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Abstract
Experiments with ultracold atoms in optical lattices provide outstanding opportunities

to realize exotic quantum states due to a high degree of tunability and control. In this

thesis, I present experiments that extend this control from global parameters to the level of

individual particles.

Using a quantum gas microscope for 87Rb, we have developed a single-site addressing

scheme based on digital amplitude holograms. The system self-corrects for aberrations in

the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical

potentials on the scale of single lattice sites and control the dynamics of individual atoms.

We study the role of quantum statistics and interactions in the Bose-Hubbard model

on the fundamental level of two particles. Bosonic quantum statistics are apparent in the

Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-

well potentials. These underlying statistics, in combination with tunable repulsive inter-

actions, dominate the dynamics in single- and two-particle quantum walks. We observe

highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-

Twiss interference and the fermionization of strongly interacting bosons.

Many-body states of indistinguishable quantum particles are characterized by large-

scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we ex-
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tend the concept of Hong-Ou-Mandel interference from individual particles to many-body

states to directly quantify entanglement entropy. We perform collective measurements on

two copies of a quantum state and detect entanglement entropy through many-body inter-

ference. We measure the second order Rényi entropy in small Bose-Hubbard systems and

detect the buildup of spatial entanglement across the superfluid-insulator transition.

Our experiments open new opportunities for the single-particle-resolved preparation

and characterization of many-body quantum states.
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Chapter 1

Introduction

Across many physical platforms, there has been tremendous progress towards creating

and controlling quantum mechanical systems in the laboratory. Trapped atomic ions [1]

and superconducting qubits [2] enable high-fidelity control of few-particle systems, new

techniques in waveguide manufacturing permit the study of correlated states in photonic

systems [3], and advances in nano-fabrication enable experiments in highly engineered

mesoscopic solid state systems [4].

A powerful experimental platform to realize strongly correlated states of delocalized

particles are ultracold atoms in optical lattices [5]. Different atomic species, both fermionic

and bosonic, are now routinely cooled close to their motional ground state and loaded into

optical lattices with precisely controlled and almost arbitrary energy landscapes [6]. Fes-

hbach resonances [7] are often accessible to tune the interaction between particles and a

wide range of states with different underlying interactions, geometries, and quantum statis-

tics can be realized. Using microscopy techniques, several groups have imaged bosonic

[8, 9, 10] and fermionic [11, 12, 13] systems with single-particle resolution, gaining access
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to local observables and correlation functions [14].

In this thesis, I present experiments that extend these local detection methods to the

local manipulation of individual atoms. Using a quantum gas microscope [8, 9] for bosonic

87Rb, we have developed a holographic beam shaping system to project arbitrary optical

potentials on top of a square optical lattice. With these tailored potentials, we control

dynamics and deterministically address individual particles in the optical lattice [15, 16].

The development of single-particle control for neutral atoms enables new types of ex-

periments. We deterministically prepare one or two particles in localized Fock states and

let the atoms propagate in an optical lattice, realizing continuous, one-dimensional quan-

tum walks [17]. In contrast to previous implementations of quantum walks, we can tune

the interactions between particles and access dynamics that are dominated by strong inter-

actions. Such idealized scenarios can reveal phenomena that are difficult to isolate in bulk

systems. In the two-particle densities and correlations, we directly observe the interplay

between quantum statistics and interactions. A direct signature of bosonic quantum statis-

tics in the Hong-Ou-Mandel interference of massive bosons [18], which we observe on an

atomic beamsplitter realized by double-well potentials.

While such experiments on few-body systems reveal the microscopic phenomena un-

derlying the Bose-Hubbard model, the full complexity of many-body quantum mechanics

emerges when many indistinguishable particles become entangled [19]. The robust gener-

ation and control of entangled states is one of the central goals of applied quantum science.

For quantum information processing and quantum cryptography, entanglement is the main

resource that enables operations which are not possible classically [20]. Similarly, many

quantum metrology schemes exploit non-classical states for enhanced sensitivity [21]. In
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condensed matter physics, the most interesting new materials and systems are characterized

by large-scale entanglement between constituent particles [22]. Unconventional supercon-

ductors, spin liquids, and fractional quantum Hall states are prominent examples.

What has been unclear is how the large-scale entanglement inherent to many-body

states can be quantified in experiments [23]. In few-particle systems, the verification of

entanglement can be achieved by witness operators [24] or state tomography [25]. For

many-particle systems of interacting, delocalized particles, such as atoms in an optical lat-

tice, a path for the experimental measurement and quantification of entanglement is less

clear. The issue is not simply an experimental puzzle for atomic physicists: Even though

entanglement plays a crucial role in quantum phase transitions [26], conformal field theo-

ries [27], and high energy theory [28], there is currently no general scheme for quantifying

entanglement in physical systems.

We leverage the precise control over dynamics in our system to realize quantitative mea-

surements of entanglement in itinerant systems. Our method uses collective observables in

several realizations of the same quantum state. Interfering two copies of a many-body

state in a double-well potential, we directly detect its quantum state purity and quantify

entanglement entropy in one dimensional Bose-Hubbard systems [29, 30].

Collective measurements based on many-body interference characterize itinerant many-

body phases by the entanglement entropy, which currently cannot be accessed in any other

system. Our method is general and applies to multi-component gases, topological states

[31, 32] and fermionic systems [33]. It provides a verification of quantum state purity, and

can help to distinguish quantum fluctuations from classical noise.

Our microscopic observation of the dynamics of strongly interacting particles and the

3
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Figure 1.1: Density evolution in single- and two-particle quantum walks. From left to
right: single particle quantum walk (I), two-particle Bloch oscillation in position space
without (II) and with repulsive interactions (III).

detection of entanglement entropy highlight the capabilities of ultracold atom experiments.

Beyond the quantum simulation paradigm of solving outstanding condensed matter prob-

lems [34, 5], cold atoms now realize synthetic quantum matter with interesting properties

and possibilities in its own right. Recent examples of cold atoms pushing the envelope of

condensed matter research are the implementation of strong synthetic gauge fields [35, 36],

the creation of systems with tunable topology [37], and advances in the physics of disor-

dered interacting systems [38]. The methods presented in this thesis add new possibilities

of engineering quantum states and directly characterizing their nature through measure-

ments of entanglement.

Quantum walks

In these conceptually simple experiments, particles are prepared in a highly localized

initial state, and then allowed to propagate freely or under the influence of a uniform ex-

ternal force [39, 40]. Coherent quantum walks display behavior that is markedly differ-
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Figure 1.2: Hong-Ou-Mandel interference of massive bosonic particles. A beamsplitter
operation realized in a double-well potential transforms a state with one particle per site
(left) to a superposition state (middle) and back (right). Due to bosonic quantum statistics,
the particles are always detected on the same site in the intermediate state. This state
appears completely dark in fluorescence imaging because of the inherent parity projection.

ent from their classical random walk counterparts, with fast, ballistic instead of diffusive

behavior. They have therefore been considered as the basic units of computation in time-

independent quantum computing schemes [41]. We use the tunable interactions between

ultracold atoms and our near-deterministic preparation scheme to realize two-particle quan-

tum walks. We find that the densities and correlations emerging from two-particle quantum

walks are an ideal probe of strong interactions. Two bosons performing a quantum walk in

the presence of strong repulsive interactions develop fermion-like behavior and avoid each

other over long distances. We observe this process known as fermionization from many-

body theory, as well as interaction-dominated, correlated Bloch oscillations directly in the

fundamental until cell of two particles.
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entangled state
A B

Mixed

product state

A B

PureMixed Pure

Figure 1.3: Entanglement entropy in many-body systems. If an entangled system is divided
into subsystems A and B, quantum correlations across the boundary are interrupted (red
arrows). In contrast to a product state, for which each subsystem is in a pure state itself,
entanglement results in a subsystem mixed state with classical randomness. Detecting this
reduction in local purity provides a path to measuring entanglement entropy.

Hong-Ou-Mandel interference

A second hallmark of many-body quantum systems are the quantum statistics of the

constituent particles. Unlike for classical particles, many-particle paths of indistinguish-

able quantum particles can interfere and lead to correlations. These many-particle interfer-

ence processes uniquely depend on quantum statistics and are different from single-particle

interference, which can be described by classical waves. Photonic Hong-Ou-Mandel inter-

ference is the most famous signature of many-particle path interference. In direct analogy

to the original Hong-Ou-Mandel experiment [18], we perform interference experiments

of massive bosonic particles in the optical lattice. We observe full interference contrast,

confirming the quantum mechanical indistinguishability of the two atoms [42, 43].

Entanglement entropy

Entanglement entropy can be detected by a direct extension of our Hong-Ou-Mandel

interference experiments from single particles to many-body states. We prepare two copies

of the same one-dimensional Bose-Hubbard state, and interfere them on a beamsplitter
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realized by a double-well potential. The Hong-Ou-Mandel interference contrast is a di-

rect measurement of indistinguishability and probes the quantum state purity [44, 29, 30].

We discover that for superfluid ground states, the HOM interference contrast for parts of

the system is reduced, while it remains close to full amplitude for the entire system. The

subsystems are hence less pure than the global system, and we encounter the classically

impossible situation that part of a system carries more entropy than the full system itself

[45]. The emergence of this non-extensive entropy can be measured directly in our experi-

ments as a quantum system crosses from the Mott insulator to the superfluid regime.

This thesis is structured as follows:

Part I: A quantum gas microscope with single-particle control

I give a compact overview of the experimental apparatus. Chapter 2 gives a brief in-

troduction to the Bose-Hubbard model, which describes the physics of neutral atoms in

optical lattices. Chapter 3 introduces the 87Rb quantum gas microscope on which the exper-

iments in this thesis are performed, and chapter 4 describes our novel single-site addressing

scheme.

Part II: Interactions and quantum statistics in few-particle dynamics

Here we investigate the building blocks of the Bose-Hubbard model, and study the

role of interactions and quantum statistics in idealized scenarios of two-particle dynamics.

Chapter 5 describes correlated quantum walks and position-space Bloch oscillations for

strongly interacting bosons. Chapter 6 introduces the experimental tools for many-particle

7



interference in optical lattice and reports on our observation of Hong-Ou-Mandel interfer-

ence of massive particles.

Part III: Measuring entanglement entropy

Chapter 7 gives an overview of the role of entanglement in different systems and its

quantification via entanglement entropy. In chapter 8 we extend the concept of Hong-

Ou-Mandel interference from individual particles to many-body states and describe our

measurements of Rényi entanglement entropy and mutual information in Bose-Hubbard

systems.

8



Part I

A quantum gas microscope with

single-particle control
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Chapter 2

Optical lattices and the Bose-Hubbard

model

2.1 Optical lattices

Optical lattices have become a ubiquitous tool in ultracold atom experiments [5]. By

defining the geometry of the system and controlling the atoms’ motional degrees of free-

dom such lattices provide tremendous tuning capabilities in many-body systems. Many

configurations, such as square [46], hexagonal [47], kagome [48], and tunable dimerized

geometries [49] can be implemented.

In their simplest form, optical lattices in one dimension are generated by interfering

counter-propagating laser beams with collinear polarization and frequency ω, resulting in

a standing-wave intensity pattern with period λ/2. For appropriately chosen optical fre-

quencies ω, an atom experiences the time-averaged intensity pattern I(r) as a conservative
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Figure 2.1: Single-particle wavefunctions in a periodic potential. a) Sketch of the lattice
potential in gray and the ground band Wannier function w0(x) as well as the corresponding
density |w0(x)|2, calculated for a lattice depth of 3Er. In this shallow lattice, the Wannier
function still has significant side lobes on the neighboring sites. b) Band structure E(m)(q)
at V2D = 3Er for the lowest two bands. The ground band is approximately sinusoidal, i.e.
close to the tight binding regime, whereas the second band still displays free-particle like
dispersion.

potential

V (r) = − 1

2ε0c
α(ω)I(r) (2.1)

via the AC Stark shift. For red-detuned light, that is with a frequency smaller than the dom-

inant atomic resonance, the frequency-dependent dynamic polarizability α(ω) is positive,

and regions of high intensity correspond to attractive potentials. Blue-detuned light creates

repulsive potentials.

To determine the total potential experienced by a real atom in a light field, the po-

larizability α(ω) needs to be summed over all relevant atomic transitions. For 87Rb, the

principal transitions are the D1 and D2 line at λD1 = 795 nm and λD2 = 780 nm, respec-

tively. Convenient choices for lattice lasers are red-detuned (attractive) lattices at ∼840 nm

or 1064 nm, or blue-detuned (repulsive) lattices at 755 nm, as used in our experiment.
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We perform experiments in a two-dimensional square optical lattice, for which the lat-

tice potential is separable and takes on the form

V (x) = V2D cos2(klx) (2.2)

along the x and y directions. The lattice momentum kl = π
a

is set by the lattice spacing a.

It is convenient to express energy in units of the recoil energy Er =
~2k2l
2m

. Throughout this

thesis, we will use units in which ~ = 1 and hence all energies are expressed as angular

frequencies. In our case of 87Rb in a lattice of spacing a = 680 nm the recoil energy

is Er ≈ 2π × 1240 Hz.

The single-particle eigenstates in a periodic lattice are Bloch waves, which are labeled

by a band index m and are eigenstates of the quasimomentum q, with −kl ≤ q ≤ kl.

The Bloch wavefunctions and their energy eigenvalues, the bandstructure E(m)(q), can be

calculated numerically for each axis using plane wave basis states. The bandstructure as

shown in Figure 2.1 b completely determines the physics of non-interacting particles in the

optical lattice.

A second useful set of basis functions are Wannier functions (Figure 2.1 a). This set

of basis states consists of maximally localized and mutually orthogonal wavefunctions on

each lattice site. Localized Wannier functions can be constructed from coherent super-

positions of all Bloch eigenstates within a particular band, and smoothly connect to the

approximate on-site eigenstates of deep lattices. For detailed descriptions of the calcula-

tion of Bloch bands, Wannier functions, and bandstructures we refer to references [50] and

[51].
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kinetic energy interaction energy

Figure 2.2: Processes in the Bose-Hubbard model. a) Atoms tunnel between neighboring
sites at a rate J , set by the depth of the optical lattice. Due to Bose enhancement, tunneling
in the presence of other atoms is enhanced, for example to 2J for an atom tunneling on a
constant background of one atom per site. b) The energy cost of two particles occupying
the same site is the repulsive interaction U . Multiple particles on the same site interact
pair-wise. The interaction strength is assumed to be independent of the number of particles
per site.

2.2 The Bose-Hubbard model

The physics of ultracold bosonic atoms in optical lattices is very well described in

terms of the Bose-Hubbard model. In contrast to mean-field equations with interaction

corrections, such as the Gross-Pitaevski equation, the bosonic Hubbard model captures

correlated states that arise in the case of strong interactions between bosonic atoms.

The canonical Bose-Hubbard model is given by the Hamiltonian

HBH = −J
∑
〈i,j〉

a†iaj +
U

2

∑
i

ni(ni − 1). (2.3)

Here, a†i and ai are bosonic creation and annihilation operators on site i, ni = a†iai measures

the particle number, and the sum in the first term runs over adjacent lattice sites i, j. The

basis functions of the Hubbard Hamiltonian are the localized Wannier states in the lowest

13



band.

The Hamiltonian 2.3 describes the two most basic low-energy processes occurring in

an optical lattice, as illustrated in Figure 2.2. The first part of the Hamiltonian captures

coherent hopping on neighboring lattice sites at a rate J . Due to bosonic statistics, the

presence of other atoms in the lattice can enhance effective tunneling rates, as shown in

Figure 2.2. The second term of the Hamiltonian describes the interaction of multiple atoms

residing on the same lattice site, parameterized by the pairwise interaction U .

It is straightforward to obtain the Bose-Hubbard parameters J and U for a given lattice

potential. The Bose-Hubbard Hamiltonian assumes the tight-binding regime, i.e. that tun-

neling occurs only between neighboring lattice sites. This assumption is valid for lattices

deeper than ∼5Er and the tunneling J (m) in band m is equal to 1/4 of the width of the mth

band.

The magnitude of the interaction U can be calculated by considering the scattering

between two atoms on the same lattice site in the ground band Wannier function. At

the low temperatures realized by ultracold atoms, an efficient description of two-particle

interactions is given by s-wave scattering. The interaction can be modeled as an effec-

tive δ-function potential, whose strength is given by a momentum-independent scattering

length as. For 87Rb, the scattering length at low magnetic fields is approximately indepen-

dent of the hyperfine spin, and as ≈ 100a0 results in repulsive interactions. The Bose-

Hubbard interaction parameter U can then be estimated by integrating the single-particle

Wannier functions with a δ-function interaction over all space. Detailed treatments of scat-

tering theory and the derivation of the Bose-Hubbard parameters J and U can be found in

many references, for example [50, 51].
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Figure 2.3: Superfluid-insulator phase transition. a) Schematic zero-temperature mean-
field phase diagram for the Bose-Hubbard model in two dimensions. At large J/U , the
ground state is a superfluid (SF) for all µ. For small J/U , Mott insulating (MI) lobes of
fixed particle number separated by superfluid regions develop. b) Schematic drawings of
the phases in harmonic traps, as realized in the experiment. The superfluid is compressible
and the density varies smoothly with the chemical potential. The Mott insulator of localized
particles exhibits domains of constant density, where the system is incompressible ∂〈n〉

∂µ
= 0.

The local chemical potential varies throughout the trap, and the system samples a line
through the phase diagram (red arrow).

The single-band Bose-Hubbard model applies as long as the relevant energy scales J ,

U , the chemical potential µ, and the temperature T are much smaller than the energy gap

to higher bands. For experiments with multiple species or spin states, the Bose-Hubbard

model is easily extended to a multi-component model, where differences between intra-

and inter-species interactions can give rise to interesting physics [52, 53].

2.3 Quantum phase transition

It is clear that the nature of the many-body eigenstates of Hamiltonian 2.3 depends

on the relative size of the kinetic energy J and the interaction energy U . One approach
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to tuning their relative strength is through Feshbach resonances [7]: Applying a magnetic

bias field can bring two atoms into resonance with a molecular bound state, and lead to a

resonant enhancement in scattering. The scattering length as for some atomic species can

thus be controlled by an external magnetic field, and be tuned to zero or negative values,

corresponding to vanishing and attractive interactions, respectively.

In our experiment, we instead control the depth of the optical lattices to tune the Bose-

Hubbard parameters: The tunneling J decreases approximately exponentially with increas-

ing lattice depth, i.e. particles tunnel at reduced rates and acquire an enhanced effective

mass. Even in moderately deep lattices, the relative strength of interaction terms is there-

fore increased dramatically compared to free space, and bosonic systems enter the strongly

interacting regime at extremely low absolute densities of order one particle per site, or

1012 − 1013 per cm3.

The competition between minimizing kinetic and interaction energy manifests itself as

the well-known superfluid-Mott insulator phase transition in the ground state of the Bose-

Hubbard model. In contrast to classical phase transitions, which are driven by thermal

fluctuations, this phase transition is driven by quantum fluctuations, here the tunneling

terms, and occurs even at zero temperature.

Superfluid phase In the regime U � J , atoms tend to accumulate in a single macro-

scopic wavefunction. In the ground state for vanishing interactions, all particles occupy the

same q = 0 quasimomentum eigenstate and coherently delocalize over the entire system.

The many-particle wavefunction of the superfluid can be written as

|ΨSF〉 =
1√
N

(a†q=0)
N |0〉 ∝

(
1√
N

∑
i

a†i

)N

|0〉 . (2.4)
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For conceptual purposes, the superfluid wavefunction can be approximated as

|ΨSF 〉 ≈
∏
i

|α〉i =
∏
i

e−
|α|2
2 eαa

†
i |0〉 , (2.5)

i.e. the wavefunction on each site i can be described as a coherent state |α〉i with well-

defined phase φ = arg(α) and density 〈n〉 = |α|2.

In three dimensions, the ground state possesses long-range phase coherence, i.e the con-

densate has the same well-defined phase everywhere and the first-order correlator 〈a†jak〉

remains finite as |j − k| → ∞.

Excitations in a weakly interacting condensate can be described by Bogoliubov excita-

tions. Such excitations are gapless and have a linear dispersion relation E ≈ vcq for small

momenta q, where vc is the critical velocity of the superfluid.

Mott insulator phase The Mott insulating regime is entered when interactions dominate

the Hamiltonian (U � J). For J = 0, all particles localize and the ground state cor-

responds to the energetically most favorable way of stacking classical repulsive particles.

For densities commensurate with the lattice, Mott insulators with a fixed number of atoms

per site form, i.e. the ground state for n = 1 particles per site is

|ΨMI〉 =
∏
i

a†i |0〉 , (2.6)

where i runs over all sites. The Mott insulator does not exhibit any spatial phase coher-

ence. The lowest-lying excitations at an energy U are particle-hole pairs, and the excitation

spectrum is gapped with discrete resonances corresponding to local excitations.

The Mott insulator and superfluid phase in the Bose-Hubbard model are connected via

a quantum phase transition [46, 54]. Qualitatively, the transition can be understood as the

17



proliferation of coherent particle-hole pairs: Starting from the J = 0 ground state |ΨMI〉,

perturbatively increasing J results in the coherent admixture of particle-hole pairs to the

many-body wavefunction. As J is increased further, the formation of particle-hole pairs

becomes more favorable, until all particles delocalize.

The observation of the Mott-superfluid phase transition with bosons in optical lattices

[46] was a ground-breaking demonstration of many-body quantum mechanics with cold

atoms. By now, the equilibrium and dynamic phase transition have been studied thoroughly

through phase coherence [46], local number statistics [55, 9], and excitation spectra [56].

The behavior of Bose-Hubbard systems strongly depends on dimensionality: As ex-

pected, the behavior in higher dimensions is more closely described by mean field theory

than in lower dimensions, where quantum fluctuations are enhanced [14]. Experimentally,

optical lattice systems can be realized with three-, two,- or one-dimensional geometries by

freezing out motion in unwanted directions in deep lattices.

2.4 Related models

Depending on the particular parameter regime, physics inherent to the Bose-Hubbard

model can be more easily explained by mapping to different, well-understood descriptions.

Continuum models For sparsely filled one-dimensional systems, the Bose-Hubbard model

can be mapped to the Lieb-Lininger model, which describes bosonic continuum systems

with contact interactions [57]. Just like the Lieb-Lininger model, the Bose-Hubbard model

exhibits “fermionization” in the regime of infinite repulsive interactions [58], where the

bosonic system displays fermion-like behavior in certain observables. The close relation to
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continuum models has enabled the observation of a lattice analog of the Tonks-Girardeau

gas [59]. However, in contrast to the Lieb-Lininger model, which exhibits a large num-

ber of conserved quantities at any interaction strength [60], the Bose-Hubbard model is

integrable only in the limits of U = 0 or U →∞.

Spin models Several models of quantum magnetism can be accessed from the Bose-

Hubbard model. The Heisenberg model has been implemented in a two-component Bose

gas in the Mott insulating regime, where density fluctuations are suppressed and spin re-

mains as the only degree of freedom [61]. Atoms between neighboring sites are coupled

through virtual tunneling processes at the superexchange energy scale Jex = 4J2

U
, resulting

in an effective XXZ model. In our group, the antiferromagnetic Ising model in a transverse

field has been simulated using Mott insulators in tilted optical lattices [62]. Here, spin is

encoded in motional states rather than in hyperfine internal states.

Luttinger liquids The low-energy properties of one-dimensional Bose-Hubbard systems

can often be described by Luttinger liquid theory [63]. Here, conjugate variables ∇φ(x)

and θ(x) describe density and phase fluctuations of a bosonic field, respectively. The appeal

of Luttinger liquid theory is its broad applicability to fermionic and bosonic systems, and

the complete specification of the system in terms of only two parameters, the sound velocity

u and the interaction parameter K. Luttinger liquid theory can be used, for example, to

calculate the scaling of number fluctuations as a proxy for entanglement entropy in weakly

interacting Bose-Hubbard systems as discussed in chapter 8.
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Figure 2.4: Breakdown of the tight-binding assumption at low lattice depths. For lattice
depths V2D < 5Er, tunneling terms not typically included in the Bose-Hubbard model be-
come significant. The figure shows the rate of direct tunneling across two and three sites
(J2 and J3), relative to nearest-neighbor tunneling J1. The rates were calculated numeri-
cally as the coefficients of a Fourier expansion of the lowest band dispersion relation for
the data points shown. The line connects the data points.

2.5 Beyond Bose-Hubbard models

The Bose-Hubbard Hamiltonian 2.3 provides an efficient description of the physics of

bosons in periodic potentials, but does not include all processes which naturally occur for

cold atoms in optical lattices. In shallow lattices V2D < 5Er, the tight-binding approxi-

mation begins to break down and direct long-range tunneling occurs. Figure 2.4 shows the

relative strength of tunneling across two sites (next-nearest-neighbor) and across three sites.

Next-nearest neighbor tunneling can be significant, and affects the quantum walk dynam-

ics described in chapter 5. Nearest-neighbor interactions or interaction-induced tunneling

[64] can occur due to the finite extent of Wannier functions beyond a single lattice site.

Such terms, as well as multiorbital shifts to the on-site interaction U [65], can be estimated
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by summations over higher bands [66, 67], and are often incorporated by renormalizing

Bose-Hubbard terms [68].

It is also possible to access novel physics by deliberately engineering the terms of the

Bose-Hubbard model. For example, using Raman transitions or periodically modulated or

shaken optical lattices, it is possible to locally imprint a complex phase on the tunneling ma-

trix elements [69]. If this phase varies spatially such that closed loops encircle a non-zero

phase, the Hamiltonian effectively corresponds to that of a charged particle in a magnetic

field. Extremely high flux densities of the order of π per lattice plaquette can be engineered,

enabling the realization of topologically non-trivial models, such as the Hofstadter-Harper

Hamiltonian [36, 70]. In combination with strong interactions, the availability of high flux

densities puts ultracold atoms in a unique position to realize highly correlated phases, such

as fractional quantum Hall states.
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Chapter 3

Overview of the experimental apparatus

3.1 Quantum gas microscope

The experiments presented in this thesis are performed using a quantum gas micro-

scope for bosonic atoms. We study a two-dimensional atomic cloud of 87Rb confined to a

single plane of a three-dimensional optical lattice. The ultracold gas resides at the focus

of an imaging system with numerical aperture (NA) 0.8, which allows single-site resolved

readout and optical manipulation. In situ fluorescence imaging is used to detect individual

atoms in the optical lattice. Detailed descriptions of the apparatus have been given in a

number of publications [71, 8, 72, 73, 74]. Here, we briefly summarize the main aspects of

the experimental setup.

Figure 3.1 shows a schematic overview of the experiment. At the core of the appa-

ratus is the high-NA imaging setup consisting of a custom-made objective with NA 0.55

outside and a fused silica hemispherical lens inside the vacuum chamber. The hemisphere

enhances the NA of the imaging system by its refractive index n = 1.45 to an NA of 0.8. A
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(a) holographic mask

(b) fourier filtering,
   beam splitter
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Figure 3.1: Schematic of the experimental setup. The two-dimensional atomic cloud of
87Rb is trapped 10µm below the surface of the in-vacuum hemisphere. The vertical con-
finement is provided by axial lattice beams (purple) reflected at the hemisphere under a
shallow angle, as are the molasses beams for fluorescence imaging (red). The square lattice
(blue) is generated by holographic masks and projected through the microscope objective,
which is also used to image atoms (light green path). Figure adapted from [8].

Bose-Einstein condensate of 87Rb created by conventional evaporation in a magnetic trap

resides at the focus of the imaging system, 10µm below the flat surface of the hemispher-

ical lens. Optical lattice potentials to confine atoms in the vertical direction are created by

beams entering from the side, while lattices within the x–y plane are projected through the

objective. Atoms are imaged onto an EMCCD camera using fluorescence imaging with

polarization gradient cooling provided by optical molasses beams. Various other beams,

e.g. for harmonic confinement or single-atom addressing, are coupled into the imaging

path using dichroic filters and propagate downwards through the objective.
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3.2 Optical lattice potentials

The potential landscape experienced by the atoms is defined by optical means in all

three dimensions. In the vertical direction (z), the atoms are confined to a single node of an

optical lattice. This “axial lattice” is generated by reflecting a single beam off the uncoated

flat surface of the hemispherical in-vacuum lens as shown in Figure 3.1. The beam is

incident at 14◦ from horizontal, and interferes with its own reflection from the substrate to

produce a standing wave of period 1.5µm. The atoms are confined to the 6th minimum

from the substrate, which provides a reference surface for all optical traps in the vertical

direction. The z-position of the atoms is very stable, and the focus of the imaging system

is consistent for months at a time.

In the x–y plane, atoms are confined to a square optical lattice with spacing a = 680 nm,

which is generated by imaging a holographic mask onto the atomic cloud through the ob-

jective [72].

The quantum mechanical evolution of the ultracold gas proceeds in blue-detuned lat-

tices centered at a wavelength λ = 755 nm. These lattices are far detuned from the atomic

resonances at λD1 = 795 nm and λD2 = 780 nm and create a conservative potential. Using

blue-detuned optical lattices reduces the sensitivity to potential corrugations in the lattice,

since the atoms are localized to the nodes of the light field and their energy depends on the

local lattice depth V only as ∝ V 1/2 via their zero-point energy ~ω/2. In this “physics”

lattice, only moderate lattice depths of up to V2D = 45Er are required to control ground-

band tunneling on time scales of the experiment (typically 1−2 s). We observe single-atom

1/e lifetimes of 12(2) s, limited by residual spontaneous scattering.

During the imaging process, atoms have to remain pinned while scattering thousands of
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photons. In this “thermal” regime, atoms are distributed over several bands, and very deep

lattices are required to localize the atoms. In order to avoid working with high-powered

(� 1 Watt) lasers, we employ a set of near-detuned “pinning” lattices, whose geometry is

identical to the physics lattice. The pinning lattices are 60 GHz blue-detuned from the D1

transition at λD1 = 795 nm. Because the pinning lattices are only used in combination with

the optical molasses, which counterbalance excitations caused by spontaneous scattering,

heating from the near-detuned beams is not relevant. Potential depths of up to 5000Er

can be realized in the pinning lattice using about 350 mW per lattice axis derived from a

Ti:Sapph (Coherent MBR 110) laser.

The geometry of individual lattice sites has to be preserved during the handover from

the physics to the pinning lattice. Within the x–y plane, this requirement is guaranteed

by the generation of the lattice via the holographic mask: The spacing and phasing of

the lattices is fixed by the imaging condition and independent of the wavelength, so the

handover from 755 nm to 795 nm light does not change the lattice structure. In the vertical

z-direction, the angle of incidence of the pinning lattice onto the substrate is chosen to

match the spacing of the axial physics lattice. We verify the correct phasing of the lattices

using simultaneous Kapitza-Dirac scattering with the beams at 755 nm and 795 nm.

3.3 Single-atom imaging

Single-atom resolved imaging requires spatial resolution on the order of one lattice site

and the collection of many photons from each individual atom. For our imaging system

with NA 0.8, we measure an almost diffraction-limited point spread function (PSF) with a

FWHM of ∼600 nm, slightly smaller than the lattice spacing a = 680 nm [8]. Identifying
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5 µm

Figure 3.2: Partial raw image of a thermal cloud of 87Rb. Individual atoms can be identified,
and the underlying square lattice structure is visible. Due to parity projection in the imaging
process, each site is either bright (odd atom number) or dark (even atom number). The full
field of view is about 100µm×100µm, i.e. several ten thousand lattice sites can be imaged
at the same time. Figure adapted from [8].

individual atoms at this spatial resolution requires the collection of several hundred photons

from each atom, necessitating the use of in-lattice cooling mechanisms.

We achieve the required signal-to-noise ratio using polarization gradient cooling [75]:

While freezing out motion in the deep (∼5000Er) lattice near λD1 = 795 nm, we cool

the atoms using two retro-reflected optical molasses beams 80 MHz red-detuned from the

D2 transition (λ = 780 nm). Photons scattered from the molasses beams can be separated

from the background due to the lattice using interference filters, and are collected on an

EMCCD camera for imaging. We observe atom lifetimes in the imaging lattice of ∼30 s,

consistent with background gas collisions. Throughout this time, each atom scatters up to

20, 000 photons per second, of which ∼10 % are detected on the camera. We expose the

sensor for 500 ms, a compromise between atom lifetime and number of collected photons.
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Inherent to our fluorescence imaging scheme are light-assisted collisions [8, 9]: When

pairs of atoms residing on the same lattice site are illuminated with red-detuned molasses

light, optical excitation causes the atoms to interact via strong dipole-dipole interactions.

The kinetic energy released in one absorption/emission cycle causes atoms to leave the trap

in pairs. At the high atomic densities in the deep pinning lattice, light-assisted collisions

occur on fast timescale of 100µs, and we image the parity-projected atom distribution:

Sites with an initially odd number of atoms will retain one atom per site and appear bright

in imaging, whereas sites with initially even occupation are entirely cleared of atoms and

appear dark in imaging. There are hence only two outcomes (even or odd) of the imaging

process on each site, and fitting the image with the amplitude of the measured PSF on each

site yields a binary histogram [8]. Figure 3.2 shows a typical image obtained from a large

thermal cloud of 87Rb covering the entire field of view. Occupied and empty sites can be

identified with a fidelity of >99 %.

3.4 Generation of precise optical potentials

One of the challenges in working with lattices is the generation of precise and homo-

geneous optical potentials. A typical energy scale for our experiment is J ≈ 2π × 100 Hz,

and relevant energy gaps in many-body systems can be a small fraction of J , correspond-

ing to only a few Hz. Lattice potentials, on the other hand, are up to ∼2π × 50 kHz deep.

Corrugations in the optical potential have to be suppressed to 1 part in 103 or better in order

not to perturb the quantum states.

Coherent laser light, which is typically used in cold atom experiments, is particularly

susceptible to potential corrugations. Any scatter off optics or dust particles in the beam

27



path interferes coherently with the desired light field and can cause large fractional errors

in the potentials. A prime example are the concentric interference fringes often seen due to

individual dust particles on optics.

Potential corrugations due to unwanted interference can be suppressed by using tempo-

rally or spatially incoherent light sources. Both techniques are used in our experiment.

Temporally incoherent light The use of broadband, or temporally incoherent light greatly

reduces unwanted interference effects. If the coherence length of the light is smaller than

the typical physical separation between surfaces of optics in the experiment, partial reflec-

tions off those surfaces do not interfere with the desired light in the plane of the atoms.

The unwanted light then adds in intensity, not in amplitude, to the target potential, causing

much smaller corrugations than in the coherent case.

In our experiment, all conservative lattices are generated using temporally incoherent

light at a central wavelength of 755 nm. The bandwidth of the light is 3 nm, corresponding

to a coherence length lc = 190µm. This is long enough such that all lattices interfere with

full contrast. However, reflections from other surfaces, such as optics in the beam path or

the glass chamber, are typically separated by several millimeters in optical path length, and

reflections add incoherently to the desired field.

We use incoherent light derived from a superluminescent diode (Exalos EXS7510). The

bandwidth of the light is set to 3 nm FWHM using interference filters, and then amplified

using tapered amplifiers (Eagleyard EYP-TPA-0765-02000). We typically use one TA per

lattice axis to produce ∼1.5 W of light on the optical table, of which ∼300 mW can be

delivered to the atoms.
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Spatially incoherent light The use of temporally incoherent light cannot suppress errors

due to scatterers directly in the beam path, such as dust particles on an optic. To work

around this, spatially incoherent light sources can be used.

We have developed a spatially incoherent light source based on temporally incoherent

light and custom-made etalons: A single temporally incoherent beam is split into ∼20 mu-

tually incoherent beams within the etalon. The beams are combined on the atoms, but travel

through different paths in the imaging setup, sampling independent disorder environments.

Incoherently averaging over all paths greatly reduces the detrimental effect of dust, as we

observed in test setups. So far, spatially incoherent light has only been implemented for

the secondary z-lattice in the experiment, but might be implemented for other beams in the

future. Full details and results are presented in [74].

3.5 Energy scales

The important parameters for Bose-Hubbard physics are the ground band tunneling J ,

the on-site interaction U , and the temperature T . The tunneling is exponentially sensi-

tive to the depth of the 2D lattice V2D and can be tuned over orders of magnitude from

J = 2π × 0.07 Hz (V2D = 45Er) to J = 2π × 220 Hz at V2D = 1Er. The interac-

tion U only depends weakly on the lattice depth along each direction as ∝ V 1/4. In the

deepest lattice Vx = Vy = 45Er and ωz = 2π × 5.9 kHz, the measured interaction is

U = 2π × 480(30) Hz. During state preparation, the ultracold cloud is subject to an ad-

ditional harmonic confining potential, which sets the overall size of the system. In the

superfluid regime, we use ωharm/(2π) = 10− 20 Hz.

From the residual entropy of the sample we estimate the temperature at the superfluid-
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insulator phase transition to be T ≈ 2 nK, or kBT/~ ≈ 2π×40 Hz [55]. The energy gaps to

higher bands, both within the x–y plane as well as the z-direction, are typically larger than

2π × 5 kHz and hence much bigger than all other energy scales, such that the ground-band

Bose-Hubbard model gives an excellent description of the system.

3.6 Experimental sequence

Bose-Einstein condensation The starting point for our experiment is a Bose-Einstein

condensate of 87Rb created using conventional methods. After loading a magneto-optical

trap (MOT) with ∼109 atoms at a temperature of 100µK, we perform free-space opti-

cal molasses cooling and magnetically transport the cloud to a UHV fused silica “sci-

ence” cell using a series of quadrupole coils. We perform RF evaporative cooling in a

QUIC trap for 23 s and obtain a nearly pure BEC of ∼105 atoms in the low-field seeking

state |F,mF 〉 = |1,−1〉.

Lattice loading After evaporation, the magnetic trap is reconfigured to obtain an almost

spherical cloud with Thomas-Fermi radius 3µm, which is translated to its final position

10µm below the substrate. We then compress the entire BEC into a single pancake-shaped

two-dimensional cloud in a two-step process: First, we ramp on a secondary z-lattice with

a spacing of 9.2µm. The large period helps capture all of the BEC in the first node of the

lattice, where we achieve a vertical trapping frequency ωz ≈ 2π× 2 kHz. We then ramp on

the axial lattice with a spacing of 1.5µm. All atoms are loaded from the long lattice into a

single node of the short lattice, where a maximal trap frequency of ωaxial ≈ 2π × 7.9 kHz

can be achieved. At this point, the pancake-shaped cloud is confined vertically by the axial
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lattice and in the x–y plane by the magnetic trap.

Dimple loading We set the final atom number using an optical dimple: A tightly focused

beam (waist 8µm) of red-detuned temporally incoherent light at 840 nm forms a small

attractive potential well at the center of the two-dimensional cloud. The magnetic trap

is turned off, and all atoms not confined in the dimple are spilled from the trap. The

remaining atoms, typically 100 − 500, are released into a large harmonic trap with typical

trap frequencies of ωharm = 2π × 20 Hz. The harmonic trap is formed by a blue-detuned

Laguerre-Gauss (“doughnut”) beam with waist 40µm, which we create using a polymer

vortex phase plate (RPC Photonics VPP-1a). The loading via the dimple potential reduces

the entropy density of the remaining atoms and prepares a low-entropy superfluid with

excellent number stability with RMS fluctuations as small as 2 %.

Mott insulator formation We drive a quantum phase transition between the superfluid

and a Mott insulator in two dimensions by adiabatically ramping on the x–y square lattice.

The ramp is exponential in depth with a time constant of 54 ms (base e) and typically ends

at a lattice depth of 45Er.

3.7 Mott insulators

Our sequence prepares two-dimensional Mott insulators deep in the atomic regime with

U/J ≈ 7 × 103. In this regime, atoms are localized to individual lattice sites with a well-

defined number of atoms per site, and any remaining excitations within the Mott shells are

thermal holes due to residual entropy of the cloud.
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Figure 3.3: Site-resolved images of Mott insulators. Left: Single-shot raw image of a
Mott insulator. Sites with n = 1 atoms per site form a bright ring around the dark center,
where pairs of atoms are lost due to light-assisted collisions. Right: Averaged images of
Mott insulators with increasing atom number showing the formation of the wedding cake
structure.

Figure 3.3 shows a single-shot image of a Mott insulator in a harmonic trap with up

to two particles per site. The picture reveals the well-known “wedding cake” structure: A

ring of sites with one atom per site (bright) surrounds a dark core, which corresponds to

sites with two particles per site, both of which are lost due to light-assisted collisions in

the imaging process. The shell structure develops as the total number of atoms is increased

(Figure 3.3). The cloud changes from one atom per site (all bright) via the two-shell Mott

insulator to a wedding cake with up to three atoms per site, where parity projection causes

an odd-even-odd structure of concentric rings.

An important metric is the fidelity of preparing a Mott insulator with the correct number

per site. The fidelity is highest at the center of the shells, and typically best in the n = 1

regions. For optimized parameters, we can obtain single-site preparation fidelities of 99 %.

Typical fidelities for most experiments are 95 % − 98 % for extended regions. Mott insu-

lating regions are the starting point for all experiments described in this thesis. Selecting a

small area of the Mott insulator as a seed for few-particle experiments ensures very small

number fluctuations and low configurational entropy.

32



Chapter 4

Single-atom addressing with

holographically generated potentials

4.1 Introduction

A key advantage of atomic many-body systems over conventional condensed matter is

the realization of strongly correlated phases at experimentally convenient time and length

scales. In cold atomic systems, time-resolved, local detection methods enable the study

of highly idealized scenarios, such as the dynamics of single particles or individual exci-

tations. In particular quantum gas microscopes [8, 9] provide observations of individual

quanta directly in their many-body environment.

Several approaches have been developed to also achieve local control in ultracold gases:

in mixed-species experiments, high-resolution optical addressing has enabled studies of

few-impurity systems [76]. Very commonly, radio frequency addressing in external or

light-induced magnetic fields [77, 78] is used to address individual planes or sub-lattices.
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In combination with high-resolution optical addressing, this technique has led to determin-

istic manipulation of individual atoms in three-dimensional large-spacing arrays [16] and

in two-dimensional quantum gases in the Bose-Hubbard regime [15]. Even higher spa-

tial resolution can be achieved with focused electron beams, which can clear atoms from

individual sites in optical lattices [79].

While most of these addressing techniques rely on locally changing the internal state of

individual quanta, we have developed a single-site addressing scheme with a complemen-

tary goal: Using the high resolution afforded by our quantum gas microscope, we are able

to manipulate the optical potential experienced by the atoms on the length scale of a single

lattice site. We superimpose arbitrary repulsive optical potentials onto an optical lattice,

thereby controlling the chemical potential on each site. Our scheme enables the imple-

mentation of many interesting potential configurations, for example uniform box potentials

or uncorrelated disorder, as well as highly controlled dynamics. The approach builds on

a digital micromirror device (DMD) used as an amplitude hologram in a Fourier plane to

generate re-programmable potentials.

4.2 Arbitrary potentials

One approach to creating arbitrary potentials is to project an image of the desired pro-

file, either from a physical mask [80] or from spatial light modulators used to display gray

scale images [81], onto the optical lattice. This method can be limited by aberrations in

high-NA optical setups, preventing the creation of sharp, diffraction-limited features. The

coherent laser light typically used is prone to the formation of speckle patterns due to un-

wanted coherent scattering in the imaging setup. It is therefore desirable to use temporally
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and spatially incoherent light whenever possible [74], and this approach is best suited to

create smooth, slowly-varying potentials on the atoms.

A complementary approach is to use coherent laser light and to precisely engineer the

wavefronts defining the potential. Advanced wavefront engineering is afforded by holo-

grams, which can fully control the amplitude and phase of complex wavefronts. Re-

programmable holograms can be realized with modern optical elements: Spatial light

modulators (SLMs) are high-resolution optical devices that control either the amplitude

or phase of light on individual pixels and can be used to imprint complex patterns onto

optical beams.

4.3 Digital holography

SLMs have been used to holographically create variable optical potentials for ultracold

atoms by several groups [82, 83]. The typical approach is to place an LCD-based phase

modulator in a Fourier plane of an imaging setup. The pixels of such devices imprint

arbitrary phases on wavefronts in transmission and can be programmed to imprint the phase

pattern of the Fourier transform of the desired potential. With optimization and feedback

algorithms [83, 84], it is possible to create complex, re-programmable potentials. Several

complications can arise with this method. Firstly, the LCD-based SLM only changes the

phase of the transmitted wavefront, but not its amplitude. The precision in obtaining the

correct potential after the Fourier transform performed by the imaging system is hence

limited. Secondly, the aberrations in the imaging system are typically not known, and it is

impossible to directly determine the exact potential in the location of the atoms. Thirdly,

LCD-based devices switch the orientation of the phase-defining electric field in each pixel
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Figure 4.1: Holography with binary amplitude gratings. a) Locally, an amplitude grating
changes the phase and angle of the diffracted light by addingm times the grating vector q to
themth diffraction order. The magnitude of the grating vector q is inversely proportional to
the grating period, while the phase of vector is given by the spatial phase of the grating. The
on fraction of the grating sets the amplitude of the outgoing wave. b) Detail of a hologram
for Hermite-Gauss beams. Both the local phase and amplitude of the grating change across
the beam profile (the grating lines are curved and vary in thickness), imprinting the desired
phase and amplitude profile onto the beam. The π phase jump between the two regions of
the hologram is emphasized by the red dashed lines.

at a frequency of several hundred Hz. This leads to significant heating due to intensity

“blinking” and to small switching-induced errors in the potential.

In contrast, we use a digital micromirror device for wavefront engineering. DMDs are

arrays of micron-sized mirrors that can rotate between an on and and off orientation.

The displayed binary patterns are completely static, eliminating all problems with intensity

noise due to the SLM. When used as an amplitude hologram, the DMD can define both

phase and amplitude, and fully define the outgoing wavefront. Moreover, using a simple

photodiode or a BEC as detectors, we can completely map out and compensate all aberra-

tions in the imaging system and achieve near diffraction-limited potentials even in optical

setups with aberrations of several λ. Similar approaches have been used in aberration com-
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pensation for optical micromanipulation [85].

The concept of DMD-generated amplitude holograms is illustrated in Figure 4.1 a: We

use the device in a Fourier plane to display a programmable binary diffraction grating. A

plane wave scattered off the mirror array carries information about the displayed grating:

The local k-vector of the grating determines the momentum transfer to the light, setting the

angle of the outgoing light, while the phase of the scattered wave is set by the local spatial

phase of the grating. The duty cycle or on fraction of the grating determines the amplitude

of the outgoing wave.

Wavefronts of light can then be engineered by illuminating a large diffraction grating

with a coherent beam. Varying both the phase and the amplitude of the grating locally im-

prints the underlying phase and amplitude information on the outgoing beam. Figure 4.1 b

shows a detail of a grating used to generate high-order Hermite-Gauss beams [86]. The

varying width and curvature of the grating lines (black) corresponds to local amplitude and

phase modulation of the scattered field, respectively.

4.4 DMD physical setup

4.4.1 DMD device

DMDs consist of CMOS arrays of micromirrors on torsion hinges which can be switched

between two angles corresponding to the on and off directions. DMD devices are typi-

cally used as image plane displays in high-end optical devices such as theater projectors,

and are available with resolutions up to HD (1920 × 1080) and switching rates of 23 kHz.

The device used in our experiment is the Keynote Photonics FlexLight X3, which uses the
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Figure 4.2: Schematic of the DMD optical path in the experiment. The DMD is illuminated
with either a round or elliptical beam with orthogonal polarizations. The correct diffraction
order is singled out with a pinhole, and the image of the desired potential formed in image
plane I (IP I) is relayed to the atom plane with demagnification ∼1/80. The field lens in
IP I ensures that the DMD chip is imaged onto the objective back focal (Fourier) plane
with magnification factor 4. The DMD is coupled into the microscope beam path (shown
in purple) using a dichroic near the camera plane of the microscope (IP II). Aberrations to
IP II are measured with a photodiode in IP II, while aberrations in the second part of the
imaging path are calibrated using the atoms. A piezo-actuated mirror is used for position
stabilization (see section 4.8).

Texas Instruments DLP 5500 chipset. The 1024 × 768 micromirror array has a pitch of

10.8µm, micromirror angles ±12◦ from normal, and an update rate of 5 kHz. The time

required to switch between individual patterns is even shorter, on the order of a few µs, and

dynamically deformable beams might be possible.

4.4.2 Optical setup

The optical path for the DMD in shown in Figure 4.2: The DMD is coupled into the

microscope imaging path with a dichroic beamsplitter such that the DMD chip is imaged
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onto the back focal plane of the microscope objective. The diameter of the effective aper-

ture on the DMD chip is 500 pixels. The chip is illuminated from two directions at ±24◦

from normal, respectively (see section 4.7). The light at λ = 760 nm is derived from a

DFB (Eagleyard EYP-DFB-0760-00040), which generates 34 mW of light with a specified

line width of 2 MHz. The light is then amplified with two stages of tapered amplifiers (Ea-

gleyard EYP-TPA-0765-02000) in home-built mounts. After polarization cleanup on the

optical table, up to 250 mW of intensity-stabilized light can be delivered to the DMD chip

from either one of the illumination channels.

4.5 Calibration procedure

In order to achieve diffraction-limited potentials by pre-compensating wavefronts for

aberrations in the optical setup, we need to calibrate the DMD with a full map of the

aberrations of the optical path to the plane of the atoms.

An aberration-free lens system converts a plane wave in the Fourier plane to a con-

verging spherical wave, subject to the limits of diffraction. Equivalently, paths from every

point in the Fourier plane should interfere with the same phase at a point in the image plane

to form a diffraction-limited spot. Aberrations constitute deviations from this condition,

and can thus be mapped out by measuring phase differences between pairs of points in the

Fourier plane, as shown in Figure 4.3 a for a simplified single-lens system. Turning on two

small patches on the DMD creates two beams, which interfere to form a standing wave in

the image plane. The spatial phase of the interference fringe is equal to the optical path

length difference between the two patches on the DMD. Measuring the spatial phase of this

interference pattern for pairs of patches covering the entire Fourier plane then gives a com-
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Figure 4.3: Self-calibration procedure of the DMD. a) Turning on two small patches on
the DMD results in a fringe pattern in the image plane, whose spatial phase is equal to
the optical path length difference between the two patches. The phase of the fringe can
be recorded with a camera, or measured with a point detector, such as a photodiode or
fluorescing ions or atoms. The beam path could be much more complex and contain many
imperfect elements. b) Measuring aberrations with a point detector. Left: A patch at
the DMD center remains as a static reference while a sampling patch is scanned across
the aperture. Right: Shifting the phase of the sampling patch grating in steps of 2π/3
physically moves the interference pattern across the point detector. Recording the point
intensity for three phases for each sampling patch is sufficient to determine the amplitude
and phase of the interference fringe, and hence to map out phase and amplitude across the
Fourier plane. Figure reproduced with permission from reference [86].
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Figure 4.4: Intermediate image plane calibration. Phase and amplitude maps from a cali-
bration with a photodiode in the intermediate image plane IP II. The phase map includes all
aberrations in the illumination beams, the DMD itself, and optics in the beam path. Tilt and
focus have been removed from the phase map, showing 3λ of astigmatism due to bending
of the DMD chip itself. The amplitude map shows the Gaussian amplitude envelope of the
round illuminating beam. To the edge of the aperture, the amplitude falls to 50% of its
maximal value.

plete map of all aberrations. In our setup, this calibration of the aberrations is performed in

two steps.

4.5.1 Intermediate plane calibration

We first calibrate all aberrations in the first part of the system with a photodiode in an

intermediate image plane. A detailed description of this procedure can be found in the

Master’s thesis by Philip Zupancic [86]. Using a 10µm pinhole, the photodiode samples a

point on the interference pattern generated by two Fourier plane patches. By deliberately

scanning the phase offset between the patches in steps of 2π/3, full information about the

amplitude and phase of the standing wave interference pattern can be obtained from three

measurements of the photodiode voltage (Figure 4.3 b). Using the center of the Fourier
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plane as a reference patch, we map out the phase for∼250 patches covering the entire aper-

ture. The patch size of 35 pixels (1/15 of the aperture diameter) is a compromise between

sampling aberrations on a sufficiently smooth scale and obtaining enough power from each

patch. This part of the calibration is fast and can be performed with a good signal-to-noise

ratio, yielding typical wavefront flatness of λ/40 RMS. The measured phase maps include

aberrations present on the beams illuminating the DMD chip, unevenness in the chip itself,

and aberrations induced by all optics in the beam path up to the photodiode plane. The

phase map shown in Figure 4.4 displays mainly astigmatism caused by deformation of the

DMD chip in the manufacturing process. From the interference contrast on the photodiode

we also obtain an amplitude map of the beams illuminating the DMD in order to account for

the non-uniform illumination. This first part of the calibration ensures diffraction-limited

performance in the intermediate image plane IP II, corresponding to the EMCCD camera,

as shown in Figure 4.2.

4.5.2 Calibration to the atoms

In a second calibration step we measure aberrations in the beam path between the inter-

mediate image plane IP II and the plane of the atoms, which includes the high-NA objective.

Because it is not possible to directly image the interference pattern or to place a photodiode

in the plane of the atoms, we need to use the atoms themselves to map out aberrations.

To this end, we prepare a weakly interacting superfluid of ∼400 atoms in a shallow

two-dimensional lattice of depth 1Er. We then adiabatically turn on the DMD beam while

displaying a hologram of two patches spaced by 1/5 of the aperture. The atoms experi-

ence a repulsive standing-wave pattern of period 3.7 sites and arrange themselves in the
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Figure 4.5: Aberrations in the microscope setup. In the second step of measuring aberra-
tions, a BEC is used to map out interference patterns directly in the plane of the atoms.
a) Pairs of patches (left, shown in different gray scales) produce a standing wave, forcing
the atoms to its minima and revealing the optical path length (OPL) difference between
the patches as the phase of the averaged density wave (right). b) Translating the pair of
patches across the Fourier plane, the changing standing wave phase reveals the aberrations
sampled by each pair. Data points are measured fringe phases at the center location of the
patch pairs, red is a fit with a 5th order polynomial. Light blue is the reconstructed phase
profile. The width of the plotted profile indicates the range of the aperture over which the
reconstruction in valid. c) A smooth phase map is interpolated from six measured phase
profiles (gray lines). The dominant aberrations are spherical terms from the flat surface of
the hemispherical lens. Tilt and focus have been removed from the phase map.
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minima of the DMD-generated potential. Because the potential results in an overall decon-

finement, we simultaneously increase the trap frequency of the harmonic trap from initially

ωharm ≈ 2π × 20 Hz to ωharm ≈ 2π×50 Hz in order to keep the cloud size constant. Images

of the cloud directly reveal the phase difference between the two hologram patches on the

DMD, as shown in Figure 4.5 a. By averaging∼10 images and fitting the integrated density

profile, we can determine the relative phase with a typical uncertainty of ±0.2 rad.

We map out the aberrations across the entire aperture by repeating the experiment with

different pairs of patches. The spacing between the patches and hence the spacing of the

interference pattern on the atoms remains fixed while the two patches are translated across

the Fourier plane in steps of 1/25 of the aperture diameter. We repeat this procedure along

different paths and obtain six phase profile “cuts” through the Fourier plane, as shown

in Figure 4.5. The phase profile across the entire DMD aperture is then constructed by

fitting a two-dimensional surface parameterized by Zernike polynomials to the six phase

profiles. We allow Zernike polynomials up to radial order 4 and azimuthal order 3. An

example of a fitted phase map is shown in Figure 4.5 c. We verify the accuracy of the

phase calibration map by correcting the wavefront for aberrations and measuring the six

phase cuts again. Typical deviations from an expected flat wavefront are λ/6 peak-to-

peak, caused by differences between the six measured phase profiles and the fitted two-

dimensional surface. Improving the fitting algorithm or using a more uniform sampling of

the Fourier plane might improve the accuracy of the second calibration step.

The full set of calibration data consists of amplitude maps of the illuminating beams as

well as summed phase maps for the intermediate and atom plane calibrations. The overall

phase error of typically λ/6 is dominated by uncertainties in the calibration to the atom
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Figure 4.6: Arbitrary beam shaping. Complex beam profiles are generated by numerically
Fourier transforming the desired wavefront in the image plane and displaying the amplitude
and aberration-corrected phase profile on the DMD. Figure reproduced with permission
from reference [86].

plane. For applications in other experiments, for example addressing of individual trapped

ions, aberrations could be measured in situ by using the fluorescence from individual ions

as point detectors equivalent to the photodiode in our first calibration step.

4.6 Arbitrary waveforms

With the calibrated DMD, almost arbitrary beam shapes can be generated. The holo-

grams required to generate a desired beam profile in the atom plane are calculated nu-

merically [86]. First the appropriate phase and amplitude profiles in the Fourier plane are

obtained as the Fourier transform of the desired wavefront in the image plane. Corrections

due to the vector nature of light and the breakdown of the paraxial approximation, which

are in principle required at an NA of 0.8, have not been limiting so far and are neglected in

this calculation. In a second step the binary hologram itself is created, accounting for the

measured phase and amplitude calibration maps.

For each pixel, we assign a local phase and amplitude with a suitable carrier vector k0

to place the image in the correct location in the atom plane [86]. To minimize artifacts
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associated with binarization errors at discrete k-vectors, a probabilistic approach is chosen

to assign on or off values to each pixel when a binary hologram pattern is created [86].

Figure 4.6 shows some interesting beam shapes generated in a test setup.

4.7 Power efficiency

A drawback of using the DMD as an amplitude hologram in the Fourier plane is its

poor power efficiency. The periodic array of micromirrors splits the incident light into

many diffraction orders, both due to the underlying pixel array with pitch p = 10.8µm

and the displayed amplitude grating with typical carrier spatial periods of five pixels or

d = 55µm. Only the beam corresponding to the +1 order carries the proper phase and

amplitude information and remains as useful power, which is separated from the other

orders using an iris. The power in this desired diffraction order can be maximized by

fulfilling the “blazing condition”: The angle of illumination is chosen such that a diffraction

order of the underlying pixel grating is overlapped with the on direction of each individual

mirror.

The overall power efficiency of the DMD, including illumination light lost outside the

effective aperture, is thus 1 − 2 %. Of the 250 mW of incident power on the DMD, 4 mW

remain in the correct diffraction order. Taking into account additional optics in the beam

path, the maximal deliverable power to the atoms is 900µW, corresponding to an area-

integrated Stark shift of 2π × 45 MHz× (site)2 for 87Rb at a wavelength of λ = 760 nm.

The considerations above assume that all of the aperture on the DMD is being used,

which is not always the case. Consider the case of a Gaussian spot in the plane of the

atoms: For a waist of w ≈ 1 site, the DMD hologram covers almost all of the Fourier plane
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and the maximum possible power is used. If the waist of the Gaussian is increased, the

active area in the Fourier plane and hence the power in the beam scales as 1/w2, which is

distributed across the beam cross-section ∝ w2. The intensity in the Gaussian hence scales

dramatically as I ∝ w−4, and for current parameters it is unrealistic to make useful patterns

larger than 10× 10 lattice sites.

Some of the power loss caused by the poor match between the shape of typically used

holograms and the illumination beam can be avoided by appropriately shaping the illumina-

tion beam. In the experiment, we often use line-shaped potentials with aspect ratios >10:1.

The corresponding holograms on the DMD chip have the inverse aspect ratio 1:10, and

cover only a narrow strip of the effective aperture on the chip. In addition to a round

illumination beam (waist 3.2 mm), which is used for patterns that cover the entire Fourier

plane, we also use an elliptical illumination beam. This cylindrical beam has waists 0.8 mm

and 3.2 mm and is used for patterns that require large momentum components only along

one direction. The polarization of each beam is chosen to achieve maximal interference

contrast along the respective large-momentum direction (section 4.9). The two beams illu-

minate the DMD symmetrically from ±24◦ from normal, respectively, such that they each

satisfy the blazing condition. The definition of on and off is reversed between the two

beams. Separate phase and amplitude calibration maps are obtained for the two beams us-

ing the same pinhole, ensuring that aberrations in each beam are properly compensated and

the beams are perfectly overlapped in the image plane.
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4.8 Pointing stability

A critical characteristic of the single-site addressing scheme is its position stability with

respect to the optical lattice. For typical applications we need the relative alignment to be

accurate and stable to ∼0.2 sites or better. We identified two main sources of pointing

noise: On timescales of 0.2 − 2 Hz, the stability of the addressing beam is limited by

air currents on the optical table. We therefore enclosed the optical path with additional

curtains and shields wherever possible. On longer timescales, we observe thermal drifts

of up to 1 site/hour. To compensate for this drift during data sets, we feed back on the

position of the addressing beam with respect to the lattice: At the end of each experimental

run, we image reflections from the substrate close to the atoms on a camera, capturing the

optical lattice and a small dot generated by the DMD. We fit the position of the beams and

compensate any drifts for the next run of the experiment with a piezo-controlled mirror in

the beam path (Figure 4.2). With the feedback enabled, we achieve relative position errors

of ∼0.04 sites RMS, which is sufficient for our current experiments.

4.9 Limitations

High-NA effects Our current method of generating holograms as the Fourier transform of

the desired potential assumes the paraxial approximation holds. For holograms that use the

full NA of the imaging system, this simplification causes errors, as shown in Figure 4.7:

The actual potential deviates significantly from the desired outcome, in particular if the

polarization of the light is chosen incorrectly, as components of the electric field out of the

atom plane lead to reduced interference contrast. We always chose the correct polarization
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Figure 4.7: Polarization effects at large numerical aperture. Small-feature potentials should
be created with s-polarized light, with the polarization vector in the plane of the atoms and
full interference contrast. For p-polarized light, components of the light at large angles
from the optical axis have close to orthogonal polarizations and do not interfere. The func-
tional form of the potential, here a double-well, changes dramatically with increasing NA.
The potentials are scaled to the same peak height for each curve. Numerical simulations
implemented by Ruichao Ma based on reference [87].

for patterns with small features, but have not implemented an algorithm to generate fully

accurate potentials at high NA.

Digitization The noise on beam profiles is set by the finite resolution of the DMD. We

measure an intensity noise floor of about 10−4 in our applications. Errors on the beam

profiles can be significantly larger. Figure 4.8 illustrates the error for a potential with seven

sharp Gaussian peaks. The hologram in Fourier space covers a narrow strip on the DMD

chip, using ∼2, 500 of the ∼200, 000 pixels in the aperture. An estimate of the error due to

digitization can be obtained by a numerical Fourier transform of the binary hologram. In

this case, differences of several percent of the peak intensity between the desired and the

actual potential are expected.
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Figure 4.8: Digitization error. Left: Potentials with sharp real space features in one dimen-
sion and smooth profiles in the perpendicular direction use small areas of the DMD chip.
The pattern shown here is defined by ∼2, 500 on pixels. Right: The expected binarization
error for a particular hologram in units of the peak intensity. For this pattern, deviations
from the desired potential on the order of a few percent are expected.The precise error
depends on the probabilistic assignment of off and on pixels, and varies between realiza-
tions of the same hologram.

4.10 Single-atom addressing

The fully calibrated DMD can generate arbitrary repulsive potentials with depths com-

parable to the optical lattice. While many possible potentials can be displayed, the DMD

used holographically in a Fourier plane is best suited to produce small, high-momentum

potentials in the image plane.

4.10.1 State initialization

We use the single-site addressing scheme to initialize few-particle Fock states in a lat-

tice by “cutting” individual atoms from Mott insulator states (Figure 4.9). We prepare a

Mott insulator with one particle per site in the atomic limitU � J in a two-dimensional lat-

tice with Vx = Vy = 45Er. The DMD then superimposes a beam with Hermite-Gauss pro-

file in the transverse direction and a flattop profile along the longitudinal direction (length
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Figure 4.9: “Cutting” atoms out of a Mott insulator: An addressing beam with a repulsive
Hermite-Gauss profile is superimposed onto a Mott insulator in a 45Er optical lattice. A
column of atoms is pinned in the minimum of the addressing beam while the transverse
lattice is turned off and a deconfining Gaussian beam expels all other atoms. The pinned
atoms are then loaded back into the optical lattice. By choosing higher orders of the ad-
dressing Hermite-Gauss beam, up to six adjacent columns can be prepared.

10µm). The distance between the peaks of the Hermite-Gauss profile is 930 nm, with a

typical peak depth of 25Er. We switch off the transverse lattice in the presence of a large

(40µm waist) anti-confining Gaussian beam at 760 nm. Only atoms in rows coinciding

with the nodes of the Hermite-Gauss beam are retained, while all other atoms are expelled

from the system within 40 ms before the transverse lattice is ramped back on. We thus de-

terministically prepare one row of atoms (length≈ 10 sites). This cutting procedure retains

atoms pinned by the DMD with a probability of 99(1) %, and the fidelity of preparing one

atom per site is limited by the initialization fidelity of the Mott insulator, typically ≥ 98%.

The cutting procedure works with near perfect fidelity irrespective of the number of

atoms on a particular site and can be carried out sequentially along both lattice directions in

order to produce single, isolated plaquette systems of sizes up to 2×6, where the occupation

of each site is controlled via the initial occupation in the Mott insulator.
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Figure 4.10: Full counting statistics in one dimension. Left: A Mott insulator with up to
n = 3 atoms near the center appears as three concentric rings in parity-projecting fluores-
cence imaging. A single row of atoms (red box) can be cut from the Mott insulator and all
atoms are detected after a short vertical expansion. Right: We obtain the full density profile
and number statistics for each site in the one-dimensional profile.

4.10.2 Full counting statistics

Our method of isolating well-defined subsystems from a many-body state can be used

to circumvent the parity projection in fluorescence imaging. This procedure is shown in

Figure 4.10: A large Mott insulator with up to three atoms per site appears as a ring of

concentric bright and dark rings when imaged in situ, corresponding to odd and even occu-

pancy, respectively. To circumvent parity projection, we can cut one row of atoms from the

Mott insulator, emptying all other sites. Before imaging, we turn off the DMD addressing

beam and release the atoms into one-dimensional tubes transverse to the cut, performing

a ∼5 ms time-of-flight measurement in the vertical direction. Sites near the center of the

Mott insulator contain more than one atom initially, which separate during the transverse

time of flight and are imaged individually without being lost to parity projection. Summing

counts along vertical tubes then yields the full number statistics of the one-dimensional cut
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through the two-dimensional system. Figure 4.10 shows these results for an n = 3 Mott

insulator, directly revealing the wedding cake structure and site-resolved number distribu-

tions.

The full number statistics obtained through the “cut and count” procedure contain all

the information to construct high-order number correlation functions between all sites.

Such measurements are ideal for characterizing density correlations, for example in one-

dimensional impurity problems [88], or to detect entanglement through number fluctua-

tions [89]. In combination with a transverse magnetic field gradient [90], it is possible to

obtain fully spin- and number-resolved readout of one-dimensional, two-component quan-

tum gases.
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Part II

Interactions and quantum statistics in
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Chapter 5

Quantum walks of strongly interacting

bosons

Portions of this chapter have appeared in:

“Strongly correlated quantum walks in optical lattices”, P. M. Preiss, R. Ma, M.
E. Tai, A. Lukin, M. Rispoli, Y. Lahini, R. Islam and M. Greiner, Science 347,
1229-1233 (2015).

5.1 Introduction

One of the fundamental processes in physics is the random walk. Its simplest one-

dimensional realization is a particle that is initialized to a particular point in space and

randomly takes steps in either direction with equal probability. In the classical case, this

setting leads to diffusion: The density distribution of such a particle expands as the square

root of time and displays slow growth of the Gaussian probability distribution. A quantum

particle, on the other hand, can take many paths at the same time, and the overall dynam-
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ics of the particle will be governed by a coherent, simultaneous sampling of large parts

of the system. Indeed, the quantum walker’s wavefunction will expand linearly in time,

displaying very different, ballistic behavior.

This stark contrast between the classical and quantum behavior points to the impor-

tance of the quantum walk as a basic probe of quantum dynamics. Many different scenarios

have been considered theoretically and experimentally, and two distinct models of quantum

walk with similar physical behavior were devised: The discrete time quantum walk [39],

in which the particle propagates in discrete steps determined by a dynamic internal degree

of freedom, and the continuous time quantum walk [40], in which the dynamics is de-

scribed by a time-independent lattice Hamiltonian. Both frameworks provide descriptions

of fundamental quantum transport.

The single particle quantum walk in either implementation is straightforward to treat,

as it is described by classical wave equations. More interesting situations can be accessed

when several indistinguishable particles perform quantum walks simultaneously. In such

cases, quantum correlations can develop as a consequence of Hanbury Brown-Twiss (HBT)

interference and quantum statistics, as was investigated theoretically [91, 92] and experi-

mentally (see [93] and references therein). This problem is believed to lack full quan-

tum complexity in the absence of interactions or auxiliary feed-forward measurements of

the Knill-Laflamme-Milburn type [94], but can become intractable by classical comput-

ing [92].

The full complexity of quantum walks can be realized when interactions between indis-

tinguishable quantum walkers are strong [95, 96]. Such interacting quantum walks provide

a general framework for the exploration of many-body dynamics and the study of compu-
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tationally hard and outstanding condensed matter problems, for example the dynamics of

quantum disordered systems [97].

In this chapter I report on the experimental implementation of quantum walks of strongly

interacting bosons: Using the naturally present interactions and the deterministic prepa-

ration of indistinguishable bosons in our quantum gas microscope, we study continuous

single-particle and two-particle quantum walks in the regime where the dynamics are dom-

inated by interactions. We show that strongly correlated quantum walks directly probe

fundamental processes from quantum many-body physics, such as the fermionization of

bosons and the formation and coherent propagation of repulsively bound pairs.

5.2 Quantum information processing and quantum walks

Considerable theoretical interest in quantum walks stems from the quantum information

processing community [41]. It was realized early on that a particle performing a random

walk on an arbitrary graph can be viewed as a basic unit of computation. A quantum

particle can sample many paths through the graph simultaneously, and approach certain

limits faster than a classical particle, leading for example to faster “hitting times” for the

propagation to the boundary of a graph [40]. This enhanced propagation is the origin of a

potential “quantum speedup” in random-walk based computation.

An example of this quantum enhancement is the problem of “boson sampling” [93]:

Consider an n-port device that performs a random unitary operation on all of its inputs.

It is strongly believed that computing the output generated from initializing this device

with n indistinguishable non-interacting bosons is a classically hard problem [92], i.e. the

required computational resources grow exponentially in n. On the other hand, it is clear
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that n bosonic particles undergoing a simultaneous quantum walk, for example n photons

in a simple multiport beamsplitter, provide a direct implementation of this scenario. This

problem is now considered a prime example for the outperformance of classical computers

by quantum devices, and has received a lot of theoretical and experimental attention [98].

More remarkably, it was shown recently that quantum walks can be used to imple-

ment universal and efficient quantum computation [99] if interactions between the quantum

walkers are present, for example in Bose-Hubbard systems. While these considerations are

still relatively abstract, quantum walks have turned into an active field of research at the

interface of condensed matter physics and quantum information processing.

5.3 Quantum walks in atomic and optical systems

Experimentally, quantum walks have been implemented on a number of platforms (see

reference [17] for a review). Using an internal state as a quantum “coin” state, cold trapped

ions [100, 101] and neutral atoms in state-dependent lattices [102] can realize discrete

quantum walks. Continuous quantum walks have been implemented for individual atoms

[15] and for effective spin models in optical lattices [61] and trapped ion chains [103].

Significant progress has been made in implementing quantum walks in photonic systems

due to outstanding coherence properties and the development of high-quality waveguide

arrays on silica substrates [17]. Such devices offer great flexibility and control in defining

the dynamics through integrated beamsplitters, phase shifters and controlled disorder [3].

Photonic quantum walks have been used to classically simulate the quantum walks of two

interacting bosons by engineering effective interactions through conditional phase shifts in

fiber networks or waveguide arrays [104, 105]. Progress to much more complex systems
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with photonic quantum walks is currently hindered by the difficulty of generating many

indistinguishable photons, which requires cascaded parametric downconversion [98], and

the difficulty of engineering effective interactions at the level of single photons [17].

5.4 Experimental implementation

In our experiment, bosonic atoms perform quantum walks in decoupled one-dimensional

tubes of the optical lattice. The atoms may tunnel in the x-direction with amplitude J and

experience a repulsive on-site interaction U , realizing the Bose-Hubbard Hamiltonian 2.3

together with a potential gradient:

H =
∑
〈i,j〉

−Ja†iaj +
∑
i

U

2
ni(ni − 1) +

∑
i

E i ni. (5.1)

The values of J and U are tunable via the depth Vx of the optical lattice and the energy shift

per lattice site E is set by a magnetic field gradient. We measure time in units of inverse

tunneling rates, τ = tJ , and define the dimensionless interaction u = U/J and gradient

∆ = E/J .

We set the initial motional state of the atoms through the single-site addressing scheme

described in chapter 4. Starting from a low-entropy two-dimensional Mott insulator with a

fixed number of atoms per site, we prepare one or two rows of atoms along the y-direction

of a deep optical lattice with Vx = Vy = 45Er (Figure 5.1). The quantum walk is per-

formed at a reduced lattice depth Vx, while the y-lattice and the out-of-plane confinement

are fixed at Vy = 45Er and ωz = 2π × 7.2 kHz, respectively. The atom positions are

recorded with single-site resolution using fluorescence imaging in a deep optical lattice [8].
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Figure 5.1: Single-particle quantum walks. Left: Starting from a Mott insulator, we deter-
ministically prepare individual atoms in horizontal tubes of an optical lattice, separated by
a deep lattice in the y-direction. From the localized initial state (I) atoms perform indepen-
dent quantum walks in the x-direction (II). Right: The single-particle density distribution
expands linearly in time, and atoms coherently delocalize over ∼20 sites. The lower panel
shows the averaged density distribution at the end of the quantum walk and a fit to equa-
tion (5.2) with the tunneling rate J as a free parameter. Densities are averages over ∼700
outcomes.

5.5 Single-particle quantum walks

We first consider quantum walks of individual atoms (Figure 5.1). A single particle

is initialized at a chosen site in each horizontal tube and propagates in the absence of

external forcing (∆ = 0). For each individual realization the particle is detected on a single

lattice site, while the average over many experiments yields the single-particle probability

distribution. In contrast to a classical random walk, for which slow, diffusive expansion

of the Gaussian density distribution is expected, coherent interference of all single-particle

paths leads to ballistic transport with well-defined wavefronts. The measured probability

density 〈n〉 expands linearly in time (Figure 5.1, right panel), in good agreement with the
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Figure 5.2: Single-particle Bloch oscillations in position space. a) In the presence of a
gradient, a single particle undergoes Bloch oscillations. Starting from a localized initial
state (I), each atom initially delocalizes (II) but maintains coherence and re-converges to its
initial position after one period (III). The averaged density shows an oscillatory breathing
motion with a high-fidelity revival. Densities are averages over ∼200 realizations. b) Mo-
mentum space representation of single-particle Bloch oscillations. Initially, the particle is
in a superposition of all momentum states within the first Brillouin zone (shaded to indicate
their initial momentum). The external force E and Bragg reflection at the zone boundary
cycle each momentum component through the Brillouin zone. After one oscillation, the
initial state is recovered.

theoretical expectation [106]

〈ni〉 = |Ji(2Jt)|2 (5.2)

for lattice site i, where Ji is a Bessel function of the first kind and order i. At the end

of the quantum walk, each particle is delocalized over almost 15µm without appreciable

signatures of decoherence.
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5.6 Position-space Bloch oscillations

The light-cone like delocalization of a single particle performing a quantum walk is a

strong indication that the propagation is indeed unitary. The degree of coherence can be

verified by subjecting the particle to a potential gradient. Despite the strong external force,

there is no net transport through the optical lattice: The maximum kinetic energy of the

particle is set by the bandwidth of the lowest band, and in the absence of dissipation or

excitations to higher bands, energy conservation prohibits the particle from propagating in

the direction of the force while converting potential energy to kinetic energy. Instead, the

potential gradient induces a position-dependent phase shift and causes atoms to undergo

Bloch oscillations [107]. For a fully coherent single-particle quantum walk with gradient

∆, the atom remains localized to a small volume and performs a periodic breathing motion

in position space [106, 108, 109, 110] with a maximal half width LB = 4/∆ and temporal

period TB = 2π/∆ in units of the inverse tunneling. Figure 5.2 a shows a single-particle

quantum walk with ∆ = 0.56, resulting in Bloch oscillations over ∼14 lattice sites. A

semiclassical explanation of the breathing motion is given in Figure 5.2 b: Initially, the

particle is tightly localized in a superposition of all momentum eigenstates within the first

Brillouin zone and its wavefunction fills the entire band. An external force now translates

each momentum component through the Brillouin zone, leading to temporary delocaliza-

tion of the particle in real space. At the Brillouin zone boundary, momentum components

are Bragg scattered by a reciprocal lattice vector. After one period all components of the

wavefunction have cycled through the Brillouin zone once and returned to their original

quasimomentum modulo a common phase factor. The original wavefunction is hence re-

stored, and the particle is localized again at the origin.
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The refocusing of the single-particle wavefunction relies on the interference of different

momentum components and hence provides a metric for the degree of coherence of the

dynamics. In the experiment, we observe a high quality revival after one Bloch period

and detect the particle back at the origin with a probability of up to 0.96(3) at τ = TB

in individual tubes. The average over six adjacent rows in Figure 5.2 a displays a revival

probability of 0.88(2), limited by the timing of the measurements and broadening across

different rows due to inhomogeneities in the lattice and the gradient . The fidelity,

f(t) =
∑
i

√
ni(t)ρi(t) (5.3)

for the measured and expected probability distributions ni(t) and ρi(t), averaged over∼1.5

Bloch oscillations is 98.1(1) %, indicating that a high level of coherence is maintained

while the particle delocalizes over ∼10µm in the optical lattice.

The fidelity of the revival after many Bloch oscillations will eventually be limited by

two factors. Firstly, spontaneous scattering of lattice photons leads to localization of the

particle and a crossover to classical diffusive behavior at long times [111]. Secondly, even

for fully coherent motion, weak additional potentials such as residual harmonic confine-

ment cause gradual damping of the oscillations and can lead to a destruction of the revivals.

5.7 Hanbury Brown-Twiss interference

We now turn to simultaneous quantum walks of two particles. Even in the absence of

interactions, quantum correlations and entanglement can emerge due to Hanbury Brown-

Twiss interference of indistinguishable particles [112].

The concept of two-particle HBT interference is illustrated in Figure 5.3. Two indistin-
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Figure 5.3: Hanbury Brown-Twiss interference. All processes connecting the initial and
final states of indistinguishable particles interfere coherently. Each tunneling step con-
tributes a phase i. For non-interacting bosons, processes of the same length add construc-
tively (left), while processes differing in length by two steps interfere destructively (right).
Particle exchange contributes an extra phase π for fermions, and the interference ampli-
tudes are reversed. The resulting bosonic “bunching” and fermionic “anti-bunching” are
unique signatures of the underlying statistics.

guishable particles emerge from two sources, in this case adjacent lattice sites. After some

evolution time, both particles are detected in a particular configuration in the optical lattice,

which can be thought of as two “clicks” in detectors on individual lattice sites. Since the

particles are indistinguishable, there is fundamentally no way to tell which source the par-

ticles registered at a particular detector emerged from. It is therefore necessary to add all

two-particle processes that connect the initial to the final state coherently to determine the

overall amplitude. Since each tunneling step in the lattice is associated with a phase factor

i, the relative phase between two-particle processes can be obtained from simply counting

the number of tunneling steps involved. The processes connecting to a final state with the

particles in close proximity to each other contain the same number of steps, and for bosonic

particles interfere constructively. Processes placing the two particles on opposite ends of

the lattice, on the other hand, differ in length by two steps and hence interfere destructively.
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Figure 5.4: Bosonic bunching. Two bosons initialized on neighboring sites display bosonic
bunching in simultaneous quantum walks, appearing close to each other with high prob-
ability. The weak interactions u = 0.7 < 1 do not significantly affect the dynamics.
Bunching is reflected in enhanced weights near the diagonal of the experimentally ob-
served two-particle correlator Γi,j (middle). In comparison, the correlator expected for two
distinguishable particles is featureless (right).

Bosonic particles are therefore detected in close proximity to each other much more likely

than could be explained classically, and this “bosonic bunching” is a clear signature of their

quantum statistics. For fermions, exchange of particles leads to an additional minus sign,

resulting in opposite signs in the interference terms. Bunching is therefore suppressed, and

fermions become “anti-bunched”. We emphasize that there is no phase relation between

the sources and it is the interference of two-particle paths rather than the interference of a

single particle with itself that leads to correlations. If the two particles were both coherently

delocalized over the two source sites at the beginning of the quantum walk, the two sites

would have to be considered a common source for both particles and no HBT interference

could be observed.

Experimentally, bosonic bunching has been observed in tunnel-coupled optical tweez-

ers [42], expanding atomic clouds [113, 114] and photonic implementations of quantum

walks [115, 116]. In our experiment, the bunching of free bosonic atoms is already appar-

ent in single shot images of quantum walks with two particles starting from adjacent sites
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in the state a†0a
†
1|0〉. For weak interactions, the two atoms are very likely to be detected

close to each other because of HBT interference, as shown in raw images in Figure 5.4. We

characterize the degree of bunching using the density-density correlator Γi,j = 〈a†ia
†
jaiaj〉

measured at time τmax ≈ 2π × 0.5 for weak interactions (u = 0.7) (Figure 5.4, middle).

Sharp features are caused by quantum interference and demonstrate the good coherence

of the two-particle dynamics. Compared to the correlator expected for two distinguish-

able particles (computed as the outer product of the measured single-particle densities), the

probability of outcomes on and near the diagonal of the correlator Γi,j is clearly enhanced,

indicating HBT interference of nearly free bosonic particles.

5.8 Fermionization

We use the sensitivity of the quantum walk to quantum statistics to probe the “fermion-

ization” of bosonic particles caused by repulsive interactions in one-dimensional systems

[58]. When such interactions are strong, double occupancies are suppressed by the large

energy cost U , which takes the role of an effective Pauli exclusion principle for bosonic par-

ticles. In the limiting case of infinite,“hard-core” repulsive interactions, one-dimensional

bosonic systems “fermionize”. Their wavefunctions are identical to those of spinless, non-

interacting fermionic systems, except for relative signs in the wavefunction that ensure the

correct overall exchange symmetry of the state. Quantities that are not sensitive to relative

signs in the wavefunction, such as densities and spatial correlations, are therefore the same

in strongly repulsive bosonic and non-interacting fermionic systems [57]. This behavior

has been observed in equilibrium in the pair-correlations and momentum distributions of

large one-dimensional Bose-Einstein condensates [59, 117]. Bose-Hubbard systems below
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Figure 5.5: Fermionization. a) Weakly interacting bosons display strong bunch-
ing (I). Strong, repulsive on-site interactions cause bosons in one dimension to fermion-
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unity filling enter the fermionized regime when u = U/J � 1.

We study the process of fermionization in the fundamental unit of two interacting par-

ticles by repeating the quantum walk from initial state a†0a
†
1|0〉 at increasing interaction

strengths [95]. Figure 5.5 b shows Γi,j for several values of u. Weakly interacting bosons

(u = 0.7) display pronounced bunching, as shown in Figure 5.4. At intermediate values of

the interaction u = 1.4 and u = 2.4, the correlation distribution is relatively uniform, as re-

pulsive interactions compete with HBT interference. For the strongest interaction strength

u = 5.1, most of the weight is concentrated on the anti-diagonal of Γi,j , corresponding

to pronounced anti-bunching. The anti-correlations are strong enough to be visible in raw

images of the quantum walk as in panel II of Figure 5.5 a, and Γi,j is almost identical to the

expected outcome for non-interacting fermions. Note that although the correlations change

dramatically with increasing interaction, the densities remain largely unchanged. At all in-

teraction strengths, the observed densities and correlations are in excellent agreement with

a numerical integration of the Schrödinger equation with the Hamiltonian in equation (5.1).

Interactions in the observed two-particle scattering events take on a central role in

closely related models that may be solved via the Bethe ansatz [57], where the phase shift

acquired in two-particle scattering processes completely determines the microscopic and

thermodynamic properties of the system.

5.9 Repulsively bound pairs

The precise control over the initial state in our system enables the study of quantum

walks of two interacting bosons emerging from the same site. This initial state is not

consistent with an effective Pauli blockade and cannot be described in the fermionization
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Figure 5.6: Repulsively bound paris. a) If U � J , two particles initialized on the same site
correspond to a highly excited state. Separation of the particles is energetically forbidden.
b) Energy spectra of an m = 23 site system with two particles. For u � 1, the spectrum
separates into two bands. States initialized in the upper manifold of bound states cannot
relax to the lower-lying scattering states, binding the two atoms together.

framework. Instead, unusual bound states caused by repulsive interactions emerge and

the particles form a repulsively bound pair [118]. As illustrated in Figure 5.6 a, the pair of

atoms corresponds to a highly excited state for repulsive interactions. If the interaction U is

much larger than the tunneling energy J , the initial interaction energy cannot be converted

into kinetic energy, and separation of the particles is forbidden by energy conservation. The

particles propagate through the lattice as a bound state. This argument can be fleshed out

by considering the eigenspectra of two particles on a finite lattice, as shown in Figure 5.6 b

for m = 23 sites. The spectrum can be found analytically by transforming to center of

mass and relative coordinates of the two particles, with the associated center of mass mo-

mentum K and relative momentum k [119]. For u � 1, the energy spectrum splits into

two manifolds separated by the interaction energy U . The lower manifold corresponds to

scattering states with vanishing probability of double occupancies, while the upper man-

ifold corresponds to two-particle bound states. Two particles initialized on the same site

are in a superposition of all bound states in the upper manifold. In the absence of dissi-
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Figure 5.7: Formation of repulsively bound pairs. Two-particle correlations at
τmax ≈ 2π × 0.5 for two particles starting on site 0 in state 1√

2
a†0a

†
0|0〉. For weak inter-

actions (u = 0.7), the atoms perform independent single-particle quantum walks. As the
interaction strength is increased, repulsively bound pairs form and undergo an effective
single-particle quantum walk along the diagonal of the two-particle correlator. Experimen-
tal parameters are identical to those in Figure 5.5.

pation, the two particles cannot relax to the low-lying scattering states, and the particles

propagate with effective single-particle tight-binding dynamics governed by the dispersion

of the bound state manifold.

Experimentally, ensembles of repulsively bound pairs have been created in optical lat-

tices [118], and their correlated tunneling has been observed in double-wells [120] . In our

quantum walk experiments, we are able to deterministically prepare individual repulsively

bound pairs and systematically study their dynamics as a function of interactions.

Figure 5.7 shows the correlations and densities for two particles initialized together on

site 0 in state 1√
2
a†0a

†
0|0〉. Because both atoms originate from the same site, HBT inter-

ference terms are not present. In the weakly interacting regime (u = 0.7), both particles
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undergo independent free dynamics and the correlator is the direct product of the single-

particle densities. As the interaction increases, separation of the individual atoms onto

different lattice sites becomes suppressed, resulting in increased weights on the diagonal

of the correlation matrix. For the strongest interactions, the particles are tightly bound

together and the two-particle dynamics may be described as a quantum walk of the repul-

sively bound pair [95, 96] at a decreased tunneling rate Jpair. For large values of u, this pair

tunneling rate reduces to the second-order tunneling [120] Jpair = 2J2

U
� J , and the bound

pair does not delocalize significantly on the time scale of the experiment τ ≈ 2π × 0.5.

5.10 Correlated Bloch oscillations

The formation of repulsively bound pairs and their coherent dynamics can be observed

in two-particle Bloch oscillations. We focus on the dynamics of two particles initially

prepared on the same site with a gradient ∆ ≈ 0.5 (Figure 5.8). In the weakly inter-

acting regime (u = 0.3), both particles undergo symmetric Bloch oscillations as in the

single-particle case, and we observe a high-quality revival after one Bloch period. When

the interactions are sufficiently strong (u = 3.5), the pairs of atoms are tightly bound by

the repulsive interaction and behave like a single composite particle. However, the effec-

tive gradient has doubled with respect to the single-particle case, and the pairs perform

Bloch oscillations at twice the fundamental frequency and reduced spatial amplitude. The

frequency-doubling of Bloch oscillations was predicted for electron systems [121] and cold

atoms [96, 122] and has recently been simulated with photons in a waveguide array [105].

Throughout the breathing motion, the repulsively bound pairs themselves undergo coher-

ent dynamics and delocalize without unbinding. The clean revival after half a Bloch period
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Figure 5.8: Correlated Bloch oscillations. In the weakly interacting regime (I), two particles
initialized on the same site undergo clean, independent Bloch oscillations. Increasing the
interaction strength (II) leads to complex dynamics involving paired and unpaired atoms.
For the largest interactions (III), repulsively bound pairs perform coherent oscillations. The
effective gradient for each pair is doubled with respect to the single-particle case, and the
pair’s oscillations occur at twice the fundamental Bloch frequency. Densities are averages
over ∼220 independent quantum walks.

directly demonstrates the spatial entanglement of atom pairs during the oscillation.

The onset of bound pair oscillations can be seen already at intermediate interactions u =

2.4. In this regime where J , U , andE are similar in magnitude, states both with and without

double occupancy are energetically allowed and contribute to the dynamics. Figure 5.9

shows the density evolution separately for doublons and separated particles. Bound pairs

perform oscillations near the origin, as for stronger interactions, while a significant number

of pairs also separates. In such cases, interaction energy in the initial state is converted to
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as pairs perform Bloch oscillations near the origin. If particles separate, one of the atoms
moves against the gradient, leading to an asymmetric density distribution.

potential energy, and one of the two particles tunnels resonantly against the gradient akin to

long-range tunneling [122, 123]. This process is shown schematically in Figure 5.9. There

are no resonant tunneling states on the “downhill” (left) side, and the skew to the right

against the applied force is expected and agrees with numerical simulation.

5.11 Data analysis

The experiments presented here are performed with a well-defined number of one or

two particles per horizontal tube of the optical lattice. This constraint can be used to sup-

press the effects of preparation or readout errors by post-selection of the data. For single-

particle quantum walks, we keep only outcomes with exactly one atom per one-dimensional

tube. In two-particle quantum walks, we cannot directly detect events with both particles

on the same lattice site due to parity projection in fluorescence imaging [8]. We therefore

retain outcomes with either two or zero atoms, and assume the latter always corresponds to
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Figure 5.10: Circumventing parity projection. a) After the quantum walk in a shallow lat-
tice, a magnetic field ramp in a deeper Vx = 14Er lattice splits doublons onto neighboring
sites, and both atoms can be imaged. This step can be omitted to preserve the configuration
after the quantum walk. b) The mapping process swaps doublons with neighboring atoms,
but one set of outcomes is always lost due to parity projection. By combining data with
and without the density mapping, the full correlation matrix Γi,j can be constructed.

atom loss due to parity projection only.

To obtain the full density distribution and correlations in two-particle quantum walks,

it is therefore necessary to apply a density mapping: Using a magnetic field gradient, it is

possible to split pairs of particles along the direction of the quantum walk before imaging

[62]: At the end of the quantum walk, the particles are pinned in a deep Vx = 45Er lattice.

After ramping on a magnetic field gradient of ∆ ≈ 0.5u, we reduce the x-lattice depth

to 14Er, restoring a weak tunneling of J ≈ 2π × 10 Hz. The applied gradient is then

swept from ∆ ≈ 0.5u to ∆ ≈ 2u in 200 ms, before we return to the deep lattice and begin

imaging. Because the gradient is larger than the tunneling at all times during the mapping
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(∆ � 1), particles without neighbors remain pinned, i.e. their positions are not altered by

the mapping. If, however, both particles are on the same site, one particle will tunnel uphill

as the gradient is ramped through the resonance at ∆ = u. The particles are therefore split

on two adjacent sites and can both be imaged. In data analysis, they will be counted as a

doublon on the initial site. This procedure is sketched in Figure 5.10.

The mapping process is reversible, meaning that particles initially on adjacent sites

after the quantum walk will be merged into a doublon. The mapping thus amounts to

swapping the diagonal and first off-diagonal of the two-particle correlator prior to imaging.

We therefore record all data sets with two settings, with and without the density mapping.

In each realization we are blind to a particular set of outcomes, yet the full two-particle

correlator can be constructed. The on-site correlation Γi,i is obtained from the first off-

diagonal elements of the histogram with the density mapping, while Γi,i+1 is determined

directly from the histogram without the density mapping. To get the full correlator, we

combine the two histograms weighted by the number of post-selected realizations in each

half of the data set.

The aforementioned assumption in post-selection ensures the proper normalization of

the histograms and is verified by comparing the far off-diagonal elements in the two weighted

histograms, which are not affected by the density mapping and typically differ by less than

3 %. For two particles, the density distribution 〈ni〉 is then obtained by summing the corre-

lator along one axis: 〈ni〉 =
∑

j Γi,j .

75



Data Set Vx Jsp/(2π) U/(2π) Jfit/(2π) Efit/(2π) tmax

[Er] [Hz] [Hz] [Hz] [Hz] [ms]

Fig. 5.1 4.5 97(6) - 107 - 6.6
Fig. 5.2 2.5 160(9) - 166 93 14
Fig. 5.5 & 5.7 (I) 1 227(12) 161 274 - 2.1
Fig. 5.5 & 5.7 (II) 2.5 160(9) 216 168 - 3.0
Fig. 5.5 & 5.7 (III) 4 108(4) 255 109 - 5.0
Fig. 5.5 (IV) 6.5 59(3) 299 42 - 10.9
Fig. 5.7 (IV) 6.5 59(3) 299 34 - 10.9
Fig. 5.8 (I) 2.5 160(9) 53 173 97 12.8
Fig. 5.8 (II) 4 108(4) 255 101 54 22.8
Fig. 5.8 (III) 5 80(6) 279 81 34 34

Table 5.1: Bose-Hubbard parameters used for theory plots. Vx are approximate lattice
depths. Jsp is the nearest-neighbor tunneling obtained from single-particle Bloch oscilla-
tions or directly from a band structure calculation. Typical errors on U are 3 % from the
uncertainty in the calibration. Jfit and Efit are the results from fitting density distributions.

5.12 Numerical simulations

Throughout this chapter, the observed dynamics are compared to theoretical results

from a direct numerical solution of the Schrödinger equation with the Hamiltonian in equa-

tion (5.1). Since the Hamiltonian is time-independent, the state at time t can obtained by

matrix exponentiation of the Hamiltonian

|Ψ(t)〉 = eiHt |Ψ(0)〉 (5.4)

where |Ψ〉 and H are expressed numerically in the basis of all Fock states with the correct

particle number. The calculations are performed in the Hilbert space of two particles on

23 lattice sites. The values of U and tmax are fixed, while J (and E in the case of Bloch

oscillations) are left as free parameters to minimize the RMS error between measured and

calculated densities.
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We initially calibrate lattice depths using Kapitza-Dirac scattering with an uncertainty

of 10 %. Single-particle Bloch oscillations serve as our most sensitive probe of the tunnel-

ing J with a typical uncertainty of 5 %, in agreement with a band structure calculation. The

interaction U is measured at 14Er with photon-assisted tunneling in a tilted lattice [65],

and extrapolated to other lattice depths using a numerical calculation.

The minimization is performed simultaneously on data sets from Figures 5.5 and 5.7,

except for panel IV. Parameter values for all data sets are listed in Table 5.1. The fitted

values Jfit are generally in good agreement with the measurements from single-particle

dynamics. At low lattice depths of 1− 3Er, next-nearest-neighbor tunneling is significant,

resulting in dynamics up to 20 % faster than expected from Hamiltonian (5.1). For the

deep lattice at 6.5Er, residual gradients of ∼20 Hz/site affect the dynamics, leading to a

slower quantum walk than for ∆ = 0 and to the strong peak near the origin in panel IV of

Figure 5.5 b.

5.13 Conclusions and outlook

We have demonstrated that cold atoms in optical lattices are a powerful platform for

quantum walks of interacting, indistinguishable particles. The present two-particle imple-

mentation provides intuitive access to essential features of many-body systems, such as

localization caused by interactions or fermionization of bosons. Going beyond the few-

particle scenario, quantum walks offer an ideal starting point for the “bottom up” study of

many-body quantum dynamics. The particle-by-particle assembly of interacting systems

may give access to the crossover from few- to many-body physics and reveal the micro-

scopic details of disordered quantum systems [97].
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Figure 5.11: Anyonic quantum walks. a) In one dimension, anyonic quantum statistics with
tunable phase angle θ can be mimicked by bosons with occupation-dependent and parity-
breaking tunneling terms. b) Simulations of quantum walks of non-interacting anyons show
the impact of the phase angle on the dynamics. For θ = 0 (left), the particles are regular
bosons. As the phase angle θ is decreased, bosonic bunching is suppressed and two-particle
interference leads to a slower expansion of the density (middle). For θ = −π, the particles
obey fermionic statistics off-site, and bosonic statistics on-site. The particles do not exhibit
regular fermionic anti-bunching, but remain localized near the origin.
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An exciting possibility would be to realize quantum walks of anyonic particles [116,

124, 125]. Interpolating between bosonic and fermionic quantum statistics, anyonic parti-

cles obey quantum statistics

aja
†
k − e

−iθ sgn(j−k)a†kaj = δjk, ajak = eiθ sgn(j−k)akaj (5.5)

with a phase angle θ (θ = 0 corresponds to bosons, θ = π to fermions). The sign function is

defined such that sgn(0) = 0, i.e. the particles obey on-site bosonic statistics, regardless of

the phase angle θ. In one dimension, anyons can be simulated by bosons with conditional

tunneling phases. This is illustrated in Figure 5.11 a: Individual anyons behave just like

bosons, but in the presence of other particles, anyonic statistics are mimicked by tunneling

phases that are both occupation-dependent and parity-breaking. Conditional tunneling can

be engineered in a tilted optical lattice, where direct tunneling is suppressed and motion is

restored through occupation-dependent tunneling via photon- or Raman-assisted tunneling

[126], as already demonstrated in our experiment [65]. Figure 5.11 b shows simulations for

quantum walks of two such non-interacting anyons. The realization of anyonic quantum

walks, even including interactions, should be feasible in our experiment.
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Chapter 6

Hong-Ou-Mandel interference of

bosonic atoms in optical lattices

Portions of this chapter have appeared in:

“Measuring entanglement entropy in a quantum many-body system”, R. Islam,
R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, Nature
528, 77-83 (2015).

6.1 Introduction

One of the cornerstones of quantum optics is Hong-Ou-Mandel (HOM) interference

of bosonic particles. The Hong-Ou-Mandel effect describes the interference that occurs

when several indistinguishable particles delocalize over a set of modes. In such cases,

many-particle paths may interfere coherently, leading to strong correlations in many-body

observables. There is no classical analog for such many-particle interference, and the out-

come of many experiments with indistinguishable particles is uniquely determined by the
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Figure 6.1: Hong-Ou-Mandel interference of bosonic particles. a) In a photonic HOM
experiment, two identical photons are incident on a balanced beamsplitter. Due to the pho-
tons’ bosonic statistics and interference of two-particle paths, the two photons always leave
through the same exit port. b) Massive bosonic particles may undergo HOM interference
in a double-well potential. Tunneling in the double-well delocalizes each atom over both
sites, but due to HOM interference the two particles are always detected in the same well.

particles’ quantum statistics.

The most common setting for HOM interference is shown in Figure 6.1 a: Two indistin-

guishable photons are incident on a balanced, non-polarizing beamsplitter. The two-particle

paths leading to coincidence detection (i.e. one particle in each output port) interfere de-

structively and the two particles always leave the beamsplitter through the same output

port. The average intensity in each output is unaffected by two-particle interference, and

the correlated states with entanglement between the output modes can be detected only on

the level of two-particle observables. Experimentally, this can be achieved by monitoring

the probability of joint detection of a single photon in each output port, P(1, 1) [18]. For

perfect Hong-Ou-Mandel interference of non-interacting, indistinguishable bosons, P(1, 1)

is suppressed to zero.
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Mathematically, the HOM interference of two photons can be described by the operator

transformation performed by the beamsplitter on its inputs i1, i2 and outputs o1, o2

a†i1 → (a†o1 + ia†o2)/
√

2,

a†i2 → (ia†o1 + a†o2)/
√

2. (6.1)

Two particles incident on the inputs of this device are then transformed as

|1, 1〉i = a†i1a
†
i2|0〉 →

1

2
(a†o1 + ia†o2)(ia

†
o1 + a†o2)|0〉

=
i

2
(a†o1a

†
o1 + a†o2a

†
o2)|0〉

=
i√
2

(|2, 0〉o + |0, 2〉o) (6.2)

where |m,n〉i,o labels a state with m, n photons on the input and outputs, respectively.

The complete suppression of coincidence counts is a direct experimental signature of

the particles’ quantum statistics. As classical noise tends to restore distinguishability to the

bosonic particles, the observation of high contrast HOM interference indicates the suppres-

sion of excitations in unwanted degrees of freedom and is often used to verify the purity

of quantum states, for example in the validation of single-photon sources [127]. Alterna-

tively, the mode entanglement generated through HOM interference can be used to entangle

distant qubits [128]. Recently, a fermionic version of Hong-Ou-Mandel experiments with

enhanced coincidence detection was realized in the solid state [129].

6.2 Hong-Ou-Mandel interference

HOM interference is a consequence of the quantum statistics of the participating parti-

cles, and hence applies to massive bosonic atoms in optical lattices just as it does to photons.
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In analogy to optical interference, two indistinguishable bosonic atoms can undergo HOM

interference on a “beamsplitter” device that mixes two spatial modes. In an optical lattice,

this operation can be performed through controlled tunneling in a double-well.

The double-well is governed by the Bose-Hubbard Hamiltonian

HDW = −J(a†LaR + a†RaL) +
U

2

∑
i=L,R

ni(ni − 1) + δnR. (6.3)

In the ideal non-interacting case without bias (U = 0, δ = 0), the atomic “beamsplitter op-

eration” is realized by turning on tunneling for a controlled time 2π
8J

. A particle initialized

on one side of the double-well coherently delocalizes over both wells with equal amplitude

(Figure 6.1 b), where a phase i is associated with each tunneling event. At the operator

level, the beamsplitter operation can be described by

a†L → (a†L + ia†R)/
√

2,

a†R → (ia†L + a†R)/
√

2 (6.4)

in exact analogy to the optical beamsplitter, where the left and right wells have take on

the roles of the two output ports. Performing this beamsplitter operation with two indis-

tinguishable bosons on the two sides of the double-well produces the superposition state

(|0, 2〉 + |2, 0〉)/
√

2, and both particles are detected in the same well. The first observa-

tions of Hong-Ou-Mandel interference of massive bosonic particles were recently made in

optical tweezers [42] and momentum states of helium BECs [43].

6.3 Beamsplitter operations in double-well potentials

In our experiment, we create individual double-well potentials by combining the square

optical lattice with repulsive potentials generated with the DMD, as described in chapter 4.

83



-1.5         -0.5        0.5     1.5
x (lattice site)

0

1

2

D
ep

th
 (E

r)

Figure 6.2: Double-well potential for the beamsplitter. The intensity profile of the projected
potential (equation (6.5), gray), the lattice (gray, dashed), and the combined potential for
the beamsplitter operation (black solid). Also shown are sketches of the amplitude of the
ground band Wannier wavefunctions (blue, red) in each well at the beamsplitter depth.

We project a potential with a double-well profile along x and a smooth flat top profile

along y:

V (x, y) = Vdw

(
e
− (x−d)2

w2
1 − Vrele

− x2

w2
2 + e

− (x+d)2

w2
1

)2

×
(

arctan

(
y + L

s

)
− arctan

(
y − L
s

))2

(6.5)

where x and y are in units of the lattice spacing and Vdw is the potential depth of the

projected double-well. For the Hong-Ou-Mandel experiments we use d = 1.5, Vrel =

0.52, w1 = 0.95, w2 = 0.9, L = 18, and s = 5.5.

The beamsplitter operation is realized by controlled tunneling in the combined poten-

tial of the above projected potential and a shallow x-lattice, as depicted in Figure 6.2. We

choose depths Vdw = 1.7Er and Vlatt = 2Er, for which we observe a tunneling rate of

J = 2π × 193(4) Hz during the beamsplitter operation (Figure 6.3), in reasonable agree-
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Figure 6.3: Rabi oscillations in the double-well. A single particle is initialized on the right
side of the double-well and oscillates coherently between the two wells with fitted tunneling
rate J = 2π × 193(4)Hz and contrast of 95(1)%.

ment with an exact diagonalization predicting J = 2π× 170Hz. In the beamsplitter poten-

tial, the energy gap to the first excited band is∼2π× 1.3 kHz, and states outside the ground

band do not contribute significantly to the dynamics.

6.4 Many-particle interference of massive particles

The projected potential allows the realization of an individual double-well in the optical

lattice. We verify the balance between the two sides of the double-well via single-particle

Rabi oscillations, as shown in Figure 6.3. A single column of atoms is initialized in a deep

optical lattice with Vx = Vy = 45Er and the double-well is ramped on to overlap the right

well with the column of atoms. Vx is then reduced to Vlatt = 2Er in 500µs for a variable

hold time, before ramping back to Vx = 45Er and imaging. The y-lattice remains at 45Er

throughout, and we observe decoupled Rabi oscillations in each row. In order to mitigate

preparation and detection errors, we post-select outcomes with exactly one particle per row.

Figure 6.3 shows resonant Rabi oscillations averaged over two adjacent rows with a fitted
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Figure 6.4: Hong-Ou-Mandel interference of bosonic atoms. Two bosonic atoms initialized
on either side of the double-well interfere and the coincidence detection P(1, 1) oscillates
at 2π× 772(16)Hz ≈ 4J . At the beamsplitter times t(n)BS , P(1, 1) almost fully vanishes due
to bosonic quantum statistics and takes on a residual value of 0.05(2).

contrast of 95(1)%.

Hong-Ou-Mandel interference of massive bosonic particles occurs when the atomic

beamsplitter is initialized with one particle on each side (Figure 6.4). While the particles

are tunneling in the double-well, the probability of coincidence detection P(1, 1) oscillates

at 2π × 772(16)Hz ≈ 4J with full amplitude and is minimized for times t = t
(n)
BS =

2π(2n−1)
8J

, with n = 1, 2, ... corresponding to beamsplitter operations. As above, we post-

select outcomes with even atom numbers and average dynamics over two adjacent rows. At

the first realization of the beamsplitter at time tBS = t
(1)
BS , we observe a residual P(1, 1) =

0.05(2). The almost complete suppression of coincidence detections is a clear consequence

of the bosonic quantum statistics and is the key to many-body interference experiments

described in chapter 8.
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6.5 Interference contrast

To determine the contrast of single-particle Rabi oscillations (Figure 6.3) and HOM-

interference (Figure 6.4) we use Bayesian inference for the fit to the measured parity, which

is more robust than a least-squares fit in situations where error probabilities are small and

the visibility is close to 1. This approach prevents unphysical fits that extend past the possi-

ble bounds of the measurement and appropriately adjusts the error bars for points measured

to lie near the physical bound. For each time point, we report the median and the 1σ (68 %)

confidence interval of a Beta-distribution β(p,m,N) for m successful outcomes in N ex-

perimental runs. The fitted sine curves in Figures 6.3 and 6.4 are maximum-likelihood

fits to the Beta-distributions at each time point, which are determined by maximizing the

product of all the Beta-distributions where the fitted curve samples them [130].

The measured Hong-Ou-Mandel interference contrast of 95(3) % indicates a high level

of control [42, 43]. Several sources might contribute to the residual P(1, 1) after the beam-

splitter operation.

Potential imperfections The leading order imperfection of the projected double-well po-

tential are imperfect zero-crossings in the electric field, resulting in energy offsets between

the two sides of the double-well. At the double-well depth for our beamsplitter operation,

we observe offsets of δ ≈ 2π × 50 Hz ≈ J/4 or less, which do not significantly affect the

HOM interference contrast (see Figure 6.5).

Alignment stability For the balanced beamsplitter operation it is critical to avoid en-

ergy offsets between the two sides of the double-well. The projected potential is chosen

such that the energy levels on either side of the double-well are first-order insensitive to
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Figure 6.5: Fidelities of the beamsplitter operation. Finite interactions and energy offsets
due to imperfections in the double-well potential reduce the Hong-Ou-Mandel interference
contrast, as measured by the probability to detect even atom numbers at the beamsplitter
time tJ = 2π

8
. For a beamsplitter operation starting with one atom on each side of the

double-well and typical experimental parameters J = 2π × 200Hz, U = 2π × 70Hz, and
offset δ = 2π × 50Hz (corresponding to U/J = 0.3 and δ/J = 0.25, indicated by the
gray bar), the interference contrast is expected to be reduced by ∼0.6%. This simulation
is performed within the Bose-Hubbard model and does not take the effects of higher bands
into account.

displacements between the optical lattice and the DMD-generated potential. At the cho-

sen depths for the beamsplitter operation, a relative shift of 0.1 sites leads to an offset of

δ ≈ 2π × 20Hz. In the experiment, we achieve a relative position stability of 0.04 sites

RMS or better and fluctuations in the alignment do not create relevant offsets on the scale

of J ≈ 2π × 200Hz.

Interaction effects Interactions during the beamsplitter operation potentially reduce the

HOM interference contrast. We minimize interactions by performing all experiments in a

weak out-of-plane confinement of ωz = 2π × 800Hz. During the beamsplitter operation

we achieve an interaction of U = 2π × 70Hz (measured with photon-assisted tunneling in

a deep double-well and extrapolated to lower depths), corresponding to U/J = 0.3. This
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residual interaction reduces the HOM interference contrast by ∼0.6 % (see Figure 6.5).

Coherent admixture of higher bands Interactions of two particles on the same site dis-

tort the particles’ wavefunctions and coherently admix higher bands. This wavefunction is

thus different from that of a single particle, restoring some distinguishability to the bosonic

atoms. The dominant contribution of higher bands occurs in the z-direction, along which

the confinement is weakest, and the second excited band is admixed to the wavefunction.

The admixture is ε ≈ ( U
2ωz

)2 = ( 2π×70Hz
2×2π×800Hz

)2 = 0.2 %.

Taking into account the above considerations, the expected HOM interference contrast

in the beamsplitter operation for two atoms is greater than ∼98 %, slightly larger than the

observed contrast 95(1) %.

6.6 Multi-particle Hong-Ou-Mandel interference

We have probed bosonic HOM interference for more general initial states than one

boson per site [131, 132]. Figure 6.6 shows the HOM process for a double-well initial-

ized with two particles per site. Bosonic interference results in an output state of all even

combinations, and the beamsplitter transformation 6.1 predicts

|2, 2〉 →
√

3

2
√

2
(|4, 0〉+ |0, 4〉) +

1

2
|2, 2〉 , (6.6)

where |nL, nR〉 labels a state with nL particles on the left and nR particles on the right side

of the double-well.

The presence of weak interactions U/J ≈ 0.3 modifies the expected outcome slightly,

as shown in Figure 6.6. Experimentally, we measure the number statistics of the output
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Figure 6.6: 4-particle Hong-Ou-Mandel interference. a) Initializing the double-well with
two particles on each side, the beamsplitter operation is expected to produce superposi-
tions of all combinations of even atom numbers. b) Expected (blue) and measured (red)
occupations after the beamsplitter operation.

state by loading the double-well with two particles per site from an n = 2 Mott insula-

tor. After the beamsplitter operation, we project a narrow “wall” potential between the

two sides of the double-well before turning off the lattice and letting atoms expand in the

direction of the double-well before imaging. Similarly to the full counting procedure in

chapter 4, we circumvent parity projection and obtain full counting statistics for each site.

The measured number statistics (red data points in Figure 6.6) display more outcomes with

odd atoms numbers (|1, 3〉) than expected from the single-band Bose-Hubbard simulation.

The discrepancy is potentially due to increased contributions from higher bands at the large

interaction energies up to 6U ≈ 2π × 420Hz. Nevertheless, the probability of 0.80(4)

of measuring an even number of bosons after the beamsplitter is a strong indication of

4-particle Hong-Ou-Mandel interference.
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The full contrast interference of massive bosonic particles highlights the high level of

control over coherent few-particle dynamics in DMD-generated potentials. We leverage

this control in chapter 8 to measure the quantum mechanical purity of many-body states.
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Part III

Measuring entanglement entropy
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Chapter 7

Entanglement entropy

7.1 Entanglement in different physical systems

Entanglement is one of the most counterintuitive aspects of quantum mechanics, as en-

tangled objects can be correlated more strongly than allowed by classical, local theories

[19]. A maximally entangled Bell pair of spins shared between two observers, for exam-

ple, is perfectly correlated in any measurement basis chosen by the observers [133]. The

experimental observation of such correlations violating classical bounds, for example Bell

or CHSH inequalities [134], rules out “hidden variable” theories and confirms quantum

mechanics as a correct description of nature on a fundamental level [135].

The “spooky action at a distance” between entangled objects can also be of practical

significance: Novel schemes in quantum information processing and quantum communi-

cation rely on the non-local character of shared, entangled states to perform tasks that are

impossible classically. The robust generation and distribution of entangled states is one of

the central goals of applied quantum science [20].
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In this context, synthetic quantum systems such as cold atoms [5, 1], photonic networks

[136], and some microscopic solid state devices [2] have unique advantages: their almost

arbitrary control and detection of single particles, experimental access to relevant dynam-

ical time scales, and isolation from the environment. In these systems, specific entangled

states of few qubits can be created. Deterministic two-qubit gate operations, for example in

trapped ion systems, can generate highly entangled states such as the Greenberger-Horne-

Zeilinger (GHZ) state [24]. Stochastic methods to generate entanglement, through optical

parametric downconversion [137] or projective measurements [138] are frequently used in

photonic systems.

In contrast to these few-qubit states, where particles can be identified unambiguously,

entanglement is more difficult to quantify in systems of delocalized particles [22]. For

many itinerant indistinguishable particles, massive entanglement in the spatial degrees of

freedom of all particles can emerge through the interplay of tunneling, quantum statistics

and interactions. Such entanglement can be present in strongly correlated condensed mat-

ter systems or synthetic quantum matter, for example ultracold atoms in optical lattices

[139]. Because indistinguishable particles, such as spinless bosons, cannot be identified

by their position or other labels, entanglement between subsystems or regions, rather than

individual constituents has to be considered.

7.2 Entropy of entanglement

A general way of quantifying entanglement is provided by its relation to quantum me-

chanical purity [19]: For a pure quantum state, entanglement between two subsystems is

manifest in coherent correlations between two parts of the system. However, if an observer
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A B
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TracePure

Figure 7.1: Entanglement and quantum purity. The subsystem purity for a state |Ψ〉 is
inherently connected to the presence of entanglement. Subsystems A and B are entangled
if quantum correlations (indicated by arrows) span their boundary (left). Tracing over
subsystem B (that is, ignoring all information about B), puts subsystem A into a statistical
mixture ρA, to a degree given by the amount of entanglement present. Non-entangled states,
on the other hand, can be written as product states of subsystem states, which remain pure
upon partial tracing (right). Determining the global and subsystem purity hence provides a
path to measuring entanglement.

performs measurements on one of the subsystems only, while completely ignoring the state

of the other, such quantum correlations appear as classical, incoherent fluctuations. A sub-

system of an entangled, pure quantum mechanical state hence appears as a mixed state

(Figure 7.1). This classical mixture in a density matrix ρ can be quantified by measuring

the quantum purity, defined as Tr(ρ2). For a pure quantum state Tr(ρ2) = 1, whereas for

a mixed state Tr(ρ2) < 1. In the case of a product state, the subsystems A and B of a

many-body system AB described by a wavefunction |ψAB〉 are individually pure as well,

i.e. Tr(ρ2A) = Tr(ρ2B) = Tr(ρ2AB) = 1 (Figure 7.1). Here the reduced density matrix of A

is ρA = TrB(ρAB), where ρAB = |ψAB〉〈ψAB| is the density matrix of the full system. TrB

indicates tracing over or ignoring all information about the subsystem B. For an entangled

state, the subsystems are less pure than the full system as the correlations between A and

B are ignored in the reduced density matrix, Tr(ρ2A) = Tr(ρ2B) < Tr(ρ2AB) = 1.
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The emergence of classical mixtures due to entanglement and partial measurements

leads to the concept of entropy of entanglement. This entropy associated with quantum

correlations is fundamentally different from classical entropy: It can be non-extensive,

such that a subsystem can carry more entropy than the full system, which may even be in a

zero-entropy, pure state.

Most commonly, the entanglement entropy is quantified in terms of the von Neumann

entropy for the subsystem density matrix ρA as

SV N = −Tr(ρA ln ρA). (7.1)

The very general property of entanglement entropy arising from partial measurements on

entangled systems applies to an extreme variety of systems, including few-qubit systems,

extended many-body states, and cosmological objects. For example, the question of what

happens if part of an entangled system crosses the event horizon of a black hole and in-

formation appears to be lost entirely, has triggered significant progress in quantum gravity

[28].

7.3 Entanglement entropy in many-body systems

In the context of condensed matter physics, recent theoretical developments point to

entanglement entropy as a powerful means to characterize many-body states [22]. This

is clear for phases for which local observables do not show unambiguous signatures of the

nature of the state and a local order parameter in the Landau-Ginzburg framework cannot be

defined. For example, fractional quantum Hall states [32, 31, 140] or spin liquids [141, 142]

have no clear manifestation in local observables and are most appropriately characterized
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subsystem B

l
subsystem A

Figure 7.2: Scaling laws of entanglement entropy. Entanglement between subsystems A
and B originates from correlations across the surface between the two systems, which are
limited in range by the correlation length ξ. For finite correlation lengths, an area law
scaling of the entanglement between A and B is expected.

by their non-local entanglement.

Entanglement entropy can also be used to identify quantum phase transitions. As op-

posed to diverging correlations, which are also present for classical phase transitions, entan-

glement entropy uniquely captures the quantum mechanical aspects of a phase transition.

Its scaling near critical points is a direct signature of a system’s universality class [26].

Sharp features in the entanglement between neighboring sites or the entropy of a single lat-

tice site are predicted to occur at quantum critical points [143, 144]. Analytic and numerical

results have been obtained for the behavior of entanglement entropy in many models, in-

cluding Ising and Heisenberg spin systems and fermionic and bosonic lattice models (see

references in [22]).
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7.4 Scaling laws

Of fundamental interest in the theoretical analysis of entanglement entropy is its scaling

with system size [145]. The typically considered scenario is sketched in Figure 7.2: A

d-dimensional many-body system in a pure quantum state of interest is divided into two

subsystems A and B, with the linear size l of the smaller subsystem large compared to the

lattice constant, but small in comparison to the full system size L. An important question

is then how the entanglement entropy of region A, S(A), scales with the subsystem size l.

The encountered scaling laws can be classified as area laws or volume laws. In a system

obeying an area law, the entropy of entanglement is expected to grow as the surface area W

of the boundary between subsystems, or as S ∝ ld−1 in the linear subsystem size l. Volume

laws predict a scaling S ∝ ld.

Qualitative arguments for the origin of area laws can be made by considering for exam-

ple bounded regions in spin systems [146]. Information about one subsystem from another

can only be encoded on lattice sites within the correlation length ξ from the boundary, as

shown in Figure 7.2. The number of sites contributing to quantum correlations across the

boundary is then proportional to the shell volume ∼ξW , and for a finite correlation length

an area law S ∝ W ≈ ld−1 should hold. The precise scaling laws for different systems in

and out of equilibrium can be derived from conformal field theories. Quantitative measure-

ments of the entanglement entropy can give access to the central charge c of the underlying

conformal field theory in critical phases [147], and anyonic statistics can be inferred from

the entanglement entropy in topological systems [32, 31].

Within the Bose-Hubbard model, scaling laws for entanglement entropy can be used

directly to distinguish many-body phases. In the gapped Mott insulator phase, correlations
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are short range and an area law strictly holds. In the atomic limit of J = 0, the Mott insu-

lating state is in fact a product state and the entanglement between distinct spatial regions

vanishes. For one-dimensional Bose-Hubbard systems in the gapless superfluid regime, on

the other hand, the entanglement is finite. The area law, which in one dimension implies

size-independent entanglement across the point contacts between A and B, is expected

to be weakly violated and the entanglement entropy grows logarithmically as S ∝ log l

[147].The weak dependence of the entanglement entropy on subsystem size in the super-

fluid regime is in fact a very special property of the ground state. Generic, highly excited

states of the Bose-Hubbard Hamiltonian will display a volume law, for which S ∝ l.

For the scaling laws considered here, the subsystems are typically assumed to be sim-

ply connected and continuous. However, more interesting partitioning schemes, such as

alternating subsystems can be considered to detect for example entanglement in dimerized

lattices [148]. It should be noted that entanglement entropy is only meaningful when con-

sidered with respect to a particular spatial partitioning of the system. It is possible for states

which are not entangled in a non-local basis (for example a BEC with all particles in the

q = 0 momentum eigenstate) to still exhibit entanglement entropy when a particular spatial

partitioning is considered.

7.5 Experimental verification of entanglement

Despite the growing importance of entanglement in theoretical physics, current con-

densed matter experiments do not have a direct probe to detect and measure entangle-

ment. In synthetic few-qubit systems, entanglement can be detected by entanglement

witnesses [24]: Specifically constructed observables establish a sufficient condition for
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non-separability and verify the presence of entanglement. Such witness measurements are

state-specific, and do not provide a meaningful scale for the amount of entanglement. For

arbitrary states, an exhaustive reconstruction of the entire quantum state through tomog-

raphy [149] can be used to measure entanglement. This has been accomplished in small

systems of photonic qubits [150] and trapped ion spins [25], but there is no known scheme

to perform tomography for systems involving itinerant delocalized particles.

In the following, we present a method to directly measure entanglement in such itin-

erant systems, in our case one-dimensional Bose-Hubbard chains. Our method relies

on many-body interference of two identical copies of a quantum state akin to Hong-Ou-

Mandel interference. Chapter 6 has introduced the experimental framework for bosonic

many-particle interference in optical lattices. Chapter 8 describes direct measurements of

quantum state purity and entanglement entropy via collective measurements in two-copy

systems [44, 29, 30].
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Chapter 8

Measuring entanglement entropy via

many-body interference

Portions of this chapter have appeared in:

“Measuring entanglement entropy in a quantum many-body system”, R. Islam,
R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, Nature
528, 77-83 (2015).

In this chapter, I present quantitative measurements of entanglement in one-dimensional

bosonic systems. Using DMD-generated potentials, we prepare and interfere two copies of

the same many-body state, which enables us to measure quadratic functions of the density

matrix [44, 29, 151, 30, 152, 137, 153]. We measure the quantum purity, Rényi entropy,

and mutual information and observe the emergence of entanglement in motional degrees

of freedom as a Bose-Hubbard system crosses from the Mott insulator to the superfluid

regime.
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8.1 Bipartite entanglement and quantum purity

The fundamental connection between entanglement entropy in an extended system and

the quantum mechanical purity of its subsystems was introduced in chapter 7: Quantum

correlations, or entanglement, across the boundary between two spatially distinct regions

A and B lead to a reduction of the quantum mechanical purity of the subsystems. For

a globally pure entangled state (Tr(ρ2AB) = 1), partial measurements on one subsystem

result in mixed states in the subsystems with density matrices ρA/B . Even if the many-

body state is mixed (Tr(ρ2AB) < 1), it is still possible to measure entanglement between

the subsystems [19]. To prove this entanglement, it is sufficient [154] to show that the

subsystems are less pure than the full system, i.e.

Tr(ρ2A) < Tr(ρ2AB),

Tr(ρ2B) < Tr(ρ2AB). (8.1)

These inequalities provide a tool for detecting entanglement in the presence of experimental

imperfections. Furthermore, quantitative bounds on the entanglement present in a mixed

many-body state can be obtained from these state purities [155].

Equation (8.1) can be framed in terms of entropic quantities [19, 154]. A useful and

well-studied quantity is the n-th order Rényi entropy,

Sn(A) =
1

1− n
ln Tr(ρnA). (8.2)

The second-order (n = 2) Rényi entropy and purity are related by S2(A) = − ln Tr(ρ2A).

The subsystem Rényi entropy S2(A) provides a lower bound for the von Neumann en-

tanglement entropy SV N(A) = S1(A) = −Tr(ρA ln ρA) extensively studied theoretically.

Note that we use logarithms to base e throughout.
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The Rényi entropies play an important role in theoretical condensed matter physics, as

they can be used to extract information about the “entanglement spectrum” [156], which

can provide more information about the quantum state than just the von Neumann entropy.

In terms of the second-order Rényi entropy, the sufficient conditions to demonstrate entan-

glement [154, 19] become S2(A) > S2(AB), and S2(B) > S2(AB), i.e. the subsystems

have more entropy than the full system. These entropic inequalities are more powerful in

detecting certain entangled states than other inequalities like the Clauser-Horne-Shimony-

Holt (CHSH) inequality [152, 154].

8.2 Probing indistinguishability by interference

In order to experimentally detect Rényi entropies, it is necessary to measure polyno-

mial functions of the density matrix, such as the purity Trρ2, for a many-body system and

its subsystems. Probing such quantities, which depend on populations and coherences of

the density matrix, is challenging in many-body systems with large-dimensional Hilbert

spaces. For simple single- or two-particle Fock states, Hong-Ou-Mandel interference was

introduced in chapter 6 as a metric for quantum purity. To see how such an interferomet-

ric measurement of indistinguishability might be extended to more interesting many-body

states, consider the situation shown in Figure 8.1: A quantum system consisting of two

segments, here two potential wells with a single spatial mode each, is prepared with the

same arbitrary bosonic quantum state |Ψ〉 in each copy.

A useful basis to describe the two-copy state |θ〉 = |Ψ〉 ⊗ |Ψ〉 in terms of the bosonic
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Figure 8.1: Measuring indistinguishability of many-body states. The combined state
|θ〉 = |Ψ〉 ⊗ |Ψ〉 of a two-copy system prepared with the same many-particle quantum
state |Ψ〉 in each copy can be expressed in the basis of symmetric |S〉 and antisymmet-
ric |AS〉 states. Because the global state |θ〉 must be invariant under the transformation
a†1 ↔ a†2, only states with even occupation of the state |AS〉 are populated. A discrete
Fourier transform maps |θ〉 to a state with only even particle numbers in copy 2. The
occupation q, r, s . . . of the symmetric mode is not constrained.

creation operators a†i acting on copy i are the symmetric and antisymmetric combinations

|S〉 = (a†1 + a†2)/
√

2,

|AS〉 = (a†1 − a
†
2)/
√

2. (8.3)

The full two-copy state can then be expressed in terms of the states

(1/
√

2)c+l(a†1 + a†2)
c(a†1 − a

†
2)
l|0〉 (8.4)

with l particles in the antisymmetric mode and c particles in the symmetric mode.

Since the full system contains the same bosonic state |Ψ〉 in each copy, it is invariant

under a swap of states between the copies, that is under the transformation a†1 ↔ a†2. The
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two-copy state hence only populates the subset of states for which l, the number of particles

in the antisymmetric mode, is even.

This restriction to the symmetric subspace can be measured by interfering the two

copies of |Ψ〉, as described by a discrete Fourier transform (DFT)

(a†1 + a†2)/
√

2→ a†1,

(a†1 − a
†
2)/
√

2→ a†2. (8.5)

Under this operation, the modes |S〉 and |AS〉 are mapped to copy 1 and 2, respectively

(1/
√

2)c+l(a†1 + a†2)
c(a†1 − a

†
2)
l|0〉 → (a†1)

c(a†2)
l|0〉, (8.6)

and the particle number in well 2 after the interference step reveals the initial occupation

of the antisymmetric mode (Figure 8.1).

Performing a DFT between two quantum states provides a general framework to verify

the indistinguishability of quantum states: If the two copies of the quantum system are

prepared in the same pure quantum state, the detected particle number in copy 2 after the

DFT is always even. On the other hand, if the initial quantum states are not perfectly

pure or perfectly identical, states with odd particle number in copy 2 after the DFT will be

populated. Comparing the relative occurrence of odd and even particle numbers in copy 2

hence quantifies the indistinguishability of the initial quantum states.

This scheme applies to any bosonic state. In particular, if the two copies are prepared

in coherent states |α〉 with fluctuating particle numbers but well-defined, identical phases,

the occupation of the antisymmetric mode is zero, and no particles are detected in copy

2. If the coherent states become squeezed, pairs of particles will appear in copy 2, but

no odd occupation numbers are possible as long as the initial states remain identical. For

105



initial Fock states of individual particles, the DFT corresponds to the Hong-Ou-Mandel

interference of bosons discussed in chapter 6.

8.3 Measuring purity

A quantitative description of many-body Hong-Ou-Mandel interference can be given in

terms of the swap operator, which exchanges any two quantum states between two copies:

V2(|Ψ1〉 ⊗ |Ψ2〉) = |Ψ2〉 ⊗ |Ψ1〉, (8.7)

where |φ〉 ⊗ |χ〉 denotes a system with state |φ〉 in copy 1 and |χ〉 in copy 2.

Two successive applications of the swap operator leave the system unchanged, V 2
2 = 1.

Therefore V2 has eigenvalues±1, corresponding to subspaces of the 2-copy system that are

symmetric or antisymmetric with respect to the state exchange between the systems. It

can be shown that Tr(ρ1ρ2) = Tr(V2(ρ1 ⊗ ρ2)), that is the expectation value of the swap

operator measures the quantum state overlap between the two copies (see appendix A).

Now if the states in the two copies are the same, ρ1 = ρ2, then Tr(ρ2) = Tr(V2(ρ⊗ρ)), i.e.

the purity of a single system is equal to the expectation value of V2 in the two-copy system

[44, 30].

As shown previously, the discrete Fourier transform (8.5) maps the antisymmetric and

symmetric subspaces of V2 to states with odd and even atom numbers in copy 2 [30].

Assigning a parity Pi, equal to ±1 for an even or odd number of particles in copy i after

the DFT, the expectation value of V2 can be evaluated and the purity of the initial states ρ

is given by

Tr(ρ2) = Tr(V2(ρ⊗ ρ)) = 〈P2〉. (8.8)
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copy 1

copy 2

no phase relation (number state)arbitrary pure state

Figure 8.2: Beamsplitter for many-body interference. Left: With the beamsplitter opera-
tion and proper phase shift operations, the discrete Fourier transform probes quantum state
overlap and quantum purity by measuring the average parity in output port 2 of the beam-
splitter. For pure identical incident states, the atom number is always even in output 2.
Right: For states with well-defined particle number N , no macroscopic phase relationship
exists between the input states, and the phase shifts in the input/output ports have no phys-
ical significance. Both outputs are equivalent and may be used to measure the expectation
value 〈V2〉 of the swap operator.

The complex task of measuring quadratic functions of a density matrix ρ is thus reduced

to the problem of counting particles after a discrete Fourier transform between two copies

of ρ.

The particular role of copy 2 is a consequence of the phases chosen in the discrete

Fourier transform (8.5), which is realized by a beamsplitter operation and phase shifts in

copy 2 (Figure 8.2). The phase shifts ensure the destructive interference of states with

well-defined phase in output port 2 of the beamsplitter. In the case that there is no defined

phase relationship between the initial states in each copy, such as for Fock states, phase

shifts can be omitted and the DFT is replaced by the beamsplitter operation introduced in

chapter 6 (see appendix A). The two copies are then equivalent, and the interference of

indistinguishable states results in even atom numbers in both copies (〈P1〉 = 〈P2〉 = 〈P 〉).
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Figure 8.3: Mulitmode bosonic interference. Two copies of the quantum state |Ψ〉 interfere
by simultaneous application of the beamsplitter transformation to all n modes. The parity〈
p(j)
〉

probes the purity of the density matrix ρj describing the state in each mode j. The
full system and subsystem purity can be obtained from the appropriate product of parities
over individual modes

∏
j p

(j).

We assume this experimentally relevant case from here on.

8.4 Multimode interference

So far we have described the measurement of quantum purity of states restricted to a

single spatial mode. In order to measure entanglement in itinerant systems, it is necessary to

evaluate full system and subsystem purity for states with many spatial degrees of freedom.

The comparison of many-body quantum states by interference can be extended from the

single- to the multimode case (Figure 8.3). Each initial state |Ψ〉 then extends over several

modes j, such as different spin states or lattice sites. In order to measure quantum purity

of the full state |Ψ〉 and its subsystems, the beamsplitter operation is applied to all modes

simultaneously.

The beamsplitter transformation now measures the parity of each mode
〈
p(j)
〉
, giving
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the purity of the single mode density matrix ρj via equation (8.8).

For a subsystem comprised of a set of modes, the purity is given by the product over

mode parities 〈P 〉 =
〈∏

j p
(j)
〉

= Tr(ρ2sub). Arbitrary subsystem sizes and geometries,

including non-contiguous subsystems, can be probed by extracting the appropriate product

of single-mode parities. The full system purity is given by the product over all modes

[29, 30]. In particular, if the two copies are prepared in the same global quantum state,

the two-copy state is symmetric under the simultaneous transformation a†1,j ↔ a†2,j for all

modes j. The parity of the full system is 1 and the summed occupations in each copy after

the beamsplitter are always even.

Several theoretical works have proposed to quantify entanglement via Hong-Ou-Mandel

interference [30, 44, 29, 152]. An experiment can be devised as follows: Two copies of a

bosonic many-body state are prepared and interfered. The resulting HOM interference

contrast, that is the extent to which the outcomes are comprised of even atom numbers, is

a direct measure of the purity of the quantum mechanical states on the inputs. In prod-

uct states, for which the beamsplitter network receives pure quantum states in each mode,

full HOM interference contrast is observed for each mode or set of modes. In entangled

states, interference contrast is reduced for each entangled mode individually. The product

of beamsplitter outcomes over all modes, however, still displays full HOM interference

contrast as the full quantum state is pure. The unique signature of an entangled state is

full contrast HOM interference of the system on a global scale, while the local interference

contrast for each subsystem, or subset of modes, is reduced. This situation requires the out-

comes of beamsplitter operations on different subsystems to be correlated, which precisely

probes the entanglement between subsystems.
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8.5 Collective measurements

The necessity of performing measurements on two copies of a quantum state in order to

quantify entanglement can be understood from considering the notion of entanglement hier-

archies. As there is no direct observable associated with entanglement, the quantification of

the “amount” of entanglement in a system can seem ambiguous at first. A widely accepted

measure of the degree of entanglement is provided by the concept of invariance under local

operations and classical communication (LOCC): The entanglement between two subsys-

tems of a pure state, which are shared between two observers, cannot increase under local

operations (LO), including measurements, applied to each subsystem independently, or by

classical communication (CC) between the observers [157]. Under such conditions, it is

possible to obtain a “less entangled” state from a “more entangled” state, but not vice-versa,

and a hierarchy of entanglement is established [158]. The impossibility for an observer to

create entanglement under LOCC underlies the need to generate and share entanglement

between observers in quantum communication protocols.

Conversely, the requirement that entanglement cannot increase under LOCC severely

restricts the possibilities of measuring entanglement: Any observable chosen to quantify

entanglement in a subsystem has to be invariant under all reversible, local operations [159].

For a single quantum-mechanical system, there is no such observable and full state tomog-

raphy is the only means to quantify entanglement.

A resolution is offered by collective measurements on n-fold copies of the same quan-

tum mechanical state [159]. For n copies of a quantum state, it is possible to construct

non-trivial observables that are invariant under local operations applied to each copy in-

dependently, yet measure the amount of entanglement in the subsystem [30, 160]. In the
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case of n = 2, the swap operator provides an appropriate observable. This operator com-

mutes with any unitary that acts on part of each copy identically, and its expectation value

provides an entanglement measure that respects invariance under LOCC.

The concept of collective measurements can readily be extended to n > 2 copies, for

which n-th order polynomial functions of ρ and hence higher-order Rényi entropies can be

measured.

8.6 Experimental implementation

We probe entanglement in small one-dimensional bosonic systems governed by the

Bose-Hubbard Hamiltonian with tunneling J and on-site interaction U . To initialize two

independent and identical copies of a state with fixed particle number N , we start with a

low-entropy, two-dimensional Mott insulator with unity filling in the atomic limit [55] and

deterministically retain a plaquette of 2×N atoms while removing all others (see chapter 4).

This is illustrated in Figure 8.4 a. The plaquette of 2 × N atoms contains two copies

(along the y-direction) of an N -atom one-dimensional system (along the x-direction), with

N = 4 in this figure. The desired quantum state is prepared by manipulating the depth

of the optical lattice along x, varying the parameter U/Jx where Jx is the tunneling rate

along x. A box potential created by the DMD is superimposed onto this optical lattice to

constrain the dynamics to the sites within each copy. During the state preparation, a deep

lattice barrier separates the two copies and makes them independent of each other. We

rapidly freeze the tunneling along x without destroying the coherence in the many-body

state and apply the beamsplitter along y. Finally, we rapidly turn on a very deep 2D lattice

to suppress all tunneling and detect the number parity (even = 1, odd = −1) at each site.
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Figure 8.4: Many-body interference to probe entanglement in optical lattices. a) We ini-
tialize a 2 × 4 plaquette by sequential cutting procedures with DMD-generated potentials.
b) The centerpiece of many-body interference is the beamsplitter operation, realized in a
double-well potential in the y-direction. In the Mott insulating state, the beamsplitter oper-
ation creates a two-particle superposition state via HOM interference. c) When two copies
of a product state, such as the Mott insulator are interfered, the output states contain even
particle number globally (full system) as well as locally (subsystem), indicating pure states
in both. d) For two copies of an entangled state, such as a superfluid state, the output states
contain even particle number globally (pure state) but a mixture of odd and even outcomes
locally (mixed state). This directly demonstrates entanglement.
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The beamsplitter operation is here applied on all N sites of the system simultaneously.

We can therefore determine the purity of all possible subsystems in a single data set by

using different partitioning schemes in analysis. We construct the parity of a spatial region

by multiplying the parities of all the sites within that region. The average parity over

repeated realizations measures the quantum purity, both globally and locally according to

equation (8.8), enabling us to determine the second-order Rényi entropy globally and for

every subsystem.

The beamsplitter operation required for the many-body interference is realized in a

double-well potential along y, as described in detail in chapter 6 (Figure 8.4 b). The fidelity

of the beamsplitter operation is characterized by the suppression of coincidence detection

P(1, 1) to 0.05(2) for an initial state of one boson per site. The results from this interfer-

ence can be interpreted as a measurement of the quantum purity of the initial Fock state as

measured from the average parity (equation (8.8)), 〈P 〉 = 1− 2× P(1, 1) = 0.90(4). The

imperfections in the beamsplitter operation currently limit the system size in our experi-

ments to 2× 4.

Note that for the experimental measurement of the state overlap Tr(ρ1ρ2) to be mean-

ingful, we have to ensure that the different states ρ1 and ρ2 do not evolve between the

state preparation and the beamsplitter operation, while we ramp to a deep square lattice

and into the double-well potential. It can be shown (see appendix A) that time evolution

which preserves particle configurations, but includes phase accumulation due to gradients

or interactions (as expected for evolution in a deep lattice) does not affect the measured

values of Tr(ρ1ρ2), as long as the evolution is the same in both copies. Differential gradi-

ents of only a few Hz/site along x, for example, can lead to complete loss of the overlap
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Tr(ρ1ρ2) over tens of milliseconds. We therefore keep the time in the deep lattice as short

as possible,∼4 ms. Experimentally, we measure full system purities close to the maximum

expected for the measured beamsplitter fidelity, indicating that no significant differential

evolution takes place between state preparation and the interference, and that many-body

coherence is preserved.

8.7 Entanglement in the ground state

The Bose-Hubbard model provides an interesting system to investigate entanglement.

In optical lattice systems, a lower bound of the spatial entanglement has been previously

estimated from time-of-flight measurements [161] and entanglement dynamics in spin de-

grees of freedom has been investigated with partial state reconstruction [90]. Here, we

directly measure entanglement in spatial degrees of freedom in a site-resolved way. In the

strongly interacting, atomic limit of U/Jx � 1, the ground state is a Mott insulator corre-

sponding to a Fock state of one atom at each lattice site. The quantum state has no spatial

entanglement with respect to any partitioning in this phase – it is in a product state of the

Fock states. As the interaction strength is reduced adiabatically, atoms begin to tunnel

across the lattice sites, and ultimately the Mott insulator melts into a superfluid with a fixed

atom number. The delocalization of atoms creates entanglement between spatial subsys-

tems. This entanglement originates [162, 163] from correlated fluctuations in the number

of particles between the subsystems due to the super-selection rule that the total particle

number in the full system is fixed, as well as coherence between various configurations

without any such fluctuation.

To probe the emergence of entanglement, we first prepare the ground state of the Bose-

114



Mott insulator super�uid
adiabatic melt

mixed

pure

Pu
rit

y

100101102
0

0.3

0.6

0.9

1.2

1.5

U/Jx

Re
ny

i E
nt

ro
py

  S
2

0.3

0.4

0.6

0.8

1

Figure 8.5: Entanglement in the ground state of the 4-site Bose-Hubbard model. As the
interaction strength U/Jx is adiabatically reduced, the Rényi entropy S2(A) of subsystem
A (green and blue) becomes larger than that of the full system (red). This non-extensive en-
tropy demonstrates entanglement in the superfluid phase, generated by coherent tunneling
of bosons across lattice sites. In the Mott insulator phase (U/Jx � 1) the full system has
more Rényi entropy than the subsystems due to classical entropy. The circles are data and
the solid lines are theory calculated from exact diagonalization with an offset to account
for classical entropy. The vertical error bars in all figures indicate 1 σ in combined statis-
tical and systematic errors (see appendix A). Horizontal error bars correspond to a typical
uncertainty in the lattice depth of ±2%.

Hubbard model in both copies by controlling the optical lattice depth along x. In the atomic

Mott limit (Figure 8.4 c), the state is separable. Hence, the interference signal between two

copies should show even parity in all subsystems, indicating a pure state with zero entan-

glement entropy. Towards the superfluid regime (Figure 8.4 d), the buildup of entanglement

leads to mixed states in subsystems, corresponding to a finite entanglement entropy. Hence,

the measurement outcomes do not have a pre-determined parity. Remarkably, the outcomes

should still retain even global parity, indicating a pure global state. Higher entropy in the
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subsystems than the global system cannot be explained classically and demonstrates bipar-

tite entanglement.

Experimentally, we find exactly this behavior for our two 4-site Bose-Hubbard systems

(Figure 8.5). We observe the emergence of spatial entanglement as the initial atomic Mott

insulator melts into a superfluid. The measured quantum purity of the full system is ∼0.6

across the Mott to superfluid crossover, corresponding to a Rényi entropy, S2(AB) ≈ 0.5.

The measured purity deep in the superfluid phase is slightly reduced, likely due to the re-

duced beamsplitter fidelity in presence of increased single site occupation number, heating,

and residual differential gradients between the two copies. The nearly constant global pu-

rity indicates high level of quantum coherence during the crossover. For lower interaction

strength U/Jx (superfluid regime) we observe that the subsystem Rényi entropy is higher

than the full system, S2(A) > S2(AB). This demonstrates the presence of spatial entan-

glement in the superfluid state. In the Mott insulator regime (U/Jx � 1), S2(A) is lower

than S2(AB) and proportional to the subsystem size, consistent with a product state that

has only classical entropy.

The dominant source of errors in these experiments are single-particle loss processes

during state preparation, the experimental sequence, and in the detection process. We sup-

press the associated noise by post-selecting outcomes of the experiment for which the total

number of atoms detected in both copies is even. This constitutes about 60 % of all the data

(see appendix A). The reduced full system purity of∼0.6 is likely limited by measurement

errors due to the finite 95(3) % fidelity of the beamsplitter operation on each site. For a

Mott insulating product state, the expected full system purity is given by the product of

individual parities, 〈P 〉 =
∏

j

〈
p(j)
〉

= 0.904 ≈ 0.66, in good agreement with the exper-
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imentally measured purity in Figure 8.5. The consistency of the measured purity with an

imperfect beamsplitter operation alone suggests a significantly higher purity for the actual

many-body state. The measured full system entropy is a sum of entanglement entropy and

extensive classical entropy caused by beamsplitter imperfections.

The observed subsystem entropies agree very well with the theoretical predictions from

an exact diagonalization (solid lines in Figure 8.5). The only free parameter is a vertical

offset corresponding to the classical extensive entropy caused by beamsplitter imperfec-

tions. We obtain this offset from the average measured full system entropy and scale to the

appropriate subsystem size.

8.8 Multipartite entanglement

Our site-resolved measurement simultaneously provides information about all possible

spatial partitionings of the system. It is hence possible to study interesting partitionings

beyond the case of bi-partite continuous subsystems shown in Figure 8.5.

The left panel of Figure 8.6 shows the entanglement entropy of all possible splittings

in the 4-site system, including non-continuous subsystems of the form ABAB. Data points

for subsystems are connected by lines, where line color indicates subsystem size, and red

circles show the full system entropy across the superfluid-Mott insulator crossover.

In the Mott phase (U/Jx � 1), the measured entropy is directly proportional to sub-

system size and always smaller than the full system entropy, indicating extensive classical

entropy and lack of entanglement. In the superfluid phase (small U/Jx ), however, all pos-

sible subsystems have more entropy than the full system. The prepared state can hence

not be written as a product state with respect to any bi-partitioning and exhibits genuine
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Figure 8.6: Multipartite entanglement. Left: Second-order Rényi entropy of all possible
bi-partitionings of the system. In the superfluid regime (small U/Jx), all subsystems (data
points connected by green and blue lines) have more entropy than the full system (red
circles), indicating full multipartite entanglement between the four lattice sites. In the
Mott insulating regime (U/Jx � 1), the entropy of each subsystem is proportional to its
size (indicated by line color), corresponding to extensive entropy. Right: The values of
all Rényi entropies of the particular case of U/Jx ≈ 1, demonstrating spatial multipartite
entanglement in the superfluid.

multipartite entanglement, with all sites being entangled with each other [29, 164]. The

right panel of Figure 8.6 shows this explicitly for U/Jx ≈ 1.

8.9 Mutual information

By measuring the second-order Rényi entropy we can calculate other useful quantities,

such as the associated mutual information IAB = S2(A) + S2(B) − S2(AB). Mutual in-

formation captures quantum and classical correlations between subsystems. In the case of

pure quantum states with entanglement between subsystems A and B, S2(A) = S2(B) and
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Figure 8.7: Rényi mutual information in the ground state. a) Mutual information is the
difference between the summed entropy S2(A) + S2(B) for the partitions shown and the
entropy of the full system S2(AB) shown in red. In the Mott insulator phase (U/Jx � 1)
the sites are not correlated, and IAB ≈ 0. Correlations start to build up for smaller U/Jx,
resulting in a non-zero mutual information. b) Top: In the Mott insulator phase classical
entropy dominates over entanglement entropy and S2(A) and S2(B) increase with the size
of the subsystem. The mutual information IAB ≈ 0. Bottom: SA, SB show non-monotonic
behavior, due to the dominance of entanglement over classical entropy, which makes the
curves asymmetric. IAB restores the symmetry by removing the classical uncorrelated
noise. The solid lines are linear (top) and quadratic (bottom) fits as guide to the eye.

S2(AB) = 0, so IAB = 2S2(A). For a completely uncorrelated system with extensive en-

tropy, on the other hand, S2(AB) = S2(A) + S2(B), and the mutual information vanishes.

Mutual information exhibits interesting scaling properties with respect to the subsystem

size, which can be key to studying area laws in interacting quantum systems [146]. In some

cases, such as in the “data hiding states” [165], mutual information is more appropriate

than the more conventional two-point correlators which might take arbitrarily small values

despite the presence of strong correlations. Mutual information is also immune to the

extensive classical entropy present in the experiments, and hence is of practical use in
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experimental studies of larger systems.

We explore the behavior of the mutual information in the superfluid-insulator crossover

in the 4-site system in Figure 8.7 a. For the various partitionings shown, we plot the sum

of the subsystem entropies, S2(A) + S2(B), and the entropy of the full system S2(AB).

Mutual information is the difference between them. We find that for the Mott insulator

state (U/Jx � 1), the entropy of the full system is the sum of the entropies for the subsys-

tems. The mutual information IAB ≈ 0 for this state, consistent with a product state in the

presence of extensive classical entropy due to measurement imperfections. At U/Jx ≈ 10,

correlations between the subsystems begin to grow as the system adiabatically melts into a

superfluid, resulting in non-zero mutual information, IAB > 0.

It is instructive to investigate the scaling of Rényi entropy and mutual information with
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subsystem size [146, 145] since in larger systems they can characterize quantum phases,

for example by measuring the central charge of the underlying quantum field theory [27].

Figure 8.7 b shows these quantities for continuous subsystems A and B, as the boundary

between them is translated between the edges of the system.

In the Mott insulating regime (upper panel), the subsystem entropies S2(A) and S2(B)

are linear in their subsystem size, consistent with a product state and classical, extensive

entropy introduced by measurement imperfections. The mutual information shown in red

is not sensitive to extensive entropy, and IAB ≈ 0 for all positions of the boundary.

The superfluid at U/Jx ≈ 1 displays a very different scaling of the entropies, as shown

in the bottom panel of Figure 8.7 b. Here, the subsystem entropies S2(A) and S2(B) are

dominated by entanglement entropy and subsystem entropies are much larger than in the

Mott insulator. The measured Rényi entropy first increases with the system size, then falls

again as the subsystem size approaches that of the full system. This non-monotonicity is a

signature of the entanglement entropy, as for a pure state the entropy of the subsystems has

to be equal (S2(A) = S2(B)), and is set by the size of the smaller subsystem. The entropy

vanishes completely when the subsystem size is zero or the full system. The measured

entropies display a small skew due to the presence of extensive classical entropy, as in the

Mott insulator. This asymmetry is absent in the mutual information, which is maximized

when the two subsystems A and B each comprise one half of the system.

The mutual information between two subsystems originates from the correlations across

their separating boundary. We probe this effect by comparing partitionings for a superfluid

at U/Jx ≈ 1 in Figure 8.8 a. We show the mutual information for partitionings from Fig-

ure 8.6 as a function of their boundary area, irrespective of subsystem size. Increasing the
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surface area between subsystems increases the mutual information, as more correlations are

interrupted by the partitioning. The partitioning into discontinuous regions ABAB maxi-

mizes the surface area between the subsystems and the mutual information between them.

Mutual information also elucidates the onset of correlations between various sites as

the few-body system crosses over from a Mott insulator to a superfluid phase. Figure 8.8 b

shows the mutual information between two individual lattice site versus their separation.

In the Mott insulator phase (U/Jx � 1) the mutual information between all sites van-

ishes. As the particles start to tunnel only the nearest neighbor correlations start to build

up (U/Jx ≈ 12) and the long range correlations remain negligible. Further into the super-

fluid phase, the correlations extend beyond the nearest neighbor and become long range for

smaller U/Jx. These results suggest disparate spatial behavior of the mutual information in

the ground state of an uncorrelated (Mott insulator) and a strongly correlated phase (super-

fluid). For larger systems this scaling behavior can be exploited to identify quantum phases

and the onset of quantum phase transitions.

8.10 Non-equilibrium entanglement dynamics

The measurement of entanglement entropy is particularly instructive for dynamics far

away from the ground state, such as in many-body quenches. In generic systems, the en-

tropy of entanglement between subsystems grows linearly in time after a quench [166], for

example from the strongly to the weakly interacting regime. Qualitatively, this behavior

can be understood from the light-cone like spreading of correlations that entangle a sub-

system with an increasingly large fraction of the full system. The maximum amount of

entanglement is then limited by the size of the subsystem, and the entanglement entropy
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Figure 8.9: Entanglement entropy in a few-particle quench. Dynamics of two atoms in
two sites after a sudden quench of the Hamiltonian from U/Jx � 1 to U/Jx ≈ 0.3, with
Jx ≈ 2π × 210 Hz. The system oscillates between the Mott-like state (I) and quenched
superfluid states (II, III). Solid lines are the theory curves with vertical offsets to include
the classical entropy.

will saturate to this value in a state that appears to be thermal in local observables [167].

The linear growth of entanglement entropy in quenches often renders numerical sim-

ulations of the dynamics impossible. Entanglement entropy is precisely the quantity that

determines the size of the relevant Hilbert spaces in numerical techniques such as the time

dependent Density Matrix Renormalization Group (tDMRG) method [168]. Dynamics

with large entropy require unfeasibly large computational spaces, establishing an effective

upper limit on how much entanglement entropy can be tolerated in numerical simulations,

or equivalently a maximum time over which the dynamics can be calculated [169].
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We experimentally study entanglement dynamics for the simple case of two particles

oscillating in a double-well described by the Bose-Hubbard model, shown in Figure 8.9.

We start in the Mott insulating regime (U/Jx � 1) with a particle localized on either side of

the double-well, and suddenly quench the interaction parameter to a low value, U/Jx ≈ 0.3.

The non-equilibrium dynamics leads to oscillations in the second-order Rényi entropy of

the subsystem, while the full system assumes a constant value originating from classical

entropy.

The quantum state of the system oscillates between unentangled (particles localized in

separate wells) and entangled states in the Hilbert space spanned by |1, 1〉, |2, 0〉 and |0, 2〉.

Here, |m,n〉 denotes a state withm and n atoms in the two subsystems (wells), respectively.

Starting from the product state |1, 1〉 the system evolves through the maximally entangled

states |2, 0〉 + |0, 2〉 ± |1, 1〉 and the symmetric, HOM-like state |2, 0〉 + |0, 2〉. In the

maximally entangled states the subsystems are completely mixed, with a probability of 1/3

to have zero, one, or two particles. This measurement also demonstrates entanglement in

HOM-like interference of two massive particles.

In this experiment, the size of the Hilbert space of the full system is only 3. We there-

fore observe oscillatory dynamics, with a clear revival after a time set by the inverse energy

spacing of the eigenstates, at which the system returns to its non-entangled initial state.

These oscillatory dynamics give way to the typical, saturated quench behavior of many-

body states as the size of the system increases. Already for 6 bosons on 6 sites, the dimen-

sion of the Hilbert space is 462, and no revivals are expected to occur on experimentally

relevant timescales.
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8.11 Measurement precision

Entanglement entropy is a direct measure of how much of the available configuration

space a particular quantum state populates. Observations of highly entangled states hence

typically require resource-intensive measurements on high-dimensional spaces.

We encounter this complication in the regime of large entanglement entropy: As the

entanglement entropy between subsystems increases, the systems samples an increasingly

large number of microstates. The probability of detecting odd parity after the beamsplitter

pulse, podd = 1/2(1 − e−S), exponentially approaches 1/2. Extremely small statistical

errors on podd are hence required to determine the entropy accurately. In the limit of large

entropies, the number of measurements required to obtain a fractional error ε in the entropy

is given by N ≈
(
1
ε

)2 e2S

S2 . Determining an entropy of 4 with a fractional error of ± 10 %

hence requires ∼20, 000 measurements. Even with massive parallelization, this is likely

near the limit of statistics obtainable with current ultracold atom experiments.

However, we emphasize that measuring large entanglement entropy only requires smaller

statistical errors. In contrast to state tomography, the number of operations is independent

of system size and entanglement entropy. Verifying that a many-body state is pure (i.e. the

probability of odd outcomes is close to zero) remains efficient even for large systems with

significant entanglement between subsystems.

8.12 Conclusions

Using generalized Hong-Ou-Mandel interference of many-body states, we have per-

formed a direct measurement of quantum purity, the second-order Rényi entanglement en-
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tropy, and mutual information in a Bose-Hubbard system. Our measurement scheme does

not rely on full density matrix reconstruction or the use of specialized witness operators

to detect entanglement. Instead, by preparing and interfering two identical copies of a

many-body quantum state, we probe entanglement with the measurement of only a single

operator. Our experiments represent an important demonstration of the usefulness of the

many-body interference for the measurement of entanglement. It is straightforward to ex-

tend the scheme to fermionic systems [33] and systems with internal degrees of freedom

[29]. By generalizing the interference to n copies of the quantum state [151], arbitrary

observables written as as n-th order polynomial function of the density matrix, e.g. n > 2

order Rényi entropies, can be measured.

With modest technical upgrades to suppress classical fluctuations and residual inter-

actions, it should be possible to further improve the beamsplitter fidelity enabling us to

work with significantly larger systems. Mutual information is an ideal tool for exploring

these larger systems as it is insensitive to any residual extensive classical entropy. Verify-

ing the scaling laws for entanglement entropy introduced in chapter 7 would be of great

significance for the characterization of quantum phases using entanglement entropy.

For non-equilibrium systems, entanglement entropy can grow in time (indefinitely in

infinite systems). This leads to interesting many-body physics, such as thermalization in

closed quantum systems [167]. The long time growth of entanglement entropy is consid-

ered to be a key signature of many-body localized states [170] arising in the presence of

disorder. The ability to measure the quantum purity for these systems would allow experi-

mental distinction of quantum fluctuations and classical statistical fluctuations.

More generally, by starting with two different quantum states in the two copies our
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scheme can be applied to measure the quantum state overlap between them. This would

provide information about the underlying quantum state. For example, the many-body

ground state is very sensitive to perturbations near a quantum critical point. Hence, the

overlap between two ground states with slightly different parameters (such as U/J in the

Bose-Hubbard Hamiltonian) could be used as a sensitive probe of quantum criticality [171].

Similarly the overlap of two copies undergoing non-equilibrium evolution under different

perturbations can be used to probe temporal correlation functions in non-equilibrium quan-

tum dynamics.
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Chapter 9

Conclusions and outlook

In this thesis, I have presented measurements that directly investigate the defining quan-

tum mechanical characteristics of many-body Bose-Hubbard systems. The effects of quan-

tum statistics, interactions, and entanglement, which are usually observed in the bulk prop-

erties of many-particle systems, can be accessed directly in engineered few-body systems,

which we control on the single-particle level.

We directly observe bosonic quantum statistics in Hong-Ou-Mandel interference ex-

periments. Controlled tunneling in a double-well potential realizes the equivalent of a

beamsplitter for massive particles, and we detect high-contrast two-particle interference.

The high interference contrast indicates almost complete loss of distinguishability and high

quantum state purity. A possible route to improving the contrast of Hong-Ou-Mandel in-

terference even further would be to use a species with Feshbach resonances for tunable

interactions, where the HOM experiment could be performed at zero interaction strength.

85Rb is a suitable candidate for our experiment.

Quantum statistics, together with tunable repulsive interactions, also determine the dy-
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namics we observe in two-particle quantum walks. The deterministic preparation of few-

body states here realizes an idealized model for quantum systems, where fundamental ef-

fects can be explored in conceptually simple settings. We directly observe the fermioniza-

tion of bosons due to strong interactions and the formation of individual repulsively bound

pairs. Ultracold quantum gases are an excellent platform to study many-particle quantum

walks because of the deterministic preparation of many indistinguishable particles and the

available single-particle control. Interesting problems to tackle would be the boson sam-

pling problem, which requires non-interacting particles, or quantum walks in quasi-periodic

systems [172].

Entanglement between the constituent particles of a many-body system is revealed in

our measurements of many-body Hong-Ou-Mandel interference. This collective measure-

ment based on two copies of a quantum state gives access to entanglement entropy, which

so far has not been measured in itinerant systems. Entanglement entropy plays an impor-

tant role in many areas of theoretical research, including quantum phase transitions and

high energy theory. Our results should elucidate the role of entanglement entropy in differ-

ent contexts, for example its connection with superselection rules [173].

Outlook

Based on the methods developed in this thesis, many measurements on engineered few-

particle systems are within direct reach:
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Engineered potentials

Advanced optical potentials Our single-site addressing capabilities can be extended to

state-dependent lattices using magic wavelengths [15]. Arbitrary polarization patterns can

be created by illuminating the DMD with two beams of orthogonal polarization.

Disorder potentials The DMD can project programmable disorder with correlation lengths

as small as one lattice site. Quantum walks in such disordered potentials can probe local-

ization physics [97]. In combination with measurements of entanglement entropy, we could

measure entanglement growth in many-body localized systems [38].

Engineered dissipation Using resonant light on the DMD, localized and dynamically

variable dissipation on individual lattice sites can be engineered. In the Gross-Pitaevski

regime, local dissipation can lead to breathers and self-localization of condensates [174].

Whether such behavior exists in strongly interacting Bose-Hubbard systems is largely an

open question. Techniques based on engineered dissipation might also be used for quantum

state stabilization [175].

Quantum information processing Low-entropy Mott insulators in combination with op-

tical single-site addressing provide a platform for quantum information processing with

thousands of qubits. Quantum logic operations can be performed with dynamically con-

trolled potentials and qubits based on hyperfine states [176]. Alternatively, logic states

can be encoded in motional states and gate operations can be performed in static, tailored

optical potentials [177].
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New cooling techniques As new methods for ground-state preparation based on Raman

sideband cooling are becoming available [178, 179], it might be realistic to assemble few-

particle Mott insulators “from scratch” starting with individually trapped atoms. In com-

bination with arbitrary potential landscapes created with DMDs, such systems with fast

repetition rates would be a very useful platform to study few-particle entanglement and

dynamics.

Many-body interference

The interference of many-body states provides an experimental verification of the purity

of a many-body state. This information can be very important for measurements on many-

body localized systems [38] in order to distinguish quantum effects from decoherence due

to classical noise at long times.

An interesting topic is the evolution of isolated quantum systems after a quench: The

dynamics of a closed many-body system after a quench are governed by unitary and re-

versible evolution to a highly entangled, but pure quantum state. This quantum state in

principle preserves complete memory of the initial conditions. On the other hand, from our

classical intuition we expect highly excited many-particle systems to settle to an ergodic,

thermalized state at long times, with complete memory loss of the precise initial state.

This apparent disparity between classical thermodynamics and unitary evolution can be

resolved by the “Eigenstate Thermalization Hypothesis” (ETH) [167]: All eigenstates of

a non-integrable many-body system within a certain energy window predict very similar,

thermal distributions for most reasonable local observables. The precise distribution of

population across eigenstates does not matter, and to close approximation the information
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about the initial state is lost.

Our direct measurements of quantum purity combined with evaluations of local observ-

ables, such as number fluctuations on individual sites, can directly verify this hypothesis.

Even for small systems of 6− 8 sites, clear signatures of ETH should be observable.
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[104] A. Schreiber, A. Gábris, P. P. Rohde, K. Laiho, M. Štefaňák, V. Potoček, C. Hamil-
ton, I. Jex, and C. Silberhorn. A 2D quantum walk simulation of two-particle dy-
namics. Science, 336:55, 2012.

140



[105] G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, and R. Osellame. Fractional Bloch
oscillations in photonic lattices. Nat. Commun., 4:1555, 2013.

[106] T. Hartmann, F. Keck, H. J. Korsch, and S. Mossmann. Dynamics of Bloch oscilla-
tions. New J. Phys., 6:2, 2004.

[107] M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon. Bloch oscillations of
atoms in an optical potential. Phys. Rev. Lett., 76:4508, 1996.

[108] A. Alberti, V. V. Ivanov, G. M. Tino, and G. Ferrari. Engineering the quantum
transport of atomic wavefunctions over macroscopic distances. Nature Phys., 5:547,
2009.

[109] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl.
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Appendix A

Additional information for chapter 8

A.1 Detecting entanglement via collective measurements

The quantification of entanglement requires the measurement of non-linear functionals

of a quantum state ρ, such as the n-th order Rényi entropy Sn = 1
1−n ln Tr(ρn) [159]. A

general scheme to measure Tr(ρn) is to measure the shift operator Vn acting on n copies of

the many-body system. The shift operator Vn re-orders the quantum states when acting on

a collection of n states,

Vn|Ψ1〉|Ψ2〉 . . . |Ψn〉 = |Ψn〉|Ψ1〉 . . . |Ψn−1〉. (A.1)

The experimentally relevant case of n = 2, for which the shift operator V2 is simply the

swap operator is discussed in detail in chapter 8. The central identity

Tr(ρ1ρ2) = Tr(V2(ρ1 ⊗ ρ2)) (A.2)

linking the expectation value of the shift operator to the quantum state overlap can be

proven as [30]
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Tr (V2(ρ1 ⊗ ρ2)) = Tr

(
V2

∑
ijkl

ρ
(1)
ij ρ

(2)
kl |i〉 〈j| ⊗ |k〉 〈l|

)

= Tr

(∑
ijkl

ρ
(1)
ij ρ

(2)
kl |k〉 〈j| ⊗ |i〉 〈l|

)

=
∑
ijkl

ρ
(1)
ij ρ

(2)
kl δkjδil =

∑
ik

ρ
(1)
ik ρ

(2)
ki = Tr (ρ1ρ2) (A.3)

In the case where the two state are identical (ρ1 = ρ2 = ρ), the expectation value of V2

gives the purity Tr(ρ2).

A.2 Beamsplitter operation and phase shifts

As detailed in chapter 8, the expectation value of V2 can be measured using the discrete

Fourier transform

(a†1 + a†2)/
√

2→ a†1

(a†1 − a
†
2)/
√

2→ a†2 (A.4)

Using controlled tunneling in a double-well potential, we can implement the beamsplitter

transformation for bosonic atoms:

a†1 → (a†1 + ia†2)/
√

2

a†2 → (ia†1 + a†2)/
√

2 (A.5)

where a π/2-phase (i) is associated with each tunneling event across the double-well. Note

that this transformation is not equivalent to the Fourier transform in equation (A.4). It is

easy to verify that the Fourier transform is realized with the following protocol sequence

of the beamsplitter operation and relative phase shift operations:
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1. A −π/2 phase shift (−i) on copy 2

2. The beamsplitter operation in equation (A.5)

3. Another −π/2 phase shift on copy 2

The inclusion of the additional phase shifts are important to correctly map the sym-

metric (antisymmetric) eigenstates of the swap operator onto states with even (odd) atom

number parity in output port 2 of the beamsplitter. The resulting protocol is valid for mea-

suring purity of any general many-body state. In the classical limit where the incident

states are two identical coherent states with well-defined identical phases, the inclusion of

the proper phase factors in input 2 ensures that the states interfere destructively in output

2. In this port, the total number of bosons is always zero and therefore even, so the mea-

sured parity 〈V 〉 = 1 correctly gives ρ1 = ρ2 and Trρ2 = 1. This situation is analogous

to the interference of two phase-stabilized laser beams on a 50-50 beamsplitter, which may

result in zero intensity in one output for the correct choice of incident phases. Away from

the classical limit, for example as the input states become number squeezed states with

decreasing uncertainty in atom number but increasing fluctuation in phase, atoms start to

appear in output port 2 after the protocol in pairs only (even parity) as long as the input

states remain pure and identical.

The protocol also works when there is no global phase relationship between the inter-

fering many-body states, such as in our current experiments. The two copies are prepared

each as an independent quantum state with a fixed number of atoms, so there is no well-

defined phase. There are also no defined phases when the incident states to the beamsplitter

are subsystems partitioned out of bigger systems that are themselves in Fock states. In ei-

ther case, step 1 of the above protocol has no physical meaning in the absence of a defined
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phase and might be omitted from the experiment without changing the resulting state after

the transformation. The in situ fluorescence imaging of our microscope detects parity of the

atom number on each lattice site which is phase insensitive, so step 3 is also redundant. The

beamsplitter operation in the double-well alone is thus sufficient to implement the mapping

of swap operator eigenstates onto states with even or odd atom number parity. The two

output ports are then equivalent and the purity measurements may be obtained from the

atom numbers on either side of the double-well after the many-body interference sequence.

A.3 Experimental sequence

Our experiments start with a single-layered two-dimensional n = 1 Mott insulator in a

deep lattice (Vx = Vy = 45Er). The full experimental sequence is illustrated in Fig.A.1.

State preparation We deterministically prepare a plaquette of 2× 2 or 2× 4 atoms from

a Mott insulator by two subsequent cutting operations described in chapter 4. At the end of

the state preparation sequence, the fidelity of unit occupancy is 94.6(2)% per site, limited

primarily by the fidelity of the initial Mott insulator and losses during the state preparation.

We verify independently that defects are predominantly empty, not doubly occupied sites,

most likely due to particle loss during state preparation.

Evolution in independent copies For studying the ground state entanglement using the

2 × 4 block, we turn on an optical potential with two narrow Gaussian peaks separated by

four lattice sites along the x direction and flat-top along y. This confines the atoms inside
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Figure A.1: Experimental sequence. Schematic showing the ramps of the x- and y- lattices
and the projected potential from the DMD. The profiles of the DMD potentials are sketched
in the direction of interest, while the other direction always has a smooth flattop profile
aross the region of interest. Ramps are exponential in depth as a function of time.

the 4-site “box potential”. The x lattice is then ramped down adiabatically to various final

depths from 26 to 3Er. The ramp in depth is exponential in time with a duration of 100 ms

from 45 to 3Er. The y-lattice is kept at 45Er so that tunneling along y is negligible and the

two copies evolve independently.

For quench dynamics using the 2 × 2 block, we use a double-well potential along x

with Vdw = 2Er to prevent atoms from leaving the 2-site system. The x lattice is ramped

from 45Er to 2Er in 0.75 ms and held for a variable time. The presence of the double-well
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Figure A.2: Rényi entropy of the 4-site system and its subsystems with and without posts-
election. The post-selection removes classical entropy and reduces the entropy of the full
system (red) from ∼ 0.9 to ∼ 0.5. Note that even without postselection the entropy of the
half-chain (green) rises above the full system entropy, indicating bipartite entanglement.
Theory curves are exact diagonalizations shifted vertically by the mean classical entropy
per site calculated from the full system entropy.

slightly modifies the values of U and J from values in a lattice only, yielding U/J = 0.3

during the hold time.

Many-body coherence In order to measure the correct state overlap Tr(ρ1ρ2) after the

interference step, it is crucial to maintain many-body coherence between the state prepara-

tion along x and the beamsplitter operation along y. During this time, the state is pinned in

a deep Vx = Vy = 45Er lattice, where tunneling is suppressed, but phase evolution occurs

due to residual gradients and on-site interactions. Suppose that the prepared state in each

copy is ρi, and that in the deep lattice each copy evolves under unitary ui to a new state ρ̃i.
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Then

Tr(ρ̃1ρ̃2) =Tr(u†1ρ1u1u
†
2ρ2u2)

6=Tr(ρ1ρ2) (A.6)

i.e. the measured quantity is not the desired state overlap Tr(ρ1ρ2). If, however,

u1 = u2 = u, then

Tr(ρ̃1ρ̃2) =Tr(u†ρ1uu
†ρ2u)

=Tr(u†ρ1ρ2u)

=Tr(ρ1ρ2) (A.7)

since unitary evolution is trace-preserving. Phase dynamics in the deep lattice, for example

“collapse and revival” evolution, does not affect the measurement, and the global state

overlap Tr(ρ1ρ2) is preserved if the evolution is the same in both copies. For the overlap

of subsystem matrices Tr(ρ1Aρ2A) to be preserved, we additionally require the evolution in

subsystems A and B to be independent in each copy, i.e ui = uiA ⊗ uiB . This condition is

fulfilled to a very high degree in the deep lattice, where tunneling is suppressed.

The experimentally most relevant source of error are differential gradients between the

two copies in the deep lattice. Their impact can be suppressed by keeping the hold time in

the deep lattice as short as possible.

A.4 Data analysis

Post-selection Before data analysis we post-select outcomes of the experiment for which

the total number of atoms detected within the plaquette (2× 2 or 2× 4 sites) is even. Out-

comes outside this subset of data indicate either state preparation errors, atom loss during
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the sequence, or detection errors. We furthermore reject all realizations for which we detect

atoms in the 20 × 20 block surrounding the region of interest, most likely corresponding

to atoms being lost from the plaquette during the sequence. Note that a combination of

multiple errors (e.g. failure to load atoms on two sites) may lead to an unsuccessful run of

the experiment being included in the post-selected data.

For experiments on the 2 × 2 plaquette we typically retain 80% of the data, and 60%

for the 2× 4 plaquette.

Calculating Purity and Entropy For the full many-body state and each subsystem of

interest we calculate podd, the probability of measuring a total odd number of atoms after

the beamsplitter operation within the post-selected data. The quantum mechanical purity

and second-order Rényi entropy are then given by

Tr(ρ2) = 1− 2podd, (A.8)

S2(ρ) = − ln(Tr(ρ2)). (A.9)

We average the calculated purity Tr(ρ2) over both copies and over equivalent partitions.

For instance, the single-site entropy reported in Figure 8.5 is the mean over the first and last

site of each copy of the 4-site system. From the variance of the parity in each subsystem

and the covariance between subsystems we obtain the statistical standard error of the mean

parity, taking into account possible correlations between regions. The reported error bars

are the quadrature sum of the statistical error and the standard deviation of mean parities

over the averaged regions. This procedure accounts for residual inhomogeneities between
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the copies and along the chains.

Errorbars in U/J correspond to a typical uncertainty in the optical lattice depth of±2%.

Full system purity For the 2× 4 plaquette, the initial state purity is reduced from 1 due

to the presence of thermal holes in the initial Mott insulating state. Assuming all even sites

are holes, the loading statistics for the 2× 4 plaquette are:

N atoms loading probability p(N)

8 0.66(1)

7 0.27(1)

6 0.052(4)

i.e. the postselected subset of total even data contains 0.052
0.052+0.66

= 7% of events with 6

atoms total. The inclusion of outcomes with 6 atoms reduces the purity of the initial state

to 0.94, corresponding to a Rényi entropy of 0.06. This effect is small compared to the

extensive entropy induced by beamsplitter imperfections.
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