of homologous recombination. In organisms with highly efficient

homologous recombination, such as yeast, this approach can be used to replace genomic sequences

after transformation or transfection of template DNA into dividing cells 117. A comparable approach
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was used to selectively edit genes in mouse embryonic stem cells 118, ultimately enabling the creation

of the first knockout mice. However, the natural efficiency of homologous recombination in most

organisms and cell types is too low to be practical.

The frequency of homologous recombination can be greatly increased by creating a double strand

break (DSB) in DNA. In the aftermath of a DSB, genomic DNA will typically be repaired by one of

two pathways: nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) 119. Repairs

performed by the NHEJ pathway have a relatively high probability of causing nucleotide insertions

and deletions (indels) at the site of the DSB, which is particularly useful for disrupting translational

reading frames. Meanwhile, HDR relies on the presence of a donor template: a sequence with suf-

ficient homology to the locus where the DSB occurred that it can be used as a template to repair the

damaged sequence. By using an exogenous donor template harboring specific mutations, the HDR

pathway can be used to introduce targeted changes into genomic DNA. As a consequence, the ability

to create DSBs at specific genomic loci is a key step in being able to edit genomes precisely.

DSBs can be reliably created by the action of certain endonucleases. However, many endonucleases

only possess limited sequence specificity. If used by themselves to cleave genomic DNA, DSBs would

be created inmany loci, which limits their ability to be used for site-specific genome editing. A subclass

of endonucleases known as “meganucleases” are able to recognize fairly longDNA sequences (>14 bp)

specifically 120 and induce targeted DSBs. However, engineering meganucleases with programmable

DNA-binding specificity has remained challenging, limiting their widespread application 121.

A successful strategy for creating targeted DSBs is to engineer chimeric proteins composed of a

sequence-specific DNA-binding domain fused to a sequence-agnostic nuclease, such as FokI 122. The

two most commonly used types of DBDs have been C2H2 zinc fingers (ZNFs) and TAL effectors

(TALEs). ZNF nucleases were developed first and have been used for gene editing applications in sev-

eral organisms, including human cell lines, fruit flies, rats, tobacco and maize 123. However, as with

meganucleases, engineering ZNF nucleases with custom binding preferences remains a laborious pro-
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cess, limiting their widespread use 123. Furthermore, targeting many A/T rich sequences with ZNF

nucleases has proven difficult 120.

TALEs were first discovered as DNA-binding proteins expressed by Xanthomonas bacteria dur-

ing infection of various plant species 124. TALEs posses an array of nearly identical repeat domains,

each spanning ~34 amino acids. 125. The repeat domains in TALEs were demonstrated to be essential

for sequence-specific DNA-binding 126 activity. It was also discovered that TALE proteins contain a

constant N-terminal region that preferentially engages in contacts with a thymine base 127, validating

observations that TALEs’ optimal binding sites often contained a 5’ T.

The first insights into the molecular basis of sequence-specific DNA recognition by TALEs were

obtained by comparing the protein sequences of naturally occurring TALEs and the promoter se-

quences of genes that were differentially regulated during infection. Through separate computational

approaches, a one-to-one correspondence between repeat sequences and the prefered nucleotides in

the target site was identified 128,129. In particular, residues 12 and 13 in the TALE repeat domains were

identified as determinants of binding preferences to specific bases 128,129. This pair of amino acids was

named the “repeat variable disresidues” (RVDs) 129.

These observations led to the notion of the “TALE code,” in which the identity of RVDs in con-

secutive repeat domains defined the protein’s DNA-binding site. For example, the presence of an

“HD”RVD indicated that particular repeat would preferentiallymake contacts with a cytosine, while

the presence of “NI” would favor adenosine 128. The discovery of the TALE code and the identifica-

tion of RVDs with preferences for each of the four nucleotides greatly facilitated the development of

programmable DNA-binding proteins. In principle, as long as the 5’ base in the binding site was a

thymine, any genomic sequence could be targeted.

The discovery of the TALE code was swiftly followed by the development of methods to assemble

TALEproteinswith customDNA-binding specificities 130. TheseTALE constructs have been fused to

a wide variety of domains, including nuclease 131, trans-activation 132, DNAdemethylase 133, and histone
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demethylase 134 domains. The programmable nature of TALE DNA-binding domains enabled the

effects of each of these domains to be targeted to specific genomic loci. As such, monomeric TALEs

could be used as programmable TFs or to selectively edit histone modifications.

TALE nucleases (TALENs), in particular, have been widely used for genome editing. Some of the

the earliest applications included the creation of specific gene knockouts in human cell lines 135 and ze-

brafish 131, which were achieved by using TALENs to create indels at target exons. Pairs of TALENs,

each carrying a FokI domain and targeting genomic sequences in close proximity, were used success-

fully to introduce targeted modifications in human embryonic stem cells 136. TALENs were found to

have comparable cleavage efficiency to ZNF nucleases, whichmade them preferable due to the greater

ease of designing TALEs to target specific sequences 131,136.

However, while engineered TALENs were generally successful at editing their intended target se-

quence, multiple studies reported significant rates of off-target activity 137–139. Often, these off-targets

could not be easily predicted based on genomic sequences. In other words, sites with several mis-

matches relative to the consensus binding site predicted by the TALE code were still being edited at

relatively high rates. Whilemethods were developed to assay the specificity of TALENs 140 experimen-

tally, these approaches did not translate to better off-target prediction for TALENs without the need

for laborious experiments, limiting their widespread applicability.

In Chapter 5, I describe the development of an improved model of TALE specificity, which we

refer to as SIFTED (Specificity Inference For TALEffectorDesign). The first step in creating SIFTED

was the high-throughput measurement of TALE-DNA binding preferences using custom PBMs. To

analyze these data, I developed a novel statistical model to infer free energy parameters from PBM

data. Next, I developed a regression model that was trained on the PBM-derived measurements to

predict the free energy parameters of proteins that had not been assayed.

Several tools for predicting TALE specificity had been released prior to the creation of SIFTED.

In Chapter 5, I describe how the predictive accuracy of SIFTEDwas benchmarked against these other
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tools in a variety of usage scenarios, ranging fromTALEN-mediated genome editing to transcriptional

activation by monomeric TALEs. The SIFTED model consistently performed better than other ex-

isting tools when compared across a range of applications. This improved predictive performance was

achieved through a machine learning approach that was able to infer interdependencies between the

RVDs in adjacent TALE repeats.

The development of SIFTEDhas provided insights that increase the precision for designingTALEs

that are optimized to maximize on-target andminimize off-target effects. This improved understand-

ing of TALE DNA-binding is likely to facilitate a wide range of applications, including genome edit-

ing, targeted epigenetic modification, and transcriptional activation or repression. All of these ap-

plications are likely to be of use in the process of characterizing regulatory variation in humans. For

example, programmable transcriptional repressors can be used to further support hypotheses about

the effects of regulatory variants that disrupt motif instances. If a TALE repressor binds the enhancer

where an activator motif is disrupted by a SNP, one would expect to see a consistent effect on target

gene expression.

However, no discussion about the applicability of SIFTED would be complete without mention-

ing a major development in programmable DNA targeting: the discovery of CRISPR-Cas9 and its

subsequent use for many of the same applications as TALEs. In Chapter 6, I discuss the implications

of this development and how it may affect the criteria for choosing a platform for genome editing and

related applications.

In summary, I have presented a case for why studying regulatory variation is a key problem in hu-

mangenetics. I have also describedhoweachof the developments presented in this dissertation is likely

to help. In the following chapters, each of these developments is described in full detail. In Chapter

6, I discuss the significance of the findings derived from each project, individually and in aggregate, as

well as their limitations and potential future directions.
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All of life is trade-offs.

Steve Gisselbrecht

2
Highly parallel assays of tissue-specific

enhancers
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Abstract

Transcriptional enhancers are aprimarymechanismbywhich tissue-specific gene expression is achieved.

Despite the importance of these regulatory elements in development, responses to environmental

stresses, and disease, testing enhancer activity in animals remains tedious, with aminority of enhancers

having been characterized.Here, we have developed ‘enhancer-FACS-Seq’ (eFS) technology for highly

parallel identification of active, tissue-specific enhancers inDrosophila embryos. Analysis of enhancers

identified by eFS to be active in mesodermal tissues revealed enriched DNA binding site motifs of

known and putative, novel mesodermal transcription factors (TFs). Naïve Bayes classifiers using TF

binding site motifs accurately predicted mesodermal enhancer activity. Application of eFS to other

cell types and organisms should accelerate the cataloging of enhancers and understanding how tran-

scriptional regulation is encoded within them.

2.1 Background

In metazoans, gene expression is regulated in a tissue-specific manner predominantly via noncoding

genomic regions referred to as cis regulatory modules (CRMs) that typically regulate the expression of

nearby gene(s) 141. CRMs contain one or more DNA binding sites for one or more sequence-specific

transcription factors (TFs) that activate or repress gene expression. CRMs that activate gene expression

are frequently referred to as transcriptional enhancers 142.

The fruit flyDrosophila melanogaster has served as a powerful model organism for studies of tran-

scriptional enhancers 142. It has been estimated that there are ~50,000 enhancers in theD. melanogaster

genome 143, yet to date only ~1,800 are known 144. Technology for identifying active enhancers in par-

ticular cell types would aid in defining functional cis regulatory elements and would facilitate com-

putational identification of key regulatory elements important for cell-type specific enhancer activ-

ity. Currently, TF-occupied regions identified by chromatin immunoprecipitation (ChIP) are tested
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by low-throughput, traditional reporter assays64,145. Automated image analysis of reporter assays in

Drosophila embryos 143,146 requires vast infrastructure and resources. Although other highly parallel

technologies for testing the activity of cis regulatory elements have been developed recently76,81,147–150,

none of those approaches directly identify enhancer activity in a genomic context (i.e., integrated into

the genome) in particular cell types of interest in a whole animal.

We have developed a new technology, termed ‘enhancer-FACS-Seq’ (eFS), for highly parallel identi-

fication of active, tissue-specific transcriptional enhancers in the context of wholeDrosophila embryos

(Figure 2.1a). As with traditional enhancer assays, each candidate CRM (cCRM) is cloned upstream

of a reporter gene. Our key innovation is that we replace the use of microscopy to screen for tissue-

specific enhancers with fluorescence activated cell sorting (FACS) of dissociated cells. This approach

utilizes a two-marker system: in each fly, one marker (here, the rat CD2 cell surface protein 151) is used

to label cells of a specific tissue so that they can be sorted by FACS, and the other marker (here, green

fluorescent protein (GFP)) is used as a reporter of CRM activity. Cells are sorted by tissue type and

then byGFP fluorescence. Thus, we are able to screen hundreds of cCRMs in a time- and cost-efficient

manner.

2.2 Results

2.2.1 Library of candidate cis regulatory modules (cCRMs)

We focused on embryonic mesoderm as our model system because: (a) it comprises a variety of cell

types, (b) themajor regulatory factors governingmesodermdevelopment are conservedbetween verte-

brates andDrosophila 152, and (c) numerous data sets are available for genomic features associated with

active enhancers. We created a plasmid library of hundreds of reporter constructs for ~1 kb cCRMs

(Methods) located next to mesodermally expressed genes and comprising: ChIP-CRMs64 bound by

at least one of the somatic mesoderm TFs Twist (Twi), Tinman (Tin), or Myocyte enhancing factor 2
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Figure 2.1: Enhancer-FACS-Seq overview. (a)Overall design of enhancer-FACS-Seq (eFS). (b) FACS purification of

GFP+CD2+ cells prepared from embryos resulting from a cross ofMef2-I-ED5:CD2 females to (upper panel) cCRM

library transgenic males, and (lower panel)wild type (GFP-negative) males. In each panel, the plot shows yellow (``PE-

A'') versus green (``FITC-A'') fluorescence for cells that pass the CD2+ gate out of 106 cells prepared from embryos. (c)

Representative example of a cCRM, surrounding by native genomic flanking sequence, detected by eFS. (d) Enrichment

ratios for cCRMs in twi:CD2- cells, as compared to twi:CD2+ cells. Large points: significantly enriched (Padj < 0.1), small

points: Padj > 0.1.
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(Mef2); regions bound by the transcriptional coactivator CREB binding protein (CBP) 153,154; regions

containing DNase I hypersensitive sites (DHS) 155; dense clusters of evolutionarily conserved binding

sitemotif occurrences formesodermal TFs 56; and additional regions surrounding knownmesodermal

genes (Methods).

2.2.2 Enhancer-FACS-Seq (eFS) experiments

Our cCRM plasmid library was injected into two different batches of embryos. In the first batch, we

injected ~3,500 embryos, and crossed transformant males to females from two different CD2 lines

to identify enhancers active in distinct tissues: twi:CD2 for whole mesoderm, and Mef2-I-ED5:CD2

for a subset 156 of largely fusion-competent myoblasts (FCMs). In the second batch, ~4,500 embryos

were injected, from which transformant males were crossed to duf :CD2 females to identify activity

in somatic mesoderm founder cells (FCs). Each resulting embryo has one GFP reporter under the

control of one cCRM integrated at the same genomic site by theφC31 integrase 157. Use of a site-specific

integrase avoids artifacts thatwould result ifmore thanone cCRMwerepresent in a cell and also avoids

potential positional effects on enhancer activity.

At developmental stages 11-12, embryos were dissociated and purified by FACS. From the twi:CD2

embryos, we collected ~315,000 GFP+CD2+ cells, ~198,000 GFP+CD2- cells and 1 x 106 mock-sorted

cells (i.e., ‘input’) (see Methods; Figure 2.1b). We collected fewer GFP+CD2+ cells from the Mef2-

I-ED5:CD2 and duf :CD2 embryos since the Mef2-I-ED5 enhancer is active in approximately 50-fold

fewer cells than is the twi enhancer, which is active in one-quarter to one-third of all cells at this de-

velopmental stage, while the duf enhancer is active in the vast majority of the 660 FCs per embryo,

nearly an order of magnitude fewer cells than for theMef2-I-ED5 enhancer.

To analyze cCRM integration into embryos, we extracted genomic DNA from the collected cells,

amplified the cCRMsbyPCR, and sequenced the resulting ampliconson the Illuminaplatform(Meth-

ods).Wemapped the sequencing reads (Figure 2.1c) to theD.melanogaster genomeusing the segemehl
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analysis package 158. 213 and 400 cCRMs were detected (false discovery rate (FDR) < 5x10-5; see Meth-

ods) as having integrated into the fly genome from the first and second batches of injections, respec-

tively. The greater number of cCRMs detected from the second batch was likely due to collection of

transformant progeny from a larger number of injected embryos.

To evaluate the enhancer activity of the detected cCRMs, we calculated each cCRM’s enrichment

in a particular cell population as compared to the corresponding ‘input’ sample (Figure 2.1a) using

the DESeq R package 159. The input sample provides information on the baseline read counts due to

cCRM representation within the embryo populations. In control experiments CD2+ and CD2- cells

exhibited no significant differences in their cCRM content (Figure 2.1d). Therefore, CD2+ cells were

used as the input sample for twi:CD2+GFP+, while for the rarer FCM and FC cell types CD2- cells

were used as the input sample.

In total, 150 of the detected cCRMs were identified by eFS as being active enhancers (adjusted P-

value (Padj) < 0.1) in at least one cell population. Of these, we identified 57 as being active mesodermal

enhancers: 34 in whole mesoderm (Figure 2.2a), 18 in FCMs (7 of which were also identified in whole

mesoderm), and 20 in FCs (3 and 8 of whichwere also identified in FCMs orwholemesoderm, respec-

tively). 12 of these 57 active mesodermal cCRMs overlap by at least 100 bp with a known mesodermal

enhancer at an overlapping developmental timepoint in the REDfly database of curated CRMs 160,

while the remaining 45 represent putative novel mesodermal enhancers, including 16 in FCMs and

14 in FCs. Analysis of GFP+CD2- cells collected from twi:CD2,Mef2-I-ED5:CD2, and duf :CD2 em-

bryos revealed 93 putative non-mesodermal enhancers (Figure 2.2b). A recent study screened a ge-

nomic DNA library for enhancer activity in the S2 cell line and in cultured ovarian somatic cells76;

only 13 of the 57 total nonredundant enhancers active in mesoderm by eFS overlap by at least 100

bp with enhancers found in that study, although their screen does not provide information about

enhancer activity in the same mesodermal cells. This comparison highlights the value of eFS for iden-

tifying enhancers active in particular cell types of interest within whole embryos.
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Figure 2.2: Overview of CRMs detected by eFS. (a) Enrichment ratios for cCRMs in twi:CD2+GFP+ cells, as compared

to twi:CD2 input cells. Large points: significantly enriched (Padj < 0.1), small points: Padj > 0.1. Results from traditional re-

porter assays revealed cCRMswhose GFP expression showswidespread (red), limited (blue), or no (black) co-expression

with twi:CD2 expression. (b)Venn diagram of active enhancers (Padj < 0.1) identified from different cell populations:

twi:CD2+;Mef2-I-ED5:CD2+; duf:CD2+; nonredundant union of twi:CD2-,Mef2-I-ED5:CD2-, and duf:CD2- (``Merged

CD2-'').
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2.2.3 Validation of eFS results

To validate our eFS results, we performed traditional reporter assays in whole Drosophila embryos

(see Methods). For the twi:CD2+ eFS data, we tested 69 of the cCRMs analyzed by eFS, including:

21 putative active mesodermal enhancers (Padj < 0.1) and 48 putative inactive cCRMs (Padj > 0.1).

The specificity of eFS was excellent among significantly enriched cCRMs: 18 of the 21 tested putative

mesodermal enhancers drove expression in mesoderm at stage 11-12 (Figure 2.3). eFS exhibited moder-

ate sensitivity for significantly enriched enhancers that were active in relatively few mesodermal cells:

9 gave expression patterns that were manually assessed as ‘widespread co-expression’ (i.e., expression

in a majority of strongly twi:CD2+ cells), while the other 9 drove ‘limited co-expression’ in smaller

subsets of twi:CD2+ cells. 12 of the 48 putative inactive cCRMs drove ‘limited co-expression.’ Some

of these eFS false negatives drove expression in cells that express low levels of CD2 and might have

beenmissed by our use of a relatively stringent FACS gate for collecting twi:CD2+ cells. Although the

data are slightly noisier for FCM and FC enhancers (6 out of 9 tested putative FCM enhancers, and 9

out of 11 tested putative FC enhancers, drove mesodermal expression) likely because roughly 20-fold

fewer CD2+GFP+ cells were collected from the more specific Mef2-I-ED5:CD2 and duf :CD2 lines,

the results nevertheless demonstrate that eFS can successfully identify enhancers active in rarer cell

types within whole embryos. We also evaluated the activity of 47 cCRMs identified by eFS as active

in any of the three CD2-GFP+ cell collections, and found that the majority (35) were indeed active at

this developmental stage.

2.2.4 Comparisons of eFS data to other genomic data types

Weexamined the eFS-identified enhancers for enrichment of previously described enhancer-associated

chromatin marks, which were not used in the selection of cCRMs tested by eFS. Comparison to data

from batch isolation of tissue-specific chromatin for immunoprecipitation (BiTS-ChIP) for mesoder-
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Figure 3 

a 

b 
Figure 2.3: Validation of eFS predictions. (a) Sample validations of eFS predictions of enhancer activity. Constructs

scored as driving ``widespread co-expression'' drove GFP specifically in a large fraction of themesoderm (e.g., so-

matic mesoderm, bracketed, in CBP2862) or in mesodermal plus non-mesodermal cells (ChIPCRM3152). ``Limited

co-expression'' generally described expression in isolatedmesodermal cells (arrowheads, in ChIPCRM3429 and

CBP5467) or in a specificmesodermal structure. Co-expression is observed as green and purple in the same cells,

since the GFP in these embryos is nuclear, while CD2 is expressed on the cell surface. Assessment of co-expression

was performedwith the annotator being blind to the predicted activity of the cCRMs.
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mal cells from stage 10-11 embryos 161 showed that acetylation of histone H3 on lysine 27 (H3K27ac),

monomethylation of histone H3 on lysine 4 (H3K4me1), H3K4 trimethylation (H3K4me3), H3K79

trimethylation (H3K79me3), and RNA Pol II, all of which previously have been found to be asso-

ciated with active enhancers70,80,161,162, are enriched (area under the receiver operating characteristic

curve (AUC)≥ 0.6, P < 0.05 byWilcoxon-Mann-Whitney U-test) among the enhancers found to be

active in mesoderm by eFS (Figure 2.4). However, in contrast to a prior report that H3K27 trimethy-

lation (H3K27me3) was depleted among active mesodermal enhancers 161, we found H3K27me3 to be

enriched among mesodermal enhancers. We also observed enrichment of H3K27Ac, H3K4me1 and

H3K9Ac in comparisons of modENCODE data for whole embryos at 4-8 hr 153 to active enhancers

identified by eFS in duf :CD2- cells, which approximate whole embryo samples (Figure 2.4). While

H3K9Ac has been described as amark of active transcription start sites 163, our observed enrichment of

H3K9Ac among active enhancers supports an earlier observation of H3K9Ac in the ‘strong enhancer’

chromatin state in human cells71. As expected, overall there is a greater enrichment of DHSs identi-

fied from stage 5, 9, or 10 embryos, as compared toDHSs from later stages of development, among our

enhancers, which were generated from stage 11-12 embryos. CBP occupancy was least enriched among

these various enhancer-associated genomic features; these results suggest that CBP does not play a pri-

mary role in enhancer activity at this stage of embryonic development, and are consistent with a recent

report of p300-independent enhancers in human cells 164.

Our collections of active enhancers allowed us to investigate which genomic data types64,153–155 pro-

vide the greatest utility in identifying likely enhancers. Occupancy by sequence-specific TFs (Twi,

Tin, Mef2, Bagpipe (Bap), Biniou (Bin)) expressed specifically in the mesoderm was by far most en-

riched among activemesodermal enhancers (Figure 2.4). DHSs 155 were nearly as enriched as enhancer-

associated histone modifications (Figure 2.4).
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Figure 2.4: Enrichment of genomic features in eFS positives. Enrichment of (a)DHS, (b) histonemodifications, and

(c) TF ChIP-binding) associated with active enhancers in mesoderm (twi:CD2+) or in approximately whole embryos

(duf:CD2-). AUC: area under receiver operator characteristic curve. * indicates P < 0.05 byWilcoxon-Mann-Whitney

U-test.

2.2.5 Analysis for over-represented transcription factor binding site mo-

tifs and combinations

Next, we separately analyzed each of the three sets of eFS-identified mesodermal enhancers (i.e., in

whole mesoderm, FCMs, or FCs) for over-represented TF binding site motifs and pair-wise motif

combinations that might be required for enhancer activity. Briefly, we used the PhylCRM and Lever

algorithms 56 to determine enrichment of matches, scored according to their evolutionary conserva-

tion, to 567 publicly available Drosophila TF binding site motifs64,165–168 (see Methods). Numerous

motifs were significantly enriched (AUC≥ 0.65, FDR≤ 0.1) either individually or in pair-wise com-

bination (Figure 2.5a) for the whole-mesoderm and FCM enhancers.

For each of these two sets of eFS-positive cCRMs, we observed strong enrichment of the primary,

knownmaster regulator of that cell population: Twi forwholemesoderm 169, andLmdforFCMs 156,170.

Motifs for other knownmesodermal regulators were found in enriched combinations, including Bap,

Lola-PC, andMef2 inwholemesoderm, andTwi andMef2 inFCMs.Wealso saw strong enrichment of

motifs for several sequence-specificDNA-bindingproteins– z, grh, andTrl (also knownasGAGAFac-
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tor) – known to participate in recruitment of chromatin-modifying PcG and trxG proteins 171; these

results support prior findings of the enrichment of the z and/or Trl motifs among regions bound by

Mef2, Twi, or Tin in ChIP-chip 172. For the eFS-positive FC enhancers, no individual motifs or com-

binations thereof exceeded our statistical significance criteria.

cCRMs that appear to be active in FCMs show enrichment for a variety of conserved motifs (e.g.,

Twi andTrl) in combinationwith a conserved Lmdmotif, supporting the previously observed enrich-

ment of these motifs in Lmd ChIP-Seq peaks 165. We also observed numerous significantly enriched

motif combinations (e.g., many involving the uncharacterized zinc finger protein CG7928) not found

in the Lmd ChIP-Seq study 165. Since eFS data are not constrained by occupancy by a particular TF,

they allow for a more unbiased identification of cis regulatory motifs.We also observed enrichment of

numerous motif combinations comprising a master regulator and a factor with either ubiquitous or

mesoderm-specific expression at the appropriate stage but no previously characterized role in meso-

derm development (e.g., schlank, Lola-PK) , suggesting novel regulators of mesodermal expression

(square nodes in Figure 2.5a).

2.2.6 Machine learning classifier to predict mesodermal enhancer activ-

ity

We developed a machine learning approach to model whether cCRMs will be active or inactive in

mesoderm or specifically in FCMs. We selected the mesodermal TF binding site motifs64,168, using

forward feature selectionwithin 10-fold cross-validation, thatweremost discriminatory in distinguish-

ing active versus inactive cCRMs (seeMethods).We then used only the eFS data to train aNaïve Bayes

classifier 173 (Figure 2.5b) based on the number and quality of matches to the discriminatory motifs.

We independently trained models for whole mesoderm, FCMs, and FCs. Since the motifs contribute

independently to these classifiers (i.e., strict combinations of motifs are not required), this approach

can potentially capture flexible, partially overlapping cis regulatory codes.
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Figure 2.5: Motif enrichment and classification analysis of eFS CRMs. (a) TF binding site motifs or motif combinations

significantly enriched (AUC≥ 0.65, FDR≤ 0.1) among eFS-identified active enhancers in twi:CD2+ cells. Nodes rep-

resent motifs for sequence-specific DNA-binding proteins that target chromatin-modifying PcG and trxG complexes

to DNA (triangles), major mesodermal regulators (black circles), other factors known to have a role in mesodermal gene

expression (gray circles), putative novel regulators (black squares); putative regulatorymotifs for which the represen-

tative factors shown are not expressed in the embryonic mesoderm at the appropriate time (gray squares) andmay be

recognized by other trans-acting factors. Edges represent significant pair-wise AND combinations. Node diameter

is proportional to (AUC-0.5)2 considering the Lever AUC for the individual motif. (b) Schema of classifier analysis. (c)

Maximum Intensity Projection of GFP expression driven by ChIPCRM6084, correctly predicted to drive co-expression

with twi:CD2. Co-expression is observed andwas assessed as described in Figure 2.3.
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We assessed the accuracy of our models in predicting enhancer activity by 10-fold cross-validation.

The whole mesoderm model achieved an AUC of 0.74 (P = 3.9 x 10-4, Wilcoxon-Mann-Whitney

U test) using 12 discriminatory motifs, while the FCM-specific model performed even better, with

an AUC of 0.93 (P = 1.2 x 10-6, Wilcoxon-Mann-Whitney U test) using 3 motifs. Importantly, these

models outperformed ones based solely on previously known cis regulatory motifs for mesoderm and

FCMs (AUC of 0.59 and 0.72, respectively; see Methods). A classifier was trained for FCs using the

same procedure, but it did not achieve classification performance that was statistically significant (P-

value > 0.05, Wilcoxon-Mann-Whitney U test).

To further demonstrate the practical utility of our computational models, we tested whether they

could predict the activity of cCRMswhose activity had not beenmeasured by eFS.We tested 39 classi-

fier predictions by traditional reporter assays: 10 were predicted to be active, and 29 were predicted

to be inactive, in mesoderm. Six out of 10 cCRMs predicted to be active enhancers in mesoderm

drove co-expression of GFP with CD2 (Figure 2.5c); 19 out of 29 cCRMs predicted to be inactive

drove no expression in CD2+ cells, while 9 of the 10 remaining predicted negative cCRMs drove lim-

ited co-expression at stages 11-12. Thus, our models based on motif content quite accurately predict

cCRM activity in mesodermal tissue. Indeed, consistent with many of the twi:CD2+ eFS-positive en-

hancers in the training set exhibiting ‘widespread co-expression’ with CD2 and fewer exhibiting ‘lim-

ited co-expression’, our classifier appears to perform better in predicting the activity of cCRMs with

‘widespread co-expression’.

2.3 Discussion

Our results demonstrate the utility of eFS technology for highly parallel testing of cCRMs for tissue-

specific enhancer activity. Considering the various genomic features enriched among active mesoder-

mal enhancers, no single data type (sequence-specific TF binding, histonemodifications, orDHS)was

most enriched across all three tissues. Moreover, none of the different classes of genomic features that
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we used to prioritize cCRMs for testing by eFS (i.e., ChIP-CRMs, CBP-bound regions, DHS) was sig-

nificantly enriched (p < 0.1) among active versus inactive cCRMs considering either each of the three

mesodermal CD2+ cell populations separately or their nonredundant union. It is perhaps not surpris-

ing that these regions were not enriched in either the Mef2-I-ED5:CD2+GFP+ or duf :CD2+GFP+

data, since both FCMs and FCs correspond to relatively rare cell types and also since many of the

putative regulatory regions might drive expression in other cell types as the adjacent genes are often

expressed in more than just FCMs or FCs and not necessarily at this developmental stage.

Computational motif analysis of the cCRMs enriched for activity in whole mesoderm or in FCMs

led to the discovery of novel cis regulatorymotifs for these tissues and allowed us to train classifiers that

accurately predict the activity of cCRMs in these tissues. Future studies will be needed to determine

the regulatory functions of the putative mesodermal TFs suggested by the motif analysis results. Our

observed enrichment of binding sites for PcG and trxG recruitment factors, and combinations thereof

withubiquitously expressed andmesoderm-specificTFs, in active enhancers suggests amodel inwhich

regulatory competence of a noncoding region requires the confluence of binding sites for chromatin

factors with those for tissue-specific TFs.

The results of our classifier analysis demonstrate the utility of eFS data in learning cis regulatory

sequences and indicate that cis regulation in FCMs is specified by a smaller set of TFs than those used

in regulation of a broader class of mesodermal genes expressed in a wider range of cell types, each of

whichmight utilize different cis regulatory codes, consistent with prior studies suggesting plasticity in

mesodermal cis regulatory codes64,174. Likewise, the lack of a statistically significant classifier for FCs

is likely due to the heterogeneity of the FC population and their associated enhancers 167,174; identifi-

cation of enhancers by eFS using CD2 driver lines specific to subsets or even unique FCs should aid in

the elucidation of FC-specific cis regulatory codes. In addition, our results on enrichment of various

histone modifications within the sets of active mesodermal enhancers are consistent with the model

that there exist different classes of active enhancers that show enrichment for different sets of histone
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modifications 161.

Here, we applied the eFS technology to the discovery of muscle enhancers. However, eFS can be

used to test cCRMs in any other cell type that has at least one known enhancer, by constructing CD2

driver lines using known enhancers active in those cell types. Importantly, eFS can be used to screen

cCRMs without any prior functional evidence (e.g., ChIP data). Moreover, eFS can be adapted for

use in other organisms, including vertebrates; the φC31 integrase system has been employed success-

fully in other species, including zebrafish 175, human and mouse cells 176, and mice 177. In addition, the

eFS technology could be implemented using a different site-specific recombinase or other transforma-

tion method. Broader application of eFS should greatly expand the repertoire of well-defined CRMs

and facilitate the development of a more comprehensive picture of the landscape and organization of

CRMs across genomes.

2.4 Methods

2.4.1 Cloning and preparation of candidate CRMs (cCRMs) library

Selection of candidate CRMs (cCRMs)

We designed our cCRM library to comprise ChIP-CRMs64 bound by a somatic mesoderm (SM) TF

or by the transcriptional coactivator CBP 153,154, DNase I hypersensitive sites (DHSs) 155 near or not

near a mesodermally expressed gene, regions tiling the noncoding DNA around 4 genes, and a num-

ber of control regions. Specifically, we selected 491 cCRMs, which fall into 5 categories: (1) 288 ChIP-

CRMs64 bound by a somatic mesoderm (SM) TF (Twi, Tin, or Mef2); (2) 38 regions bound by the

transcriptional coactivator CBP 153,154 and located next to mesodermally expressed genes lacking adja-

centChIP-CRMs (note: 45 of the 288 selectedChIP-CRMsoverlapCBP-bound regions); (3) 58 regions

containing DHSs 155 located next to mesodermally expressed genes lacking adjacent ChIP-CRMs; (4)

41 cCRMs predicted by the PhylCRM algorithm on the basis of dense clusters of evolutionarily con-
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served TF binding site motif occurrences 56 adjacent to genes expressed in either somatic or cardiac

mesoderm; and (5) 64 genomic windows tiling the noncoding DNA surrounding 10 genes (cib, mud,

nau, jumu, rgr, slou, CG3303, CG11202, CG13794, CG15319) that we selected on the basis of biological

interest and/or compact noncodingDNA. For each tiled gene, the intergenic sequences upstream and

downstream of the gene and any introns longer than 1 kb were divided into overlapping segments of

~1 kb (e.g., nt 1–1000, 501–1500, 1001–2000, etc.). Introns 200–1,000 bp long were includedwith addi-

tional coding DNA to extend them to a size of ~1 kb. All cCRMs were chosen to be 900-1,100 bp long

to avoid potential PCR bias in later steps after cell sorting.

473 of the 491 cCRMs (96.5%) were successfully cloned into the eFS vector, as determined by Il-

lumina sequencing of the resulting pooled, cCRM plasmid library (see below). Of the 473 injected

cCRMs (see below), we detected (false discovery rate < 5x10-5; see Section 2.4.7 below) 189 cCRMs in

the twi:CD2 ‘input’ samples, 213 in theMef2-I-ED5:CD2 input samples, and 411 in the duf :CD2 input

samples; in total, 431 cCRMs were detected in at least one input sample. The remaining 42 cCRMs

may have been missed due to underrepresentation in the injected cCRM plasmid library, stochastic

lack of integration at the phiC31 genomic integration site, or stochastic underrepresentation among

germline stem cells that led to the collected embryos.

PCR amplification of cCRMs

A two-step PCR amplification was used to include Gateway attB sites, and specific forward and re-

verse sequencing primers. We performed these PCRs in five 96-well plates, with a sixth plate to reat-

tempt initially poor or failed PCRs; >95% (474/494) of the selected cCRMs were successfully am-

plified by the two-step procedure. First round PCR was performed in 25 μL reactions with Phusion

enzyme (2XMasterMixwithHF buffer) (NewEngland Biolabs) using 50 ngDrosophila melanogaster

OreR genomic DNA as template and 2.5 pmol of each PCR primer. Primer pairs were designed us-

ing the MacVector (v. 11.1) (MacVector, Inc.) primer design function, starting with default parame-
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ters and relaxing them stepwise until a suitable primer pair was found. Common PCR primer se-

quences were engineered onto the 5’ ends of each forward (SEQ1: CAAGACGAGGCTATGCTC-

TAGC) and reverse (SEQ2: TAGAGTTGGCTTGCCATAGACC) PCR primer. Cycling conditions

were as follows: 1 x 30” @ 98°C; 30 x [5” @ 98°C, 10” @ 60°C, 30” @ 72°C]; 1 x 5’ @ 72°C; hold @

4°C. Second round PCR was performed under identical conditions, using 1 μL of a 1:500 dilution of

first round PCR (in water) as template and a common primer pair (attB1-SEQ1: GGGGACAAGT-

TTGTACAAAAAAGCAGGCTCAAGACGAGGCTATGCTCTAGC and attB2-SEQ2: GGGGA-

CCACTTTGTACAAGAAAGCTGGGTAGCTAGAGTTGGCTTGCCATAGACC).

Design of reporter vector for eFS.

We created the vector for enhancer-FACS-Seq, pEFS-Dest, by blunt-end cloning the 1.8 kb HindIII-

SpeI fragment of pPelican 178 (containing a nuclear-localizedGFP reporter construct with agypsy insu-

lator element upstream of theMCS andminimal promoter) into pWattB, then replacing theMultiple

Cloning Site with a cassette providing attR1 and attR2 sites for Gateway cloning.

A Gateway LR cloning reaction between pEFS-Dest and a donor plasmid containing a cCRM

flanked by attL1 and attL2 sites results in the insertion of the cCRM proximal to the minimal pro-

moter driving expression of the reporter gene (see below). pWattB was made by inserting (1) theϕC31

attB site from Streptomyces lividans 157 and (2) themini-white gene into the small cloning vector pSP73

(Promega). The ϕC31 attB site supports highly efficient, site-specific integration of plasmids derived

from this vector into the genome of flies that carry an attP transgene whenϕC31 integrase is expressed;

the site-specificity of the targetmeans that a library of reporter plasmids can be injected and only a sin-

gle plasmid per haploid genomewill integrate. Additionally, site-specific integration permits the selec-

tion of an ideal insertion site conferring negligible position effects on reporter gene expression 179. The

mini-white gene permits selection of transformant adult flies by eye color. The reporter cassette com-
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prises the Hsp70 minimal promoter driving expression of a nuclear localization signal-tagged EGFP

genewith an SV40polyadenylation sequence 178.Wehave tested pEFSby inserting the previously char-

acterized mesodermal enhancers for even skipped 45, Ndg 167, and the Lbl-expressing FC 167. In each

case, GFP expression recapitulated the characterized activity of the enhancer.

Purification,normalizationandcloningofcCRMlibrary intoeFSreporter

vector.

Aliquots of all PCR reactions were run on ethidium bromide agarose gels along with High DNA

Mass Ladder (Invitrogen) and photographed and roughly quantified using Quantity One software

(BioRad). Equal masses of each 900-1,100 bp band were calculated from this quantification, pooled,

precipitated, and gel-purified, then cloned as a pool using Gateway BP Clonase II (Invitrogen) into

pDONR221 (Invitrogen) according to the manufacturer’s protocols. Cloning reactions were trans-

formed into commercial competent E. coli Top10 cells (Invitrogen) and plated on LB+kanamycin

agar, yielding ~30,000 colonies. These colonies were scraped up and a plasmid pool purified from

them, from which the combined inserts were cloned using Gateway LR Clonase II (Invitrogen) into

pEFS-Dest. Transformed cells were plated on LB+ampicillin agar, yielding ~30,000 colonies, from

which the final library plasmid pool was prepared for embryo injection.

In a preliminary test of PCR insert retrieval and Illumina library preparation (described in detail

in Section 2.4.4 below), libraries prepared from dilutions of this plasmid pool (here, diluted to a fi-

nal estimated concentration of 50,000 plasmid molecules in the plasmid sample prior to PCR) were

sequenced. According to the sequencing data and our read mapping algorithm and criteria described

below, 473 of the 474 successfully amplified cCRMs were successfully cloned into the eFS vector and

were detected in 4 out of 4 Illumina sequencing libraries.

50



2.4.2 Generation of CD2 reporter vectors

A minimal promoter was fused to rat CD2 and subsequently cloned into P-element transformation

vectors byPCR-amplifying theTATAbox frompUAST-NTAPwithPCRprimer pairATGGCTAG-

CTAGCGAGCGCCGGAGTATAA and GGTGTCAATTCCCAATTCCCTATTCAG, and CD2

from twi-CD2 151 with primer pair CTGAATAGGGAATTGGGAATTGACACCATGAGATGT-

AAATTCCTAGGGAGTTTCTTT and TAGGCTAGCTTAATTAGGGGGTGGC. These PCR

products served as templates for an assembly PCR reaction using the primer pair ATGGCTAGCTA-

GCGAGCGCCGGAGTATAA and TAGGCTAGCTTAATTAGGGGGTGG. This PCR product

was subcloned into pCR (Invitrogen), sequence-verified, digested with NheI and cloned into XbaI-

digested pETWN45, resulting in our CD2 vector pETWCD2.

The enhancer region forMef2-I-ED5 was synthesized in vitro (Integrated DNA Technologies, Co-

ralville, IA, USA) and subcloned into pETWCD2, while the enhancer region for duf was PCR-am-

plified from genomic DNA isolated from a BAC clone (Children’s Hospital and Research Center at

Oakland, BACPACResources, Oakland, CA, USA) using the following primer pair (AATTCCCTT-

CCACATTGGTCCTCTC,GATCCAAGTGTGATATCGTGTTTGGCC), subcloned intopETW-

CD2 and sequence-verified.

2.4.3 Fly embryo injections and husbandry

Webeginwith a description of our strategy; experimental details follow. The resulting pooled plasmid

cCRMclone librarywas injected into embryos.We are using a strain of flies containing an attP site that

gives very low basal expression but very high induced expression in the embryonic mesoderm when

an inducible promoter construct is integrated there 179. This strain additionally expresses a nuclear-

localizedϕC31 integrase under the control of thenanos promoter,which causesmRNAtobeproduced

duringoogenesis anddeposited in the eggbefore fertilization. Injectionof aplasmid containing an attB
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site into fertilized eggs of this line at the posterior pole, where the primordia of the germ linewill form,

results in the transmissible integration of the plasmid DNA into the genome. The recombination of

an attP and an attB site, mediated by the integrase enzyme, produces an attL and an attR site (distinct

from and not cross-reacting with those used in the Gateway system, which are used by a different

bacteriophage)which are not themselves substrates for the integrase; thus, integration is non-reversible

and one integration event destroys the attP site used, preventing any further events at that genomic

locus.

In principle, then, each primordial germ cell in an injected embryo can integrate two molecules of

plasmid, one into each copy of the haploid genome.When gametes arising from these cells contribute

to the progeny of these flies, each will receive only a single integrated transgene. As each embryo pro-

duces ~20–30 primordial germ cells before mitotic expansion, the gametes produced by an injected

fly will carry a population of different library insertions. Progeny of injected flies that receive an in-

tegrated transgene can be recognized by the inclusion of the mini-white gene in the reporter vector,

which causes a partial reversion of the adult eye color toward wildtype. w+ (transformant) males are

collected and crossed to virgin females of a strain homozygous for a transgene which drives expression

of rat CD2 in the cell type of interest, producing the desired population of embryos.

To investigate whether competition for stem cell niches in the gonads of injected flies could limit

the number of independent insertion events transmitted by each parent 151, we examined the transfor-

mant progeny of individual injected flies. For this investigation, we injected an earlier library of 275

cCRMs into embryos and reared survivors to adulthood. Males (to avoid confounding effects from

mated females) were crossed to y w virgin females individually in vials. Up to 24 w+ male progeny

from each of several vials were isolated and processed for single-fly, insertion site targeted PCR, and

the resulting PCR products sequenced to identify which transformed progeny of an injected fly had

common inserts and which contained unique inserts. At one extreme, 24 flies from a cross with 47%

transformant progeny had identical inserts; at the other, 10 flies from a vial with 22% transformant
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progeny had among them 7 different inserts. The average number of insertions per injected parent

over all sequenced transformants was 3.5.

For our full-scale eFS experiments, after purification andnormalization, our pooled plasmid cCRM

clone library was diluted to 0.75 mg/mL in standard injection buffer (5 mM KCl, 0.1 mM PO4, pH

7.8) and injected posteriorly into syncytial embryos carrying the nos-ϕC31\int.NLS transgene 180 on

the X chromosome and the attP40 insertion 179 on the 2nd chromosome. Injections were performed

either in-house (used for the twi:CD2 and Mef2-I-ED5:CD2 sorts) or by Rainbow Transgenic Flies,

Inc. (Camarillo, CA) (used for the duf :CD2 sorts). Surviving males were crossed to excess y w virgin

females. Transformant male progeny were selected on the basis of eye color. In pilot experiments,

roughly 10%of all progeny of injected flies were transformant; based on the uniformity of the resulting

eye color (and variation expected due to differences in insertion site), we estimate that the vastmajority

(~99%) of insertions were into the intended target location.

We collected several thousand transformant males and, separately, several thousand virgin females

from each tissue-specific CD2 line of interest (seemain text). These flies were combined in population

cages ~36 hours before the beginning of embryo collections. Additional control cages containing only

wild type (y w) flies, or wild type males with CD2 virgin females, were generated to provide control

cells for assessment of FACS parameters, as discussed in the next Section.

Population cages were collected from twice ”pre-lays” to minimize the presence of older embryos

due to retention of fertilized eggs by females, then two collections of 2 hours (for twi:CD2 sorting) or

2.5 hours (for Mef2-I-ED5:CD2 and duf :CD2 sorting) were performed. These plates were aged 10–11

hours at 18°C, after which embryos were collected and dechorionated, and single cell suspensions were

prepared for FACS.

2.4.4 Fluorescence activated cell sorting (FACS)

Wepreviously described andused extensively the isolation of single cells for FACS from liveDrosophila
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embryos at stage 11, when the SM FC and FCM populations are being specified 181. We have modified

the existing protocol by incorporating a step in which dissociated cells are resuspended inDrosophila

cell culture medium and incubated on ice (10 minutes with moderate shaking) with a commercially

available Alexa647-conjugated anti(rat CD2) antibody (AbD-Serotec, cat. #MCA154A647). The an-

tibody is diluted 1:400 in Schneider medium + 8% FBS and preadsorbed by incubation with cells pre-

pared from non-CD2-expressing embryos, then after removal of cells by centrifugation, samples were

filteredwithNytexmesh and supplementedwith 2μg/mLDAPI to permit the detection and removal

of dead cells and yolk granules. After brief washing (i.e. two cycles of centrifugation and resuspension

in Schneider + 8% FBS), the cells are analyzed and separated by FACS.

Cells were concentrated by centrifugation of collection tubes (15min at ~400g) and aspiration of all

but ~0.5 mL of culture medium, then resuspended in the remaining culture medium and transferred

to 0.6 mL PCR tubes and centrifuged 5 minutes @ 5,000g. This two-step collection process proved

best for collecting very small numbers of cells in extensive pilot experiments. After complete removal

of culture medium, the cell pellet is vortexed in 5 μL extraction buffer (10 mM Tris pH 7.5, 1 mM

EDTA, 25 mM NaCl, 200 μg/mL proteinase K) and incubated 30 minutes at 37°, then 10 minutes at

95° to inactivate proteinase K and stored at -20°.

2.4.5 cCRMinsertamplificationsfromcollectedcells, andIlluminalibrary

preparation including indexing

We designed our cCRM library to be compatible with Illumina sequencing. Each insert, as initially

synthesized, has a commonupstream end comprising, in 5’ to 3’ order, aGateway attB1 site, and a com-

mon forward sequencing primer. The downstream end of each synthesized library insert comprises,

in 5’ to 3’ order, a Gateway attB2 site, and a common reverse sequencing primer. The attB1 and attB2

sites facilitate the cloning of the inserts en masse first into a Gateway DONR vector and then, after

amplification of the library, into the pEFS-Dest vector. After a population of cells containing inserts
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of interest is isolated, PCRusing the common sequencing primers allows recovery of a very pure insert

population for quantification by high-throughput sequencing. We designed these common primers

using our UniPROBE database of TF DNA binding specificities 38; we generated synthetic sequence

that is not predicted to be bound by any known TF (considering hundreds of TFs from multiple

organisms) to minimize chances of it modulating the activity of any inserted CRM, and then tested

primers derived from it in pairs, first for their suitability as PCR primers and then in control reporter

experiments with known enhancers, to ensure that they showed the expected pattern of embryonic

reporter expression.

We recovered library inserts by nested PCR from sorted cell genomicDNA.Crude cell extractswere

pooled according to sample where necessary to achieve sufficient numbers for accurate quantification

of insert abundance (Figure 1c), then split five-fold before PCR amplification. This ensures that ample

PCR product will be produced for Illumina library preparation.

Each first-round PCR was performed in a 25 μL reaction using KAPA Hi-Fi HotStart ReadyMix

(Kapa Biosystems), supplemented with 6% ethylene glycol andMgCl2 to offset the EDTA introduced

with the crude cell extract (typically 0.5 μL of 25 mM MgCl2 when ~6 μL of template is added to

each reaction). Primers for the first-round (outer) PCR are specific to our pEFS reporter vector (see

Section 2.4.1) and were used at 1 μM each: nestF = GAATTGAATTGTCGCTCCGTAGAC; nestR

= CAAGTATTTCCCCTTCGAGCTTG. Cycling conditions (optimized for sensitivity of detection

and amplification) were: 1 x 2’ @ 98°C; 1 x [20” @ 98°C, 3’ @ 63°C, 30” @ 72°C]; 1 x [20” @ 98°C, 2:30

@ 63°C, 30” @ 72°C]; 1 x [20” @ 98°C, 2’ @ 63°C, 30” @ 72°C]; 1 x [20” @ 98°C, 1:30 @ 63°C, 30” @

72°C]; 13 x [20” @ 98°C, 1:15 @ 65°C, 30” @ 72°C]; 1 x 1’ @ 72°C; hold @ 4°C (17 cycles in all).

Second-round (inner) PCRs were performed in 50 μL reactions, again using KAPA Hi-Fi Hot-

Start ReadyMix supplemented with 6% ethylene glycol. The template for each reaction was 2 μL of

first-round PCR, and the reaction mixture was heated to 80°C before template was added in order to

ensure a true hot start despite the addition of active enzymewith the template. Primers for the second-
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round PCR are the SEQ1 and SEQ2 sequences introduced at the ends of each cCRM during library

construction (see Section 2.4.1) and were used at 2 μM each. Cycling conditions (optimized for yield

of full-length product and accurate representation of spiked-in controls) were: 1 x 2’ @ 98°C; 21 x [20”

@ 98°C, 1’ @ 65°C, 30” @ 72°C]; 1 x [20” @ 98°C, 1’ @ 65°C, 45” @ 72°C]; 1 x [20” @ 98°C, 1’ @ 65°C, 1’

@ 72°C]; 1 x [20” @ 98°C, 1’ @ 65°C, 1:15 @ 72°C]; 1 x [20” @ 98°C, 1’ @ 65°C, 1:30 @ 72°C]; 1 x [20” @

98°C, 1’ @ 65°C, 1:45 @ 72°C]; 1 x [20” @ 98°C, 1’ @ 65°C, 2’ @ 72°C]; 1 x [20” @ 98°C, 1’ @ 65°C, 2:15 @

72°C]; hold @ 4°C (28 cycles in all).

PCR products (900-1,100 bp) were agarose gel-purified and quantified by NanoDrop. 1 μg each

of the 5 PCR product pools from a given cell pool were combined to make the starting material for

Illumina library preparation.

Spike-in and replicate control experiments.

We employed ‘spike-in’ controls to assess bias and replicate lanes to assess noise in amplifying cCRMs

from a complex library; the known, qPCR-validated dilution of each control enabled us to accurately

assess the representation of each control in the resulting sequencing lanes. Specifically, we amplified

900-1,100 bp regions of the E. coli chromosome (using the same 2-step PCR protocol described in

Section 2.4.1), and cloned them individually into pEFS-Dest. Purified control plasmids were spiked

into pooled library plasmid at various known dilutions, and the dilutions of each control plasmid

in this mixture were confirmed by qPCR with insert-specific primer pairs; we performed duplicate

measurements of two pairs per insert. An aliquot of ~50,000 plasmids (1 μL of a 500 fg/μL dilution)

was subjected to our library insert recovery PCR workflow, as described above, followed by Illumina

library preparation and sequencing (see below). The following table shows the comparison of the fre-

quency with which each controlE. coli regionwas detected by PCR from a complexmixture followed

by high-throughput sequencing, compared with the expected frequency assuming the qPCR results

accurately reflect the composition of the library pool:
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Table 2.1: Summary of data obtained from spike-in controls

spike-in control
nominal

dilution factor

measured

dilution factor

(qPCR)

expected counts

/ million reads

observed counts

/ million reads

E_coli_control_3 1:100 1:80 12,500 10,256.85

E_coli_control_5 1:100 1:87 11,494 12,243.19

E_coli_control_7 1:1,000 1:838 1,193 343.17

E_coli_control_11 1:1,000 1:829 1,206 77.08

E_coli_control_12 1:10,000 1:2,752 363 18.14

E_coli_control_16 1:10,000 1:2,726 367 21.23

E_coli_control_21 1:100,000 1:88,551 11 0.11

E_coli_control_22 1:100,000 1:968 1,033 0.77

These experiments show that, for very common inserts, our workflow is fairly accurate in recov-

ering the abundance of insert in a complex mixture, but that accuracy suffers at very high dilutions.

Since only ~50,000 plasmids were sampled, a 1:100,000 dilution would be expected to present a dif-

ficulty for accurate representation. To test whether the observed variation from expected frequencies

represented bias in PCR amplification of different inserts based on their sequence (which would be

expected to affect alternate samples equally, so that a comparison of observed abundance in different

samples would still be informative) or noise introduced during the PCR amplification step, we per-

formed the entire workflow on four different aliquots of a library pool and compared the resulting

sequence counts. The entire sample preparation and sequencing process is highly reproducible: the

number of reads mapped to each cCRM or control region was consistent across sequencing libraries

prepared from four different aliquots of the plasmid library pool (mean Pearson R2 = 0.81, ranging

from 0.78 to 0.83 over six pairwise comparisons).
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Illumina library preparation, including indexing

Illumina sequencing librarieswere prepared using veryminormodifications of standard protocols and

the Multiplexing Sample Preparation Oligonucleotide Kit (Illumina). Pooled, purified PCR prod-

uct was sonicated by Covaris S2. Samples were then end-repaired with the End-IT DNA End-Repair

Kit (EpiCentre Biotechnologies) and A-tailed with Klenow exo- (New England Biolabs). Standard

adapters (Index PE Adapter Oligo Mix) were ligated using Quick T4 DNA Ligase (New England

Biolabs). The products of adapter ligation were run on 2% agarose gels and size-selected.

Purified products were quantified and checked for concentration and size distribution by Agilent

2200 TapeStation. Enrichment PCRs were performed in 50 μL reactions using Phusion thermostable

polymerase (New England Biolabs). Each reaction contained 25 ng of template DNA and 1μL each of

primer InPE2.0, InPE1.0, and a numbered index primer. Indices were chosen for the 36 total samples

in order to fill 7 lanes of a flow cell, and so that each statistical comparison (e.g., 3 twi:CD2+GFP+

samples versus 3 twi:CD2+ ‘input’ samples) would be between samples run in different lanes with

the same index. Cycling conditions, chosen to balance adequate yield for sequencing with minimal

variance introduced at the enrichment PCR step, were: 1 x 30” @ 98°C; 10 x [10” @ 98°C, 30” @ 65°C,

30” @ 72°C]; 1 x 5’ @ 72°C; hold @ 4°C.

2.4.6 Illumina DNA sequencing

Purified enrichment PCRproductswere again assessed byAgilent 2200TapeStation and submitted to

the Partners Center for Personalized GeneticMedicine for concentrationmeasurement by PicoGreen

fluorescence and qPCR, followed by equimolor index pooling and sequencing (50 base single-end

read) on the Illumina HiSeq 2000.
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2.4.7 Mapping Illumina sequencing reads

In principle, it would be faster (in terms of total CPU run-time) and potentially less noisy tomaphigh-

throughput sequencing reads directly to a reduced ‘genome’ constructed from our library of cCRMs.

However, we anticipate that tiling large swaths of noncoding sequence to assess their regulatory po-

tential will be a major application of eFS going forward, and as this requires the testing of overlapping

sequences, it would create huge numbers of ambiguousmappings to repetitive regions.We have there-

fore instead chosen to pursue a two-step strategy, in which sequencing reads are first mapped to the

D. melanogaster genome, and then mapped positions are assigned to members of the cCRM library,

as described in detail below.

2.4.8 Mapping of sequencing reads to cCRM library

We used the segemehl algorithm 158 (version 0.0.9.4) to map reads to the dm3 version of theD. mela-

nogaster genome, using the parameters shown below.

• A maximum of two mismatch or indels in the seed area (-D)

• A maximum of an E-value (introduced in BLAST 182) of 5 in the seed alignment (-E)

• At most 100 occurrences of the seed in the genome (-M )

• 80% or higher matching of characters after extending the seed to the entire read (-A).

We refer to reads that contained SEQ1 or SEQ2 primers (see Section 2.4.1 for a description of the

SEQ1 and SEQ2 primers) as ‘border’ (or ’end’) reads, since they derive from the 5’ or 3’ ends of the

cCRMs; reads between the end reads are referred to as ‘center’ reads.
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Pipeline for mapping sequencing reads.

The raw reads are processed in five steps: (1) preprocessing; (2) mapping; (3) filtering; (4) stacking and

(5) assignment to cCRMs.

The preprocessing step (1) includes the identification and removal of PCR primer sequences (i.e.,

SEQ1 and SEQ2, described in Section 2.4.1) from the 5’ ends of the reads. We look only for complete

primer sequences starting at the first sequenced position, since the detection of the other cases would

bring only minor improvement to the overall results but would take significantly longer in terms of

analysis run time. Due to the origin of the two data sets with reads that had a primer and those that

did not, we refer to them as ‘border’ (or ‘end’) and ‘center’ reads, respectively (see description above).

Segemehl can report multiple locations for one read (parameter -H 0, which is also the default set-

ting). If a read maps to exactly one ‘expected’ position, i.e., in the range of a cCRM for center reads or

within a 5-nt window at a cCRM start or end for border reads, we accept this location as the source

of the read. If a read maps to no reasonable position or fits ambiguously, it is discarded. These oper-

ations represent the filtering step (3). In the stacking step (4), similar reads, i.e., reads starting at the

same chromosomal position and with the same length, are collected.

In the last step (5), the pipeline assigns the reads to the cCRM sequences. One potential problem

is that overlapping cCRM windows contribute indistinguishable reads to the same genomic regions.

We found that this can be addressed in a relatively straightforwardmanner by using the unambiguous

border reads asweights for dividing the reads thatmap tooverlapping cCRMwindows, sincewe found

that in isolated cCRMs the number of border reads and the total number of reads are highly correlated

(Pearson R > 0.95).

The final output of the read mapping pipeline includes, for each cCRM: its name and chromoso-

mal location, the number of border reads that mapped to its start and end, the resulting weight, the

number of center positions covered by the beginning of a mapped center read and the total count of
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readsmapped to the cCRM. From these data, one can then readily computewhether a cCRMhas been

detected and can compare the results quantitatively to those from replicate experiments.

2.4.9 Statistical analysis of enhancer-FACS-Seq (eFS) data

In order to detect and quantify enrichment of cCRMs in GFP+ cell populations, we collected the

number of readsmapped to each cCRM for each replicate population and control ‘input’ population,

and then filtered out cCRMs not detected in any input sample replicate.

The comparison of the frequency with which high-throughput sequencing reads mapping to a

given cCRM are observed in a selected population with the frequency observed in an input popu-

lation is fundamentally similar to the problem of detecting differential expression in an RNA-Seq

experiment, or enrichment in a ChIP-Seq experiment if genomic occupancy regions are pre-defined.

Thus, we utilized the DESeq package 159, which is intended for use with these data types. Specifically,

enrichment and statistical significance were calculated usingDESeqwith standard parameters and size

factor estimation.We considered an adjusted p-value < 0.1 as evidence of statistically significant enrich-

ment or depletion. Importantly, the DESeq software package permitted the comparison of unrepli-

cated data using variance estimated from replicate controls, and it produced results that agree quite

well with those obtained from validation by traditional reporter assays (see Section 2.4.12 below). The

distribution of results is depicted by plotting the log2(fold enrichment or depletion) against the abun-

dance of reads in the input population (Figure 2.2a).

For abundant populations (twi:CD2+, twi:CD2-,Mef2-I-ED5:CD2- and duf :CD2-), three ormore

GFP+ replicates were compared to three ormore input replicates (e.g., GFP+CD2+ cell replicates were

compared to CD2+ cells collected from the same preparation). CD2 expression driven by Mef2-I-

ED5:CD2 or duf :CD2 is in a much more restricted population of cells (i.e., 0.8% of viable cells on

average forMef2-I-ED5:CD2); since amuch smaller number ofGFP+CD2+ cells could be collected,we

were concerned that the noise introduced by sampling such small numbers of cells would reduce the
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sensitivity of our analysis. Therefore,wepooled all three or six days’ collections of double-positive cells

from these experiments into a single sample. To conservatively estimate variance and sampling noise,

we collected input populations of twice the size of the double-positive cell population (50% of input

cells are expected to carry inserts, as themale parents of the dissociated embryos were heterozygous for

reporter transgenes, while in principle 100% ofGFP+ cells should carry inserts) or fewer. As collection

of relatively rare CD2+ cells from this experiment would have been costly in terms of sorting time and

wasted opportunity to collect GFP+CD2+ cells, we used CD2- cells as input controls. In principle,

the abundance of each cCRM in CD2+ and CD2- cell populations should be the same, as these are

derived from the same embryos. Nevertheless, to test this assumption, we simultaneously assessed

the false positive rate at which cCRMs would be called significantly enriched or depleted in identical

populations, by performing an identical comparison of twi:CD2+ (triplicate) to twi:CD2- (triplicate)

cell samples. The results, shown in Figure 1d, support that these populations are indeed essentially

identical.

2.4.10 DNA sequence motif over-representation analysis

One of the goals of this studywas to identify cis regulatorymotifs and the corresponding transcription

factors that act through transcriptional enhancers active in theDrosophila embryonicmesoderm.One

approach for identifying putative transcriptional regulators is to look for enrichment or depletion of

DNA sequence motifs associated with known TFs, within sets of transcriptional enhancers active in

the same tissue. The DNA-binding specificities of hundreds of D. melanogaster TFs have been de-

termined by a variety of experimental methods 64,165–168. Therefore, we used the Lever algorithm 56

to identify significant over-representation of matches, scored according to their evolutionary conser-

vation, to 567 publicly availableDrosophila TF binding site motifs64,165–168 as compared to matched,

randomly selected noncoding sequence, as described in more detail below.

AdictionaryofDrosophilaTFbinding sitemotifswas compiled fromtheFlyFactor Surveydatabase 168
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aswell as from the literature64,165–167. Uninformative positions flanking themotifs were trimmed from

both sides until either one position with information content (IC) ≥ 1 or two consecutive positions

with IC≥ 0.5 were reached.

To remove redundancy within the motif dictionary, motifs were clustered following the approach

of Kheradpour et al.61, using centroid-linkage hierarchical clustering and a Pearson correlation coeffi-

cient cutoff of >0.77 for cluster merging. Then, for each of the resulting 139 clusters, a motif represen-

tative (‘exemplar’) was chosen as the motif that was closest to the cluster average and whose TF had

evidence of mesodermal expression 181,183,184. In a few cases where a well knownmesodermal regulator

was part of a cluster, its motif was chosen as the exemplar (e.g., Bap).

To identify the putative regulatory motifs of the twi:CD2+ and Mef2-I-ED5:CD2+ foreground

(FG) sequence sets, we used the previously described algorithmLever 56. Briefly, this analysis calculates

the over-representation of individualmotifs or combinations ofmotifs, according to their density and

evolutionary conservation as quantified by the PhylCRM scoring scheme 56, in each FG sequence set

as compared to amatched random set of background (BG) sequences. Rejection samplingwas used to

build a BG set for each FG sequence set; the BG setwas ~20 times the size of the FG set andmatched its

length,GC content, and repeat content (as defined byRepeatMasker) by successive rejection sampling

steps. The settings used for Lever and PhylCRM were the same as previously described 185.

We first ran Lever to score each of the 139 exemplar motifs individually. To reduce the loss of sta-

tistical significance due to a large number of hypotheses tested, any motif that did not have occur-

rences in at least one-quarter of the FG sequences was considered unlikely to contribute significantly

to the overall FG set and thus was removed from the 139-exemplar motif dictionary, resulting in an

86-exemplar motif dictionary. We then used Lever to inspect the over-representation of all single and

pairwise combinations of the resulting reduced dictionary of 86 motif exemplars.
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2.4.11 Classifier analysis

We sought to determine whether cCRMs could be classified as active or inactive in a given cell popula-

tion based on the number and quality of motif matches in the cCRM sequence. For each cCRM, we

generated a feature vector of scores that quantify the presence of motif matches for each PWM in the

motif exemplar dictionary. The score for a particular PWM and a particular cCRMwas defined as the

sum of the log-odds ratios of PWMmatches in the cCRM sequence that exceeded a permissive match

threshold (log-odds ratio > 3.0). This scoring method allows weaker motif instances to be captured

and avoids threshold effects. The results did not change noticeably when this threshold was varied as

long as it remained permissive (log-odds ratio < 6.0).

For classification, we used the Gaussian Naïve Bayes implementation in the scikit-learn package 186

for Python. ANaïve Bayes (NB) classifier implements a simple probabilisticmodel where each feature

(here, the score for a givenmotif) contributes independently to the posterior probability of belonging

to a class. NB classifiers previously have been shown to outperform more complex models at pre-

dicting expression based on sequence in other systems 173. Here, we compared the performance of the

NB model to more complex classifiers (Random Forest and Support Vector Machine classifiers with

Gaussian kernels), which can model interactions between features, and found that the more complex

models did not significantly improve classification performance.

For each motif, the NB classifier separately fits a Gaussian distribution to the scores for that PWM

in the active cCRM set and in the inactive cCRM set (see below). These distributions are then used

to generate posterior class probabilities for unlabeled data. The level of background motif matches

is modeled by a Gaussian distribution inferred from the inactive cCRMs, which compensates for the

permissive motif match threshold that was used to generate the scores.

We assigned class labels to specific cCRMs as follows: as for the motif over-representation analysis,

positive cCRMs are those with DESeq P_adj < 0.1; here, negative cCRMs are those from an equally

64



sized set chosen from the bottom of the ranked list. To evaluate classification accuracy, we split the

labeled cCRM feature vectors into training and test sets using stratified 10-fold cross-validation. For-

ward feature selectionwas performed independently for each of the folds: in each, the kmotifswith the

highest individual AUC values in the training set were selected. The classifier was then trained using

features corresponding only to those kmotifs.We evaluated the classifier’s performance by calculating

the AUC statistic over all of the cross-validated predictions.We compared performance with different

values of k, and found that the classifier for Mef2-I-ED5:CD2+ cCRMs performed better with lower

values of k relative to the twi:CD2+ classifier, which is consistent with expectations based on tissue

heterogeneity.

We compared theperformance of our feature selectionmethod (i.e., inwhichwe identified discrimi-

natorymotifs) relative tomanually pickingmotifs of known regulators (see below) for that tissue type.

Classifier models trained with our feature selection method outperformed those that used the motifs

of known regulators for both twi:CD2+ (AUC=0.74 using feature selectionmethod versus 0.59 using

known regulatory motifs) and Mef2-I-ED5:CD2+ (AUC: 0.93 using feature selection method versus

0.72 using known regulatory motifs) eFS data.

The known regulatory motifs used for twi:CD2+ eFS data (i.e., whole mesoderm) are:

1258_twi_Zinzen

241_Tin_Cell_FBgn0004110

1256_mef2_Zinzen

1254_bap_Zinzen

1246_Lmd_Busser_Sec (called “lmd_sec” in Figure 4a

573_lmd_SOLEXA_5_FBgn0039039

The known regulatory motifs used forMef2-I-ED5:CD2+ eFS are:

1258_twi_Zinzen
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1256_mef2_Zinzen

1254_bap_Zinzen

1246_Lmd_Busser_Sec (called “lmd_sec” in Figure 4a)

573_lmd_SOLEXA_5_FBgn0039039}

338_SuH_FlyReg_FBgn0004837

The discriminatory motifs learned in at least 50% of the ‘folds’ in the 10-fold cross-validation for

twi:CD2+ eFS data (i.e., whole mesoderm) are:

716_lola-PC_SANGER_5_FBgn0005630

659_CG8765_SANGER_5_FBgn0036900

658_CG8281_SANGER_5_FBgn0035824

652_CG3919_SANGER_5_FBgn0036423

623_kay_Jra_SANGER_5_FBgn0001297_SANGER_5_FBgn0001291

583_CG7928_SOLEXA_5_FBgn0039740

269_D_NAR_FBgn0000411

1258_twi_Zinzen

297_brk_FlyReg_FBgn0024250

700_lola-PO_SANGER_5_FBgn0005630

600_vfl_SOLEXA_5_FBgn0259789 4

The discriminatory motifs learned in at least 50% of the ‘folds’ in the 10-fold cross-validation for

Mef2-I-ED5:CD2+ eFS (i.e., FCMs) are:

573_lmd_SOLEXA_5_FBgn0039039

702_lola-PW_SANGER_5_FBgn0005630

583_CG7928_SOLEXA_5_FBgn0039740
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Discriminatory motifs learned in 10-fold cross-validation for duf :CD2+ eFS (i.e., FCs) are not re-

ported here, since the results of the classifier analysis were not statistically significant, as determined

above.

2.4.12 Traditional reporter assays

104 cCRMs assayed by eFS in any cell population were individually validated by more traditional

means. 37 of these had been included in the library on the basis of earlier pilot experiments and

sequence-validated clones in pEFS-Dest were available for them, while the remaining 67 were recov-

ered from single transformant male flies (and identified by PCR and subsequent sequencing of their

library inserts) after library injections. These latter 67 lines could in principle contain PCR-induced

mutations whichmight affect the pattern inwhich they driveGFP expression, since they derived from

library clones which were not sequence-verified. For 25 of these lines, we were able to ascertain the

complete sequence of the library insert by sequencing two independent PCR reactions using vector-

specific primers and the complete sequence of the corresponding genomic regions in thewild type flies

(OreR) from which our library clones were initially amplified. In 5 of the 25 cases, the library insert

matched the publishedD. melanogaster sequence (dm3) at every position, while in the remaining 20

cases all differences from the published sequence were found to be present in our wild type popula-

tion. We thus conclude that we can neglect PCR-induced mutations as a significant source of error in

subsequent library generation using this PCR protocol.

Homozygous (or, where unavailable, balanced heterozygous) transformant males were crossed to

homozygous twi:CD2 females in small population cages, and broad collections (~2-17 hours after egg

deposition) of embryos were fixed and stained for immunofluorescence by standard protocols45. An-

tibodies used were mouse anti-rat CD2 Alexa647 conjugate (MCA154A647, AbD Serotec) at a final

dilution of 1:200, and rabbit anti-GFP, goat anti-rabbit Alexa488 conjugate, and goat anti-mouse
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Alexa647 conjugate (A-11122, A-11034, and A-21236, Molecular Probes), all at 1:500, and were pread-

sorbed to wild type embryos before use. Stained embryos were resuspended in Vectashield (Vector

Labs) and, for those lines in which GFP was expressed at stage 11–12, imaged with a Zeiss Imager Z1

with Apotome in optical sectioning mode. Coexpression of GFP with CD2 was evaluated in indi-

vidual optical sections with the annotator being blind to the predicted activity of the cCRMs. Coex-

pression is observed as GFP and CD2 being present in the same cells, since the GFP in these embryos

is nuclear, while CD2 is expressed on the cell surface. Maximum Image Projections were constructed

for display (Figure 3a, Figure 4c). Coexpression was additionally subjectively assessed as ”widespread”

(roughly, a majority of high-CD2-expressing cells express GFP), ”limited,” or ”no coexpression”.

This chapter is a modified version of a published article describing this work:

Gisselbrecht SS, Barrera LA, Porsch M, Aboukhalil A, Estep PW 3rd, Vedenko A, Palagi A, Kim Y,

ZhuX,Busser BW,GambleCE, IagovitinaA, SinghaniaA,MichelsonAM,BulykML.Highly parallel

assays of tissue-specific enhancers in whole Drosophila embryos. Nature Methods (2013) 10(8):774-

780.
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I find it astonishing that the immune system embodies a

degree of complexity which suggests some more or less su-

perficial though striking analogies with human language,

and that this cognitive system has evolved and functions

without assistance of the brain.

Niels K. Jern

3
The genomic landscape of NF-κB binding

70



Abstract

Thenuclear factorκB (NF-κB ) subunitsRelA,RelB, cRel, p50 andp52 are each critical forB-cell devel-

opment and function. To systematically characterize their responses to canonical and non-canonical

NF-κBpathway activity,weperformedChIP-Seq analysis in lymphoblastoidB-cells (LCLs). We found

a surprisingly complexNF-κBbinding landscape,whichdidnot readily reflect the twoNF-κBpathway

paradigm. Instead, ten subunit binding patterns were observed at promoters and eleven at enhancers.

Nearly one-third of NF-κB binding sites lacked κB motifs and were instead enriched for alternative

motifs. The oncogenic forkhead box protein FOXM1 co-occupied nearly half of NF-κB binding sites,

and was identified in protein complexes with NF-κB on DNA. FOXM1 knockdown decreased LCL

NF-κB target gene expression and ultimately induced apoptosis, highlighting FOXM1 as a synthetic

lethal target in B-cell malignancy. These studies provide a resource for understanding mechanisms

that underlie NF-κB nuclear activity and highlight opportunities for selective NF-κB blockade.

3.1 Background

NF-κB is a family of dimeric transcription factors (TFs) that mediate differentiation, development,

proliferation and survival90 . NF-κB is a principal component of the body’s defense against infec-

tion, and is critically important for most immune and inflammatory responses. Yet, NF-κB hyper-

activation contributes to inflammatory disorders and cancer, in particular B-cell malignancies 187,188.

Despite progress in understanding cytosolic pathways that activate NF-κB TFs, comparatively little is

known about the mechanisms that govern nuclear NF-κB function 189–191.

Microbes nonetheless use NF-κB to enable their replication and spread. Oncogenic viruses en-

code factors that constitutively activateNF-κB, including Epstein-Barr virus (EBV), Kaposi’s sarcoma-

associated herpesvirus, human T-cell leukemia virus, hepatitis B and hepatitis C 192. Constitutive NF-

κB activation also contributes to the pathogenesis of numerous human cancers, in particular B-cell
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lymphomas 187,188. However, the genome-wide effects of constitutiveNF-κB activation onNF-κB tran-

scription factor binding have not been defined.

Mammalian genomes encode fiveNF-κB subunits: p105/p50, p100/p52,RelA (p65), RelB and cRel.

Each has an N-terminal Rel homology domain that mediates sequence-specific binding to κB sites90

on DNA. RelA, RelB and cRel also have C-terminal transcription activation domains. NF-κB dimers

can further induce or suppress target gene expression through cofactor recruitment. Inhibitor of NF-

κB (IκB) proteins retain NF-κB dimers in the cytosol, with the exception of p50 homodimers, which

are constitutively nuclear90.

Two NF-κB pathways trigger NF-κB activity by inducing IκB degradation and NF-κB nuclear

translocation 193. The canonical pathway responds to pro-inflammatory signals and is essential for

rapid immune responses. The canonical pathway triggers IκBα degradation, which enables RelA and

cRel-containing complexes to translocate to the nucleus, including RelA:p50, cRel:p50, RelA:RelA

and cRel:cRel dimers. The non-canonical NF-κB pathway promotes secondary lymphoid organogen-

esis, B-cell development and survival 194. The non-canonical pathway triggers processing of p100 to

p52, which enables the p52-containing complexes RelB:p52, p52:p52, and p50:p52 to enter the nucleus.

When both pathways are active in B-cells, up to 14 distinct NF-κB dimers form, including canoni-

cal/non-canonical hybrids such as RelA:p5299. Murine genetic studies indicate that each NF-κB sub-

unit, and perhaps each dimer, has unique functions in B-cell development and activation98. The gen-

eration andmaintenance ofmature B-cells requires both canonical andnon-canonicalNF-κBpathway

activity 195. CD40-mediated activation of both pathways are required for B-cell responses such as ho-

motypic aggregation, which requires both cRel and p52 196. Yet, the extent of intrinsic NF-κB dimer

binding preference for its target sites in vivo, and themechanisms that establish dimer-specific binding,

are not well understood. Likewise, little is known about the extent to which target genes are regulated

independently, or jointly, by the canonical and non-canonical pathways.

κB sites in mammalian genomes vary widely from the consensus sequence 5’-GGGRNYYYCC-3’
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(where R is a purine, Y is a pyrimidine, N is any nucleotide). Moreover, a single base pair difference in

a κB site can induce distinct NF-κB dimer conformations and affect coactivator requirements93. The

extent to which NF-κB family members differentially recruit TFs to κB sites remains to be examined

in vivo. Likewise, NF-κB recruitment by other sequence-specific TFs to non-κB DNA sites has not

been extensively investigated.

Todate, genome-scale analyses ofNF-κBbindingby chromatin immunoprecipitation (ChIP)-based

methods have generally been limited to RelA 86,197–200. Where multiple subunits were studied, cells

were stimulated by Toll-like receptor agonists that preferentially activate the canonical NF-κB path-

way201,202. In B-cells, only RelA has been studied systematically 86.

To systematically investigate how NF-κB TFs recognize in vivo targets, we performed ChIP-Seq

analysis of all fiveNF-κBsubunits in theEBV-transformed lymphoblastoidB-cell line (LCL)GM12878,

where the EBV-encodedmembrane protein LMP1mimics CD40 to constitutively activate the canoni-

cal andnon-canonical pathways.GM12878 has a relatively normal karyotype, is one of three ENCODE

project Tier 1 cell lines, and is an original HapMap cell line used inmany genetic studies.We identified

a complexNF-κBbinding landscape,with distinctNF-κB subunit binding patterns at LCLpromoters

and enhancers, and with frequent recruitment of NF-κB to DNA sites that lack κB motifs. Numer-

ous B-cell transcription factors co-occupied LCL NF-κB sites, including the Forkhead box protein

FOXM1. FOXM1 was present at nearly half of all LCL NF-κB sites and was recruited to NF-κB com-

plexes on DNA. Collectively, our results provide new insights into B-cell nuclear NF-κB regulation,

including CD40-stimulated germinal center B-cells and lymphomaswith constitutiveNF-κB activity.
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3.2 Results

3.2.1 Genome-wide NF-κB subunit DNA binding in lymphoblastoid B-cells

Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) was used to assess NF-κB

subunit DNA binding in GM12878 cells. Validated anti-RelA, RelB, cRel, and p50 antibodies were

used, each ofwhich have been shown to be specific bywestern blot andChIP 200,203–210, and by aChIP-

microarray analysis of NF-κB promoter occupancy in lipopolysaccharide-stimulated monocytes 202.

Anti-p52 antibody specificity was validated by immuno-precipitation.

We identified 20,067 RelA, 16,617 RelB, 6,765 cRel, 4,298 p50, and 10,814 p52 peaks at an irre-

producible discovery rate (IDR) < 0.01 211, significantly expanding the known number of B-cell NF-

κB binding sites. Datasets for each NF-κB subunit exceeded ENCODE project quality control stan-

dards 211, implying that the sequencing depth was adequate to capture biologically meaningful bind-

ing (Methods). In performing comparisons of binding between subunits, we took multiple steps to

mitigate differences that arose from sequence depth effects, including normalization of ChIP signals

across experiments 212 (Methods). Where a NF-κB binding site was identified for any subunit, we

cross-compared raw signals for all five subunits at that site, in order to minimize threshold effects

caused by binary peak calls. Robust peaks for all NF-κB subunits were evident at κB sites at many

well-characterized B-cell κB target genes, including the BCL2 locus (Figure 3.1A).

Using GM12878 chromatin state annotations based on histone modifications71, we found NF-

κB binding predominantly (73%) at predicted active enhancers, as characterized by H3K4me1 and

H3K27acmarks (Figure 3.1B). For example, the dominant BCL2NF-κBpeaks localized to an enhancer

(Figure 3.1A). Nonetheless, in comparison with other NF-κB subunits, a higher proportion of cRel

peaks occurred at active promoters (~40% of all cRel peaks), as defined by H3K4me3 and H3K9ac

marks. By contrast, only ~15% of mapped RelB peaks localized to active promoters. NF-κB binding

site motifs derived de novo from the ChIP-Seq data were similar to each other, with the cRel motif
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showing increased degeneracy in its 5’ half-site and p50, and to a lesser extent p52, exhibiting an ex-

tended motif at the 3’ end (Figure 3.1C).

3.2.2 Patterns of NF-κB subunit co-binding

A richNF-κBdimermilieuwas present in LCLnuclei (Figure 3.2). For instance, RelA and cRel bound

to similar amounts of p50 and p52, and at a lower level, to each other. By contrast, RelB preferentially

associated with p52, to a lower level with p50, and to a substantially lower level with RelA. Both p50

and p52 associate with all NF-κB subunits (Figure 3.2). κB sites in theory could be bound by a single

NF-κB dimer, or could be accessed by distinct NF-κB dimer combinations in equilibrium with one

another.

To identify NF-κB subunit binding patterns (SBPs), we applied k-means clustering to the ChIP-

Seq data (Methods). We found 10 distinct SBPs at LCL promoters and 11 at enhancers (Figures 3.3A

and 3.3B). SBPs with binding by multiple NF-κB subunits likely reflected NF-κB dimer exchange at

these sites, rather than simultaneous binding by distinct NF-κB dimers to a single site. In support

of the specificity of the antibodies used and despite the RelA dataset having the highest number of

peaks, clusters with predominant binding by each of the NF-κB subunits were observed at promoters

and enhancers, except for RelA. To minimize the possibility that SBPs arose from differences in peak

number alone, we generated k-means clustered heat maps using only the top scoring 4000 peaks for

each subunit. Even when using an equal number of peaks for each subunit, very similar SBPs were

again observed, suggesting that SBPs do not arise from differences in antibody sensitivity alone.

Intriguingly, some SBPs were evident at both promoters and enhancers, while others were unique

to either. For example, cluster P10 promoters, but no enhancer clusters, were occupied by all NF-κB

subunits except cRel. Combinations of distinct SBPs were observed at several keyNF-κB target genes,

such as at the sevenNF-κBChIP-Seq peaks near the highly LMP1-induced target gene TRAF1 (Figure

3.3C).
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Figure 3.2: Anti-p52 antibody validation and characterization of NF-κB dimers in LCLs. Anti-p52 antibody validation,

and analysis of LCLNF-κB dimers. (A) The anti-p52 antibody used for ChIP-Seqwas tested at 4 ug/ml for ability to
immuno-precipitate (IP) each NF-κB subunit, prepared by in vitro translation to avoid formation of p52- containing

NF-κB heterodimers. Western blot (WB) analysis, performed for each NF-κB subunit, demonstrated that the antibody
only pulled down p52. (B) The anti-p52 antibody immuno-precipitated p52 from LMP1+HEK-293 cells. Extracts were
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express HA-GFP are shown for comparison. (E-F) Analysis of endogenous NF-κB heterodimers present in untagged
GM12878. Endogenous RelA, RelB, cRel (E) p50 or p52 (F) were immuno-precipitated fromGM12878 extracts, and
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Figure 3.3: NF-κB subunit binding profiles. (A) 10 promoter and (B) 11 enhancer peak clusters with distinct NF-κB
subunit binding profiles were identified by k-means clustering of ChIP-Seq signals at regions bound by at least one sub-

unit. Red values indicate higher ChIP-Seq signal intensity. The total number of promoter vs. enhancer NF-κB binding
sites is shown at the lower right. The heat map to the right of the peak clusters displays the extent of consensus de novo

NF-κB subunit motif enrichment in each cluster. (C) NF-κB subunit ChIP-Seq signals at the TRAF1 locus illustrate the
co-occurrence of multiple SBPs at an NF-κB target gene. Red boxes enclose promoter-associated peaks and orange
boxes enclose enhancer-associated peaks. (D) Gene set enrichment analysis of NF-κB clusters using GOBiological

Process (BP) terms, as determined by GREAT analysis. Each row corresponds to a unique GOBP termwith a false

discovery rate (FDR) < 0.01. A subset of highly enriched terms is highlighted.
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We reasoned that ChIP-Seq analysis of the five NF-κB subunits in GM12878 might identify target

genes unique to either pathway. Indeed, we found SBPs with predominant cRel (clusters P5 and E10)

or p52 (clusters P7 and E11) binding, indicative of canonical versus non-canonical activity, respectively

(Figures 2A and 2B). Strikingly,most observed SBPswere not readily explained by subunits that are ac-

tivated by just one pathway. Rather, theywere hybrids that resulted from activation of both pathways.

For example, cluster E1 and P1 genomic regions were highly occupied by all five NF-κB subunits and

were therefore targeted by subunits activated by both NF-κB pathways. Similarly, RelA, RelB, cRel

and p52 were present at clusters P3, E2, and E6. The abundance of RelA, RelB and cRel heterodimers

with p50 and with p52 in LCL nuclei (Figure 3.2), as well as NF-κB homodimers, likely contributed to

these patterns. Although p50- and p52-containing heterodimers are prototypical canonical and non-

canonical pathway dimers, respectively, RelA, RelB and/or cRel predominated at clusters P5, P9, E4,

E7, E8, and E10. These results indicate that bothNF-κBpathways contribute to the activation ofmany

LMP1 target genes in LCLs.

3.2.3 SBPs are associated with unique biological processes

To investigate whether NF-κB binding at promoters versus enhancers might correspond to different

LCL biological functions, we evaluated each cluster for enrichment of Gene Ontology (GO) annota-

tion terms.We usedGREAT 213 analysis to assignChIP-Seq peaks to their putative target genes,mainly

by proximity.Most clusters were enriched for distinct GOBiological Process terms andmouse knock-

out phenotypes (Figure 3.3D), consistent with the hypothesis that different SBPs have distinct roles

in NF-κB responses. Since the formation of many SBPs requires both NF-κB pathways to be active,

this result has relevance for the observation that CD40-mediated canonical and non-canonical path-

way activation engenders phenotypes that activation of either pathway alone does not produce 196.

Intriguingly, we obtained a larger number of significantly enriched GO terms at enhancers than at

promoters, and observed that promoter clusters were typically enriched for ‘housekeeping’ functions,
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while enhancer clusters were often enriched for B-cell specific functions.

3.2.4 An 11 bp κB motif with 3’ cytosine is enriched in all clusters with p50

occupancy

The canonical κBmotif is 10 bp long, although in vitro studies have found that differentNF-κBdimers

prefer sites that are 9 to 12 bp91. The p50 homodimer recognizes an 11 bp κB motif and makes base-

specific contacts with cytosine at position 11 214,215. LCL ChIP-bound p50 binding sites were highly

enriched for an 11 bp κB motif ending in cytosine, providing the first genome-wide confirmation of

the importance of this p50 recruitment motif (Figure 3A). The extent of 11-bp enrichment at in vivo

p50 binding sites was unexpected, since p50 homodimers, and to a lesser extent p50 heterodimers, ex-

hibitedmoderate preference for thismotif in vitro91. Since the 11bp κBmotif was highly enriched in all

clusters with high p50 ChIP signal, and since LCLs contain abundant p50 heterodimers (Figure 3.2),

our results suggest that p50heterodimers also prefer the 11-bp site (Figures 3.4A andS3).The 3’ cytosine

in p50-bound sites was evolutionarily conserved across 33 mammalian species (Figures 3.4C), support-

ing its importance. The fifth, largely degenerate, base pair in κB motif instances was also frequently

conserved, consistent with this position influencing cofactor recruitment93.

3.2.5 Effect of κB motifs on subunit binding

We investigated the extent to which specific κB motif sequences determined each SBP. We compared

κB sites at ChIP peaks in each cluster with protein binding microarray (PBM) data, which provide

binding preferences for specific NF-κB dimers91. We calculated the area under the receiver operating

characteristic (AUC) curve as ameasure ofmotif or 12-mer enrichment in each cluster. The enrichment

values obtained using ChIP-derived de novo motifs (Figures 3.3A and 3.3B) were generally similar to

those obtained using PBM-derived 12-mer data. Aside from the discriminatory power afforded by the

3’ cytosine in the 11-bp κBmotif, the κBmotif did not vary greatly across clusters, suggesting that other
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Figure 3.4: Effect of an 11 bpmotif with a 3' cytosine on p50 recruitment to NF-κB sites. (A) ROC curves show that the
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mechanisms were responsible for establishing specific NF-κB binding patterns.

3.2.6 NF-κB recruitment to DNA sites that lack a κB motif

Nearly one-third of LCL NF-κB subunit-bound active promoters and enhancers did not harbor in-

stances ofκBmotifs. Interestingly, four promoter (clusters P4-P7) and three enhancer clusters (clusters

E6, E10 andE11)were not highly enriched for a κBmotif, suggesting alternativemechanisms forNF-κB

recruitment to these sites (Figures 3.3A, 3.3B).While NF-κB recruitment to DNA regions that lack κB

sites has been observed previously, alternative motifs that directly or indirectly recruit NF-κB to these

sites had not been identified. Using de novomotif discovery, we identified four alternative motifs that

were associated with specific combinations of NF-κB subunit binding in LCLs and that may partic-

ipate in NF-κB recruitment to these sites. Each of these discovered motifs was further supported by

overlapping ChIP-Seq signals and centralized enrichment of motif instances within NF-κB peaks.

First, we asked how cRel might selectively be recruited to promoters in the absence of κB motifs

(cluster P5), and found significant enrichment of E-box motifs (AUC = 0.61, p = 1.66 x 10-18) (Figure

3.5). Indeed, the basic helix-loop-helix (bHLH) transcription factors USF1 andUSF2, which recognize

E-box motifs, co-occupied 40.2% and 39.3% of GM12878 cluster P5 regions, respectively (Figures 3.5

and 3.6). Our results support amodel in which bHLH factors recruit cRel homodimers to LCL E-box

sites.

p52 was selectively recruited to genomic regions belonging to clusters P7 and E11. De novo motif

analyses identified a composite ETS/ISRE-consensus element (EICE) in cluster E11 (AUC = 0.66, p =

1.87 x 10-45), rather than a peak-centered κB motif. EICE motifs recruit PU.1 and IRF4 heterodimers

and are essential for lymphocyte development and activation 216. Indeed, ENCODE GM12878 data

confirmed PU.1 and IRF4 co-occupancy at many E11 sites (Figure 3.5). PU.1 may also function as a

pioneer factor at these sites by creating areas of nucleosome-freeDNAthat are accessible top52 89,190,217.

However, selective p52 recruitment to EICE sites, in the absence enrichment for a κB motif or other
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identifiable motifs, is consistent with a direct role for PU.1 and IRF4 in p52 recruitment. Notably,

PU.1 motifs were not identified as being enriched by de novo analysis in other clusters that lacked

κB motif enrichment. p52 recruitment to EICE sites may thereby enable cross-talk between the non-

canonical NF-κB, PU.1 and IRF4 pathways, each of which are important for B-cell development and

activation216.

An alternative mechanism may selectively recruit p52 to P7 promoters, in the absence of κB mo-

tifs. De novo analysis instead identified the CTCF motif to be enriched within P7 ChIP-Seq peaks

(AUC = 0.65, p = 4.27 x 10-31), while the EICE motif was not significantly enriched in P7 (AUC =

0.52) (Figure 3.5). In support of a possible CTCF-dependent recruitment mechanism, ENCODE data

demonstrated CTCF occupancy at many P7 sites (Figure 3.6). Since CTCF coordinates long-range in-

teractions between DNA regulatory elements together with cohesin 218, we examined whether other

cohesin complex members co-occupied P7 sites. Interestingly, 13.7% of P7 sites were co-occupied by

SMC3 and RAD21, and 24.7% of P7 peaks were co-occupied by either SMC3 or RAD21 (Figures 3.6).

Long-range enhancer-promoter looping interactions involving RelA have been shown to arise as a

result of TNFα stimulation in human fibroblasts 198.

All NF-κB subunits except p50 were recruited to cluster P4 promoters, which were enriched for

the ZNF143 motif (AUC = 0.71, p = 3.35 x 10-50). High ZNF143 ChIP signals were detected near the

centers of cluster P4 promoters (Figures 3.5 and 3.6). HowNF-κB is selectively recruited by ZNF143 to

P4promoters, but not other promoters boundbyZNF143, requires further investigation.Collectively,

our data suggest that NF-κB recruitment to DNA in the absence of κB motifs significantly expands

the range of NF-κB genomic targets, and enables subunits to perform unique functions.

3.2.7 NF-κB predominant versus highly co-occupied LCL sites

Comparison of our datasets with ENCODE ChIP-Seq data, obtained for 65 other TFs in GM12878

cells, identified two classes of NF-κB occupied promoters and enhancers. One class was bound either
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Figure 3.6: Co-occurrence of NF-κB subunits and GM12878 TF ChIP-Seq peaks. Red hues indicate the extent of

NF-κB co-occupancy with indicated TFs in GM12878 at promoter and enhancer clusters, normalized for the number

of cluster elements and the number of total peaks for each TF. Basal TFs names are indicated in green, DNA looping

factors are in blue.
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exclusively by NF-κB (clusters E4, E7-9), or by NF-κB in combination with a small number of other

TFs (clusters E3, E10, P3, P6, P8-10) (Figure 3.6). The second class was bound byNF-κB together with

many TFs, which occurred in different combinations across the cluster (clusters E1-2, E5-6, E11, P1-5,

P7). Distinct TF profiles were generally apparent at enhancers versus promoter clusters (Figure 3.6).

3.2.8 NF-κBandFOXM1are presenttogether inDNA-boundcomplexes at κB

sites

Incorporation of ENCODE GM12878 ChIP-Seq data revealed that multiple TFs co-occurred with

NF-κB, including both well-characterized and novel putative NF-κB cofactors. The oncogenic fork-

head TF FOXM1was present at nearly 59% of enhancers occupied byNF-κB, and at 50% of all NF-κB

occupied LCL sites. NF-κB co-occupied sites comprised nearly half of FOXM1 genome-wide bind-

ing in LCLs. Intriguingly, a κB motif, but not a forkhead recognition motif, was enriched at these

sites (Figure 3.7A). At strong enhancers, as defined by chromatin states71, FOXM1 and NF-κB sub-

unit ChIP peak summit heights were correlated (Spearman R = 0.5 for p52). Moreover, FOXM1 co-

occupied κB sites at many well-established NF-κB target genes, such as TNFAIP3 (which encodes

A20), NFKBIA (which encodes IκBα), BIRC3 (which encodes cIAP2) and CXCR4 (which encodes

CXCR4) (Figures 3.7B and S4). These results suggest thatNF-κB, or another factor that interacts with

NF-κB, recruited FOXM1 to these LCL sites, particularly in clusters E1, E2, E5, E6 and E11.

NF-κBandFOXM1 are hyper-activated inmanyof the samemalignancies 187,219.Despite also having

numerous overlapping biological roles, FOXM1 and NF-κB are not known to be cofactors. We there-

fore assessed whether FOXM1 and NF-κB are present together in DNA-bound protein complexes

in LCLs. First, we used sequential GM12878 ChIP (ChIP re-ChIP), in which anti-FOXM1 ChIP was

followed by ChIP using either anti-RelA antibody, anti-FOXM1 antibody (positive control), or no

antibody (negative control). Quantitative real-time PCR data showed that PLK1 or BCL2 target loci

were significantly enriched in the RelA ChIP versus the control (Figure 3.7C), suggesting that NF-κB
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and FOXM1 are part of a DNA-bound protein complex. Second, electrophoretic mobility shift assays

(EMSA) using GM12878 nuclear extract and DNA probes representing the PLK1 and AURKA re-

gions further validated FOXM1 recruitment to κB sites. Supershift assays, in which antibodies against

p50 or FOXM1 were added to the binding reaction, produced a slower migrating band, consistent

with recruitment of both NF-κB and FOXM1 to the probe (Figure 3.7D). Notably, the probe con-

tained a central κB site, but not a forkhead recognition motif, and had minimal flanking DNA, sup-

porting FOXM1 recruitment by a NF-κB-dependent mechanism. ADNA probe with mutant κB site

failed to compete for binding (Figure 3.7E). Finally, induced expression of a non-degradable IκBα

super-repressor in IB4 LCLs significantly reduced both RelA and FOXM1 occupancy at the PLK1

and AURKA loci (Figure 3.7F). Our results suggest that NF-κB and FOXM1 are present together in

DNA-bound complexes at NF-κB sites, and that recruitment to NF-κB sites is dependent on NF-κB

DNA binding.

To investigate the functional consequences of FOXM1 recruitment to κB sites, we tested the effects

of FOXM1depletion onNF-κB target gene expression. By 48 hours after short hairpinRNA(shRNA)

lentiviral delivery, each of three different anti-FOXM1 shRNAs strongly reduced FOXM1 expression,

and also markedly impaired expression of loci co-occupied by NF-κB and FOXM1, including TN-

FAIP3, BIRC3, CXCR4, NFKBIA, and MAP3K7 (Figure 3.8A). By contrast, FOXM1 depletion did

not impair expression of control LCL target genes, whose promoters andproximal enhancerswere not

occupied by either NF-κB or FOXM1 (Figure 3.8B). FOXM1 depletion did not affect cell viability at

48 hours post-transduction (Figures 3.8C). However, all three FOXM1 shRNAs reduced the number

of cells in S-phase and triggered apoptosis at 120 hours post-transduction (Figures 3.8D and S5B-D).

While NF-κB-independent FOXM1 cell cycle roles may have strongly contributed to this phenotype,

it nonetheless underscores FOXM1 as a novel LCL synthetic lethal target.

FOXM1 is a master regulator of germinal center B-cell proliferation220 and is expressed in diffuse

large B-cell lymphoma (DLBCL) 221,222. Impelled by these and our results, we investigated whether
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Figure 3.8: FOXM1 cooperates with NF-κB to regulate GM12878 target gene expression. (A) Three independent

shRNAs against FOXM1 reduced expression of key NF-κB target genemRNAs by 48 hours after delivery. Mean -/+

SEM effects from three independent experiments are shown. p < 0.05 for TNFAIP3, p<0.01 for all other comparisons

between control and FOXM1 shRNAs. (B) FOXM1 shRNAs did not reduce expression control genes (which were not
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P-value = 0.0037).
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FOXM1 expression correlates with clinical outcome in DLBCL.We retrospectively analyzed microar-

ray datasets from 414 DLBCL tumor samples 223, and found that elevated FOXM1 expression levels

were significantly correlated with worse overall survival, even controlling for tumor stage and sub-

type (P = 0.0037, Wald test) (Figure 3.8E). While FOXM1 roles independent of NF-κB may underlie

this observation, our analysis nonetheless suggests that FOXM1 levels may be a valuable prognostic

indicator in DLBCL.

3.3 Discussion

In the classical model of NF-κB activation, stimuli trigger IκB degradation, NF-κB dimer nuclear

translocation and κB site binding. However, this model does not adequately consider the complex-

ities that further shape NF-κB nuclear function 191,224,225. Likewise, most genomic studies of NF-κB

binding have focused on immediate events following canonical pathway stimulation by TNF-α or

lipopolysaccharide, and have not fully addressed why both pathways are needed to activate particular

target genes.Toour knowledge, our results provide the first genomic survey ofNF-κB subunit binding

when both the canonical and non-canonical NF-κB signaling pathways are persistently active. Conse-

quently, new insights into the extent of cross-talk between the canonical and non-canonical pathways

emerged.

The NF-κB binding landscape in LCLs was complex, but largely describable in terms of a small

number of SBPs, suggestive of both common and unique NF-κB subunit roles. Frequently, sub-

units activated by both the canonical and non-canonical pathway each contributed to SBPs. These re-

sults provide novel insights into howNF-κBmay function during physiologic B-cell activation, where

CD40-mediated persistent activation of both the canonical and non-canonical pathways is central to

the generation of germinal centers and humoral immunity 195,196. Our datasets provide a resource for

studies of EBV oncoprotein-mediated NF-κB activation, constitutive NF-κB activity in tumors, and

comparative genomics, since many TF families similarly evolved by gene duplication and diversifica-
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tion.

Numerous NF-κB cofactors, for which GM12878 data are not yet available, might contribute to

SBP formation. For instance, ENCODE ChIP-Seq data are not yet available for RPS3, which binds

to RelA and promotes RelA:p50 and RelA:RelA dimer binding to select κB sites 191. An important

future area of investigation will be the identification of B-cell cofactors that may similarly affect dimer

binding properties and thereby contribute to shaping the observed SBPs.

The extent to which NF-κB binding activates transcription remains an open question. Studies in

TNFα-stimulated LCLs and LPS-stimulated THP-1 monocytes suggested that only a minority of

RelA binding events induce transcription 199,200. However, limitations in the assignment of enhancers

to their target genes may have resulted in underestimates of regulatory binding events. In contrast, we

found that nearly all NF-κB binding in LCLs, including by p50 and p52, occurred at active enhancers

or promoters. Indeed, NF-κB promoter occupancy highly correlates with induction of transcription

in LPS-stimulated monocytes 202, and the vast majority of NF-κB binding events occurs at active pro-

moters and enhancers in LPS-stimulated murine dendritic cells 201.

Nearly one-third of LCLNF-κB binding events occurred at DNA sites lacking κBmotifs. cRel and

p52 may more frequently be recruited to these sites (clusters P5, P7, E10 and E11). Consistent with

our findings, a prior ChIP-ChIP study of RelA chromosome 22 binding events in TNFα-stimulated

HeLa cells reported that 44% of identified RelA sites did not have a κB motif 200. Similarly, ChIP-Pet

analysis of LPS-stimulated THP-1 cells found the RelA motif to be absent at 57% of RelA binding

sites 199. However, alternative NF-κB recruitment motifs were not identified. We report four motifs

that are highly enriched at LCL NF-κB binding sites that lack κB motifs: E-boxes at cRel-occupied

promoters, ZNF143 motifs at promoters occupied by all NF-κB subunits except p50, CTCF sites at

p52-occupied promoters, and Ets/ISRE elements p52-occupied enhancers. Indirect recruitment to

sites lacking κBmotifsmayprovide an importantmechanism throughwhichNF-κB subunits perform

specific functions and cross-talkwithother pathways.Our analysis offers insights intowhy eachNF-κB
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subunit has non-redundant roles in B-cells98.

NF-κB requires additional transcription co-factors to fully activate target gene expression 191,224,226.

Certain promoter and enhancer clusters were co-occupied by at least ten additional TFs, though it

is likely that fewer bind to an individual site at the same time. Binding at these loci is unlikely to be

an artifact of the ChIP experimental procedures, as SBPs with the highest co-occupancy (e.g., P1, E1,

E2) were enriched for κB binding site sequences. NF-κB was also found to bind frequently at highly

co-occupied sites in LPS-stimulated murine dendritic cells 201. High TF co-occupancy may be due to

a more accessible chromatin state at these genomic regions.

Our data highlight FOXM1 as an important coactivator of NF-κB target gene transcription in

LCLs, present at 50% of all NF-κB peaks. Since a FOXM1 DNAmotif was not enriched at these sites,

our data are consistent with amodel in whichNF-κB recruits FOXM1 to κB sites, either directly or in-

directly through additional cofactors. In support the former possibility, the MMB activator complex

directly recruits FOXM1 to coactivate transcription 214. MuvB and B-Myb also interact with FOXM1

to regulate gene expression during theG2 phase of cell cycle 227. Curiously, we did not find evidence for

NF-κB recruitment to FOXM1-bound forkheadbox recognition sites;DNAallosterymay induce con-

formation changes in the bound TF, leading to differences in protein-protein interactions93. FOXM1

depletion impaired transcription of key NF-κB target genes, and ultimately induced LCL apoptosis,

reminiscent of the phenotype of NF-κB inhibition on these cells 228.

To our knowledge, FOXM1has not previously been reported to function jointlywithNF-κB in tar-

get gene regulation. However, cross-talk between NF-κB and FOXM1 may underlie published stud-

ies. Both FOXM1 andNF-κB are implicated in the pathogenesis of K-Ras-induced non-small cell lung

cancer 229. Moreover, conditional FOXM1 deletion impairs K-Ras-mediated expression of multiple

NF-κB pathway components, including IKK-β, RelA, p105/p50, and p100/p52. Intriguingly, NF-κB

and FOXM1 have each been implicated as drivers of B-cell lymphomagenesis 188,221,222,230, although a

joint role of FOXM1 and NF-κB in driving B-cell malignancy has not yet been proposed.
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Despite the promise of therapies that block pathogenic NF-κB hyperactivity in cancer and autoim-

mune diseases, side-effects have largely precluded the use of broadly-acting NF-κB inhibitors, such

as IKK-β kinase antagonists. Uncovering subunit-specific transcriptional mechanisms may facilitate

approaches to selectively alter NF-κB target gene expression. Targets that require both canonical and

non-canonicalNF-κBpathway activationmay be particularly sensitive to disruption. Since FOXM1 is

not expressed in most adult tissues, our data highlight the FOXM1 pathway as a potential therapeutic

target in B-cell malignancy. An increasingly sophisticated understanding of NF-κB nuclear function

promises to highlight novel therapeutic strategies for selective NF-κB inhibition.

3.4 Methods

3.4.1 Cell lines and antibodies

GM12878 cells were cultured in RPMI 1640 medium supplemented with 10% Fetalplex (Gemini),

L-glutamine, streptomycin, and penicillin. IB4 cells expressing tetracycline-regulated IκBα deleted

for the N-terminal 36 amino acids (dN) 228 were cultured in RPMI 1640 medium supplemented with

0.2ug/ml hygromycin, 0.25 ug/ml G418 and 1 ug/ml tetracycline. The following antibodies were used

for ChIP, ChIP-Seq and ChIP-re-ChIP: p50, sc-1190; p65, sc-372; RelB, sc-226; c-Rel, sc-71; FOXM1,

sc-502, (all from Santa Cruz Biotechnology); and p52, A300-BL7039 (Bethyl Laboratories). Murine

stem cell leukemia virus vectorswere used to deriveGM12878 cell lineswithHA-epitope taggedNF-κB

subunit for our LCL dimer analysis, as previously described 231. HEK-293 cells with inducible LMP1

expression have been previously described 232.

3.4.2 ChIP-Seq experimental procedures

GM12878 cells were cross-linked with 1% formaldehyde. Chromatin was sonicated to an average size

of 500 bp. Biological replicates were obtained using cells grown on separate days. Antibodies against
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RelA, RelB, cRel, p50 and p52 were used to immunoprecipitate protein-DNA complexes. Captured

protein-DNA complexes were eluted from protein A beads and reverse-crosslinked. ElutedDNAwas

purified using PCR purification columns (Qiagen). ChIP-Seq libraries were prepared using NEBNe-

fxt library preparation kits (New England Biolabs) and sequenced by HiSeq 2000 (Illumina).

3.4.3 ChIP-Seq data analysis

To analyze our ChIP-Seq data, we followed the set of standards and guidelines established by the EN-

CODE and modENCODE project consortia 211. We used strand cross-correlation analysis as the pri-

mary metric for success of a ChIP-Seq experiment 233. Landt et al. introduced two main metrics to

evaluate the signal-to-noise ratio of a ChIP-Seq experiment: the normalized strand coefficient (NSC),

which quantifies the fragment-length cross- correlation over the background cross-correlation rate,

and the relative strand correlation (RSC), which computes the ratio of cross-correlation observed at

the predicted fragment size against the artifactual cross-correlation observed at read length 211. All the

NF-κBChIP-Seq datasets we generated hadNSC andRSC values that exceeded the ENCODE criteria

for experiment success (NSC > 1.05 and RSC > 0.8).

Reads from all ChIP-Seq experiments were mapped to the hg19/GRCh37 build of the human

genome using bowtie v0.12.8 233. Aligned reads that had more than 2 mismatches or that did not map

to a unique position in the genome were discarded. The “–best” and “–strata” flags were used to en-

able the breaking of ties using read quality scores. Samtools v0.1.19 was used to generate compressed

BAM files from the bowtie output.

We eliminated all reads that were mapped to genomic regions that were blacklisted by the EN-

CODE consortium because of their potential to cause high-signal artifacts22. The blacklisted regions

include centromeric and telomeric repeats, satellites and high mappability islands. For more informa-

tion about how the blacklisted regions were generated, see:

https://sites.google.com/site/anshulkundaje/projects/blacklists
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We used SPP v1.10 234 (http://compbio.med.harvard.edu/Supplements/ChIP-Seq/) to identify re-

gions with high enrichment of ChIP-Seq tags (“peaks”). SPP was first used to call peaks at a relaxed

threshold to obtain ~300,000 peaks for each ChIP-Seq replicate. To determine a threshold at which

peaks were deemed to be reproducible across replicates in a statistically significant manner, we used

the Irreproducible Discovery Rate (IDR) framework235. For each subunit, we directly compared the

peaks obtained in replicate experiments and set the peak calling threshold to yield an IDR of 1%.

3.4.4 Generation of continuous ChIP signal tracks

To generate ChIP signal tracks for visualization, we first used the fragment length estimates from SPP

to computationally extend mapped reads to their predicted fragment size. Afterwards, we used Wig-

gler 236 with a smoothing window (-w) parameter of 300 to generate bigWig files for all of the experi-

ments.

The y-axes in all of the ChIP signal tracks displayed in the figures are scaled from 0 (no ChIP frag-

ments observed) to whichever value was larger: (a) 20 times themedian for the 100-kb region centered

on the locus depicted in the track, or (b) the maximum signal observed within that track region.

3.4.5 Comparison with ENCODE ChIP-Seq data

For the peak regions in each promoter or enhancer cluster, we computed the fraction of NF-κB peak

regions that overlapped with ENCODE ChIP-Seq peaks for all of the experiments that passed QC.

ENCODEChIP-Seq peakswereweighted by both their height and the number of base pairs that over-

lappedNF-κB peaks to compute a raw co-occurrence score. However, the ENCODE data vary widely

in terms of the number of peaks reported. Therefore, to normalize for the number of peaks per ChIP-

Seq experiment and their potentially varying width, the overlap was represented as a fraction of the

total number of bases covered by peaks in each ENCODE experiment. Then, this co-occurrence score

was divided by the number of peaks occurring in each cluster, to control for the different numbers of
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elements in different promoter and enhancer clusters. Finally, these scores were z-score normalized to

show co-occurrence values in a consistent scale.

All of the ENCODE GM12878 TF and co-activator ChIP-Seq data sets that were used in our com-

parisons were downloaded from the hg19 version of “Transcription Factor ChIP- seq Uniform Peaks

from ENCODE/Analysis” datasets at the UCSC ENCODE Project portal. The GM12878 ChIP-Seq

data for histone modifications were also downloaded from the UCSC ENCODE portal, from “Uni-

form Signals tracks.”

3.4.6 Comparison with HOT and LOT regions

Yip et al. used ENCODEGM12878 ChIP- seq data to identify genomic regions with particularly high

and low degrees of TF co- binding (HOT and LOT regions, respectively)237. We computed the frac-

tional overlap of all NF-κB peaks from each cluster with GM12878 HOT and LOT regions. A value

of 1 indicates that all peaks in a given cluster overlapped with HOT or LOT regions, while a value of

0 indicates that none did. We used the HOT and LOT prediction tracks obtained from:

http://metatracks.encodenets.gersteinlab.org/HOT_Gm12878_merged.bed.gz

http://metatracks.encodenets.gersteinlab.org/LOT_Gm12878_merged.bed.gz

3.4.7 Chromatin state distribution

WeusedGM12878 ChromHMMchromatin state annotations71 to annotate the overlap betweenNF-

κB subunits and chromatin states. Briefly, ChromHMM bins the genome into 200-bp regions and

classifies each of these regions into various chromatin states based on the co-occurrence patterns of

the histone marks H3K27me3, H3K36me3, H4K20me1, H3K4me1, H3K4me2, H3K4me3, H3K27ac,

H3K9ac, and the binding of CTCF. To simplify the display of the chromatin state information, chro-

matin states from the paperweremerged intomore general categories, as shown in the following table.

Because of its small number of occurrences, the “poised promoter” state was excluded.
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Table 3.1: Schema for merging ChromHMMstates

Merged state Original ChromHMM states
Promoter Active promoter, Weak promoter
Enhancer Strong enhancer, Weak enhancer
Insulator Insulator
Transcribed Transcriptional transition, Transcriptional elongation, Weakly transcribed
Repressed Polycomb repressed
Other Heterochromatic/low signal, Repetitive/CNV

3.4.8 Clustering of subunit peaks

All loci that were identified as a ChIP peak location for at least one of the NF-κB subunits and that

overlapped with a promoter or enhancer ChromHMM state were clustered. NF-κB ChIP signal in-

tensities were used as the numerical values for calculating distances for clustering. Importantly, this

approach minimizes threshold effects in peak calling between the five subunits (i.e., loci where two

subunits bound, but one barely missed the peak-calling threshold), which could have resulted from

variable antibody and experimental quality. We used seqMiner v1.2 212 to find clusters. Briefly, the

rank-normalized ChIP signal intensities for each subunit relative to peak centers are used to perform

k-means clustering. Because each experiment can potentially have a different signal-to-noise ratio,

rank-normalization was used to make the peaks comparable across experiments. To determine the

number of clusters, we started at a high number (20) and decreased it until clusters were qualitatively

unique. Clustering was performed 10 times with different random seeds to verify stability of the clus-

ters.

3.4.9 De novo motif discovery

We employed ChIPMunk 238 to discover potential regulatory motifs in the NF-κB and ENCODE

ChIP-Seq data. In a recent comparison of methods for modeling TF specificity, ChIPMunk was the

top performer among methods for deriving motifs from both ChIP-Seq data and PBM data 39. To
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derive a consensus motif for each subunit (Figure 3.1C), ChIPMunk was run separately on the peaks

obtained from each of the five subunit ChIP-Seq experiments. In each case, the continuous signal

track was used in addition to the peaks to further enhance the signal-to-noise ratio (using the “-p”

option), searching for motifs of length 8 to 12, and performing local GC-content matching.

To find motifs for potential co-factors or TFs that tend to co-occur with different combinations

of NF-κB subunits, we combined de novo motif finding and enrichment analysis using a dictionary

of known motifs. Briefly, to perform de novo motif finding, we ran the MEME-ChIP suite 239 inde-

pendently for the peaks in each cluster. We searched for up to five motifs of length 6 to 20, using

both the MEME and DREME algorithms. In addition, the central enrichment of motifs found by

the abovemethods was determined using CentriMo and reported as a P-value. The actual enrichment

of all of the motifs found by the MEME-ChIP suite relative to genomic background sequences was

computed as described below. To determine enrichment for known motifs, we used HOMER v3.0 89

and its associated dictionary of vertebrate motifs, which includes position weight matrices (PWMs)

from several databases, such as TRANSFAC and JASPAR. Q-values were obtained from a false dis-

covery rate (FDR) corrected hypergeometric test. The background sequence set was normalized for

dinucleotide composition using the “autonormalize” option in HOMER.

3.4.10 Motif enrichment determination

We used the area under the receiver operating characteristic curve (AUC) statistic to quantify motif

enrichment. The entire region that was defined as a peak by SPPwas used formotif analysis. Briefly, if

the presence or absence of a motif in a genomic sequence influences binding, then the motif score of a

given sequence should be able to predict whether a TFwill bind or notmore accurately than expected

by chance. In our comparisons, we compared the motif scores for sequences in a foreground (FG)

set, which usually contains loci bound by NF-κB or other TFs, to those in a background set (BG),

which are meant to reflect the overall sequence biases of the non-coding genome. The methods used
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to obtain an appropriate BG set are described in the following section.

The PWMof amotif can be used to scan anyDNA sequence and assign it a motif match score. For

each sequence in theFGandBGsets, we computed themaximumPWMlog-odds score across all possi-

ble alignments and orientations and used it as amotif-match score for the sequence. Ifmost sequences

in the FG set have a higher motif match score than the BG sequences, then there should be a thresh-

old motif match score that can predict to which set a sequence belongs. We obtained ROC curves for

each PWM by calculating the sensitivity and specificity at different motif match thresholds. The area

under the curve (AUC) statistic summarizes the discriminatory power (or equivalently, enrichment)

of amotif at different threshold values. AUC values close to 1 indicate thatNF-κB subunits bind to se-

quences containing the particular motif at a much higher rate than to unbound genomic sequences; a

value of 0.5 is expected by chance alone (Figures 3.4A). Simultaneously, we used theWilcoxon-Mann-

Whitney U test to assign P-values to each enrichment calculation, as implemented in the R function

wilcox.test. To test for central enrichment of the motif relative to the center of ChIP-Seq peaks, we

used the CentriMo tool 239.

In some cases, we compared two sets of bound regions (e.g., Figure 3.4A). In such cases, the first

set of sequences listed in the comparison is considered the FG set, while the second set is the BG set.

Therefore, true positives represent the case where the presence of the motif accurately predicts the

sequence as belonging to the FG set. When an AUC score > 0.5 is observed in such comparisons, it

implies that the motif can discriminate between the two sets of sequences.

3.4.11 Comparisons with PBM 12-mer data

We performed the analysis similarly to the above case (where PWMswere used), but instead of taking

the maximum PWM log- odds score for each sequence, we used the maximum predicted z-score for

12-bp sequences, as determined previously from PBM experiments on NF-κB dimers using custom-

designed oligonucleotide arrays91, to score the sequences bound in vivo. Non-traditional sites were
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defined as 12-mers that had a z-score > 4.0 as determined from PBM data, but a PWM match score <

4.0. This was similar to the approach of Siggers et al.91 but used the PWMs derived by ChIPMunk

instead.

3.4.12 Generation of background sets

The rate of occurrence of random motif instances in the genome can be highly influenced by local

G/C content, particularly in the case ofG/C-richmotifs like those ofNF-κBproteins. In addition, the

propensity of someNF-κBdimers to bind guanine-rich half-sites91 could artificially inflate enrichment

at repetitive regions. Therefore, the BG set should be similar to the FG in both G/C content and the

proportion of repetitive sequences to avoid reporting false enrichments.

We used rejection sampling to obtain a background set with an equal distribution of G/C con-

tent and proportion of repetitive sequence as the foreground set. For each distinct FG set, we used

the “shuffleBed” program (part of the BedTools suite v2.16.2 240) to obtain genomic intervals that

matched the length distribution of the foreground set but that were randomly distributed through-

out the genome. All coding exons and blacklisted regions (as defined above) were excluded from the

list of allowable positions for the randomly positioned intervals. First, the ranges for observed values

of both G/C and repeat percentages were separately discretized into 10 equally sized bins. Then, for

each length-matched interval thatwas randomly placed in the genome,weperform successive rejection

sampling steps for G/C content and for repeat content. The sequences that are selected after rejection

sampling are then used to form the BG set. This method is identical to that used by Gisselbrecht et

al. 241

3.4.13 Cluster-specific motifs

We used the PWM derived from the RelA ChIP-Seq experiment (which corresponds to the 10-bp κB

site) to scan peak sequences from each cluster for the highest scoring motif instance. For each cluster,
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we computed the frequencies at which each nucleotide occurred in each position in the sequence of

the best scoring motif match. Then, we used the nucleotide frequencies at each position to create a

new logo that represented the sequence biases of κB sites specifically in that cluster.

3.4.14 Evolutionary conservation analysis

We used the GERP++ score, as calculated over the evolutionary tree of 33 mammals 242, as a measure

of evolutionary constraint in the human genome. Briefly, the GERP++ score for a particular base pair

in the genome represents the number of estimated “rejected substitutions” that have occurred at that

position throughout mammalian evolution. Higher scores indicate that the identity of that base pair

has changed less than would be expected if the sequence were undergoing mutations at the neutral

rate and therefore suggest the action of purifying selection.

To generate the plots in Figures 3.4C, all NF-κB peaks in enhancer sites at clusters bound by p50

(E1, E3, E5 and E9) were scanned to find the top scoring motif instance using a 10-bp motif (the RelA

PWM shown in Figure 3.1). For each position in the motif, the GERP++ score was averaged across all

motif matches.

3.4.15 Gene set enrichment analysis

We used GREAT 213 to predict potential biological functions of different clusters of NF-κB ChIP-Seq

bound regions. For each cluster, GREATassigns peaks to nearby genes, predominantlywithin -5 kb to

+1 kb relative to a gene’s transcriptional start site. However, when no other genes are present nearby,

or in a few loci with experimentally determined regulatory interactions, GREAT considers interac-

tions up to 1 Mb away. We used GO Biological Process terms to link clusters and SBPs to putative

biological functions. All reported terms had a Benjamini-Hochberg FDR q-value < 0.01 in both the

hypergeometric and binomial tests used by GREAT. This is the setting recommended by McLean et

al. for obtaining high confidence associations 213. All parameters were set to the default values and the
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whole genome was used as the background. For the heat map in Figure 3.3D, we included only those

GO Biological Process terms that had 2-fold or greater fold-enrichment.

3.4.16 Analysis of DLBCL datasets

We used a Cox proportional hazards model to determine whether FOXM1 expression was predictive

of survival in DLBCL patients. We used the R package Survival to plot survival curves and perform

statistical tests. The processed microarray expression data and the survival time statistics were both

downloaded from GEO series GSE10846. The hgu133plus2.db library in the Bioconductor package

was used to map microarray probes to gene symbols.

The P-value was calculated by performing a Wald test on the FOXM1 expression coefficient after

fitting a Cox proportional hazards model to the data using the statistical model formula:

Survival_Time ~ FOXM1_Expression + Tumor_Stage + Microarray_Diagnosis

3.4.17 In vitro translation

TheTnT®T7QuickCoupledTranscription/Translation Systemwas used to translate the fiveNF-κB

subunits from sequence-verified expression vectorswith each cDNAdownstreamof theT7promoter,

according to the manufacturer’s instructions.

3.4.18 Proteomic analysis of LCL NF-κB dimers

GM12878 cells that stably express either RelA, RelB, cRel, p50 or p52 were established. Nuclei were

isolated from 100 million GM12878 cells by hypotonic lysis and dounce homogenization, and HA-

epitope taggedNF-κB subunits were then immuno-purified under isotonic conditions, washed exten-

sively, and eluted by HA-peptide competition, as previously described 231. Eluted material was run on

a 10%SDS-PAGEgel, and subjected to liquid chromatography followedby tandemmass spectrometry

analysis at theHarvard Taplin proteomics core, as previously described 243. Alternatively, endogenous
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NF-κB subunits were immuno-precipitated from 10 million GM12878 LCLs, using validated NF-κB

subunit-specific antibodies and protein A beads, washed extensively, and then subject to western blot

analysis, as indicated.

3.4.19 Electrophoresis Mobility Shift Assays

EMSAs were performed using an oligonucleotide probe encompassing the κB site at the PLK1 pro-

moter (Wild-type: CCGGGTCCGTGTCAATCAGGTTTTCCCCGGCTGGGTCCGGGT

T; Mutant: CCG GGT CCG TGT CAA TCA GGT TTT AAA AGG CTG GGT CCG GGT T).

32P-dCTP labeled probes were incubated with nuclear extracts prepared from GM12878 cells, either

untreated or treated with PMA (50 ug/ml) and ionomycin (500 ng/ml, 2 hours, 370C). 100x excess

of unlabeled probe and NF-κB site mutant probe were added to determine the specificity of NF-κB

binding. Antibodies against FOXM1, p50 and control antibodywere added the reaction. The protein-

DNA complexes were separated by non-denaturing PAGE and visualized by exposure to X-ray film.

3.4.20 ChIP, ChIP-re-ChIP and qPCR

To induce the dN IκBα super-repressor expression, 107 IB4 cells were washed three times with fresh

media supplemented with Tet-free fetal calf serum. Cells were then grown in the presence or absence

ofTet for 3 days. ChIP assays were performedwith antibodies against RelA, FOXM1 and pre-immune

sera as a control. qPCRusing primers for sites occupied byNF-κB and FOXM1 in PLK1 andAURKA

promoters was used to quantify the binding to these sites. Fold-enrichment over control was first de-

termined, and the fold enrichment of the uninduced IκBα super- repressor conditionwas then set to 1.

Re-ChIP-IT kit (ActiveMotif) was used for ChIP- re-ChIP experiments following themanufacturer’s

protocol. Anti-FOXM1 antibody was used for the first ChIP from GM12878 cells. Re-ChIP was per-

formed using antibodies against FOXM1 or RelA, or as a control with no antibody added. qPCRwas

used to quantify binding to the PLK1 and BCL2 promoters as described above. Fold enrichment over
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the no antibody control was determined with controls set to 1.

3.4.21 shRNA, qRT-PCR, cell-cycle and apoptosis assays

pCMV-dR8.91 and pMD2.G were transfected into 293T cells to produce lentiviruses. Two rounds of

lentivirus transductionofGM12878wereperformed, 24hours apart. Lentivirus-transducedGM12878

LCLs were allowed to recover for 24 hours, and then selected in puromycin for 24 hours. Total RNA

was extracted using RNeasy kit (Qiagen). qRT-PCR was performed using the RNA-to-Ct 1-step kit

(Life Technologies).

For cell cycle analyses, cells were fixed with 70% ethanol, stained with propidium iodide and ana-

lyzed on a FACSCalibur instrument. Caspase activitywas determined usingCaspase-Glo assay systems

(Promega). Cell Signaling cleaved caspase assay starter kit was used.

This chapter is a modified version of a published article describing this work:

ZhaoB*, BarreraLA*, Ersing I,WilloxB, Schmidt S,GreenfeldH,ZhouH,Mollo S, ShiT,TakasakiK,

Cahir-McFarlandE,KellisM,BulykML**, Kieff E**,GewurzB**. TheNF-kappaBgenomic landscape

in lymphoblastoid B-cells. Cell Reports (2014) 8(5):1595-606.

Acknowledgments

This project was supported by a Burroughs Wellcome Medical Scientist career award (to B.E.G.),

NIH K08 CA140780 (to B.E.G.), NIH RO1 CA085180, CA170023, and CA047006 (to E.K.), a Na-

tional Science FoundationGraduate Research Fellowship (to L.A.B.), and grant R01HG003985 from

NIH/NHGRI (to M.L.B.). We thank Trevor Siggers and Suzanne Gaudet for critical reading of the

manuscript.

104



Author contributions

B.Z., L.A.B., E.C.-M., E.K., and B.E.G. designed the study. B.Z., M.K., M.L.B., E.K., and B.E.G.

supervised research. B.Z., I.E., B.W., S.C.S.S., T.T.S., H.G., S.B.M., K.T., and B.E.G. performed ex-

periments. L.A.B. performed the computational data analysis. L.A.B., B.Z., B.E.G., E.K, and M.L.B.

analyzed data. B.Z., S.J., and H.Z. provided analytic tools. L.A.B., B.Z., and B.E.G. prepared figures

and/or tables. B.E.G., L.A.B., B.Z., E.K., and M.L.B. wrote the manuscript.

My contributions

• Implemented a computational pipeline to analyze rawChIP-Seqdata, which calculated various

metrics to evaluate the quality of experiments and generated robust peak calls by comparing

replicate experiments.

• Used this pipeline to aid in the screening and selection of antibodies and in the optimization of

ChIP-Seqprotocols. This process culminatedwith the first collection of highqualityChIP-Seq

datasets that profiled all NF-κB subunits in same condition and cell type.

• Performed clustering of ChIP-Seq signals to discover that NF-κB proteins bind regulatory el-

ements in a limited number of combinations, which we refer to as subunit binding patterns

(SBPs).

• Employed a combination of de novo motif finding, motif enrichment analysis and ChIP-Seq

data to show that specific SBPs were associated with indirect binding of NF-κB through four

other TFs.

• Demonstrated the importance of the 3’ flanking nucleotide of the traditional 10 bp kB motif

in determining whether NF-κB dimers containing the p50 subunit were present or absent at a

105



particular genomic region. Showed that this hypothesis was supported by evolutionary con-

servation.

• Analyzed >50 ENCODE ChIP-Seq datasets in GM12878 cells to identify FOXM1 as a fre-

quently co-localizing factor with NF-κB that lacked enrichment for its own motif.

• Participated in the design of validation experiments that showed FOXM1 was not binding its

ownmotifs but was being recruited toDNAby a complex that containedNF-κB (e.g., selected

sequences and mutations to be used for EMSA probes)

• Performed survival analysis on expression datasets from diffuse large B-cell lymphoma patients

to show that higher FOXM1 expression was associated with a worse prognosis.

106



In biology, nothing is clear, everything is too complicated,

everything is a mess, and just when you think you under-

stand something, you peel off a layer and find deeper com-

plications beneath. Nature is anything but simple.

Richard Preston

4
Systematic characterization of coding

variation in human transcription factors
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Abstract

Regulatory variation is an important driver of phenotypic differences across individuals and species.

However, identifying genetic variants that modulate gene expression in humans remains challenging,

particularly for rare trans-acting alleles. We developed a computational, structure-based approach to

identify coding variants that are likely to alter the DNA-binding preferences of human transcription

factors. Using protein-binding microarrays, we assayed the DNA-binding properties of 115 transcrip-

tion factor alleles found in large-scale population sequencing studies of healthy individuals and in fam-

ilies with Mendelian disease. We identified 74 missense variants that affect the DNA-binding affinity

or specificity of transcription factors. By comparing the DNA-binding effects of non-synonymous

SNPs and known disease-causing variants, we identified putative disease risk alleles and characterized

themolecular perturbations underlying severalMendelian disease phenotypes. We estimate that thou-

sands of rare alleles that alter DNA-binding affinity or specificity exist in human populations and that

a typical individual carries several genetic variants that alter TF binding preferences.

4.1 Background

Mutations that alter gene expressionhavebeen established as keydrivers of phenotypic variation across

species and individuals. In particular, genetic variants in cis-regulatory elements have been shown to

drive evolutionary adaptation in morphology, physiology and behavior 244. Generally, cis-regulatory

mutations are consideredmore likely to alter gene expression in amodular fashion, therefore reducing

the potential for deleterious pleiotropic effects244.

However, there has been considerable debate about the contribution of trans regulatory variation

to evolutionary adaptation and phenotypic variation. A key unanswered question is the extent to

which transcriptional networks can be rewired through amino acid substitutions in transcription fac-

tors without causing major detrimental effects on fitness 113. There exist well-known examples where
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amino acid substitutions that caused substantial changes in DNA-binding specificity became fixed

in certain lineages. For example, a lysine to glutamine substitution in the Bcd homeodomain pro-

tein substantially altered its DNA-binding specificity in the Drosophila lineage 245. In practice, such

substitutions are likely to be facilitated by compensatory mechanisms, such as buffering by paralo-

gous proteins 113. However, whether these mechanisms are prevalent enough to allow TF alleles with

alternative binding preferences to segregate in predominantly healthy populations remains an open

question.

Variation in gene expression across human individuals has increasingly been associated with com-

mon disease risk. In particular, disease-associated variants have a tendency to alter gene expression in

tissues or cell types that are relevant to the associated pathogenic process 116. Therefore, being able to

link changes in expression to the disease phenotype can provide key biological insights about the un-

derlying etiology. In humans, both cis and trans mechanisms have been shown to contribute to gene

expression variation 246. However, finding genetic variants that affect expression in trans remains a

significant challenge. In a typical cis-eQTL study, only variants that are proximal (usually < 1Mb)

to a gene body are tested for associations with expression differences. When testing for trans-eQTL

associations, this constraint is no longer applicable, greatly increasing the multiple-hypothesis testing

burden and reducing statistical power to detect true associations. 110.

Several lines of evidence suggest that trans regulatory variation contributes to disease risk and is

likely to be prevalent in human populations. A large trans-eQTL meta-analysis in whole blood dis-

covered 233 significant SNPs by testing only for trans associations with SNPs previously implicated

in common disease risk 110. Furthermore, the effects on expression of variants associated with type 2

diabetes risk showed a prevalence of trans, but not cis, effects on expression 247. These observations

are further supported by reports of differential TF binding in the same locus across individuals. In a

study comparing the binding patterns of NF-κB in 10 individuals, 7.5% of binding sites were found

to vary across individuals 86. Variable binding sites were preferentially associated with differential ex-
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pression, but only ~1/3 of the binding variability across individuals could be explained by local genetic

variation. These observations imply that there is a pressing need to evaluate the contribution of trans

regulatory variants to human phenotypic variation. Although eQTL analyses have proven useful for

this purpose, they remain limited to variants with sufficiently high allele frequencies. Furthermore,

eQTL studies depend on the availability of the relevant tissue from a sufficiently large number of

individuals.

An alternative is to use a genotype-first approach, in which genetic variants found in human pop-

ulations are selected and then experimentally tested to determine their effects. Mutations that alter

the coding sequence of TFs are prime candidates for having regulatory consequences. In particular,

mutations that affect TFs’ DNA-binding domains (DBDs) have the potential to cause changes in the

expression of target genes by altering TF binding patterns at regulatory elements. Such missense vari-

ants have been extensively reported in families with Mendelian disease 248,249, but their prevalence in

the population, their relative effect sizes, and their consequences remain largely unknown.

Various studies have reported that loss-of-function (LoF) variants are surprisingly prevalent in hu-

man genomes. Typically, these studies have been limited to frameshift or nonsensemutations, as these

features are highly predictive of loss of protein function. LoF variants have been shown to cause sub-

stantial differences in transcript levels across individuals 250. Non-synonymous SNPs (nsSNPs), vari-

ants which change the identity of a single amino acid in a protein, are significantly more common

than frameshift or nonsense mutations. However, the functional consequences of nsSNPs are much

harder to predict. Thus, the extent to which missense variants in TFs contribute to regulatory varia-

tion remains unclear.

Therefore, an essential task is to ascertain the prevalence and effects of nsSNPs in DNA-binding

domains, hereafter referred to as DBD polymorphisms (DBDPs), in the human population. We de-

scribe a computational approach to analyze genotype data from exome andwhole-genome sequencing

projects to identify the variants most likely to affect DNA-binding. Using protein-binding microar-
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rays, we compared the DNA-binding properties of reference and alternative TF alleles. In addition,

we assayed a large set of TF alleles reported to cause various Mendelian diseases. Determining the

binding preferences ofMendelian alleles revealed novel insights about the molecular basis underlying

several phenotypes, particularly in cases where different mutations in the same TF are associated with

distinct disease presentations. In addition, the experimental testing of disease-causing TF alleles en-

abled us to compare to the effect sizes of DBDPs in the population. Based on these observations, we

estimate the prevalence of functional DBDPs in humans and discuss its implications for interpreting

noncoding variation and association studies.

4.2 Results

4.2.1 Widespread variation in DNA-binding domains

The human genome encodes ~1400 sequence-specific TFs, which together harbor DBDs spanning

>20 structural classes 24. Multiple exome and whole-genome sequencing projects have now identi-

fied >3 million coding variants in tens of thousands of individuals. We first determined how many of

these reported nsSNPs altered the amino acid sequences of DNA-binding domains in a set of 1,364

manually curated, high-confidence TFs24. Analyzing genotype data from predominantly healthy in-

dividuals surveyed by the 1000 Genomes Project, the Exome Sequencing Project (ESP6500) and the

Exome Aggregation Consortium (ExAC), we identified 52,956 unique DBDPs in 64,706 individuals

(Figure 4.1a). The majority of such variants are rare: beyond a set of 12,011 DBDPs discovered inde-

pendently by at least two projects, 40,945 were reported in only one study. These results imply that

many new DBDPs are likely to be identified as the number of sequenced exomes and genomes con-

tinues to grow. In addition, in the same set of individuals, we identified 4,533 nonsense variants that

result in partial or full truncation ofDBDs in their respective genes. These nonsense variants are likely

to result in a loss of DNA-binding activity, whereas the consequences of DBDPs may span a range of
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Figure 4.1: Patterns of variation in DNA-binding domains. (A) Number of unique DBDPs found in individuals geno-

typed by the 1000Genomes Project (Phase III, 2,504 individuals), the Exome Sequencing Project (ESP6500, 6,503

individuals) and the ExomeAggregation Consortium (ExAC v0.2, 61,486 individuals). (B) Number of unique DBDPs

found per individual in either homozygous or heterozygous states. (C) Number ofMendelianmutations (upper left) and

nsSNPs (lower left) found in ExAC v0.2 across all homeodomain TFs as a function of their position in the domain and

the type of DNA contact associated with residues in that position. ``I'', ``II'', ``III'' refer toα-helices, where helix III is the
DNA recognition helix. Adjacent bar graphs (middle) depict themean number of variants for each type of position; * or

** denote enrichment or depletion, respectively, relative to non-DNA-contacting residues (P < 0.05, permutation test),

error bars (1 standard error of themean). Representative co-crystal structure (right) of the Engrailed homeodomain

(PDB: 1HDD) depicting annotation of DNA-contacting residues using the same scheme as on the left.

effect sizes and types.

As a complementary way of quantifying the prevalence of DBDPs, we determined howmanyDB-

DPs with potential effects on protein function are present in a typical individual’s genome. We de-

termined that a human genome harbors a median of 60 heterozygous and 20 homozygous DBDPs

across the set of 1,364TFs described above (Figure 4.1B).DBDPs are found at significantly reduced fre-

quencies in TFs with known Mendelian phenotypes: a median of 6 heterozygous and 2 homozygous

variants per individual, which corresponds to a significant depletion relative in the overall number of

DBDPs relative to the 229 TF genes associated with Mendelian disease phenotypes (odds-ratio = 3.7
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and P-value = 0.005, Fisher’s exact test). This observation suggests that DBDPs are less likely to be

tolerated in genes where mutations can have direct phenotypic consequences. These results suggest

an abundance of TFs with potentially altered function per individual and a need for in-depth analysis

of the functional consequences of these variants.

4.2.2 Enrichment of disease-causing mutations at protein-DNA interfaces

To better understand the potential consequences of DBDPs, we examined how frequently mutations

associated withMendelian disease affected different residues of DNA-binding domains. For this pur-

pose, we focused on homeodomain proteins and the DBDPs and disease-causing variants that alter

their amino acid sequences. Homeodomains are the second most common DBD class in humans 24

and are associated with a wide range of disease phenotypes 251. In addition, the residues within the

homeodomain that mediate protein-DNA recognition have been relatively well characterized 26,28.

This makes homeodomains an ideal structural class in which to study patterns of sequence variation

as they relate to DNA-contacting residues.

We extracted data on DNA-contacting residues from publicly available homeodomain-DNA co-

crystal structures in the Protein Data Bank (PDB) and aligned the corresponding homeodomain pro-

tein and bound DNA sequences to assemble a composite protein-DNA “contact map” for home-

odomains. We then mapped disease associated mutations in homeodomains to the canonical amino

acid numbering scheme for homeodomains. Residues that participated in base contacts, backbone

contacts, or that were adjacent to residues that participate in base contacts, were significantly more

likely to be reported as disease-causing than other homeodomain residues (Figure 4.1C, all P-values <

0.005, permutation test). In the exomes of healthy individuals, we observed a roughly inverse pattern,

with fewer variants affecting backbone (P-value = 0.03121, permutation test) and base-contacting po-

sitions (P-value = 0.0134, permutation test), particularly in the recognition helix (III). However, the

corresponding depletion in DBDPs was comparatively small (Figure 4.1C), suggesting that manyDB-
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DPs alter residues in the same homeodomain positions as those altered by Mendelian mutations in

homologous proteins.

4.2.3 Prioritization of DBD variants for experimental testing

Based on the results obtained for homeodomains, we reasoned that structural information about

protein-DNA contacts could be used to identify DBDPs with potential regulatory effects and undis-

covered phenotypes. We devised a scheme to identify DBDPs of interest based on multiple criteria,

such as (a) the position of the residue relative to the protein-DNA interface in co-crystal structures, (b)

literature-derived annotations for specificDBDclasses, (c) scores from several tools designed to predict

the pathogenicity of mutations, (d) minor allele frequencies, and (e) known phenotypic associations,

including those derived from linkage studies in families and through GWAS (Methods).

Using this prioritization scheme, we selected 35 DBDPs for experimental testing. Yet, hundreds

of mutations in DBDs have already been linked to Mendelian phenotypes, largely through genetic

linkage studies. We reasoned that when Mendelian variants are found in the same genes as DBDPs,

side-by-side experimental testingwould enable effect-size comparisons between pathogenic alleles and

variants of unknown significance. Therefore, we identified a set of TFs where several Mendelian mu-

tations altered the same DBD and selected a subset of those variants to assay experimentally. In some

cases, different mutations in the same DBD had already been associated with distinct phenotypes.

This suggested that experimental testing could provide further insights into the molecular pertur-

bations associated with particular disease presentations. In other cases, we selected Mendelian dis-

ease mutations occurring in the same genes where DBDPs had been selected for experimental testing,

which could enable comparisons of effect sizes and the identification of DBDPs with similar effects

to known disease-causing mutations. In aggregate, we selected a set of 79 Mendelian disease alleles to

assay experimentally.

In total, our set of selected proteins comprises allelic series corresponding to the DBDs of 41 TFs,
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each of which includes the reference allele and at least one variant allele. The 114 variant DBD alleles

span six major structural classes: ZF-C4 (also known as nuclear hormone receptor, NHR), ZF-C2H2,

POU, PAX, homeodomain, and forkhead (Figure 4.1C). We focused our analysis primarily on ZF-

C2H2 and homeodomain DBDs since those are the two largest structural classes of human TFs and

their DNA recognition has been studied extensively 26,252. For each of these 155 alleles, we created N-

terminal glutathione S-transferase (GST) fusion constructs that included all DBDs encoded by each

gene and their flanking sequences (Methods).

4.2.4 Characterization of variants using protein-binding microarrays

We employed universal protein-bindingmicroarrays (PBMs) to comprehensively assay the DNA-bin-

ding preferences of the selected TF alleles. Briefly, a universal PBM is a double-stranded DNA mi-

croarray whose probe sequences have been designed to contain at least 32 independent instances of all

DNA8-mers. When a fluorescently-labeledTFbinds the probes on the array, the resulting fluorescent

signal intensities can be used to quantify the TF’s relative preference for binding different sequences.

The DNA-binding preference of a TF allele to a given DNA 8-mer is summarized by the E-score, a

rank-based statistic that quantifies the extent to which the protein preferentially binds that 8-mer se-

quence relative to others41,253. E-scores are highly reproducible across replicate PBM experiments41

and can be used to accurately predict in vitro and in vivo binding 39 . In addition, E-score comparisons

have been used successfully to identify subtle differences in binding preferences across closely related

TFs26,253,254.

We used two distinct approaches based on E-score comparisons to identify affinity and specificity

differences between TF alleles. We determined that affinity changes could be detected by comparing

the distributions of top E-scores obtained from experiments for different alleles (Methods). We used a

Mann-Whitney U-test on the top 50 E-scores for each allele and corrected the resulting P-values using

the Benjamini-Hochberg procedure, identifying alleles with altered affinity as those having a q-value
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Figure 4.2: Experimental schema and study design. (A) Graphical summary of experimental schema. (B) Categories

of alleles assayed by protein-bindingmicroarrays. (C) DNA-binding domain structural classes corresponding to TFs

selected for this study.
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<0.05. Thismethodwas highly reproducible across replicate experiments, with 97% agreement in alle-

les identified as having altered specificity. In addition, the results obtained with this approach largely

agreed with results previously derived by biochemical testing of the same Mendelian disease alleles

using techniques such as electrophoretic mobility shift assays (Methods). Our PBM-based method

achieved perfect specificity and 71% sensitivity for identifying affinity changes that were previously

identified through low-throughput assays. The decrease in sensitivity was caused by not detecting

relatively small changes in binding affinity for certain alleles, suggesting that our approach is conser-

vative, but highly specific. To identify specificity changes, we used a previously described method for

determining whether sets of 6-mers were preferentially bound by one TF over another 254. Here, we

employed this method to make pairwise comparisons between TF alleles. We identified alleles with

6-mers having a q-value < 0.05 relative to the reference allele and imposed additional filtering criteria

to obtain results that were reproducible across replicates in 86% of cases (Methods).

We classified all the variant TF alleles based onwhether they alteredDNA-binding specificity, affin-

ity, or both. BothprioritizedDBDPs andMendelianmutationswere associatedwith a range of pertur-

bations on DNA-binding, changing specificity, affinity, and sometimes both (Figure 4.3c). Although

the frequency of DNA-binding changes was higher for Mendelian mutations than for DBDPs pri-

oritized for their likely effects on binding (72% vs. 60%), this difference was not statistically signifi-

cant (P-value = 0.32, Fisher’s exact test). This observation implies that our approach for prioritizing

DBDPs can identify variants with a high success rate. Intriguingly, ~28% of Mendelian mutations

did not cause a detectable change in DNA-binding affinity or specificity, suggesting that, despite the

pathogenicity of these mutations, the changes in DNA-binding they cause might be very subtle. TF

alleles with Mendelian mutations typically lost their ability to bind a larger fraction of their binding

sites than those with DBDPs (P-value = 0.0047, Wilcoxon rank-sum test), but there was no statisti-

cally significant difference in terms of the number of binding sites gained (P-value = 0.48, Wilcoxon

rank-sum test) (Figure 4.3E).
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Figure 4.3: DNA-binding perturbations caused byDBD variants. (A) Comparison of the specificity changes observed

in the R192H PAX4 allele (left) vs. the lack of specificity changes in the V66I CRX allele (right). Colored 6-mers were

identified as being preferred either allele at q < 0.05 (Methods). (B) Example of histograms depicting top E-score dis-

tributions observed for a variant (CRX R90W)with altered DNA binding affinity as compared to the reference allele.

(C) Bar graphs depicting the fraction of alleles with observed changes in DNA-binding affinity, specificity, neither, or

both as determined from PBM8-mer binding profiles. The DBDPs included in this figure were selected for this study as

likely to change DNA-binding (i.e., ``DNA-contacting'' or ``predicted damaging'' categories in Table S5) (D) Violin plots

depicting the fraction of 8-mer binding sites gained or lost by variants relative to the number of 8-mers bound by the

reference allele. Binding sites are considered gained or lost if an 8-mer has E≥ 0.4 for one allele and E< 0.4 for the

other allele. * denotes P = 0.0047,Wilcoxon rank-sum test.
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Given the heterogeneity of observed DNA-binding changes, we analyzed the effects of mutations

in specific genes in more detail. PAX4 is a paired homeobox protein that is essential for the forma-

tion of beta-cells during pancreatic islet development 255. Mutations in PAX4 have been associated

with bothMendelian and non-Mendelian forms of diabetes. We identified four PAX4 nsSNPs in the

population that were predicted as likely to have an effect on DNA binding. The R192H variant was

reported as a risk factor for maturity onset diabetes of the young (MODY) and early onset type 2 dia-

betes (T2D) in theThai population 256. Meanwhile, theR133Wallele had been described in association

with autosomal recessive ketosis-prone diabetes (KPD) in West Africans 255.

Conversely, we identified two alleles (R192S andR183C) that have not been associatedwith a pheno-

type. R192S is particularly common in individuals of East Asian descent (ExAC MAF = 0.035), while

R183C exists at low frequencies in both East Asian (1kG ASN MAF = 0.005) and African American

populations (ESP AA MAF = 0.0002) populations. Hierarchical clustering of PBM binding profiles

(Figure 4.4A) revealed that both mutations lead to DNA-binding perturbations that resemble those

caused by the previously described mutant alleles. Both the R192S and R192H mutations altered the

specificity of PAX4, while the R133W andR183C substitutions significantly changed its binding affin-

ity, as defined by the criteria described above. Based on the similarity of their molecular phenotypes,

we propose that the R192S and R183C are likely to have similar pathogenic potential for causing early

onset T2D and KPD, respectively.

In other cases, PBMprofiling confirmed that certain alleles are likely to be benign, but provided in-

sights into the molecular basis for clinical heterogeneity of disease mutations in the same genes. CRX

is a homeodomain protein that is essential for the proper function of photoreceptor cells 262. Muta-

tions in CRX have been linked to a range of Mendelian phenotypes, including retinitis pigmentosa

(RP), cone-rod dystrophy 2 (CORD2) andLeber congenital amaurosis 7 (LCA7). While all three phe-

notypes involve retinal degeneration and ultimately loss of vision, they span a spectrum of severity:

RP is the mildest and has the slowest progression, CORD2 is more severe and presents earlier than
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RP, and LCA7 involves severe loss of vision early in life263–265.

We profiled CRX alleles reported in individuals with RP (R41Q), CORD2 (R41W and E80A) and

LCA7 (R90W) and a DBDP predicted to be benign (V66I / rs61748438), which is found in all ExAC

populations (overallMAF= 0.003). The V66I allele exhibited no significant change inDNA-binding

affinity or specificity relative to the reference (Figure 4.3B and 4.4B). In contrast, the R90W allele lost

the ability to bind the vast majority of 8-mers bound by other alleles, in accordance with its associated

phenotypic severity. Meanwhile, theR41Q,R41W and E80A alleles showed a change in binding speci-

ficity, but not affinity. These observations are consistent with differences in mode of inheritance: the

R90W allele was associated with an autosomal recessive inheritance pattern, whereas the R41Q and

E80A mutations were autosomal dominant 265. To determine whether these changes could help ex-

plain the associated phenotypes, we used the PBM data to predict which in vivo binding sites were

more likely to be disrupted in CRX ChIP-Seq data derived from mouse retinal cells 266 (Methods).

We determined if certain phenotypes were associated with genes in proximity to the 100 in vivo bind-

ing sites predicted to have the largest change in binding based on PBMdata (Q <0.05, hypergeometric

test). We found that the predicted affected categories clustered according to their phenotype, sup-

porting the idea that the organismal phenotypes are related to the underlying perturbations in DNA

binding in vivo. Furthermore, the enriched categorieswere consistentwithmurine ocular phenotypes:

the “abnormal retinal rod cell outer segmentmorphology” category, enriched for the R41Q allele, was

consistent with the lack of outer rod segments observed in a mouse model of RP 267.

In contrast, Mendelian mutations in other TFs were associated with more complex patterns of

binding site gains and losses. HOXD13 is a homeodomain TF with key roles in limb development268.

Frameshift mutations and poly-alanine expansions in HOXD13 have generally been associated with

the presence of extra digits and increased webbing between them (synpolydactyly), while missense

mutations have been linked to shortening of fingers and toes (brachydactyly)269. These observations

suggest that loss-of-function mutations are the likely cause of synpolydactyly symptoms, while gain-
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of-function mutations are likely to be responsible for the features observed in patients with brachy-

dactyly 115.

We assayed four HOXD13 alleles with distinct phenotypic associations: R306W (Synpolydactyly

1), S316C (Brachydactyly D), I322L (Brachydactyly E1), and Q325R (Syndactyly 5). Surprisingly, the

DNA-binding profiles for each allele did not cluster according to phenotype (Figure 4.4C). These re-

sults suggest that the consequences of DNA-binding alterations on the occupancy of specific binding

sites, rather than a broad gain-of-function vs. loss-of-function classification, is likely to underlie the

differences in phenotypic effects of HOXD13 mutations. This hypothesis is supported by evidence

that other HOXD13 mutations associated with Mendelian phenotypes uniquely alter HOXD13’s in

vivo binding patterns in mesenchymal stem cells 115.

Overall, different TFs exhibited unique mutational landscapes, with varying degrees to which the

binding alterations caused by mutations could be linked to specific phenotypes. We compared the

fractional overlap between 8-mers bound at high affinity (E-score > 0.45) by different alleles of the

same TF and depicted the results as proportional Venn diagrams (Figure 4.4D). The measured bind-

ing profiles for KLF1 mutants were consistent with a loss-of-function (H299Y) vs. gain-of-function

(E325K) dichotomy, as previously reported 270,271. Similarly, the three mutations in ARX associated

with LISX2 (L343Q, P353R, R332H) 272,273 were identifiable as loss-of-function mutations, whereas

the T333N mutation, associated with ACCAG272, involved a subtle change in specificity. In contrast,

all four mutations in EGR2 caused unique changes in binding specificity, with only partial overlap

between the sites bound by alleles linked to the same phenotype.

PBM profiling also identified DBDPs that cause a loss of detectable DNA-binding by HOXB7,

NR1H4, PHOX2B, VENTX and ZNF200. For example, the C144R mutation in the nuclear hor-

mone receptor NR1H4 alters a zinc-coordinating residue essential for maintaining the proper fold of

the C4-ZF DBD, likely creating an unstable protein that lacks the ability to bind DNA specifically

(Figure 4.4E). Finding mutations that abrogate DNA-binding suggests that individuals are able to
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tolerate a heterozygous loss-of-function state in these genes without major phenotypic consequences.

Out of these genes, only HOXB7 has been previously reported as being LoF tolerant 274, highlighting

the value of PBMs as a tool to identify additional genes that do not exhibit haploinsufficiency.

4.2.5 Computational prediction of variants with DNA-binding effects

The number ofDBDPs discovered in humans is likely to grow at a rate that exceeds the capacity to test

individual variants experimentally. Therefore, efforts to understand the functional effects of DBDPs

would be greatly aided by being able to predict whether a particular DBDP is likely to have an effect

onDNA-binding. Using our experimental results as a benchmarking set, we evaluated whether infor-

mation about DNA-contacting residues would be valuable for predicting whether a mutation would

cause DNA-binding alterations. We observed that mutations that affected residues in the protein-

DNA interface were significantly more likely to cause changes in binding affinity or specificity (odd-

ratio = 3.3, P-value = 0.014, Fisher’s exact test; Figure 4.5A), suggesting that information about DNA-

contacting residues has predictive power for identifying changes in binding.

We exploredwhether information about protein-DNA contacts and the output from tools used to

predict the consequences of mutations (e.g., Polyphen2, SIFT) could be used to distinguish variants

that caused DNA-binding changes and those that did not. We calculated the precision and sensitivity

for predicting that amino acid substitutions in DNA-contacting residues (base and backbone) would

alter DNA-binding (Figure 4.5B). We compared these values to those obtained using PolyPhen2 and

SIFT and predicting that variants identified as “probably damaging” and “damaging” (respectively)

would alterDNA-binding (Figure 4.5B). Both approaches performed similarly, with predictions based

onDNA-contacting residues exhibiting higher sensitivity (0.79 vs. 0.71) but slightly reduced precision

(0.76 vs. 0.79). Predicting changes in binding by the combination of the two methods (i.e., consider-

ing only variants predicted to change binding by both) achieved to similar performance (Figure 4.5B).

Based on these results, we sought to estimate the prevalence of DBD variants that are likely to alter
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Figure 4.5: Functional associations of DBDPs predicted to have altered DNA-binding.(A) Relative frequency of DNA-

binding changes observed for variants at different categories of DNA-contacting residues (left). Representative co-

crystal structure (right) of Engrailed homeodomain (PDB: 1HDD) depicting residues color-coded according to the

changes in DNA-binding specificity, affinity or both caused by variation in those positions. The ``both'' category in the

co-crystal structure includes residues at which variants changed both DNA binding affinity and specificity either simul-

taneously in one protein or separately across multiple different proteins. Side chains are shown for residues that were

tested experimentally by PBMs. (B) Precision and sensitivity metrics for identifying variants that alter DNA-binding

affinity or specificity. The ``predicted damaging'' category includes variants that were predicted as damaging by both

PolyPhen2 and SIFT. The ``DNA-contacting'' category includes base- and backbone-contacting residues. (C) Number

of DBD variants per individual (1000Genomes Project Phase III), including the categories of DBDPs depicted in panel

B andDBD-truncating nonsense variants. (D) Minor allele frequencies (ExAC v0.2) of DBD variants in the same cat-

egories from panel C. (E) Comparison of the percentage of DNA-contacting amino acids (base or backbone) per gene

altered by at least one nsSNP, for genes that have been found to be tolerant of heterozygous LoFmutations and for

genes for which LoF tolerance has not been observed274 (P-value = 6.519 x 10−8, permutation test). (F) Equivalent to

panel E, but comparing the percentage of variable DNA-contacting residues at TF genes with at least one co-expressed

paralog and those without a co-expressed paralog (Methods) (P-value = 5.674 x 10−8).
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DNA-binding. We calculated the number of DBDPs per diploid genome predicted to be damag-

ing and/or affect DNA-contacting residues. Different individuals harbored a broad range of DBD

variation (Figure 4.5C), with a median of 16 DBDPs in DNA-contacting residues and 21 that are pre-

dicted as damaging by both PolyPhen2 and SIFT, with 9 predicted in common. In addition, amedian

of 2 DBD-truncating nonsense variants were observed per genome. Approximately 3/4 of the vari-

ants identified by each of these approaches are found in a heterozygous state. The variants in DNA-

contacting residues and predicted as damaging by PolyPhen2 and SIFT were only partially overlap-

ping. Given the similar predictive performance of either approach (Figure 4.5B), these results suggest

that tools such as PolyPhen2 and SIFT are likely to correctly identify additional structurally damaging

DBDPs, but may be too conservative in predicting whether mutations in DNA-contacting residues

will alter binding.

Variants in each of the categories described above had significantly lower MAFs (all P-values <

0.05, permutation test; based on ExAC v0.2 MAFs) than DBDPs that were not included in any cat-

egory (Figure 4.5D), suggesting they are more likely to alter TF function and potentially have dele-

terious effects. We investigated whether certain features of TFs harboring DBDPs predicted to alter

DNA-binding could explain their tolerance for damaging variants. Because the number of DNA-

contacting residues can vary significantly across DBD structural classes, we computed the fraction of

DNA-contacting residues per TF that were altered by any of the 52,956 DBDPs we identified (Figure

4.1A). Intriguingly, TF genes reported to tolerate homozygous LoF mutations 274 had a significantly

higher fraction of variable DNA-contacting residues (P-value = 6.519 x 10−8, permutation test) (Fig-

ure 4.1D). These results suggest LoF-tolerant TFs are under reduced selection tomaintain their DNA-

binding preferences and may thus be more likely to tolerate DBDPs that alter their genomic binding.

We observed a similar pattern when comparing the fraction of variable DNA-contacting residues in

TFs that have a co-expressed paralog and those that do not (Figure 4.1F), with the former having a

higher fraction of variable residues (P-value = 5.674 x 10−8, permutation test). These results suggest
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that the presence of co-expressed paralogous TFs may also reduce the selective pressure for TFs to

maintain their binding preferences, potentially allowing greater regulatory diversity. These two en-

richments were found to be independently significant through a generalized linear model considering

both LoF tolerance and the presence of a co-expressed paralog (P < 0.005, t-test on regression coeffi-

cients). Additional compensation could arise from higher expression levels of the wildtype TF allele:

epistatic selection between deleterious coding variants and cis-regulatory variants has been suggested

in a study of eQTLs and allele-specific expression 275.

4.3 Discussion

Here, we described an integrative experimental and computational approach that has enabled the

discovery of genetic variants that alter the DNA-binding preferences of human TFs. These results

support the existence of a complex landscape of DBD variation, where variants that cause different

types of DNA-binding alterations across a broad range of effect sizes are found in many TFs. The

degree to which DBDPs with predicted effects are tolerated in human genomes is surprising, partic-

ularly when considering the evolutionary arguments for the likely deleteriousness of trans-regulatory

variants. However, the unexpected prevalence of DBDPs parallels the discovery of LoF variants in

many human genes 114,274. These observations suggest that transcriptional networks in human tissues

are sometimes robust to genetic perturbations. This robustnessmay be accomplished through diverse

mechanisms, such as buffering of expression changes by paralogousTFs or by ability of transcriptional

networks to tolerate losses of TF function. These compensatory mechanisms may allow a TF allele

with altered binding preferences to adopt new target genes without widespread misregulation.

In many cases, single-amino acid changes in DBDs were associated with subtle changes in DNA-

binding preferences. The ability of coding variants to selectively re-wire transcriptional networks rep-

resents another mechanism through which trans-regulatory variation may be tolerated in the popu-

lation. Intriguingly, many Mendelian mutations caused only subtle changes in DNA-binding pref-
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erences, suggesting that their phenotypic effects may be associated with specific gains and losses of

binding sites. These results are consistent with recent studies showing that a significant fraction of

disease-causing mutations selectively disrupt protein-protein or TF-enhancer interactions 276,277. If

DBDPs are generally able tomodulate gene expression while causingminimal pleiotropic effects, they

are likely to have more potential for causing phenotypic diversity than has commonly been assumed.

PBM profiling enables the comprehensive measurement of the DNA-binding preferences of TFs

in vitro. This approach permits the screening of hundreds of alleles and the identification of DNA-

binding changes of diverse effect sizes. We have showed how PBMmeasurements can be used directly

to identify putative disease risk variants by leveraging the results from association studies in one pop-

ulation and finding variants in other populations that cause similar DNA-binding changes. There are

hundreds of additional DBD variants occurring in genes with known phenotypic effects that were

not tested in this study. Characterizing additional DBDPs that affect the same genes is likely to reveal

many additional variants with potential phenotypic consequences. In addition, PBM data provide

detailed insights into the molecular mechanisms underlying Mendelian phenotypes caused by muta-

tions inTFs. These results imply significant heterogeneity in terms of the relationship betweenDNA-

binding effects and observed phenotypes. It is likely that the exact perturbations caused bymutations,

the genetic background of the individual, and variable expressivity play unique roles in explaining the

phenotypic variability associated with Mendelian mutations across different TF genes.

However, this approach is likely to underestimate the prevalence of variants with trans-regulatory

potential. Coding variants affect TF sequences in regions besides DBDs, such as trans-activating,

trans-repressive, and dimerization domains. Such variants could have regulatory consequences that

are similar to those of DBDPs. For example, a variant that lowers trans-activation efficiency may have

comparable in vivo effects to a DBDP that reduces binding affinity of an activator TF. In addition,

even Mendelian mutations in DBDs can have phenotypic effects without causing changes in DNA-

binding. For instance, Mendelian mutations in the HESX1 homeodomain have been shown to im-
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pair its dimerization ability without changing its monomeric binding preferences 278. In cases where

Mendelian diseasemutations hadnodetectable effect onDNA-binding, the phenotypic consequences

may be caused by similar perturbations or by affinity or specificity changes that are too subtle to detect

with PBMs. In addition, some of the mutants without detectable changes may be incorrectly associ-

ated with disease. Further work will be needed to understand the relative contribution of non-DBD

variants and the diversity of mechanisms through which DBDmutations can have phenotypic effects

without directly altering DNA-binding.

Nevertheless, the abundance of DBDPs with predicted binding effects has significant implications

for the interpretation of noncoding variation. Our results imply that unrelated individuals typically

have a unique repertoire of TF alleles with altered binding preferences. These data also support the in-

creasingly accepted hypothesis that human genomes harbor a significant number of loss-of-function

alleles 114,274, but provide additional evidence that this is also the case for TFs. Therefore, different

individuals are likely to have unique trans-regulatory landscapes, where certain TFs have altered bind-

ing preferences, some are present at lower levels and some are absent altogether. Understanding how

DBD variants interact with cis-regulatory variants is likely to be essential in developing a more com-

plete picture of regulatory variation in humans and to determine if such genetic interactions may play

a role in explaining missing heritability.

So far, most regulatory variants have been identified through eQTL mapping. However, DBDPs

are typically rare and likely to act in trans, which are both circumstances that significantly reduce the

statistical power of eQTL analysis. Characterizing the effects of rare DBDPs on expression is likely to

require novel approaches, including the functional testing of alternative alleles in vivo or the stratifi-

cation of individuals to include specific variants of interest in eQTL studies. The methods described

in this study represent an important step towards the development of approaches that account for

the prevalence of coding variation in human TFs. These insights are likely to be essential in devel-

oping a more complete understanding of the molecular basis of regulatory variation and its role in
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determining phenotypic differences across individuals.

4.4 Methods

Identification ofDNA-binding domains of sequence-specific transcription

factors

We identified genes for sequence-specific TFs based on a previously published, manually curated cen-

sus of humanTFs 24. OnlyTF genes from the twohighest confidence categories, requiring direct func-

tional evidence or the presence of domains never found in non-TF genes (encompassing 1,364 genes),

were considered in this study. Protein sequences for the selected TF genes were retrieved from the En-

sembl database (version 67) 279. To identify matches to DNA-binding domains (DBDs), we retrieved

hidden markov models (HMMs) from the Pfam database corresponding to DBD structural classes

that have been identified in human genomes 280. The hmmscan tool, which is part of the HMMER

3.0 package 281, was used to scan human protein sequences for DBD instances. We used the default

hmmscan parameters, except for a more stringent domain match threshold (E-value < 0.0001).

We used variant annotations obtained from dbNSFP v2.0b 282 to link nucleotide changes to amino

acid substitutions and identify nsSNPs. For each SNP, its effect on all overlapping Ensembl transcript

models was considered. DBDPs were identified as missense SNPs that altered the sequences of the

DBDs identified by HMMER, as described above. In rare instances, DBD matches differed across

transcripts due to alternative splicing. In such cases, the transcript with the best match score (lowest

E-value) to the Pfam HMM was selected to represent the DBD for that gene.

Sources of SNPs and disease mutations

ThensSNPs selected for experimental testingwere drawn fromeither the 1000GenomesProject Phase

II release 11 (1700 individuals) or the Exome Sequencing Project 6500 release (February, 2013) 283. A
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later release of the 1000 Genomes Project data (Phase III, September 2014 release, with 2,504 indi-

viduals) was used for statistical analyses. Variants from the Exome Aggregation Consortium (ExAC)

v0.2 release were also used for statistical analyses and determination of allele frequencies, but were not

considered for experimental testing. For analyses involving the number of variants found per individ-

ual, only the 1000 Genomes Project Phase III data were used because other datasets did not provide

full genotype data. In all cases, only variants that passed the most stringent level of quality control

filters (“PASS” value in the VCF file), were used for statistical analyses or selected for experimental

testing. Mendelian variants were retrieved from the curated set of Online Mendelian Inheritance in

Man (OMIM) mutations in the UniProtKB 284 (release 2013_05) database. For all genes, the coordi-

nates of amino acid substitutionsweremapped to the canonical splice isoform selected byUniProtKB.

The domain position affected bymutations was determined from the optimal alignment between the

PfamHMMand the protein sequence, as determined by the hmmscan tool in theHMMER 3.0 pack-

age 281.

Annotation of DNA-contacting residues in select Pfam domains

Four DBD structural classes were selected for detailed annotation of residues likely to engage in DNA

contacts: C2H2 zinc-fingers (Pfam: zf-C2H2), homeodomains (Pfam: Homeobox), forkhead (Pfam:

Fork_head), and basic helix-loop-helix domains (Pfam: HLH).These classeswere prioritized based on

their occurrences in significant numbers of human TFs and the availability of prior knowledge about

the amino acid residues that are involved in DNA-contacts. For all classes except homeodomains,

backbone- andbase-contactingdomainpositionswere identifiedbasedonpublished studies 27,29,285–291.

For each class, the positions of amino acids that hadbeendescribed explicitly as base- or backbone- con-

tacting in the literature weremanually linked to the corresponding positions in the Pfam domain. If a

residue at a given position in the domain was reported as making both base and backbone contacts, it

was annotated as base-contacting. Residues at positions adjacent to base-contacting residues that were
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not identified asmaking backbone contacts were annotated as “adjacent to a base-contacting residue.”

In the case of homeodomains, we analyzed structural data to comprehensively identify residues

that may play a role in protein-DNA contacts. Ten homeodomain co-crystal structures (PDB IDs:

1IG7, 2H1K, 3LNQ, 3HDD, 9ANT, 1JGG, 1DU0, 2HDD, 2HOS, and 1APL) were chosen to sample

a wide range of sequence diversity within the homeodomain family while excluding complexes that

exhibited cooperative dimerizationor included co-factors. Whenmultiple identical proteinswere con-

tained within the same unit cell, a single instance was selected for analysis. Coordinates were extracted

fromPDB files using the “pdbread” function from theMATLABBioinformatics Toolbox, whichwas

also used to calculate distances between amino acid residues and non-hydrogen atoms in DNA. We

separately considered contacts between amino acid residues and DNA bases and amino acid residues

and the backbone. The minimal distance between amino acid residues and DNA was used to define

contact strength: contacts within 3.5 Å were assigned a score of 2, while contacts between between 3.5

Å and 5 Å were assigned a score of 1. Contact maps for separate proteins were aligned using ClustalW

v2.1 with default settings to perform a multiple sequence alignment of the corresponding protein se-

quences. DNA sequences were aligned by visual inspection. For each position in the domain and

each position in the binding site, we calculated the mean contact score over all structures, creating an

average contact map that summarizes the likelihood that a residue participates in DNA contacts. The

average score obtained for each domain position was used for subsequent prioritization, as described

below. All homeodomain positions with non-zero average scores for backbone or base contacts were

annotated as putatively DNA-contacting.

Prioritization of variants for experimental testing

We used several criteria to filter DBDPs found in population sequencing studies and identify variants

that were likely to alter DNA-binding. These criteria can be summarized as (a) the prevalence of the

variant in the population, (b) inferred proximity of affected residues to DNA based on structural
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data, (c) deleteriousness of the mutation as predicted by published tools, and (d) known phenotypic

associations of the affected gene, and are described in more detail below. To minimize the number of

selected variants that may be due to sequencing errors, variants found in heterozygous form in only

one individualwere excluded. Otherwise,DBDPs that had certain combinations of features of interest

were manually evaluated and curated. Ideally, we sought to find variants that were present in many

individuals, affected genes with known phenotypes, and were predicted to have a significant potential

to alter DNA-binding properties or disrupt protein stability. In practice, variants were considered for

testing if they met the criteria for at least two categories. If multiple DBDPs were found in the same

gene, variants that met just one criterion were sometimes tested alongside variants that met multiple

criteria to allow comparisons of effect sizes between prioritized and non-prioritized variants. Similarly,

we selected a few variants that were not predicted to alter DNA-binding but occurred in genes for

which Mendelian disease mutations had been chosen for experimental testing.

Structural information was used to prioritize variants by determining if the affected residue was

in an annotated DNA-contacting position. For the four DBD classes for which Pfam domains were

annotated, the per-position annotations were used to evaluate whether residue changes were likely to

affect protein-DNA contacts. This was done by finding the optimal match to the Pfam HMM for a

given protein sequence and determining if the domain position in which the amino acid substitution

occurred was annotated as DNA-contacting. A small subset of 8 DBDPs was prioritized by manual

evaluation of the consequences of the amino acid substitution on homologous co-crystal structures.

Several tools designed to predict whether codingmutations are likely to be biochemically damaging

were used to aid in the prioritization of variants: SIFT 292, PolyPhen2 293, LRT 294,MutationTaster295,

and MutationAssessor296. Studies comparing the agreement between predictions made by different

tools have reported significant discrepancies, but have also shown that combining predictions from

different tools improves overall accuracy 297. Based on these observations, DBDPs that were predicted

to be damaging by at least three of the five tools were assigned the highest priority. However, variants
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were also considered in cases where at least one predictor tool considered the variant as damaging and

the effect of the substitution was deemed of high likelihood to impact DNA-binding through the

methods described above.

In addition to residue-specific considerations, we integrated information about gene-level pheno-

typic associations into our prioritization scheme. DBDPs affecting genes with at least one associated

OMIM code, as annotated in UniProt KB 284, were assigned a higher priority, as these variants are

a priori more likely to have phenotypic consequences. We also considered whether genes harbor-

ing DBDPs were associated with variants found in genome-wide association studies (GWAS) in the

NHGRI GWAS catalog7. DBDPs in genes that were directly reported in association to traits (i.e., in

the “Reported Gene(s)” column in the GWAS catalog) were given higher priority. In addition, we

considered whether DBDPs were in linkage disequilibrium (LD) with GWAS tag SNPs. We retrieved

LD tables derived from the AFR (African), AMR (Admixed American), EUR (European) and ASN

(Asian) populations in the 1000 Genomes Phase I data from the HaploReg tool 298. DBDPs in LD

with GWAS SNPs from the NHGRI catalog at a threshold of R2 > 0.5 in any population were as-

signed a high priority for experimental testing.

Finally, we selected a set of DBDPs that were considered as unlikely to affect DNA-binding but

were deemed to be interesting for other reasons. These included DBDPs that occurred in genes that

were being assayed for the effect of other variants or that occurred at high minor allele frequencies in

genes that had known Mendelian phenotypes.

We selected Mendelian disease mutations under two general categories: (a) mutations affecting

genes for which DBDPs were prioritized for experimental testing, (b) mutations occurring in genes

in which several Mendelian disease variants were known to affect the same DNA-binding domain.

Whenever a gene harbored a DBDP that was prioritized for experimental testing and the same gene

had knownMendelian disease mutations, at least one mutation was selected for experimental testing.

Mendelian disease mutations were also chosen for testing in cases where different mutations within
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theDBDwere associated with distinct OMIM codes (i.e., phenotypes), particularly when certainmu-

tations affected DNA-contacting residues.

4.4.1 Selection of TF subsequences for cloning

WeidentifiedTFamino acid sequences corresponding to theDBDs, as definedbyPfamHMMmatches,

plus 15 amino acid (a.a.) flanks extending towards both theN-terminal and C-terminal ends. Previous

studies have successfully used GST-tagged constructs comprising the DBD and 15 a.a. flanks in PBM

experiments 26,253. Here, we employed the same strategy. In cases where multiple DBDs were present

in the same protein (e.g., PAX TFs, or proteins with multiple C2H2 zinc-finger domains), we created

constructs that encompassed all DBDs plus 15 flanking amino acids of the DBDs located closest to the

protein termini.

4.4.2 Generation of TF Entry clones and LR transfer into pDEST15 vector

Entry clones carrying the selected TF subsequences were generated by PCR-based Gateway recom-

binational cloning. For PCR amplification, all the forward and reverse primers contained attB1 and

attB2 sites, respectively, at their 5’ ends. PCR reactions were performed using KOD Hot Start DNA

polymerase according to the manufacturer (Novagen), and using TF reference clones from human

ORFeome version 7.1 (http://horfdb.dfci.harvard.edu/hv7/) as template. The resulting PCR prod-

ucts were then cloned into pDONR223 vector by Gateway BP reactions, yielding desired TF Entry

clones. After bacterial transformation, miniprep plasmid DNA of all Entry clones was extracted, and

then transferred individually by in vitro Gateway LR cloning into pDEST15 expression vector, de-

riving N-terminal GST-tagged TF fusions. All these expression clones were sequence-verified in two

directions using universal primers pGEXfw and T7-Terminator, and no mutations were found. The

primer sequences are as follows:

• pGEXfw: 5’-GGCAAGCCACGTTTGGTG-3’
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• T7-Terminator: 5’-GCTAGTTATTGCTCAGCG-3’

4.4.3 Generation of mutant clones

To generatemutant TF clones, we used an enhanced, two-stage, site-directedmutagenesis pipeline 277.

Briefly, for a given TF mutation, the mutagenesis platform consisted of two “primary PCRs” to gen-

erate TF fragments, and one “fusion PCR” to obtain the mutated TF. For the primary PCRs, vector-

specific universal primers were used in combination with the respective two TF-specific internal for-

ward and reverse primers to generate overlapping fragments containing the desired nucleotide sub-

stitution. The universal primers allowed the Gateway recombination sites to be preserved on both

ends of the TFs. The mutation-specific primers, MutF and MutR, harboring the desired nucleotide

changes, were designed to be complementary to each other. Site-directed PCRs were performed on

either TF domains already cloned into theDestination vector pDEST15 or onTFdomain Entry clones

in pDONR223. For TF domains in pDEST15, the two TF fragments flanking a given mutation were

amplified using the primer pair Tag1-pGEXfw and MutR, and the primer pair Tag2-T7-Term and

MutF, respectively. In the subsequent fusion PCR, the two primary fragments were fused together

using the primer pair Tag1 and Tag2 to generate the mutated TFs, and the mutant TF PCR products

were then introduced into pDONR223 by a BP reaction followed by bacterial transformation. For

TF domains in pDONR223, the two TF fragments flanking a given mutation were amplified using

the primer pair M13G-FOR and MutR, and the primer pair M13G-REV and MutF, respectively. In

the subsequent fusion PCR, the two primary fragments were fused together using the primer pair

M13G-FOR and M13G-REV to generate the mutated TFs, and the mutant TF PCR products were

then introduced into pDEST15 by an LR reaction followed by bacterial transformation. At least two

independent colonies per mutant TF were isolated. Following sequence confirmation by Sanger se-

quencing, the clones that had only the desiredmutations (no additional mutations) were selected and

consolidated. Mutant TFs in pDONR223 were transferred to pDEST15 by Gateway LR reactions.
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Primer sequences used are as follows:

• M13G-FOR: 5’-CCCAGTCACGACGTTGTAAAACG-3’

• M13G-REV: 5’-GTGTCTCAAAATCTCTGATGTTAC-3’

• Tag1-pGEXfw: 5’-GGCAGACGTGCCTCACTACTGGCAAGCCACGTTTGGTG-3’

• Tag2-T7-Term: 5’-CTGAGCTTGACGCATTGCTAGCTAGTTATTGCTCAGCG-3’

• Tag1: 5’-GGCAGACGTGCCTCACTACT-3’

• Tag2: 5’-CTGAGCTTGACGCATTGCTA-3’

4.4.4 Protein expression and quantification

In vitro transcription and translation (IVT) reaction were performed according to themanufacturer’s

protocol (NEB PURExpress IVT Kit). Western blots were used to estimate molar concentrations of

all in vitro translated proteins by utilizing a dilution series of recombinant GST (Sigma) essentially

as described previously 26. Equal volumes of IVT samples and known concentrations of GST were

suspended in 4x XT Sample Buffer (BioRad), heated to 95 °C for 5 minutes, and loaded on a precast

4-12% Bis-Tris Criterion gel (Bio-Rad). Samples were subject to electrophoresis at 190V for 35minutes

and then transferred to a nitrocellulose membrane (Sigma) at 100-115 mA for 2 hours. Membranes

were visualized using the SuperSignalWest FemtoMaximum Sensitivity Substrate kit (Pierce) accord-

ing to the manufacturer’s protocols. Primary antibody was added to achieve a final concentration of

20 ng/ml (rabbit anti-GST antibody; Sigma cat #097K4767). Secondary antibody was added at a fi-

nal concentration of 5 ng/ml (goat anti-rabbit secondary Ab; ThermoScientific #31460). Films were

scanned and concentrations of full-length proteinswere determinedusingQuantityOne software ver-

sion 4.5.0 (BioRad), in accordance with the GST standard curve. All reference and alternative allele

proteins were expressed in the same IVT batch.
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4.4.5 Protein-binding microarray experiments

Oligonucleotide arrays were double-stranded and PBM experiments were performed following previ-

ously described experimental protocols41,257. The array design employedwas an “all 10-mer” universal

array in 8 x 60K format (Agilent Technologies; AMADID #030236). To minimize potential batch

effects, reference and mutant alleles for the same TF were assayed on separate chambers in the same

PBM slide. All experiments comparing reference and alternative alleles used proteins expressed in the

same batch and diluted to achieve equal TF concentrations across an allelic series.

4.4.6 Protein-binding microarray data processing

PBM scan images were obtained using a GenePix 4000A Microarray Scanner (Molecular Devices).

The resulting image data were processed using GenePix Pro v7.2 to obtain signal intensity data for

each spot. The data were then further processed by using Masliner software (v1.02) 299 to combine

scans from different intensity settings, increasing the effective dynamic range of the signal intensity

values. If a dataset had any negative background-subtracted intensity (BSI) values (which can occur if

the region surrounding a spot is brighter than the spot itself), consistent pseudocounts were added to

all BSI values such that they all becamenonnegative. All BSI valueswere normalized using the software

for spatial de-trending providing in the Universal PBMAnalysis Suite41, as previously described41,257.

4.4.7 PBM-based evaluation of DNA-binding changes

For each PBM experiment, we used the Seed-and-Wobble algorithm 257, which is part of the Universal

PBMAnalysis Suite41, to calculate an enrichment score (E-score) for eachDNA8-mer. TheE-score is a

rank-based statistic that is closely related to the area under the receiver operating characteristic (ROC)

curve. Larger E-score values reflect higher specificity for binding a particular 8-mer. Z-scores for each

8-mer andpositionweightmatrices (PWMs)were also derivedusing theUniversal PBMAnalysis Suite
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and Seed-and-Wobble algorithm, respectively. Throughout this text, only E-scores andZ-scores scores

for ungapped 8-mers were used. Sequence logos for each allele were created by using the Seed-and-

Wobble PWM as input for WebLogo v2.8.2 300 with default parameters.

The presence of E-scores≥ 0.45 has been reported as a viable quality control metric to identify suc-

cessful PBM experiments 26,301. Here, we deemed a PBM experiment to be of acceptable quality under

a more stringent criterion of yielding ≥ five 8-mers with an E-score ≥ 0.45. Because some mutant

TF alleles are expected to lose their ability to bind DNA specifically, we considered such experiments

acceptable for publication as long as the reference allele protein expressed and tested in the same batch

yielded≥ five 8-mers with E-scores≥ 0.45.

4.4.8 Identifying affinity differences

To determine if two alleles exhibited a difference in binding affinity, we compared the distribution

of E-scores obtained for each allele. A high E-score value indicates a strong deviation from the null

distribution for the ranks of probes containing instances of a particular 8-mer. As the affinity of a

TF allele increases while the concentration is constant, more binding sites will be occupied at high

frequencies. Therefore, with all other parameters remaining constant, a higher affinity allele should

yield a PBM dataset with a larger number of high-scoring 8-mers.

We used the Wilcoxon rank-sum test to determine whether a pair of experiments showed differ-

ences in their top E-scores. We calculated the Wilcoxon rank-sum test P-value when comparing the

highest 50 E-scores in each experiment. We corrected the P-values derived from comparing reference

and alternative alleles using the Benjamini-Hochberg correction 302, which was calculated over all pair-

wise comparisons between reference and alternative alleles. Mutations were classified as changing

affinity whenQ < 0.05. The direction of the affinity change (i.e., increase or decrease) was determined

by comparing the median value among the top 50 E-scores for each allele and selecting the allele with

the larger median value as the one with the predicted higher affinity.
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4.4.9 Identifying specificity differences

To detect specificity differences between alleles, we used a previously described method 254 for iden-

tifying statistically significant differences among 8-mer E-scores between two PBM datasets. Briefly,

DNA 8-mers are placed into overlapping groups composed of all 8-mers that contain matches to a

given DNA 6-mer. The E-scores corresponding to 8-mers in each these groups are then compared

across alleles using an intersection-union test 254, followed by the adjustment of P-values using the

Benjamini-Hochberg correction 302. The result is a set of 6-mers that are bound preferentially by one

TF allele over the other.

Here, we developed a stringent set of criteria for determining whether a mutant TF allele bound

DNAwith altered specificity relative to the reference allele. First, we excluded any experiments where

the alternative allele significantly lost sequence-specific binding activity, as these cases might lead to

confounded affinity and specificity changes. Therefore, only datasets from alternative alleles that met

the same quality control criterion used for reference alleles (at least five 8-mers with E-scores ≥ 0.45)

were tested for specificity differences. In addition, we excluded pairs of alleles where the number of

8-mers bound by the alternative allele at an E-score ≥ 0.45 was at least 2-fold less than the number

bound by the reference allele. For the remaining pairs, we used the method described above to find

preferred 6-mers with a q-value < 0.05. We found that pairwise comparisons between alleles where at

least ten 6-mers were bound preferentially by either allele were highly reproducible across replicates

(see below). Therefore, we considered alleles that matched all criteria described in this paragraph and

for which pairwise comparisons with the reference allele yielded≥ 10 preferred 6-mers to have altered

specificity.
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4.4.10 Reproducibility of affinity and specificity differences

E-scores have been previously shown to be highly reproducible across replicate PBM experiments41.

We verified that alleles identified as having altered affinity or specificity were consistently labeled as

such in a set of 58 duplicate PBM experiments. The dataset for each replicate experiment was inde-

pendently scored using the criteria described above. Affinity calls were found to be consistent across

replicate experiments in 97% of replicate pairs, while specificity calls were consistent across 86% of

replicates. In discordant cases, the replicate experiments with the largest total number of E-scores ≥

0.45 were used to determine whether a particular allele had altered affinity or specificity.

4.4.11 Concordance with experimental data from other studies

We searched the literature to identify cases where the same mutations selected for this study had been

previously tested experimentally to determine their biochemical effects. Throughmanual curation,we

collected a set of 20 experiments that directly or indirectly measured the binding affinities of mutant

alleles.Inmost of these cases, only qualitative datawere provided, such as gel images derived fromnon-

quantitative electrophoretic mobility shift assays. Therefore, to enable systematic comparisons, we

manually curated each reported experiment and assigned the mutant allele to one of three categories:

(a) no effect on DNA binding (0), (b) partial loss of binding (-), and (c) complete loss of binding (--).

4.4.12 Predictions of ChIP-Seq peak disruptions

We used previously identified Crx ChIP-Seq peaks in mouse retinal cells 266 to predict likely in vivo

effects of CRXmutations. For each Crx peak and for each CRX allele, we determined theDNA8-mer

with the highest E-score for the sequence within the peak boundaries. For each non-reference allele,

we calculated the z-score difference for the top 8-mer in each peak relative to the top z-score for the

reference allele. Based on these z-score differences, we predicted the top 100 peaks with the highest
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predicted change in binding by each non-reference allele. Each set of 100 peaks was then used as input

to GREAT 213, which determines if genes in the proximity of peaks (within 1 Mb) are enriched for

certain ontology terms. We used the default GREAT settings and tested for association with terms

in the “Mouse Phenotype” ontology. Terms that had a q-value < 0.05 for the hypergeometric test, as

reported by GREAT, were considered to be enriched for each allele.

4.4.13 Identification of co-expressed paralogs and LoF-tolerant genes

Paralogous gene pairs were identified using annotations from theDuplicatedGenesDatabase (DGD)

(February 25, 2015 release) 303. Any pair of human genes belonging to the same homology group, as

defined by DGD, was considered to be paralogous. Co-expression was determined using the Hsa.v13

dataset obtained from COXPRESdb 304. COXPRESdb provides a matrix of Pearson correlation co-

efficients quantifying the similarity of expression pattern of gene pairs across a wide range of tissues.

We identified gene pairs as being co-expressed when one of the genes was among the 25 genes with

the highest correlation coefficient for the other gene. The results related to co-expressed paralogs were

essentially unchanged when the threshold was varied to include the top 50 or top 100 most correlated

genes as being co-expressed. Genes that were tolerant of LoF mutations were defined based on the

results of Sulem et al. 274. Briefly, a gene was considered LoF-tolerant if at least one of the individuals

studied (which are putatively healthy) was reported as being homozygous for a frameshift or nonsense

variant.

4.4.14 Statistical testing of DBDP enrichment in TF subsets

For each gene, we calculated the number of predicted base- or backbone-contacting residues that were

altered by at least one genetic variant. To account for the fact that TFs can have different numbers

of DNA-contacting residues, we normalized the number of residues affected by genetic variation by

dividing by the number of DNA-contacting residues in each TF. We used a two-sample permutation
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test to determine whether certain subsets of TFs had a higher fraction of variable residues than oth-

ers (e.g., genes with co-expressed paralogs vs. those without). For all permutation tests, we used the

‘permTS’ function in the permR package with standard parameter values.

To determine that the enrichments observed were statistically independent (e.g., not due to genes

with co-expressed paralogs often being tolerant of LoF mutations), we fitted a standard linear regres-

sion model (‘lm’ function in R) with the fraction of variable DNA-contacting residues as the depen-

dent variable, and binary values representing LoF-tolerance, the presence of a co-expressed paralog,

and their interaction as dependent variables (see statistical formula below). Both LoF-tolerance and

paralog presence were highly significant predictive features independently (P < 10−5, t-test), while the

interaction term was not significant (P = 0.296, t-test).

Fraction.Variable.Residues ~ LoF.Tolerant + Paralog.Present +

LoF.Tolerant:Paralog.Present
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Essentially, all models are wrong, but some are useful.

George E.P. Box

5
Improved tools for TAL effector design
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Abstract

TranscriptionActivator-LikeEffector (TALE)proteins recognizeDNAusing a seemingly simple code,

which makes them attractive for use in genome engineering technologies that require precise target-

ing.While this code has been used successfully to design TALEs to target specific sequences, off-target

binding has been observed and proven difficult to predict. Here, we explore TALE-DNA interac-

tions comprehensively by quantitatively assaying the DNA binding specificities of 21 representative

TALEs to ~5,000-20,000 unique DNA sequences per protein, using custom-designed protein bind-

ing microarrays (PBMs). We find that protein context features exert significant influences on bind-

ing specificity. Thus, the canonical recognition code does not fully capture the complexity of TALE-

DNA binding. We used the PBM data to develop a computational model, Specificity Inference for

TAL-Effector Design (SIFTED), to predict the DNA-binding specificity of any TALE. We provide

SIFTED as a publicly available web tool that predicts potential genomic off-target sites for improved

TALE design.

5.1 Background

The discovery ofTranscriptionActivator-Like Effector (TALE) proteins has enabled the development

of a host of genome and epigenome editing technologies 132–134,305–309. Naturally occurring as bacterial

virulence factors, TALE proteins harbor an array of repeats, each 33 or 34 amino acids in length 128,129.

The sequence of the repeats is highly conserved except at the hypervariable positions 12 and 13, termed

the repeat variable diresidues (RVDs). The amino acids at the RVD positions determine which DNA

base is preferred, and each repeat in the TALE contacts one base in the target site. This led to a simple

one-to-one “TALE code” that uniquely predicts the optimal DNA target from the sequence of RVDs

within the repeat array 128,129. The most commonly used RVDs are NI, HD, NN, and NG, which are

used to target A, C, G, and T, respectively. Co-crystal structures have shown the mechanism of this
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one-to-one code, in which the TALE protein wraps around the DNA in a helical structure with each

repeat contacting a single base 310,311. Additionally, contacts between the N-terminal region (NTR) of

the TALE protein and DNA specify a preference for a thymine base at the 5’ end of the DNA target

site 127.

This simple TALE recognition code allows for any DNA site preceded by a T to be targeted by

a TALE protein designed with the corresponding repeat sequence. Because of the relative simplic-

ity of this approach, the TALE DNA binding domain has been adapted for use in many technolo-

gies that require precise targeting of genomic loci. For example, dimeric TALE nucleases (TALENs)

have been used in various organisms and cell lines to knock out genes by creating base pair insertions

or deletions (indels) or to create specific nucleotide substitutions 307. Fusions of TALE monomers to

transcriptional activation or repression domains can create artificial transcription factors, which have

been shown to strongly and cooperatively modulate gene expression 132,306,309. Monomeric TALE fu-

sions to chromatin-modifying enzymes can introduce specific DNAor histonemodifications at target

loci, resulting in changes in expression of the associated genes 133,134. TALEs can also be used to pull

down specific genomic regions to identify bound proteins 305. Additionally, TALEs fused to fluores-

cent proteins can be used to visualize chromatin dynamics in live cells 305,308. While other technologies,

(e.g., CRISPR-Cas9) have also been developed for some of these targeting applications 312, TALE ver-

sus dCas9 fusions might be more effective in different applications and having both technologies in

the toolkit for genome engineering is likely optimal.

Despite these successes in genome editing, off-target activities of TALE fusions have been described

but have proven difficult to predict 136–140,313,314. Experimental approaches have identified off-target

TALEN effects 140, but no technology has directly measured off-target binding for monomeric TALE

fusions 137–139,315. Here, we define TALE protein specificity as the relative binding energies of the pro-

tein to different DNA sequences. Computational tools that use the specificities of the individual re-

peats to predict the specificity of the whole protein have been developed to predict off-target binding
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sites 316,317; these approaches assume that each repeat independently contributes to the specificity of

the whole protein and that each instance of a given repeat RVD type has the same preference for its

intended base. However, a quantitative analysis of TALE-DNA binding affinity indicated that repeat

position within the repeat array affects RVD specificity, indicating a potential role for repeat context

in predicting specificity 318. Other studies have also found that total protein length affects specificity 140.

Additionally, particular repeat types may contribute differentially to overall protein specificity. One

study showed that some repeats are more active when assembled into a TALE activator, leading to the

distinction between strong (NN and HD) and weak (NI and NG) repeats, although the relationship

between RVD strength and specificity is unclear 319. Altogether, these findings suggest that TALE-

DNA binding specificity may be more complex than previously thought, but these effects have yet to

be assayed comprehensively and quantitatively.

Tools used topredictTALE specificity and to identify likely genomic targets havenot keptpacewith

these increasing, albeit qualitative, reports on TALE-DNA recognition. Some computational tools,

such as PROGNOS and Talvez, have incorporated context effects qualitatively in predicting TALEN

pair off-target sites, but assume all repeat types are affected identically by context 320,321. A recently de-

scribed approachused a selection-based cleavage assay to characterize aTALENpair’s specificity profile

in order to identify potential TALENoff-target sites; however, that study did not provide a predictive

model, but instead required that the specificity of eachTALENpair be determined experimentally 140.

As such, there remains a need for a purely computational tool that quantitatively incorporates these

context effects in predicting TALE specificity, and thus, off-target binding sites.

In this study, we perform a quantitative, in-depth examination of context effects on RVD speci-

ficity in order to infer general rules for highly accurate prediction of the DNA sequence-specificity

of any TALE protein. We designed custom protein binding microarrays (PBMs) to investigate the

DNA binding specificities of 21 TALE proteins that comprise all possible pairs of repeat types. The

custom PBMs contain probes in which all possible mono- and di-nucleotide substitutions within the
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TALE target sites are represented. The resulting quantitative binding data for the TALE proteins to

~20,000 unique DNA sequences allow us to quantify the effects of TALE repeat array length, re-

peat position, and neighboring repeat types on the specificity of each RVD, henceforth referred to

as RVD specificity. We use the PBM-derived quantitative binding data to develop a computational

model (Specificity Inference for TAL-Effector Design, or SIFTED) that incorporates these context

effects to predict both the DNA binding specificity and the potential off-target sites of any TALE

protein without requiring any additional PBM experiments. We implement this model in a publicly

available, user-friendly suite of web tools at http://thebrain.bwh.harvard.edu/sifted.html.

5.2 Results

5.2.1 Custom-designed PBMs to assay TALE DNA-binding specificity

In order to develop a more in-depth, quantitative understanding of TALE-DNA recognition, we de-

termined the DNA-binding specificities of 21 representative TALE proteins using custom-designed

PBMs41,257,322 (Figure 5.1 a, Figure 5.1b). We selected these proteins to allow us to examine the effects

of different protein features on specificity. In particular, these proteins represent all possible consec-

utive repeat pairs and thus allow us to assay all possible direct neighbor effects on RVD specificity

(Figure 5.1a)91. In addition, this set spans protein lengths from 8.5 to 18.5 repeats (targeting sites 10

to 20 base pairs in length); these lengths typically have been used in the design of monomeric TALE

fusion proteins for genomic applications 132.

PBMs are double-strandedDNAmicroarrays that permit rapid, highly parallelmeasurement of the

binding of a protein of interest to tens of thousands of unique DNA sequences in replicate, allowing

for a much richer picture of TALE-DNA recognition than has resulted from prior studies. Since the

vast majority of our selected TALE proteins were designed to recognize sequences longer than those

on the previously designed ‘all 10-mer’ universal PBM design 257, we designed custom TALE-PBMs
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Figure 5.1: Overall experimental design and analysis scheme. (a) 21 Representative TALE proteins used in this study.

Repeats are indicated by colored rectangles, and C-terminal half-repeats are indicated by smaller rectangles. RVD

identities are indicated by letters. The set was chosen to include all possible repeat pairs and to cover a range of repeat

lengths from 8.5 to 18.5 repeats. (b)Custom-designed PBMswere used to determine the specificity of representa-

tive TALE proteins. (c) These specificity profiles were used to learn features of TALE-DNA recognition and to train a

predictive TALE specificity model, SIFTED (Specificity Inference for TAL-Effector Design).
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TGAACAGCTC! Predicted target sequence for 
representative TALE 

5'-TACTATAGCAATGAAAACAGCTCCTCGCATTGCTATGTCTGTGTTCCGTTGTCCGTGCTG-3'!

5'-TACTATAGCAATGTCACCAGCTCCTCGCATTGCTATGTCTGTGTTCCGTTGTCCGTGCTG-3'!
5'-TACTATAGCAATGTGAACTGCTCCTCGCATTGCTATGTCTGTGTTCCGTTGTCCGTGCTG-3'!

5'-TACTATAGCAATGTGATCAGCTTCTCGCATTGCTATGTCTGTGTTCCGTTGTCCGTGCTG-3'!
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Supplementary Figure 1  

Design of probes on custom arrays 

Schematic representation of custom arrays design for a representative TALE protein. The 
distribution of probe sets on the 4 different custom array designs is described in 
Supplementary Note 1. Red font indicates variable sequences, while green font indicates 
constant sequence.  

Figure 5.2: Design of probes on custom arrays. Schematic representation of custom arrays design for a representative

TALE protein. Red font indicates variable sequences, while green font indicates constant sequence.

for this study. Each probe sequence was represented on at least eight replicate spots on the arrays. The

initial custom array was designed to broadly assay the binding preferences of our representative set

of TALE proteins. Subsequently, additional arrays were designed to validate particular observations

about TALE specificity, as described below and depicted in Figure 5.2.

Types of probe sequences included in custom PBMs

All consecutive dinucleotide substitutions within the target site. For each protein, the target site is pre-

dicted using the TALE code, where the NI RVD targets A, HD targets C, NN targets G, and NG tar-

gets T. All target sites are preceded on the 5’ end by a T. Sequences with all consecutive dinucleotide

substitutions are generated. These target sites are positioned within constant flanking sequence.  

Additional target site substitutions. The target site is predicted using the TALE code, as above, and

random sets of up to five substitutions are made. These target sites are positioned within constant

flanking sequence.
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  Clusters of substitutions at 5’ and 3’ end of binding site. The target site is predicted using the TALE

code, as above, and clusters of three substitutions are introduced in the first three positions of the

target site or in the last three positions. These target sites are positioned within constant flanking

sequence.

Determination of TALE specificity using PBMs

Wedetermined theDNAbinding specificities of eachTALEprotein using probe sets that contain each

protein’s target site as predicted by the canonical TALE code 129, as well as variants thereof, flanked by

constant DNA sequence and situated at a fixed position within the probe relative to the slide surface

(Figure 5.2). The constant flanking sequencewas designed to not be bound by any of theTALEs tested

in this study by containing no matches to the binding sites predicted by the TALE code, considering

up to 5mismatches. For each protein, wemeasured binding to between 160 and 320 variant target sites

that cover all possible adjacent dinucleotide substitutions. Although the absolute Kd of a protein-

DNA interaction cannot be determined from a single PBM experiment91, by measuring how much

each substitution changes protein binding to the DNA probe, we can infer changes in binding free

energy (ΔΔG values) for each possible substitution within the target site (Figure 5.2).

From these ΔΔG values, we derived a position weight matrix (PWM) for the protein (Figure 5.3

2a). The inferred PWMs were consistent across experimental replicates and across PBM experiments

performed at different concentrations of TALE proteins. Our PWMs accurately predict the 60-base-

pair probe signal intensities, with amedianR2 of 0.959 (Figure 5.3b), indicating that they performwell

as accurate models of TALE DNA-binding specificity.

The fact that our PWMs explain binding well suggests that an additive binding model with inde-

pendence between the nucleotides in the TALE target site is quite accurate. To test if this nucleotide

independence extends beyond two adjacent mismatches, we designed a probe set that contains up to

five nonadjacent mismatches in the target site (5.2). The PWM models derived from the dinucleotide
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Figure 5.3: Determining PWMs from custom-designed PBMs. (a)Representative logo andΔΔG estimates. The verti-

cal bars represent the 95% credible interval (CI) and the points show themean of the posterior distribution, in units of

RT. The base predicted for each position by the TALE code is indicated below the logo. (b)Representative comparison

between the probe z-scores measured in PBMs and the z-scores predicted by the derived PWM. Points represent the

mean and vertical bars show its 95% confidence interval. Points are colored by the number of mismatches between the

sequence in the probe and the consensus sequence predicted fromRVD identities using the canonical TALE code.
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substitution probes accurately predicted binding to these sequences with additional mismatches (me-

dian R2 greater than 0.9 for all numbers of substitutions tested), indicating that the simple PWM

models with mononucleotide independence perform well in modeling TALE DNA-binding speci-

ficity. These results are roughly consistent with a recent study of TALEN pair specificity determined

by a selection-based cleavage assay, in which general independence in DNA recognition was observed;

however, our data support a fully independent model of TALE-DNA binding, rather than a model

with slightly increased tolerance for adjacent mismatches 140.

5.2.2 Modeling repeat context improves specificity prediction

Although we observed mononucleotide independence within TALE target sites, we found that the

protein-DNA interactions of a given repeat are influenced by its context. In other words, the ener-

getic parameters of a given TALE-DNA contact are not affected by neighboring nucleotide changes,

but they are affected by the repeat context. Intriguingly, even within a single TALE protein, different

occurrences of the same repeat type can exhibit very different specificities. For example, in TAL2009,

repeats 7 and 10 were both designed with the HD RVD to target C, but within the context of the

TAL2009 protein each exhibits substantially different relative preferences for C as compared to other

nucleotides (Figure 5.3a). Typically, the highest scoring probe corresponded to the target sequence

predicted by the canonical TALE code; however, we observed multiple cases (e.g., TAL2024) where

a TALE protein bound mismatched sequences with comparable binding strength, hereafter referred

to as affinity. Moreover, some TALEs (e.g., TAL2009) even preferred a mismatched sequence to the

predicted optimal target sequence; this most frequently involved anNNRVD, which can target both

a G and an A in different contexts (for example, see repeats 3 and 6 in Figure 5.3a) 128. Altogether, these

results highlight that the simple one-to-one TALE code is not sufficient to accurately predict DNA

binding specificity.

Since our results suggested that interactions between repeatsmodulate their individual RVD speci-
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ficities, wemodeled the PBMdata to predictTALE specificity considering the context of each repeat in

a TALE protein (Figure 5.1c). We named our model and its associated software tools SIFTED (Speci-

ficity Inference For TAL-Effector Design). In addition to modeling the intrinsic specificity of each

RVD, SIFTED considers a variety of repeat context features, including the number of repeats in the

protein, each repeat’s positionwithin the repeat array, and the immediately adjacentN- andC-terminal

neighboring repeat types. TheNTR,which specifies the preference for the 5’ T in the binding site, was

also included in the model and was treated equivalently to a repeat, except for the omission of its po-

sition and length features.

We trained the SIFTED model by performing a linear regression with Elastic Net regularization,

using the ΔΔG values inferred for each protein as the input data 323. To prevent overfitting and to

assess performance, we used a nested leave-one-out cross-validation strategy. Briefly, one protein was

heldout fromthedataset in an iterative fashion.The remainingproteinsweredivided into training and

test sets, which were used to derive parameter values and to control the complexity of the model. The

predicted PWM for each of the 21 TALE proteins was obtained from the model trained on data from

the remaining 20 proteins in our dataset (Figure 5.1a). For specificity predictions of proteins not in our

dataset (e.g., TALEN pairs), the regression was performed on the full dataset (no proteins excluded)

and the resulting model was used to make PWM predictions.

Toassess howwell ourmodel explains binding,weused thePWMsobtained fromthe cross-validated

SIFTED model to predict PBM probe signal intensities. The SIFTED PWMs accurately predict the

probe-level PBM binding data (median R2 = 0.877). Additionally, SIFTED outperformed the speci-

ficitymodels fromother available computational tools designed to predict off-target sites in explaining

the PBMdata (P < 10-6,Wilcoxon signed-rank test) (Figure 5.4a). Two of these tools, TALE-NT 2.0 316

and TALgetter 317, do not consider any context effects. Others, such as PROGNOS 320 and Talvez 321,

include context effects on an RVD’s specificity only as discrete penalties. In contrast, SIFTEDmodels

context effects quantitatively and also allows each repeat type (i.e., NI, HD,NN, andNG) to be influ-
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enced differently by its context. These detailed context parameters in ourmodel are keys to its success;

the full model predictions from SIFTED aremore accurate (P < 10-6,Wilcoxon signed-rank test) than

those of anRVD-onlymodel that represents the canonical, one-to-one TALE-DNA recognition code

(median R2 = 0.798) (Figure 5.5).

We validated that our SIFTEDmodel can predict off-array binding affinity measurements (Kd val-

ues) more accurately than other published tools 324 (Figure 5.4b). While PWMs cannot be used to

predict absolute dissociation constants, they are able to predict the affinity of a sequence relative to

that of the optimal binding site (i.e., relative Kd values) 325. The full SIFTED model performed signif-

icantly better than PROGNOS, TALE-NT 2.0, TALgetter, Talvez, or a reduced SIFTEDmodel with

no context effects in predicting relative Kd values for one protein and 18 DNA sequences 324.

5.2.3 Quantitative modeling of context effects on RVD specificity

Since context effects contributed significantly to the predictive power of ourmodel, we investigated in

greater depth how length, position, and neighboring repeats each affect specificity.While our baseline

RVD specificities (Figure 5.5a) largely agree with previous studies 129 (e.g., NN is the least specific RVD

and can target both G and A), in the SIFTED model these specificities are modulated by the protein

context of each instance of the repeat.

Our data are consistent with previous reports that longer proteins tolerate more mismatches in

their target sites 140 (Figure 5.6b). Our comprehensive profiling also revealed that NN andNG repeats

are affected more strongly by protein length than are either NI or HD. Additionally, our set of pro-

teins included two proteins of different lengths designed to target overlapping sites. The longer pro-

tein (TAL2073) is less specific overall (i.e., lower total information content) than the shorter protein

(TAL2043), directly supporting our overall finding that increased TALE protein length diminishes

RVD specificity.

Repeat position within the repeat array also affects the specificity of C-terminal repeats that tar-
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Figure 5.4: SIFTED predictivemodel performance. (a)Comparison of prediction accuracy of PWMs derived by dif-

ferent methods. The box plot shows howwell the PBMprobe intensities for each protein are predicted by the PWMs

generated by SIFTED and other methods. Two versions of SIFTED are shown: one that only models repeats indepen-

dently (``SIFTED (RVDsOnly)'') and one that considers all repeat context features (``SIFTED (Full)''). Experimental

PWMs are those derived from the PBMdata. (*) The brackets highlight a subset of statistically significant differences

(P < 10-6, Wilcoxon signed-rank test). The box plots shows themedian and the first and third quartiles.Whiskers ex-

tend to data points not considered outliers, while outliers are shown as individual points. Data are considered outliers

when they are 1.5 times the interquartile range (IQR) higher than the third quartile, or 1.5 * IQR lower than the first

quartile. (b) Prediction accuracy for relative binding affinity. PWMs derived from existing tools or from SIFTED (as

in (a)) were used to predict relative Kd values for a single TALE protein 320,324. The bars display the Pearson correla-

tion coefficient between observed and predicted log(Kd) values. (c)Validation of TALE activator binding specificity

predictions by comparison to TALE activator activity data reported inMali et al 315. The five predictivemethods were

used to score all reported binding sites up to threemismatches away from the predicted target. These scores were

compared to a expression score associated with that binding site using Spearman correlation. (d)Validation of TALEN

binding specificity predictions by comparison to cell-based TALEN activity data, reported in Guilinger et al 140. The five

methods shownwere used to predict the binding of TALEN pairs to genomic target sites. The ROC curves show the

sensitivity and specificity of eachmethod for distinguishing genomic sites that showed nuclease activity (i.e., indels)

and those that did not.
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Figure 5.5: Contribution ofmodel features (a)The plot shows the accuracy at predicting PBMprobe intensities of

a PWMpredicted with no context features (top), with one single context feature added (middle) or with all context

features included (bottom). Box plots are formatted as in Figure 5.4a.

get the 3’ end of the DNA binding site, resulting in their being more tolerant to substitutions than

N-terminal RVDs. To test this modeling result, we designed a customPBM that included probes con-

taining clusters of three nucleotide substitutions located at either the 5’ or 3’ end of the target site

(5.2). In general, substitutions at the 5’ end impaired binding more than substitutions at the 3’ end (P

< 0.05, Wilcoxon signed-rank test), supporting prior observations from reporter assays 318,326 . Talvez

and PROGNOSmodel this polarity effect discretely as a constant decrease in specificity after a certain

position in the repeat array for all repeat types 320,321. In contrast, SIFTED continuously models the

decrease in specificity over the length of the protein and allows different repeat types to be affected to

different extents (Figure 5.6b).

Lastly, we observed that a repeat’s specificity is impacted by the identity of the immediately adjacent

N- or C- terminal repeat (Figure 5.6c). Such local context effects previously have been observed only

for the 5’ T preference, which is more important for binding when the first repeat is an HD 327. We

also observed the influence of HD in the first position, but found an even stronger effect when the

first repeat is an NN. Additionally, we observed neighbor context effects between repeats within the
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Figure 5.6: Protein features that affect repeat specificity. (a)RVD identity.ΔΔG values from themodel are indicated

for each repeat type with each base. Additionally, theΔΔGs for the four bases at the 5' T position, which are contacted
by the NTR, are shown. (b) Length and position. The effects of protein length and repeat position on the specificity of

each repeat type are shown. (c) Effect of neighboring repeats or terminal regions on specificity. For each repeat type

and the NTR, the bar heights display the effect on specificity for different neighbors in the N- or C-terminal direction

(orange and teal, respectively). The quantity shown is the log2 ratio between the PWM frequency predicted with and

without the presence of a given neighbor in themodel. NTR refers to the N-terminal region of the protein. CTR refers

to the C-terminal region; repeats with the CTR as the C-terminal neighbor are the half-repeats in the final repeat posi-

tion.
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protein. For example, the NN repeat is more specific for targeting a G when the NI repeat is either N-

or C-terminal to it; however, it is much less specific for G when it is positioned at the C-terminal end

of a TALE repeat array.

We found that a particular repeat type can exert different effects as an N- or C- terminal neighbor

(Figure 5.6c). PROGNOS includes a parameter to reduce an RVD’s specificity when it is next to a

strong RVD (NN or HD), positing that a stronger neighboring interaction may allow for greater

mismatch tolerance 319,320; however, it does not distinguish between N- and C- terminal neighbors.

The neighbor effects we found aremore complex, and in fact, the strongRVDs do not always decrease

specificity. The complexities of the neighboring effects are captured quantitatively in SIFTED; each

of the four RVDs as well as the 5’ T preference are modeled as being affected differently by its N- and

C- terminal neighboring repeats.

These observations of context effects can be condensed into some simple guidelines for TALE de-

sign. Certain repeat combinations (e.g.NI-NI) are predicted to have increased specificity, while others

(e.g.NGas theN-terminal repeat) canmake anRVDmore tolerant tomismatch and therefore should

be avoided. However, when designing TALE proteins, one must ultimately consider all the context

effects in the protein, as well as the prevalence of potential off-target sites in the genome. As such, we

tested if the SIFTED model could accurately predict genomic off-target sites, and therefore could be

used to guide TALE protein design.

5.2.4 Predicting TALE off-target sites using SIFTED

To assess whether SIFTED can predict genomic off-target sites for TALE proteins that have not been

assayed by PBMs, we examined a dataset of in vivoTALE reporter activity 315. SIFTED had the highest

median performance of the five tools tested (Figure 5.4c).

Although SIFTED was designed to predict TALE monomer specificity, we also tested its ability to

predict TALEN binding by examining a large dataset of TALEN activity in cells 140. We derived the
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specificities ofTALENpairs from the specificities of the componentmonomers predicted by SIFTED.

ThePWMs fromSIFTEDresulted in better sensitivity and specificity than those fromanyof the other

models in distinguishing genomic target sites that showed nuclease activity from those that did not

(Figure 5.4d). The area under the receiver operating characteristic (AUROC) curve statistic was used

to quantify the ability of the five tools to distinguish target from non-target sites across all possible

score thresholds. SIFTED demonstrated superior sensitivity and specificity across most thresholds.

Additionally, we considered that a typical TALE user might investigate about 20 off-target sites

when analyzing the specificity of their designed protein in their genome of interest. To provide a per-

formance comparison for this typical use case, we investigated howmany of the top 20 off-target sites

predicted by these tools have been identified as TALEN pair off-targets in vivo, or were among the 20

off-targets with the highestmeasured in vivo activity. Again, SIFTEDperformed better than the other

tools, demonstrating higher sensitivity by predicting more of the true off-targets than the other tools.

5.2.5 Prediction of genomic off-targets with SIFTED web tool

SIFTEDwas the top-performingmodel overall, highlighting the value of incorporating repeat context

effects in predicting specificity. While other tools may perform comparably to SIFTED in a specific

application, SIFTEDwas the only tool that was consistently a top performer across the wide range of

benchmarks of predictive performance (Figure 5.4). Given the success of SIFTED in predicting off-

target binding, we developed it into a web-based suite of tools to aid in TALE design implemented on

the Galaxy platform 328–330 at http://thebrain.bwh.harvard.edu/sifted.html. We provide stand-alone

tools for individual tasks, such as predicting the specificity and genomic binding sites of a user-specified

TALE, aswell as a pipeline that combines various tools to automate the process of designing aTALE to

target a particular genomic region.The complete pipeline takes a user-defined genomic target region as

input, and then (1) identifies candidate TALEs to target that input region, (2) predicts the candidates’

specificities, (3) finds instances of off-target sites in a user-specified genome and (4) outputs a list of
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candidate TALE proteins ranked by their off-target binding potential, thus allowing the user to select

the best candidate protein.

5.3 Discussion

By analyzing TALE proteins of different lengths and containing all possible consecutive pairs of re-

peats, we were able to identify the influence of repeat context onDNAbinding specificity. In contrast

to other studies that used cell-based TALEN activity as a measurement of TALE specificity 324, our

experimental design allowed us to directly assay the intrinsic binding properties of TALEmonomers.

We measured a total of ~200,000 binding interactions between 21 TALE proteins and ~5,000-20,000

unique DNA sequences per protein using custom-designed PBMs. Importantly, the resulting dataset

allowed us to develop a model to predict TALE specificity for any candidate TALE protein without

requiring any additional experimental analysis.

Our results highlight that RVD specificity is not determined simply bywhat base a particular RVD

will bind, but also which bases it strongly disfavors. This information could be useful in designing

TALEs for allele-specific applications, such as rapid, spatially resolved genotyping of patient samples

through binding of fluorescently tagged, allele-specific TALEs. TheHDRVD has the greatest power

to discriminate between two alleles: it prefers binding to a C and strongly disfavors binding to a G.

Therefore, targeting an allele where there is a C/G SNP may lead to stronger discrimination between

the two alleles.

We found that longer TALEs are generally less specific than shorter TALEs. This effect could be

due to excess DNA binding energy in TALE proteins with many repeats 140. The mechanism of the

context effects on RVD specificity remains to be determined. An ability to tolerate some binding site

mismatchesmay allow aTALE protein from xanthomonad pathogens to overcomemutations in host

genomic target sites, as the plant hostmay be under selection to escape xanthomonad infection.How-
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ever, TALEs with very low specificity may lead to potential negative effects on virulence due to addi-

tional binding in the host genome 124. Thus, the specificity of TALE proteins may have been strongly

shaped by the complex interactions between host and pathogen.

SIFTED predicts that some DNA sequences should be targeted with greater specificity, which

could be interpreted as guidelines for TALE design. Interestingly, some of these guidelines would con-

tradict published guidelines that were developed as part of the SAPTA tool for designing more active

TALEN pairs 331. For example, while we predict that A-runs can be targeted with high specificity by

TALE monomers, SAPTA predicts that TALENs targeting A-runs will have lower nuclease activity.

The discrepancies in these guidelines and results might reflect different rules affecting the binding of

monomeric TALEs versus dimeric TALENs. Alternatively, it is possible that a trade-off exists between

optimizing activity and specificity in designing TALENs. Previous reports have found no correlation

between activity and affinity 324. This lack of correlation between in vitro binding and different cell-

based activity measurements might be due to other genomic features in cells, such as the chromatin

state and competition with other transcription factors at the target and off-target sites. Ultimately, in

designing TALEs, the intrinsic specificity of the protein must be considered in light of its potential

off-target binding sequences in the genome. For example, the decreasing specificity of longer TALEs

may be compensated by longer target sites beingmore rare in the genome, thus increasing the effective

specificity of a protein 140. SIFTED can both model protein specificity as well as identify genomic off-

target sites, revealing the effective specificity of a TALE, so users can choose the most specific TALE

protein for their particular application.

Future studies will be required to identify chromatin features that might modulate binding speci-

ficity in vivo. Additionally, the specificities of other alternative RVDs (e.g., NH to target G) could

be studied to enable design of TALE proteins with higher sequence specificity. An improved under-

standing of TALE-DNA binding should allow for development of more precise genome engineering

tools.
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5.4 Methods

5.4.1 Cloning of TALE proteins

TALEN expression vectors 130 were digested with SacII and BamHI to obtain the DNA-binding do-

main comprising the Δ152 N-terminal domain (NTD), the RVD repeats, and the +63 C-terminal do-

main (CTD). This fragment was ligated into a modified pDONR221 vector (Invitrogen), with SacII

and BamHI restriction sites internal to attL recombination sites, to create Gateway-compatible TALE

Entry clones. The TALE constructs were then transferred by Gateway recombinational cloning into

the pDEST15 expression vector, which adds anN-terminal glutathione S-transferase (GST) tag (Invit-

rogen), by an LR reaction. All clones were full-length sequence-verified.

5.4.2 Protein binding microarray experiments

Proteins were expressed using the PURExpress In VitroTranscription andTranslationKit (New Eng-

land Biolabs). Protein concentrations were determined by anti-GSTWestern blots with a dilution se-

ries of recombinantGST (Sigma). Proteinswere stored at +4 °Cuntil being used in PBMassays. PBMs

were performed as described41, with a 30-minute incubation with an Alexa488-conjugated anti-GST

antibody (InvitrogenA-11131). The final concentration of TALEprotein in the PBMbinding reactions

was 200 nM, unless otherwise indicated.

5.4.3 Custom PBM Design

Target sites for each TALE protein were determined using the canonical TALE code (NI: A, HD: C,

NN:G,NG:T), and are preceded by the 5’ T to create the full target site. The constant flanking region

was the same as that used in a prior custom PBM design and does not contain binding sites for any of

the TALE proteins in this study 332.
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5.4.4 PBM data quantification

Raw data files generated by GenePix Pro (Molecular Devices) were processed using the same general

approach as used for universal PBMs41. Briefly, masliner software 299 was used to combine Alexa488

scans at different laser power levels and resolve the signal intensity in spots that are saturated at high

laser power settings.The adjustedBSIdatawere thennormalizedby the correspondingdouble-stranded

DNA content of the spots and their position on the array using the same approach as described for

universal PBMs41. We calculated the median normalized BSI over all replicate probes on the same ar-

ray. For each TALE protein we defined a background set of probes that comprises all the probes on

the array designed to represent binding sites for other TALE proteins (not the one being assayed in

a given experiment). The z-score for each probe was calculated relative to the median and standard

deviation of its corresponding background probes. For more detail on normalization procedure, see

Methods.

5.4.5 Position weight matrix model fitting

We developed a Bayesian Markov chain Monte Carlo (MCMC) method to infer free energy parame-

ters of TALE-DNA interactions from PBM data. We relied on the theoretical framework developed

for the BEEML-PBM algorithm 325, which can accurately derive ΔΔG values for protein-DNA con-

tacts from universal PBM experiments. The BEEML-PBM framework estimates ΔΔG values for each

possible nucleotide substitution in a protein’sDNAbinding sitemotif. These values can be assembled

to construct an energy matrix (EM), in which each column represents a position within the binding

site and each row represents a nucleotide. The EM values can be converted to probabilities using the

Boltzmann distribution, creating a position weight matrix (PWM). The statistical model is described

in full detail in Eq. 5.1, where Yj represents z-score transformed PBM signal intensity values for each

experiment.
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Yj = a+ b
1 + e

∑
i ΔΔGi,j−M + εj

ΔΔGi,j ∼ Exp(β)

a ∼ U(−100.0, 100.0)

b ∼ U(0, 1000.0)

M ∼ U(−20.0, 20.0)

εj ∼ N (0, σ2)

(5.1)

5.4.6 SIFTED predictive model for ΔΔG values

The ΔΔG values inferred from the TALE PBM experiments were used to train a predictive model

using an Elastic Net regression 323. We used the Elastic Net implementation in the glmnet v1.9-5 R

package to train ourmodel. EachΔΔGvalue in the dataset is pairedwith a vector of predictive features

to create the feature matrix, in which each row is an independent observation, and each column is a

different feature. The features include repeat identity, position, neighboring repeat identity, and total

length of the target site. To allow for nonlinear position and length effects, we also included the natural

logarithm of each as a feature.

To prevent and to accurately assess the model’s performance, we used a cross-validation scheme

consisting of two nested levels. On the outer level, we used leave-one-out cross-validation to form a

validation set by excluding a single protein in each iteration. Once a protein is excluded, the inner

level performs 5-fold cross-validation on the remaining proteins. This entire process is repeated for

each protein, leading to cross-validated predictions for the entire dataset. These predictions were then

used for all model evaluation purposes.
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5.4.7 Predicting probe signal intensities and Kd values from PWMs

The predictions of probe signal intensities were obtained using the same mathematical framework

as for fitting PWMs (Eq. 5.1). However, in this case the ΔΔG parameters are known and the only

parameters that need to be fitted to predict probe intensities are the chemical potential μ and the

scaling terms a and b. To determine these parameters, we used the implementation of the Levenberg-

Marquardt algorithm in the SciPy v0.12 package with default convergence parameters. The model

parameters were initialized as follows: a = minimum z-score in input data, b = maximum z-score in

input data, μ = -1.0. After these parameters were fitted from the observed z-scores, the predicted z-

scores were obtained by using the total ΔΔG for the binding site in each probe and the fitted variables

as input.

In order to validate SIFTED predictions with measured Kd values 324, relative Kd values for target

and off-target sites were predicted from SIFTED PWMs. Relative Kd values were predicted by set-

ting the Kd of the optimal site to 1. The predicted Kd for off-target sequences were obtained through

the equation eΔΔG/RT, where ΔΔG represents the difference in total free energy between the optimal

binding site sequence and the sequence of the off-target site. The measured relative Kd values were

similarly adjusted so that the optimal site had a Kd of 1. Because Kd values span many orders of mag-

nitude, the correlation coefficient was computed after taking the natural logarithm of the Kd values,

which prevents the calculation from being dominated by the extreme values.

5.4.8 Comparison using PWMs from other tools

PROGNOS,TALgetter,Talvez, andTALE-NT2.0, thepublicly available tools againstwhichwe com-

pared SIFTED, do not explicitly provide the userwith predicted PWMs 316,317,320,321.However, with the

exception of TALgetter, each tool uses an internal scoring scheme that is mathematically equivalent

to a PWM (i.e., the score for a site represents the sum of an independent score for each nucleotide
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position). Therefore, in the comparisons with PROGNOS, Talvez and TALE-NT 2.0, we predicted

PWMsbased on the scheme described by each paper and the associated parameters 316,320,321. To predict

TALgetter scores,we insteadused thedownloadableTALgetter software tool to compute log-odds val-

ues for all binding site sequences in a given experiment 317. These binding scores can then be compared

directly to PWM log-odds scores, even if the underlying scoring scheme is distinct. For comparisons

using TALEN activity data, we combined the values predicted by PWMs for each TALE in a TALEN

pair using the same scoring scheme as PROGNOS 320. The scoring scheme is shown in Eq. 5.2, where

x is y and a corresponds to b .

Pair Score =
(Sleft(optimal site)

Sleft(target site)

)0.6

+

(Sright(optimal site)

Sright(target site)

)0.6

(5.2)

We analyzed theTALEN target sites reported byGuillinger et al. 140.We scored each reported target

site that contained only NN, NI, HD, and NG RVDs using the TALEN Pair Score derived from the

PWMs obtained from SIFTED, PROGNOS andTALE-NT 2.0.We summarized the performance of

each tool as a receiver operating characteristic (ROC) curve, which shows the sensitivity and specificity

values achieved by each tool when predicting sites that were targeted by the TALEN pairs. The differ-

ent sensitivity and specificity values represent different Pair Score thresholds, above which a locus is

predicted to show evidence of nuclease activity (indels).

We also compared against the TALE activator reported byMali et al. 315 All of the reported binding

sites up to threemismatches away from the predicted site were scored as described above. These scores

were then compared to a normalized expression score (the ratio of barcode tags for that binding site

relative to a control experiment) associatedwith that binding site-TALE combination. Sincewe expect

the relationship between TALE occupancy and expression to be nonlinear, we compared the results

using Spearman correlation.
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5.4.9 Algorithmic approach of SIFTED web tool

The overall approach of the entire pipeline to identify and score candidate TALEs to target a genomic

region is as follows:

1. Find candidate TALE binding sites within the user-input DNA sequence.

2. For each site found in (1), determine the protein that targets that sequence using the TALE

code, and predict its PWM.

3. For each protein, use the PWM to enumerate all putative binding site sequences (both target

and off-target sequences) within a relative Kd threshold (by default, set to 10), using a bounded

breadth-first search.

4. Find all genomic instances of the putative binding site sequences from (3) using a short read

aligner (bowtie).

5. Calculate a summary score for each protein that describes the overall number and strength of

genomic target sequences.

Under default parameter settings (e.g., 13.5 repeat TALE, 1-kb region), the SIFTED pipeline typically

identifies optimal TALE candidates within minutes. Additionally, a user can input a TALE with a

defined RVD sequence, and SIFTED will predict its specificity and identify potential genomic off-

target sites. Tutorials are hosted on the SIFTED website for designing TALEs to target a region, and

for predicting the specificity of a pre-designed TALE, and include additional guidelines for setting

parameters and troubleshooting.

This chapter is a modified version of a published article describing this work:

Rogers JM*, Barrera LA*, ReyonD, Sander JD, KellisM, Joung JK, BulykML. Context influences on

TALE-DNA binding revealed by quantitative profiling. Nature Communications (2015) 6:7440.
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I almost wish I hadn’t gone down that rabbit-hole—and

yet—and yet—it’s rather curious, you know, this sort of

life!

Alice’s Adventures in Wonderland, by Lewis Carroll

6
Conclusions

Developing a truly systematic approach to characterize regulatory variation is a task that will keep the

scientific community occupied for many years, if not decades. In this dissertation, I have presented

my case for why such efforts will be essential towards understanding the molecular mechanisms that

underlie transcriptional regulation and human phenotypic variation. I have also described my own

contributions and how they relate to the broader goals of the field. In this section, I present a more

detailed discussion about the significance, limitations, and future areas of work that relate to the ad-

vances reported in the previous chapters.

The development and application of eFS have provided novel biological insights and demonstrated

the feasibility of a new high-throughput approach for enhancer screening. The enhancers identi-

fied by eFS have already provided valuable information about transcriptional regulation in the D.
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melanogaster mesoderm. Using motif enrichment analysis, we identified several TFs as having a po-

tential role in driving the expression programs of mesodermal development, several of which had not

been previously reported. One of the factors identified by this analysis of eFS data, Trithorax-like

(Trl), was subsequently reported as an enhancer-promoter specificity factor 333, which mediates inter-

actions between developmental enhancers and the promoters of their target genes. Other predicted

mesodermal regulators are the subject of ongoing study in the Bulyk lab. Overall, the enhancers iden-

tified by eFS were associated with a large number of TF motif combinations that extend beyond the

set of known master regulators, such as Twi, Tin, Bap, Bin and Mef264. These observations suggest

that, even in the extensively studiedDrosophilamesoderm,much remains to be understood about the

complexity and flexibility of cis regulatory codes.

An important advantage of the eFS methodology is that it can readily be applied to study other

developmental stages and tissues. In principle, the experimental and computational framework de-

scribed here can be used to study any subset of cells in which an enhancer is known to drive expression

at sufficiently high levels. Recent developments in enhancer assays have facilitated the identification

of candidate enhancers that drive expression in a desired cell type. For example, a high-throughput,

imaging based approach was used to identify the spatiotemporal expression patterns associated with

3,557 developmental enhancers 334. Such data can be analyzed directly, or integrated with gene expres-

sion patterns identified through in situ hybridization 183, to greatly aid the identification of enhancer

sequences that can provide cell-type and tissue selectivity in future eFS experiments.

The development of eFS has added a novel tool to a rapidly growing repertoire of methods for

identifying enhancer sequences. Each of these methods has unique strengths and weaknesses, ranging

from their throughput, whether they function in vivoor in vitro, andwhether enhancers are integrated

into the genome or drive expression in plasmids. For example, STARR-seq allows million of candi-

date enhancers to be sequenced, but can only be feasibly carried out in cell lines and relies on plasmid

expression76. Meanwhile, CRE-seq, as described by Mogno et al., allows the screening of thousands
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of regulatory elements in a constant genomic context, but has only been used in yeast 335. In contrast,

eFS has a lower throughput, but is able to assay specific cell-types in a developing organism and detect

enhancers using comparatively small numbers of cells. In this regard, it fills a unique and important

niche in the toolbox of experimental methods to systematically study enhancers.

Having an enhancer assay that directly measures transcriptional activation can enable benchmark-

ing of indirect methods for enhancer prediction. As methods based on DNase I hypersensitivity and

TF and histone mark ChIP-Seq have become widely used, there is a pressing need to compare their

predictive performance and understand why certain sequences do not drive expression despite pos-

sessing certain features that are typical of enhancers. When comparing between eFS results and indi-

rect predictions for the same sequences, we observed similar predictive performance between DNase

I hypersensitivity and histone modifications. However, we found that the binding of TFs known to

regulate the tissue of interest offered the highest predictive performance. These results are consistent

with recent observations about the predictive power of TAL1 binding for identifying active enhancers

in mouse erythroid cells 336. Additional work is needed to understand how well certain combinations

of indirect features can predict enhancer activity and whether such observations are universal among

tissue types, developmental stages, and species. Having a high-confidence set of enhancers identified

through techniques such as eFS will greatly aid in performing such studies, and thus increase the in-

terpretability of enhancer predictions from genome-wide indirect methods.

The issues encountered by studies of regulatory variation in humans, such as the inability of dis-

covered eQTLs to explainmost of the observed heritability of gene expression, have prompted similar

studies inmodel organisms. Bloom et al. measured several quantitative traits across genetically hetero-

geneous yeast cells and found that, in contrast to studies carried out in humans, the vast majority of

phenotypic variance could be explained by the identified QTLs 337. Additionally, despite the relative

simplicity of transcriptional regulation in yeast, many genes were shown to be affected by multiple

eQTLs 338. These observations suggest that model organisms may be an appealing option for under-
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standing the mechanistic basis of regulatory variation.

Transcriptional regulation inD. melanogaster is significantly more complex than in yeast, making

it a more appropriate model for vertebrate gene regulation. Studies of gene expression variability in

flies have identified cis eQTLs for over 2,000 genes 339. Combining high-throughput enhancer assays

with eQTLmapping in flies is likely to facilitate the finemapping of causal cis regulatory variants. For

instance, an eFS library could be constructed fromenhancer sequences harboring candidate regulatory

SNPs. Because eFS allows the screening of relatively long sequences in a cell-type specific way, the

results would be more directly interpretable than those based on screening enhancer fragments in

plasmids transfected into cell lines, such as MPRA and CRE-seq60,81 .

The version of eFS described here has two main limitations: (a) the absence of a quantitative read-

out of enhancer activity (i.e., an indication of how strongly a particular sequence drives expression),

and (b) a comparatively lower throughput than other methods. The first limitation can likely be ad-

dressed by engineering a sequence tag into the GFP transcript that uniquely identifies each candidate

enhancer. After FACS sorting, CD2+ cells (i.e., those from the tissue of interest) can be separated into

a subset that is sequenced to quantify the abundance of candidate enhancer integrations and a subset

used for RNA-sequencing. After normalizing for the abundance of cells with a particular insert, the

counts for a particular mRNA barcode should provide a quantitative activity readout.

The comparatively lower throughput of eFS could be improved in two main ways: (a) by increas-

ing the number of embryos that are injected with plasmids harboring the candidate enhancer library,

and (b) by eliminating the requirement of a single integration event per haploid genome. Solving the

first challenge is largely a matter of increasing the scale at which embryos are injected and the num-

ber of cells that are collected. With additional resources, the eFS approach could be used to screen a

few thousand sequences per experimental run. A larger improvement could be achieved by allowing

multiple random integration events in a genome, which can be achieved through the widely used P

element transposon 340. This approach would function similarly to enhancer trapping 341, but con-
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tain the candidate enhancer sequence in addition to the reporter gene. While the eFS methodology

described in Chapter 2 depends on single integration events (otherwise, it is unclear which enhancer

is driving GFP expression), the inclusion of unique enhancer barcodes would allow the output from

multiple independent insertion events to be resolved. Comparing the results from single and multi-

ple integration methods may also provide useful insights into the dependence of enhancer activity on

genomic context.

These improvements could also facilitate the development of eFS-based approaches for use inmam-

mals. In principle, the current experimental approach could be used in transfectable human cell lines

that express the φC31 integrase transgene and harbor a genomic attP site. However, one of the main

advantages of eFS is its tissue specificity in a fully in vivo setting. Therefore, a more significant im-

provementwould be to develop an extension of eFS that functions inmice. While there are significant

challenges, it should in principle be possible to deliver tagged eFS constructs into mouse embryonic

stem cells using viral vectors such as lentiviruses 342. These embryonic stem cells could then be used to

generate embryonic chimeras, which would contain random integration events 343. The eFS approach

could then be readily applied to sort specific kinds of circulating cells (e.g., subsets of immune cells)

based on tissue-specific markers andGFP activity, which could then be subjected to RNA-sequencing

for enhancer barcodes. Mouse embryos have already proven to be a useful system for determining

the tissue specificity of human enhancers 344, implying the presence of conserved trans regulatory ar-

chitecture across mouse and human development. Developing higher throughput approaches could

facilitate the screening of human enhancers as well as the sequence variants found within them.

While all such developments will require solving significant experimental challenges, the computa-

tional framework already developed for eFS is likely to remain useful in future iterations. Two funda-

mental ideas are likely to remain particularly relevant: how to process sequencing data corresponding

to the amplified insertion events and how to determine the statistical significance of differences in read

counts for candidate enhancers betweenGFP+/CD2+ and input cells. While incorporating an RNA-
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based readout would present new challenges, the same idea of using a statistical framework developed

for differential expression analysis is likely to remain relevant. Furthermore, the statistical framework

for the enrichment of motifs, combinations of motifs, histone modifications and other functional

features is likely to be directly transferrable to new experimental datasets. As increasing numbers of

enhancer sequences are identified, it will become possible to evaluate whether more complex predic-

tive models of enhancer activity can improve the accuracy of computational enhancer prediction and

provide new biological insights into combinatorial gene regulation.

Within theoverall goal of characterizing regulatory variation inhumans, developing eFShas demon-

strated the feasibility of a new class of experimental approaches for testing enhancers. In turn, this

should facilitate advances in enhancer assays that function in mammalian cell lines and tissues. Ulti-

mately, the ability to identify enhancers with high confidence across all cell types and tissues will be

a key step towards understanding cis regulatory variation. As more complete maps of enhancers are

developed, the next goal will be to determine whether specific genetic variants disrupt their activity

in tissues that are relevant to various disease processes. Both the methods developed for eFS and the

lessons learned during the process are likely to contribute towards achieving these goals.

The work described in Chapter 3 has provided a more complete understanding of the complexity

of NF-κB binding and yielded useful insights about the study of in vivo TF binding. Importantly,

the binding of all five NF-κB subunits was profiled simultaneously for the first time. Despite the sim-

ilar domain organization and nearly identical DNA-binding domain sequences across subunits, each

displayed a unique binding pattern. In aggregate, the subunits formed a complex binding landscape,

where a given κB site can be bound by dimers encompassing combinations of anywhere from one to

five subunits. Intriguingly, different subunit binding patterns often possessed unique signatures of

association with specific biological processes. These observations represent important steps in under-

standing how different subunits and dimers are used to orchestrate specific transcriptional responses

in response to cytosolic signaling events. In addition, they provide a potentially useful framework
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for interpreting disparate observations about NF-κB biology, such as the different mouse knockout

phenotypes that arise from disruptions in each of the five subunits98.

Through careful comparisons of NF-κB bound sequences and co-occupying TFs, we identified

mechanisms that influence the presence or absence of subunits at certain binding sites. In some cases,

these mechanisms depended on the immediate sequence context of the κB site, as in the case of the

cytosine preference in the 3’ nucleotide. While the same position had been described as changing p50

binding affinity in vitro91, the extent towhich the identity of the 3’ nucleotide affectedRelA:p50 bind-

ing in vivo was surprising. In addition, we identified several mechanisms that led to the recruitment

of specific subunit combinations, but did not involve binding to a κB site. In each of these cases, four

TFs and their corresponding motifs were identified as potentially driving the recruitment of specific

subunit combinations toDNA.However, additional work is needed to validate these interactions and

determine whether recruitment happens through direct interactions or depends on the formation of

higher-order complexes.

An equally significant observation is that several differences in binding patterns cannot easily be

explained by the sequence of the κB site. The cytosine 3’ from the traditional κB site had a significant

effect on the recruitment of p50, and to a lesser extent, p52. However, the mechanisms that determine

whether RelA, RelB or c-Rel bind a particular motif instance remain less clear. In vitro studies of NF-

κB binding have not revealed intrinsic differences in the binding specificity of dimers containing these

subunits. These results are consistent with the lack of differences in k-mer frequencies for sites bound

by different subunits in vivo. Therefore, it is likely that mechanisms other than sequence specificity

play a role in determiningNF-κBbinding patterns. Thesemay include interactions with other TFs, or

effects related to dimer competition at different concentrations and levels of chromatin accessibility.

Now that suitable antibodies for all subunits have been identified, further ChIP-Seq experiments are

likely tobeuseful in identifying themechanisms that control the formationof specific subunit binding

patterns. In particular, generating time course data following stimulation of the different pathways
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and comparing results across cell lines is likely to be of significant value.

PerformingChIP-Seq experiments for all subunits also provided important insights aboutTFs that

tend to co-occupy regulatory elementswithNF-κB. Inparticular, we found that the cell-cycle regulator

FOXM1 was frequently localized with NF-κB at enhancer regions, even in the absence of its preferred

motifs. Through further experimental validation,we showed that FOXM1 is recruited toDNAas part

of a complex with NF-κB and that the binding of this complex relies on the presence of a κB motif.

Furthermore, we were able to show that in diffuse large B-cell lymphomas (DLBCLs), which are often

driven by aberrant NF-κB signaling, higher FOXM1 expression was associated with a worse progno-

sis. Our results suggest that FOXM1 is a putative therapeutic target in DLBCL. In a recent study,

this conclusion was reached independently by comparing expression profiles of DLBCL-like tumors

in mice 221. Another study has identified FOXM1 as a therapeutic target in B-cell acute lymphoblas-

tic leukemia 345, suggesting that the joint regulatory role of FOXM1 and NF-κB should be explored

further in the context of other cell types and lymphomas.

An essential task will be to re-evaluate how much the newly identified mechanisms contribute to

explaining inter-individual variability in NF-κB binding, gene expression and disease risk. A recent

study has profiled chromatin state variation in LCLs across 47 individuals, and discovered correlations

in TF binding and chromatin state that extend across large regions (~100 kb) 346. Variants affecting the

binding sites of PU.1, one of the TFs identified in association with NF-κB binding in Chapter 3, were

found to influence these large scale chromatin states. Fully understanding the mechanisms that create

variable NF-κB binding across individuals is likely to require integrating such large-scale factors with

local effects mediated by sequence differences. In addition, other TFs are likely to influence NF-κB

binding across different cell types. In a recent study, our data were used to identify how a SNP associ-

ated with increased risk of developing allergies (rs2370615) affects a RelA binding site in an enhancer

regulating the PAG1 gene 347. Interestingly, the SNP did not affect a κB motif instance, but rather a

predicted binding site for a forkhead TF.
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In general, thework described inChapter 3 has highlighted the value of performingChIP-Seq stud-

ies of humanTFs with known roles in gene expression variation and disease risk. We have shown how

such data can contribute to the identification of biological mechanisms of medical relevance and how

it can be a useful resource for the identification of causal regulatory variants. In addition, we have

developed a framework for studying the binding patterns of dimeric TFs and elucidating the mecha-

nisms that contribute to binding differences. Asmore data about in vivoTFbinding is generated, such

approaches are likely to contribute to identifying additionalmechanisms that contribute to regulatory

variation.

The combined experimental and computational approach described in Chapter 4 has revealed pre-

viously unappreciated genetic diversity in humanTFs. Traditionally, mutations that alter the binding

properties of TFs have been hypothesized as being highly pleiotropic, and therefore likely to have

deleterious effects 113. However, we found that a typical human genome harbors multiple alleles—

often very rare—that encode TFs with likely alterations in their DNA-binding preferences. The asso-

ciated variants include SNPs that alter base-contacting residues, predicted damaging variants in non-

contacting residues, andDBD-truncating nonsense variants. These observations suggest that different

individualsmay harbor unique trans regulatory landscapes that affect gene expression in distinct ways.

The approach described here was focused on DBD variants for two main reasons: (1) the relative

ease of testing the effects of DBD mutations in vitro and (2) the ability to prioritize variants based

on existing structural data. However, such an approach is certain to underestimate the potential for

regulatory variation caused by changes in TF amino acid sequences. As discussed in Chapter 1, the

ability of TFs to modulate gene expression depends on forming protein-protein interactions (PPIs)

with other TFs and components of the transcriptional machinery. In a recent study, certain common

nsSNPswere shown to selectively alter the PPI networks ofTFs277. Such results highlight the different

ways inwhichTF coding variants can affect gene regulation. Integrating the results of different in vitro

methods, such as PBMs and yeast two-hybrid screens 277, is likely to be helpful in understanding the
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full spectrum of coding regulatory variation. In addition, both nsSNPs that impair proper folding of

TFs and DBD-truncating nonsense mutations are likely to contribute to regulatory diversity across

individuals.

An important area of future work will be to improve the computational methods used to detect

affinity and specificity differences based on PBM data. While the current methods were adequate for

identifying large changes in DNA binding, comparisons with data generated by other experimental

approaches revealedmoderate sensitivity for detecting affinity differences. Furthermore, the approach

used to detect specificity differences required that the two alleles bind DNA at roughly comparable

affinities. Some of these limitations have a biochemical basis: if a mutant allele has lower affinity, the

ability to detect specificity changes at sequences boundweakly by the reference allele may be impaired

by a greater signal-to-noise ratio. Furthermore, the use of the E-score, a rank-based statistic, was neces-

sary because of its high reproducibility across experiments relative to probe signal intensities and 8-mer

z-scores41. However, the rank transformation leads to a loss of information about the dynamic range

of fluorescence signal intensities, potentially reducing sensitivity for detecting affinity differences and

making the readout less quantitative. Future efforts are likely to be aided by a combination of exper-

imental work to increase the reproducibility of z-scores across PBM experiments and computational

methods to incorporate the dynamic range information to detect affinity differences. After develop-

ing a more quantitative model for detecting affinity differences, it may be possible to jointly model

affinity and specificity changes to determine if specificity changes are significant given the predicted

affinity difference instead of using a binary cutoff.

Regardless of howTF coding variants are identified, a critical step in understanding how they con-

tribute to gene expression variability will be to assay their in vivo effects. Because of the low allele

frequencies of manyDBDPs that are predicted to have functional consequences (Chapter 4), assaying

their effects through eQTL mapping will remain difficult unless cohort sizes are drastically increased.

However, various experimental approaches can be used to study the functional consequences of vari-
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ants of particular interest. For example, cell lines can be transfectedwith tagged constructs of different

TF alleles, after which ChIP-Seq and RNA-seq can be performed to identify changes in binding and

expression, respectively. This approach was used to study the effects of several Mendelian mutations

in HOXD13 115. However, one limitation of this approach is that the concentrations of tagged TFs

may not be physiological, and thus any changes in binding and/or expression may be exaggerated. In

addition, the endogenous TF genes may need to be knocked down or knocked out in order to assay

the effects of the tagged TF without any confounding effects from a functional reference allele.

With the development of increasingly efficient and precise genome editingmethods, allelic replace-

ment is likely to become the preferred method for assaying the effects of regulatory variants. When

variants are introduced through genome editing, the expression of the TF gene is controlled by the

same regulatory elements, mitigating some of the problems of transfecting tagged TFs. However, and

perhaps more importantly, genome editing allows multiple DBDPs to be tested at once and enables

the study of genetic interactions between regulatory variants. This scenario would be of particular

interest when DBDPs occur in multiple genes that are expressed in the same cell type or tissue. In

addition, such an approach would allow the high-throughput testing of interactions of cis and trans

variants. For instance, one could perform a high-throughput enhancer assay to identify how SNPs in

regulatory sequences change expression and compare the results across cell lines with different genetic

backgrounds in terms of TF alleles.

Despite the development of these methods, deciphering potentially complex networks of genetic

interactions with regulatory consequences is likely to remain challenging. The large number of vari-

ants with predicted functional effects implies that the combinatorial space for the variants present in

any individual’s genome is enormous. In addition, predicting which noncoding variants may inter-

act genetically with coding variants is likely to be difficult in the absence of functional data, such as

ChIP-Seq. The development of improved, deep-learning-based methods for predicting the effects of

noncoding variants 348,349 is likely to aid in the prioritization of variants that may be candidates for
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cis-trans interactions, particularly since they can be trained on PBM data 348. Another important chal-

lenge will be in determining the downstream phenotypic effects, if any, that are caused by regulatory

variants.

Although much remains to be done in understanding the effects of coding variation in TFs, the

work described in Chapter 4 represents an important step in establishing the existence of variants that

alter TF binding that are segregating in human populations. The framework for prioritizing variants

described here is likely to be useful for identifying additional variants of interest for both further ex-

perimental testing and for inclusion into eQTL models as potential sources of genetic interactions.

In addition, the power of eQTL studies could potentially be boosted by selecting cohorts that harbor

certain variants. For instance, the PAX4 variants described in Chapter 4 would be promising targets,

given their relatively highminor allele frequencies in Asian populations and known clinical relevance.

In addition, the computational framework developed for this project is likely to be useful for other

applications involving the prioritization of genetic variants. One obvious application is in the predic-

tion of potential driver mutations in sequencing datasets from cancer patients. In particular, muta-

tions that alter the specificity ofTFs are good candidates for causing gain-of-function effects. Similarly,

being able to identify TF mutations with functional effects is likely to be useful in exome sequencing

studies performed in trios with an affected child, as it may facilitate the identification of potentially

pathogenic de novomutations.

The development and increasing refinement of genome editing technologies has important im-

plications for biology and biomedicine. Large-scale experimental approaches that would have been

infeasible just a few years ago, such as the creation of genome-wide gene knockout libraries 350, are in-

creasingly becoming routine. These developments will also facilitate high-throughput screening of

genetic variants, such as the ones described in Chapter 4. However, whenever a study design calls for

the use of genome editing, one of several technologies must be chosen. Deciding which genome edit-

ing approach to use can be difficult, as the pros and cons of various approaches have yet to be fully
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evaluated for all applications.

However, one question is likely to remain key inmaking such decisions: how efficiently and specif-

ically can a particular genome editing technology target a sequence of interest? In order to make such

decisions, it is essential to have methods that can predict the on- and off-target effects of each technol-

ogy as accurately as possible. Developing predictive models for the activity of various genome editing

approaches would enable users to select an approach guided by comparisons of optimal performance

between such methods at a particular locus of interest.

The development of SIFTED, as described in Chapter 5, has led to the most significant refinement

of the “TALE code” to date. By incorporating higher-order effects into the SIFTEDmodel, the speci-

ficity of TALE proteins can now often be predicted with improved accuracy over the previous gener-

ation of tools. These observations are significant for both for practical applications involving TALEs

and for the study of protein-DNA interactions. Because the RVDs in neighboring repeats are not

in direct contact with each other, their interdependency is likely to involve more complex allosteric

mechanisms. Computationalmodeling ofTALE-DNA interactions has revealed thatTALEs undergo

significant conformational changes as they compress along the helical axis to contact the bases in their

target site 351. Further work will be useful in revealing whether such conformational effects may con-

tribute to explaining the dependencies between neighboring RVDs.

Nonetheless, the current version of SIFTED model does have certain limitations that should be

kept inmind. Most importantly, SIFTED is trained onmeasurements obtained for TALEs harboring

only four types of RVDs: NI, HD, NN, and NG. While this RVD set has been used successfully to

target each of the four DNA bases, the inclusion of alternative RVDsmay provide optimal specificity

in certain contexts. For example, the NH RVD has been reported as being more specific at targeting

G than NN 319, which was used in this study. A recent study has significantly expanded the set of

known sequence-specific RVDs by comprehensively assaying RVDs not found in naturally occurring

TALEs 352. Incorporating more RVDs into the SIFTED model would enable additional options for
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optimizing targeting to a given sequence. In addition, the context effects of RVDs beyond the four

already incorporated into SIFTEDhavenot been characterized. Potentially novel context effects could

be discovered and used to further optimize the binding of TALEs to a loci of interest and minimize

the number of off-targets.

Another current limitation of SIFTED is that its predictivemodel was trained primarily on shorter

TALE proteins. This limitation was primarily the result of experimental considerations, as longer

TALE proteins proved more difficult to express by in vitro translation and assay in PBMs. While

TALEs spanning a rangeof 8.5 to 18.5 repeatswere tested, only twoof thesewere longer than 13.5RVDs.

The SIFTED model was formulated in a way that enables interpolation, and even extrapolation, to

predict the specificity of TALEs of lengths that were not assayed. However, generating additional

training data corresponding to the higher end of the TALE length spectrum is likely to be of value

both for increasing accuracy and for more rigorously validating the predictions made by SIFTED.

Fortunately, the SIFTED model was developed in a way that allows new measurements, both for

longer proteins and for additional RVDs, to be easily incorporated into its statistical framework. Ef-

forts to test an expanded set of proteins, incorporating both longer lengths and additional RVDs, are

already underway. An updated SIFTED model, trained with this expanded set of proteins, can be

readily integrated into the web tool that was released along with the published version of Chapter 5.

In turn, this will allow researchers to evaluate the viability and optimality of using TALEs for their

particular application with increasing precision.

Despite the performance improvements achieved by SIFTED over previous tools, the predictions

of the model do not fully explain the specificity of TALE proteins; i.e., the PBM-derived PWMs still

explain probe signal intensity data more accurately than those predicted by SIFTED.With a larger set

of PBM data for additional TALEs, it should be possible to explore a larger space of possible context

effects, such as models incorporating the contributions of non-adjacent TALE repeats. In addition, if

some of the observed context effects are truly allosteric in nature, the additive free energy model em-
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ployedbySIFTEDmaynotbe a fully adequate approximationof the energy landscape ofTALE-DNA

interactions. If that is the case, it may be beneficial to perform structural simulations of TALE-DNA

interfaces and attempt to isolate additional energetic contributions that arisewhenTALE repeats with

certain combinations of RVDs make contacts with specific adjacent nucleotides. After developing a

mechanistic hypothesis based on structural analyses, it may be possible to construct features that in-

corporate such effects into the statistical framework used by SIFTED.

While thework described inChapter 5was underway, amajor development in genome editing tech-

nology was announced: the discovery and application of the CRISPR-Cas9 system 312. Cas9 (CRISPR

associated protein 9) proteins are RNA-guided endonucleases, which have evolved in bacteria as a

mechanism to cleave the DNA of invading viruses. Cas9 can be programmed to introduce DSBs at

targeted genomic loci using a “guide RNA” molecule that is complementary to the target DNA se-

quence 312. By eliminating the cloning steps required to assemble TALENs, CRISPR-Cas9 has greatly

reduced the time and effort required to achieveprogrammableDNAtargeting. Furthermore, CRISPR-

Cas9 can easily be multiplexed to facilitate the editing of multiple genomic loci at once.

Admittedly, the discovery of CRISPR-Cas9 has created a formidable competitor for TALEs. Cas9

and its catalytically inactive analog, dCas9, have been used successfully for many of the same applica-

tions as TALEs, includingmammalian genome editing 353,354 and targeted transcriptional activation 355.

Similarly, fusions between dCas9 and FokI can be used in a manner that is analogous to TALEN

pairs 356. There is little doubt that CRISPR-Cas9 and its variants provide a simple and effective plat-

form for most applications that require programmable DNA-binding proteins. However, TALEs do

possess someuniqueproperties overCRISPR-Cas9 thatmay favor their use in specialized applications.

For example, whileCas9 binds tomethylatedDNA 357, certainTALERVDs canbind tomethylated cy-

tosines (NG) while others (HD) do not 358. This property is likely to facilitate methylation-dependent

targeting of TALE proteins that is not currently feasible with Cas9.

In addition, a major concern for Cas9-based technologies is the presence of widespread off-target
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effects. The binding of dCas9was profiled using ChIP-Seq, identifying hundreds, or sometimes thou-

sands, of off-target binding sites for each guide RNA that was tested 359. A novel, sequence-based ap-

proach to detect DSBs, called GUIDE-seq, was recently used to identify the genomic positions where

Cas9 createdDSBs 360. Again, largenumbers of off-target siteswere observed formultiple guideRNAs,

although the numbers varied widely. Interestingly, many off-target sites did not overlap with the re-

gions identified byChIP-Seq andwere not among the highest scoring off-target sites predicted by com-

putational tools. These observations suggest that Cas9, at least in its present form, may not always be

the most desirable method for applications that require high specificity. Nevertheless, TALE-based

approaches have also been reported to cause off-target effects 137–139. The work described in Chapter

5 has provided an important new data point about the specificity of TALEs, which should facilitate

predictions and subsequent comparisons of off-target activity.

However, the methodology developed along with SIFTED is not limited to TALEs. In principle,

the DNA-binding specificity of Cas9 could be similarly assayed in vitro using custom PBMs. Such

an approach could use either a tagged version of dCas9 or measure the cleavage rates of fluorescently

labeled DNA by Cas9. The same statistical approach could then be used to train a model for Cas9

binding that incorporates information about the specificity achieved at different positions in its bind-

ing site and how specificity depends on the identity of the adjacent nucleotides in the guide RNA. In

practice, it may be necessary to overcome some experimental hurdles. For example, the large size of

the commonly used S. pyogenesCas9 may impair binding due to steric effects caused by the proximity

of the glass slide and neighboring probes on the array slide. Fortunately, smaller but equally efficient

versions of Cas9 are already being identified, such as the one found in S. aureus, which is ~350 amino

acids shorter than S. pyogenes Cas9 361.

In summary, thework described in this dissertation involvesmultiple significant advances that con-

tribute to the ultimate goal of fully characterizing regulatory variation in humans. In the long run, the

work of human geneticists would be greatly aided by a comprehensive, systems-level understanding
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of regulatory networks in the human body and how they can be perturbed by genetic variation. Such

models may one day allow researchers to input a combination of coding and noncoding variants and

trace their effects to specific regulatory sequences, alterations in TF binding sites, and downstream

effects on gene expression in specific cell types and developmental stages. With the availability of such

tools, it would be significantly easier to generate mechanistic hypotheses about likely causal variants

underlying phenotypic associations.

For now, that prospect remains only a dream. Despite significant progress, our maps of regula-

tory sequences remain incomplete and coarse-grained. There is still much that we do not understand

about what causes TFs to bind some genomic sequences but not others—or to bind a given locus in

only some individuals. Understanding how the presence of individual coding variants inTFs, let alone

possible combinations thereof, may contribute to regulatory variation is likely to require substantial

experimental and computational efforts. Even with the increasing feasibility of large-scale genome

editing approaches, designing informative experiments and using the resulting data to train more ac-

curate models of gene regulation is likely to require substantial time and ingenuity.

Yet, I believe such efforts will be incredibly worthwhile, given their potential contribution towards

understandingboth thebasis of commondisease and theprinciples of gene regulation. Given themag-

nitude of the task at hand, one individual’s contribution may seem small. However, I find Kenneth

Burke’s “unending conversation” metaphor to be appropriate here.

Imagine that you enter a parlor. You come late. When you arrive, others have long
preceded you, and they are engaged in a heated discussion, a discussion too heated for
them to pause and tell you exactly what it is about. In fact, the discussion had already
begun long before any of themgot there, so that no one present is qualified to retrace for
you all the steps that had gone before. You listen for a while, until you decide that you
have caught the tenor of the argument; then youput in your oar. Someone answers; you
answer him; another comes to your defense; another aligns himself against you, to either
the embarrassment or gratification of your opponent, depending upon the quality of
your ally’s assistance. However, the discussion is interminable. The hour grows late,
youmust depart. And you do depart, with the discussion still vigorously in progress. 362
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I am fortunate to have had the opportunity to “put in my oar” at such an exciting time in both hu-

man genetics and regulatory genomics. My hope is that the methods, concepts and biological insights

that have resulted from the efforts described in this dissertation will prove to be of value in the long

road ahead.
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