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Abstract

Provided that it is in good electrical contact with a superconductor, a
normal metal can acquire superconducting properties when the
temperature is low enough. Known as the superconducting
proximity effect, this phenomenon has been studied for more than
50 years and, because of the richness of its physics, continues to
fascinate many scientists.

In this thesis, we present our study of the superconducting prox-
imity effect in a hybrid system made by bringing graphene, a mono-
layer of carbon atoms arranged in a hexagonal lattice, into contact
with metallic BCS superconductors. Here graphene plays two roles:
First it is a truly 2-dimensional crystal whose electron gas can be
accessed on the surface easily. This property allows both transpar-
ent electrical contact with superconductors and direct observation of
electronic properties made by a variety of probing schemes. Second,
with its unique gapless band structure and linear energy dispersion,
graphene provides a platform for the study of superconductivity car-
ried by Dirac fermions.
Graphene’s first role may facilitate endeavors to reach a deeper un-

derstanding of proximity effects. However, it is predicted that in its
second role graphene may give rise to exotic phenomena in supercon-
ducting regime.
In order to realize these potentials, it is crucial to have good con-

trol of this material in regard to both fabrication and characteriza-
tion. Two key elements have been recognized as necessary in fab-
rication: a graphene device with low disorder and a large induced
gap in the normal region. In addition, a deeper understanding of
the microscopic mechanism of supercurrent transport in graphene or
any 2-dimensional system in general, is bound to provide a basis for
abundant insights or may even produce surprises.
The research discussed in this thesis has been shaped by this over-

all approach. An introduction to the basic electronic properties of
graphene is given in Chapter 1, which presents the band structure of
graphene based on a tight-binding model. In addition, gate-tunability
and the chiral nature of Dirac fermions in graphene, both of which
are essential in our experiments, are also discussed.
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Chapter 2 provides a theoretical background to superconductivity,
with an emphasis on its manifestation in inhomogeneous systems
at the mesoscopic scale. The Andreev reflection, the phase-coherent
transport of particles coupled by superconductors, and the correspond-
ing energy bound states (Andreev bound states) are studied in long-
and short-junction limits. We will also show how the existence of im-
purity affects the physics presented in our experiments.
Chapter 3 demonstrates the first graphene-based superconducting

devices that we investigated. Fabrication and low-temperature mea-
surement techniques of SGS junctions made of graphene and NbN,
a type II superconductor with a large gap (TC ⇠ 12K) and a large
critical field (HC2> 9T ) are also discussed.
Chapter 4 focuses on the development of h-BN-encapsulated graphene

Josephson junctions. The pick-up and transfer techniques for the 2-
dimensional Van der Waals materials that we used to make these
heterostructures are described in details. The device we fabricated in
this way exhibits ballistic transport characteristics, i.e. the signs of low
disorder in graphene, in both normal and superconducting regimes.
In Chapter 5, the tunneling spectroscopy of supercurrent-carrying

Andreev states is presented. In order to study the intrinsic properties
of the sample, we developed a new fabrication scheme aiming at pre-
serving the pristine nature of the 2-DEGS as well as to minimize the
doping introduced by external probes. The tunneling spectroscopy of
graphene in superconducting regime reveals not only the Andreev
bound states in the 2-dimensional limit, but also what we call the
“Andreev scattering state” in the energy continuum.
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The moon, by her comparative proximity,
and the constantly varying appearances produced by her several phases,

has always occupied a considerable share of the attention
of the inhabitants of the earth..

— Jules Verne
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1
INTRODUCT ION TO ELECTRONIC PROPERT IES OF
GRAPHENE

Highly conductive, transparent, ambipolar, tunable, strong, flexible,
light, thin, atomically flat, chemically inert, mechanically robust, and
even compatible with biological entities, these are just a few of the
properties that have been ascribed to graphene since it was first ex-
perimentally realized in 2004[97].
Given its versatility, graphene has drawn tremendous attentions

from scientists and engineers from a range of backgrounds. Further,
graphene sciences together with associated techniques span multi-
ple fields such as nanofabrication, material growth, sample treatment,
and device characterization, such that a foundation has been laid for
an even broader field of research: that is, the 2-dimensional Van der
Waals heterostructures[55], which significantly exceed graphene in
terms of complexity and functionality.
This thesis focuses on the electronic properties that graphene ac-

quires when it is attached to superconductors. Thus it is important
to understand the intrinsic electronic properties of graphene before it
forms a hybrid system with superconductors. We will discuss some of
the basic electronic properties of graphene that motivated the present
research, and provide a practical perspective on identifying the ele-
ments essential to realizing graphene’s uses in a broader scientific
and engineering landscape.

1.1 introduction and carbon allotropes

One of the most abundant elements in nature, carbon is found in all
kinds of materials. Owing to its flexibility in bonding, carbon forms
countless kinds of molecules or compounds, which constitute the ba-
sis of organic chemistry and of all biological entities. Even when re-
stricted to bonding to each other, carbon atoms form an orderly ar-
rangement. That is, carbon atoms form crystals, and these crystals
differ in regard to structure and dimensionality.
In the world of nanoscale electronics, graphene, a monolayer of

carbon crystal arranged in a hexagonal lattice, was studied experi-
mentally much later than other kinds of carbon crystals, yet it may be
regarded as the most fundamental type of carbon allotrope. Fullerene,
the spherically packed carbon atoms, can be obtained by wrapping-
up a graphene sheet with the introduction of pentagons, behaves like
a zero-dimensional object with discrete energy levels. Rolling up a
graphene sheet and connecting the carbon atoms at the edges results
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in the carbon nanotube that is essentially a one-dimensional object.
Graphite is probably the best known, and most commonly used car-
bon allotrope since the invention of the pencil in 1500’s, which con-
sists of a three-dimensional stack of graphene sheets.
The ease and smoothness that people have enjoyed for hundreds

of years when writing with a pencil is rooted in the electronic struc-
ture, and therefore the bonding characteristics of graphene. Specifi-
cally, graphene has strong in-plane covalent bonding between carbon
atoms, and couples weakly to its neighboring layer in the perpendic-
ular direction via Van der Waals forces. It is this contrast between
the robustness of graphene’s bondings that makes it possible to write
easily with graphite, which would separate into thin layers when a
pencil is pressed against a piece of paper.
In a 1946 paper[125] P.R. Wallace used graphene as the starting

point to calculate the band structure of graphite. His idea was that the
inter-layer coupling would be weak enough to allow each graphene
layer to be treated independently. At that time, producing an isolated
graphene sheet was not considered possible. Instead, he graphene
sheet was posited as a model system for theoretical construction due
to the instability of this form of two-dimension carbon crystals[56, 57],
as well as the difficulty of obtaining graphene in experiments.
In 2004, Andre Geim and Kanstantin Novoselov showed that graphene

can easily be produced by mechanically exfoliating graphite using
sticky tapes[97]. They also demonstrated that when depositing graphene
on an SiO2 substrate with proper thickness (285 nm) provides a good
optical contrast, which enables single layer graphene to be identified
with an optical microscope. This discovery opened the door to the
experimental study of this “old” material that had been a subject of
intensive theoretical investigation for many years.
The most noteworthy feature of graphene is its low energy excita-

tion band structure. In this regime, the energy dispersion is linear and
the behavior of the charge carriers mimics that of massless relativistic
particles, the dynamics of which are described by the Dirac equation.
We will discuss these unique properties and their implications in the
following sections.

1.2 band structure of graphene

1.2.1 A tight-binding approach

We introduce the band structure of graphene, which is the founda-
tion of the electronic properties of the crystal, in the frame work of a
tight-binding model. Monolayer graphene is a 2-dimensional carbon
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Figure 1.1: The hexagonal lattice of graphene in (a) real and (b) momentum
space.

crystal arranged in a hexagonal lattice (Fig. 1.1 (a)). Here the lattice
axes selected are:

a1 = a
2 (3,

p
3), a2 = a

2 (3,�
p
3) (1.1)

,where a⇠ 1.42Å is the distance between the carbon atoms that are
nearest to each other, with respect to the coordinate shown in Figure
1.1. The dashed-line depicts a unit cell, which contains two identical
carbon atoms that belong to two equivalent sublattices, denoted by
A and B. Figure 1.1(b) shows the first Brillouin zone of the graphene
lattice in momentum space. The first Brillouin zone is also a hexagon
with some symmetry points labeled K, K’, M and G. Of particular
interest are points K and K0 at the corners given by

K =
⇣
2p

3a ,
2p

3a
p
3

⌘
, K0 =

⇣
2p

3a ,�
2p

3a
p
3

⌘
. (1.2)

As we will see, these points give rise to the unique electronic proper-
ties of graphene in the low energy regime. The tight-binding model
under discussion herein is based on the assumption that an electron
can only hop to the nearest neighbors with characteristic energy t (the
hopping energy). Hence for the pz electron of sublattice A, the only
relevant potential is given by three surrounding carbon atoms from
sublattice B. The Hamiltonian in the second quantization formalism
can be written as:

H = �t Â
hi,ji,s

⇣
a†i,sbj,s + h.c

⌘
, (1.3)
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where a†i,s(bj,s) creates (annihilates) an electron at the Ri (Rj) site of
sublattice A(sublattice B), with spin s (s =" or #). The hopping en-
ergy t in graphene is about 2.8 eV.
Energy band E(k) can be obtained by expanding the electron field

operators in the k-space as:

ai,s =
1p
Nc

Â
k
e�ik·Ria

s

(k), (1.4)

which diagonalize the Hamiltonian, of which the secular equation
gives the eigen-energy[125]:

E±(k) = ±t

vuut3+ 2 cos(
p
3kya) + 4 cos

 p
3
2

kya

!
cos

✓
3
2
kxa
◆
. (1.5)

The band structure given by this dispersion is plotted in Figure 1.2.
One of the most striking features of this band structure is that at the
corners of the first Brillouin zone, namely K and K0 given by (1.2),
the band is gapless: E(K) = E(K0) = 0.
Note that in graphene, each carbon atom provides four valence

electrons. Three of these electrons form the in-plane s-bonding with
neighboring carbon atoms through sp2 hybridization, and shell-completing
bonding results in a deep valence band due to the Pauli principle. The
remaining electron occupies the out-of-plane pz orbital which can co-
valently bond to neighboring pz orbitals and form the p-band given
in eqn.(1.5). As each unit cell contains two atoms, the p-band is half-
filled: EF = 0.
The fact that EF = 0 at gapless K or K’ points has profound im-

plications for graphene physics. In a typical transport experiment,
graphene’s chemical potential can reach as high as ~300 meV by gat-
ing, which corresponds to a gate voltage of Vbg ~ 100 volts on an SiO2
substrate. This value is much smaller than that of the hopping energy
t~2.8 eV, which is the energy scale at which the dispersion singularity,
referred to as the Van Hove singularity, occurs (red dashed circle in
Fig. 1.2). Therefore the K and K’ points are the most accessible do-
mains from an experimental point of view. The regions around these
points are usually called K- or K’-valley.

1.2.2 Linear dispersion and massless Dirac fermions

Let us focus on the energy dispersion around the K (K’) valley where
the upper and lower p�bands meet. The wave vector can be written
as[125, 27]

k = K + q, | q |⌧| K | . (1.6)
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(a) The p- bands of graphene calculated
with the tight-binding approach.

(b) First Brillouin zone of graphene.

Figure 1.2: The band structure of a monolayer graphene plotted for the first
Brillouin zone.

In addition, the field operator in eqn. (1.4) can be decomposed into
two parts, for each of which the Fourier component expands around
the K and K’ point respectively as:

an ⇠ e�iK·Rn a1,n + e�ie�iK0·Rn a2,n
bn ⇠ e�iK·Rnb1,n + e�ie�iK0·Rnb2,n

, (1.7)

where a1,n = a1(2),n(q) is the sublattice A field operator expanded
around the K(K’) point. With | q |⌧| K |, one expects these new
field operators to be slow-varying within the Brillouin zone. Note
that we have integrated the spin index s into the new index n for
brevity. With this representation for the tight-binding Hamiltonian, it
can be shown[125, 27] that the Hamiltonian around the K-point can
be written as

H± = vF

����� 0 px ± ipy
px ⌥ ipy 0

����� , (1.8)

with vF = 3ta
2h̄ , and H+(H�) denotes the Hamiltonian around K (K’)

valley.
The Hamiltonian can be written in a more concise form as

HK = v f s · h̄q (1.9)

, where s = (sx, sy) is the Pauli matrix. Thus in graphene, the energy
dispersion relation of the electron around K is linear in momentum,
i.e., E(q) = vF |q|. Further, by virtue of vg ⌘ ∂E/h̄∂k, we can identify
vF ⇠ 1⇥ 106m/sec as the electron group velocity which is irrespective
of the energy. This linear dispersion is remarkable for distinguishing
the electron in graphene from its counterparts in the other 2-DEGS,
which typically exhibit a quadratic dispersion relation. The Dirac-like
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Hamiltonian (1.9) and the linear dispersion relation suggests that elec-
trons around the K (K’) point with low excitation energy behave like
relativistic particles without rest mass. The charge carriers are, there-
fore, referred to as massless Dirac fermions, and the K’s points as the
Dirac points accordingly.
The eigen function of the Hamiltonian (1.9) in real space is written

as a two component spinor

YK(r) =

 
YA

YB

!
, (1.10)

of which the amplitude YAeiK·r and the amplitude YBeiK·r gives the
wave function on the A and B sublattices respectively. It appears that
the Hamiltonian couples two wavefunctions to each other but not to
themselves, which is compatible with the tight-binding assumption.
In the momentum space, the wave function around K takes the form

y±,K(k) =
1p
2

 
e�iqk/2

±eiqk/2

!
, (1.11)

where qk ⌘ arctan( kxky ). Plus(+) and minus(-) signs denote the positive
and negative eigen-energies, corresponding to the p and p

⇤ bands
respectively.
Similarly, the Hamiltonian in the K’-valley takes the same form as

eqn. (1.9) except that the Pauli matrix s is replaced by s⇤=(sx, sy),
with the corresponding wave function:

y±,K0(k) =
1p
2

 
eiqk/2

±e�iqk/2

!
, (1.12)

which is the time-reversed state of y±,K(k).

1.2.3 Chirality of Dirac fermions in graphene

The spinor representation of the wave function (eqn. (1.10)) indicates
that the total wave function is s superposition of contributions from
sublattices A and B , and the weighting of each component is given
by its orientation in the spinor space. We emphasize that although we
use the formalism developed for the real spin degree of freedom, the
associated spinor operator s acts only on the sublattice space, or the
pseudospin degree of freedom as it is usually called in the graphene
literature, and is independent of the real spin of an electron.
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It is useful to define a new quantum mechanical operator called the
helicity operator (in the K-valley) as

ĥ =
1
2

s · p
|p| , (1.13)

where p ⌘ h̄
ir is the momentum operator as in eqn. (1.8). The helicity

operator projects the momentum of a given state onto the axes in
the pseudospin space. From the low-energy Hamiltonian spanned
around K point (eqn. (1.9), it is evident that YK(r) is also an eigenstate
of ĥ such that

ĥYK(r) = ±1
2

YK(r). (1.14)

This relationship implies that in graphene, the charge carrier around
the Dirac point has a definite helicity, also called chirality, associated
with its momentum. We refer to an electron(hole) with this prop-
erty as chiral because its directions of motion and its pseudospin
are “locked” together. In the simplest terms, how the wave function
is made from the wave functions of lattices A and B determines the
direction in which the electron(hole) moves. We will see in the next
section that chirality has a profound influence on the electronic trans-
port properties in graphene.
Finally, it should be noted that in the K’-valley, the chirality of the

carriers is flipped relative to their counterparts in the K-valley, as
the states of carriers and their counterparts are time-reversed to each
other. The helicity operator in the K’-valley, ĥ⇤ = 1

2s⇤ · p
|p| , is left-

handed.

1.3 transport properties of dirac fermions in graphene

In this thesis, we use graphene, a highly tunable 2-dimensional semi-
metal, as a basis for studying mesoscopic superconductivity. The dis-
cussion in this section ,therefore, focuses on the concepts in graphene
transport that are most relevant to our experiments.

1.3.1 A highly tunable 2-DEGS

One of the most appealing features of graphene, from the experimen-
tal point of view, is the tunability via field effect, meaning that the
charge carrier density in graphene can be tuned easily by applying a
gate voltage.
In a typical graphene transport measurement setup, a graphene

flake is deposited on an insulating SiO2 surface (thickness~ 300 nm,
relative permittivity #~3.9) on top of a highly-doped silicon wafer,
referred to as the backgate. Applying voltage VBG to the backgate
will charge the graphene as one of the metallic sheets in a parallel-
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plates capacitor. As the energy band is half-filled (EF = 0) for neutral
graphene, applying positive VBG will draw an excess of electrons into
the graphene, making it an n-doped semi-metal, with a positive chem-
ical potential µ. Similarly, applying VBG < 0 will dope the graphene
into a p-type semi-metal with µ < 0. The transition between n-type
and p-type graphene through gating is continuous as graphene is gap-
less in a low energy regime. The backgate voltage at which the two
p-bands meet is called the charge neutrality point VCNP or the Dirac
point in the graphene literature.
The carrier density n and the Fermi energy EF can be easily calcu-

lated with the parallel-plate capacitor model (regardless of quantum
capacitance, given by the finite chemical potential, which is subtle in
our experiments )

n =
#0#VBG

de
, (1.15)

or

n(#/cm2) =
5.53⇥ 1012#Vg(volts)

d(nm)
, (1.16)

where d is the thickness of the gate dielectric and # is the relative
permittivity. The Fermi wave vector kF and the Fermi energy EF can
be obtained (by quantization in x- and y-axis of the graphene plane)
as

kF =
p
np, (1.17)

EF = h̄vFkF = h̄vF
p
np, (1.18)

where vF ⇠ 1⇥ 106m/sec.

1.3.2 Klein paradox and chiral tunneling in graphene

In classical mechanics, a potential barrier V0 can confine a particle
with lower energy E (V0>E). In quantum mechanics, a non-relativistic
particle described by the Schrödinger equation has a finite probability
of tunneling into the barrier as an evanescent wave. If the barrier has
finite thickness D, the particle has a finite chance of transmitting with
a probability that decays exponentially with |V0| and D.
A surprising situation happens if this quantum object is described

by the linear Dirac equation (with a form similar to eqn.(1.9)), which
allows positive- or negative-energy eigenstates. The potential barrier
appears to be attractive to a particle in the negative eigenstate, and be-
comes more so if the barrier height |V0| increases. This phenomenon
is called the Klein paradox, and the associated highly-transmissive
tunneling is called Klein tunneling, as first proposed by Oskar Klein
in 1929[80].
With it’s negative energy eigenstate, this Dirac particle can enter

the barrier and has a high probability to tunnel through it. For Dirac
fermions in graphene with a sharp potential profile (Fig. 1.3, upper
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Figure 1.3: Klein tunneling of a Dirac Fermion in graphene.

panel), the transmission probability of this process can be obtained by
matching wave functions at the boundaries, as expressed by[77, 27]

T(f) =
cos2 q cos2 f

[cos(Dqx) cos f cos q]2 + sin2(Dqx)(1� ss0 sin f sin q)2
,

(1.19)
where s = sgn(E), s0 = sgn(E � V0), q is the wave vector in the
potential region, and the angles are taken with respect to the normal
as defined in Figure 1.3.
We can see immediately that for f = 0, or for Dqx = np where

n is an integer, the transmission is unity regardless of the barrier’s
height and depth (|V0| andD). This is very different from the situation
with non-relativistic particles, in which the transmission probability
is always less than one, and decreases exponentially as the strength of
confinement increases. When |E| ⌧ |V0| , T(f) takes the asymptotic
form

T(f) ⇠ cos2 f

1� cos2(Dqx) sin2
f

, (1.20)

which exhibits an oscillatory transmission rate as a function of the
incident angle f(Fig. 1.4).
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Figure 1.4: The angular dependence of transmission probability of chiral
tunneling in monolayer graphene. The image is adapted from
ref. [77]

1.3.2.1 Chirality and perfect transmission

Note that although Klein tunneling is a general property shared by
Dirac particles, perfect transmission at normal incidence (T(f = 0) =
1), independent of the barrier height |V0| , is guaranteed only by
the chirality in graphene. As discussed in subsection 1.2.3, the pseu-
dospin degree of freedom s represents the relative contributions of
sublattices A and B to the total wave function. The pseudospin is very
robust, and thus a good quantum number of the system, since the
pseudospin-flipping process would require scattering with a short-
distance potential that acts differently on sublattice A and B. This
is important to note, as scattering of this nature is very difficult to
achieve in practice.
Consider a 1-dimensional case as illustrated in Figure 1.3.When im-

pinging on a potential barrier, the right-moving electron from region
I with pseudospin s ((�kx,-s), red branch), can scatter into two pos-
sible states: the left-moving electron ((�kx,-s) , green branch), or the
left-moving hole ((qx, s), red branch). Given that back-scattering as an
electron requires pseudospin flipping, an incoming electron is more
likely to scatter into the hole state with the same pseudospin. The neg-
ative charge of the electron is therefore transferred to region III with
100% probability. This argument is based entirely on the conservation
of pseudospin and the chirality of the Dirac fermion in graphene with
no reference to details pertaining to any potential barriers such as |V0|
and D. For a non-chiral system, the transmission of Klein tunneling
becomes perfect as |V0| ! •[36].

1.3.2.2 Creating barrier in graphene

The potential barrier as previously discussed of Klein tunneling can
be created in graphene by the field effect. As discussed in subsection
1.3.1, graphene can be charged into an n-type semi-metal by apply-
ing a positive gate voltage or into a p-type semi-metal by applying
a negative gate voltage. A combination of global and local gating in
a graphene transistor can tune the graphene into an n- or p-type lo-
cally, resulting in a spatial variation of potentials. The P-N junctions
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Figure 1.5: Image adapted from Ref. [70]. Bipolar Josephson effect in
graphene.

thus created are equivalent to potential barriers and allow us to study
chiral Klein tunneling in a solid state system.

1.4 superconductivity carried by dirac fermions

It has been found that when two superconducting electrodes are
placed close enough to each other on graphene, a finite supercur-
rent can flow across the graphene sheet at a temperature well below
the Tc of superconductor[70]. The transport measurement at at low
temperature shows that the supercurrent in the graphene is bi-polar,
which means that the supercurrent can be carried by electron-like
or hole-like excitations in graphene. The supercurrent is non-zero at
the charge neutrality point where the Fermi energy is essentially zero
(However there are always chemical potential fluctuations due to elec-
tron and hole puddles in the graphene flake[89], which is more pro-
nounced in devices built on SiO2 substrate). The transfer of supercur-
rent across the non-superconducting graphene is carried out by both
K and K’ valleys, due to the time-reversal nature of the Cooper pair
constituents.
The fact that graphene is capable of carrying supercurrent, discov-

ered less than three years after the realization of the material itself,
stimulated the field immediately, as it suggests that graphene may be
a great platform, for reasons explained next, for studying the physics
of superconductivity at the mesoscopic scale.
Beenakker et al.([13, 121, 15, 14]) pointed out that with its gap-

less band structure and linear dispersion relation associated with the
Dirac fermion, graphene provides opportunities to study supercon-
ductivity carried by relativistic particles. This, in a sense, brings to-
gether two of the greatest achievements in physics of the last century,
which are typically explored at different energy scales. Some fasci-
nating phenomena based on the gapless band structure and chiral
nature of graphene have been predicted, including the specular An-
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Figure 1.6: (a) Illustration of a disordered graphene in contact with super-
conductor with a relatively small gap. (b) Using a superconduc-
tor with a larger gap to contact graphene with lower disorder.

dreev reflection[13], the pseudo-diffusive Josephson effect[121], and
topological superconductivity[108]. Thanks to the advances in the fab-
rication of high-quality (low-disorder) graphene devices with highly
transparent contact to superconductors, the experimental realization
of some of these predictions have been reported[92, 49, 24, 113, 4].
On the other hand, as a tunable, purely 2-dimensional metallic sys-

tem whose charge carrier is highly accessible on the surface, graphene
also hods great promise in regard to the study of some of the more tra-
ditional topics relating to superconductivity, including the supercon-
ducting proximity effect[16, 52, 47], the superconducting-insulating
phase transition[78, 3], the (retro)Andreev reflection in a magnetic
field[103], and the dynamics of supercurrent-carrying Andreev bounds
states (discussed in Chapter 2) in both short- and long-junction limits.

1.5 motivation of this thesis

Our research explores the interplay between graphene physics and
superconductivity in both realms as discussed above: the supercon-
ductivity carried by Dirac fermions, and topics relating to induced
superconductivity in normal metals. In order to achieve this goal and
experimentally investigate the associated physics to the greatest ex-
tent possible, two ingredients must be acquired:

1. Transparent contact between graphene and the superconductor,
preferably with a large superconducting gap and a large critical
magnetic field (Hc)

2. A high-quality (low-disorder) graphene device in which elec-
trons travel ballistically.

These are essential to accessing the physics within or around the en-
ergy scale of the superconducting gap. As illustrated in Figure 1.6,
if both requirements are met, the energy excitation always remains
inside the gap.
In addition, a combination of high Hc superconductors and high-

quality graphene samples provides a basis for the study of 2-DEGS
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in the quantum Hall regime while the Andreev reflection (discussed
in Chapter 2) at the graphene/superconductor interface remains ap-
preciable.
The first experiment in this thesis (Chapter 3), the fabrication and

measurement of NbN-grapehen-NbN Josephson junctions addresses
the first ingredient listed above, as NbN’s superconducting gap is
about ten times larger than the widely used aluminum, and NbN’s
critical magnetic filed (Hc2) is much larger than the typical onset B-
field of integer quantum Hall effect in graphene on SiO2 substrate.
The experiment discussed in Chapter 4 focuses on the fabrication
and characterization of high quality graphene Josephson junctions
of which the 2-DEGS is encapsulated in hexagonal boron nitride, an
ultra-clean, ultra-flat 2-dimensional crystal that proved critical to all
our device fabrication from that point on.
All the fabrication techniques and experiment described in the present

study culminate in a final experiment, which was still in progress at
the time of this writing. We will demonstrate how this experiment has
allowed us to study some fundamental phenomena in mesoscopic su-
perconductivity, manifested in the highly tunable 2-dimensional sys-
tem provided by graphene, which has the potential to significantly
improve understanding of this subject in the field in the near future.
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2
SUPERCONDUCT IV ITY AND PROX IMITY EFFECT

Discovered in 1911, superconductivity is a profound and important
field in solid state physics and continues to draw considerable interest
because of the richness of its fundamental science and its potential in
applications. This chapter presents the basic theoretical background
in this field, with an emphasis on traditional BCS superconductiv-
ity at the mesoscopic scale, which is the most relevant scale to the
present study. We will discuss basic postulates pertaining to super-
conductivity in a bulk superconductor, and show how these lead to
an understanding of the macroscopic coherent phenomena observed
in superconductors.
In the subsequent sections, we move on to inhomogeneous systems

and demonstrate how normal metals can acquire superconducting-
like properties and support supercurrent transport. The gauge-invariant
phase difference, which is a signature property of superconductiv-
ity, and its relationship to the flow of supercurrent through (non-
superconducting) weak links will be discussed and calculated for the
type of device measured in our experiments.
The Andreev reflection and Andreev bound states constitute the

underlying microscopic mechanisms of the superconducting proxim-
ity effect. We will discuss theses in terms of both short- and long-
junction limits to determine how the presence of impurity can affect
the dynamics of the hybrid system composed of a superconductor
and normal metals.

2.1 macroscopic supercurrent in superconductor

2.1.1 Superconductivity: A different phase of matter

Take a piece of lead (Pb), electrically link it to the measurement rack,
submerge the lead in liquid helium, measure the resistance across the
lead itself, and you see nothing. The disappeared electrical resistance,
with accompanying phenomena such as diamagnetism below a cer-
tain magnetic field and the anomaly of specific heat, means that the
metal is in a specific state called the superconducting phase. The cur-
rent induced in a Pb ring kept in this phase can persist for more than
a year without any external powering.
A metal capable of undergoing this type of phase transition is called

a superconductor 1. This type of material was discovered in 1911 by

1 Here we focus on the classical superconductivity in metals or alloys. In particular,
we use only the s-wave superconductor in our experiments.
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H. Kamerlingh Onnes, three years after he had succeeded in liquify-
ing helium gas, which enabled him to cool down mercury, in which
the superconductivity was measured for the first time in history. In
fact, a large number of metals have been found to be superconduc-
tors, with an individual transition temperature TC at which the metal
turns to this phase. In the 1960’s , Bardeen, Cooper and Schrieffer pro-
posed a complete and highly satisfactory theoretical picture, which
soon became the dominant theory used to explain most of the super-
conducting phenomenology found in classical superconductors. This
microscopic theory, referred to as BCS theory, after Bardeen, Cooper
and Schrieffer is built in reference to three crucial insights[11, 120, 39]:

1. The force between electrons can sometimes be attractive rather
than repulsive. This electron-electron attraction is the result of
the coupling between the electrons and phonos mediated by the
underlying lattice of the superconductor.

2. The Cooper problem: In the presence of attractive potential, the
ground state of the free electron gas that corresponds to the
complete filling of the single-particle energy level up to the
Fermi energy becomes unstable, regardless of how weak the
attraction might be! Therefore there exists a two-electron bound
state of energy E < 0.

3. A macroscopic (many-body) wave function in which each elec-
tron near the Fermi surface is paired with its individual spin
and momentum counterpart (spin "and spin#,

�!
k and �

�!
k ) was

constructed. The BCS energy gap 2D arises from this pairing, as
it corresponds to the energy cost to break up the Cooper pair.

Soon after it was published, the BCS theory was recognized as correct
in many essential aspects. Further, the BCS energy gap was discov-
ered experimentally almost at the same time as the theory was pub-
lished. Among these following experiments, electron tunneling spec-
troscopy is arguably the most important. The reason the tunneling
experiment is considered so important is because it not only showed
the existence of the 2D energy gap, but also showed the phonon struc-
ture in the spectra which gives rise to the electron-phonon coupling
induced pairing[58].

2.1.2 Macroscopic wave function of supercurrent carriers in a supercon-
ductor

The macroscopic behavior of supercurrent-carrying particles in su-
perconductors was anticipated before BCS theory. The assumption is
the existence of a macroscopic (many-body) wavefunction y(r, t) =
y0(r, t)eiq(r,t) that describes the behaviors of a collection of non-interacting
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electrons. In turn. this collection gives rise to superconducting prop-
erties such as dissipationless electric current, diamagnetism (Meiss-
ner effect), and the macroscopic coherence transport of supercurrent
across non-superconducting materials (Josephson effect), as we will
discuss following sections.
The wave function, which was treated as an order parameter in 2nd

order phase transition by Ginzburg and Landau, obeys a Schrödinger-
like equation for the ensemble of supercurrent in the electromagnetic
field:

ay + b | y |2 y +
1

2m⇤

✓
h̄
i
r� q⇤A(r, t)

◆2
y = 0. (2.1)

where A(r, t) is a vector potential associated with the electromagnetic
field, and m⇤and q⇤ are the mass and charge of the “superelectrons”
respectively. This is the celebrated Ginzburg-Landu equation for the
superconducting order parameter y. It turns out that for BCS su-
perconductors (traditional metallic superconductors), m⇤ = 2me and
e⇤ = 2e as the supercurrent is carried by Cooper pairs. However the
G-L equation makes no reference to the microscopic nature, which
may differ for different types of superconductors. On the other hand,
as it is independent of the pairing mechanism, the G-L formalism de-
scribes the superelectrons (often referred to as a charged-superfluid)
as a quantum mechanical entity, from which many physical insights
into the coherent phenomenology can be gained.
Before making a further analogy with the single-particle Schrödinger

equation, we should first clarify the interpretation of the macroscopic
wave function y(r, t). In the single-particle Schrödinger equation, y(r, t)
is interpreted as the probability amplitude that gives the probability
of finding a particle at a given location r at time t as | y(r, t) |2. Fur-
ther, the normalization condition

R
y

⇤
ydV=1 implies that the proba-

bility of finding this particle somewhere in the whole space is unity
at any time. For the macroscopic wave function associated with su-
perelectrons, we require the following normalization condition to be
satisfied: Z

y

⇤(r, t)y(r, t)dV = N⇤
s (2.2)

| y(r, t) |2= y

⇤(r, t)y(r, t) = n⇤s (r, t). (2.3)

As we assume that y(r, t) is the macroscopic wave function of the su-
perelectron ensemble, it follows that N⇤

s represents the total number
of superelectrons (the Cooper pairs in the BCS superconductors) in
the entire superconductor, and that n⇤s represents the local density of
superelectrons at location r at a given time t. Accordingly, the wave
function y(r, t) takes the form

y(r, t) =
q

n⇤s (r, t)e
iq(r,t) (2.4)
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where q is a real function that represents the phase of a complex
number.

2.1.3 Supercurrent density and gauge invariant phase gradient

Based on the identity given in eqn.(2.2), eqn.(2.3) and eqn.(2.4), we
can obtain the supercurrent density Js by multiplying the superelec-
tron charge q⇤ with the particle flow density analogous to the proba-
bility current, which is standard in single-particle quantum mechan-
ics. Hence,

Js =
q⇤

2m⇤i
(y⇤ry � yry

⇤)� q⇤

2m⇤ yy

⇤A. (2.5)

Substituting eqn.(2.4) into eqn.(2.5) yields:

Js = q⇤n⇤s (r, t)
✓

h̄
m⇤rq(r, t)� q⇤

m⇤ A(r, t)
◆
. (2.6)

The term
⇣

h̄
m⇤rq(r, t)� q⇤

m⇤ A(r, t)
⌘
is defined as the velocity of super-

electrons vs if the supercurrent density is written as Js = q⇤n⇤svs.

2.1.3.1 Gauge invariance and the current phase relation

Note that variables such as A, q or f are not physical observables.
Therefore, certain kinds of formal transformations of these quantities
can be found without changing the associated observables like B,E or
Js. By introducing a gauge-invariant phase gradient

g = rq � q⇤

h̄
A, (2.7)

and by substituting it into the expression of Js in eqn.(2.6), we obatin
the supercurrent given by

Js =
q⇤n⇤s h̄
m⇤ g. (2.8)

We arrive at an essential relation in superconductivity which tells
us that the supercurrent density Js in a superconductor is propor-
tional to the gauge-invariant phase gradient g. This relation suggests
that when a phase gradient is created in the superconductor, super-
current will flow accordingly.
Finally, by identifying q⇤ = (�2e) in a BCS superconductor, we can

write
g = rq � 2p

F0
A, (2.9)

where
F0 =

h
2e

(2.10)
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is the magnetic flux quantum.

2.2 josephson effect

In 1962, Brian D. Josephson predicted[75] that if two superconductors
are separated from each other by a thin insulating layer (a tunneling
barrier), finite supercurrent can flow . With established experimental
evidence[8], this phenomenon, the Josephson effect, soon became a
hallmark of superconductivity as it manifests macroscopically the co-
herent properties expected for charged superfluids. Although it was
calculated for a superconductor-insulator-superconductor system (S-
I-S junctions) in the original paper, the Josephson effect is principally
a fundamental phenomenon that can be found in any system com-
prising two weakly-coupled superconductors. The weak link can be
established in various configurations with numerous materials. To-
day, devices exhibiting the Josephson effect, known as the Josephson
junction or the Josephson weak link, are widely used for many appli-
cations of superconductivity in sensors, high-frequency devices and
quantum information. The Josephson effect also provides an effective
platform for investigating fundamental physics such as macroscopic
quantum coherent phenomena.

Figure 2.1: A Josephson tunnel junction.

In this thesis, we study Josephson weak links made with graphene
in diffusive and ballistic regimes. The following section presents some
basic concepts relating to the Josephson effect and to characteristics of
Josephson junctions that will help us to understand our experimental
results.
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2.2.1 Josephson equations

Two Josephson equations describe the dynamics of supercurrent in
an S-I-S junction:

Js = Jcsinj, (2.11)

∂j

∂t
=

2p

F0

Z 2

1
E(r, t) · dl. (2.12)

where Jc is the maximum supercurrent density, and j is the gauge-
invariant phase difference between the two superconductors S1 and S2
(Fig. 2.1) given by

j(r, t) =
R 2
1 g(r, t) · dl =

R 2
1

⇣
rq � 2p

F0
A
⌘
· dl

= q2(r, t)� q1(r, t)� 2p

F0

R 2
1 A(r, t) · dl

. (2.13)

Here we simplify the discussion by focusing on a 1-D channel in
which Js is the amplitude of the supercurrent density.

2.2.1.1 Current-phase relation in a Josephson junction

Note that in the first Josephson equation (2.11), the gauge-invariant
phase “difference” j between S1 and S2 has replaced the gauge-invariant
phase gradient g in determining the supercurrent density Js (eqn.
(2.8)). This substitution is made based on the assumption that the
phase gradient g in the bulk superconductor is negligible compared
to in the weak link, for the reasons described next.
Recall eqn. (2.8):

Js =
q⇤n⇤s h̄
m⇤ g.

Consider a homogeneous supercurrent density 2: If we move along
an electrical path from S1 through the weak link to S2 associated with
a given Js, we would see that the phase gradient g in the supercon-
ducting leads is much smaller than that in the weak link part. This
is because g is inverse proportional to the Cooper pair density n⇤s
(Jsunchanged due to current conservation) . This assumption is true
as long as the Cooper pair density in the bulk superconductor (S1
and S2) remains much larger than that in the weak link, which is
clearly the case in the context of an S-I-S junction as discussed here.
It also follows that the phase factors inside both leads vary slowly
with space, and can be readily treated as homogeneous. The weak
link is “weak” because it is much easier to twist the phase difference
between its two ends than in a superconductor.
From eqn. (2.8), it is intuitive to assume that Js is proportional to

the phase difference j. However, the wave function y1,2 in the leads

2 This is a reasonable assumption for junctions with small areas, and it still holds for
the local current density of large junctions.
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must be single-valued with respect to the phase up to a multiple of
2p, which should also result in a 2-p periodicity in Js:

Js(j) = Js(j + 2np), (2.14)

with the constraint that there is no supercurrent if the phase differ-
ence between the two leads is zero (q1 = q2):

Js(j = 0) = 0. (2.15)

We conclude that the supercurrent density Js of a Josephson S-I-S
junction changes sinusoidally with the phase difference between the
two superconducting leads,

Js = Jcsin(j),

which gives us the current-phase relation.

2.2.1.2 Voltage-phase relation in a Josephson junction

We can also obtain a voltage-phase relation by drawing on the fact
that in the 1-D case under discussion,

R 2
1 E(r, t) · dl in eqn. (2.12) is

simply the voltage drop V across the junction. Hence, eqn. (2.12) can
be written as

∂j

∂t
=

2p

F0
V, (2.16)

and the time-dependent supercurrent density obtained is

Js(t) = Jcsin(j0 +
2p

F0
V · t). (2.17)

We see that the Josephson junction can be driven as an oscillator by ap-
plying a voltage V across the junction, with frequency nJ (the Joseph-
son frequency) given by V

F0
, which in turn gives ~ 500 GHz/mV.

2.2.2 Josephson effect in the presence of an external magnetic field

We have seen in 2.2.1 the current-phase, and voltage-phase relations
of a Josephson tunnel junction (S-I-S) manifested in the 1-dimensional
limit. We now turn our attention to an extended 2-dimensional S-I-S
junction in the presence of external magnetic field B. We will see that
applied voltage causes temporal oscillation of the gauge-invariant
phase difference j, and that the applied magnetic field induces a
spatial variation of j.
Consider the S-I-S junction geometry shown in Figure 2.2. Two su-

perconducting leads are separated by an insulating layer with thick-
ness D. An external magnetic field B = (0, 0, Bz) is applied perpendic-
ularly to the x-y plane of the device. In order to illustrate the effect
of external magnetic field, we can calculate the shift of the gauge-
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Figure 2.2: Schematic of 2-dimensional SIS junction.

invariant phase difference along y-axis from point G to point L,which
is the difference between j(L), and j(G). This can be achieved by tak-
ing a line integral of phase gradient rq(x, y) along the contour de-
picted in red-arrow-lines. For a closed-loop contour, we require again
the line integral to be single-valued up to a multiple of 2p:H

C rq · dl = 0(modulo2p)

= (qGb � qGa) + (qLc � qGb) + (qLd � qLc) + (qGa � qLd)
. (2.18)

The first and third brackets represent the phase difference across a
weak link at a single location. Therefore we can use the expression
given in eqn. (2.13) directly to obtain

qGb � qGa = j(G) +
2p

F0

GbZ
Ga

A · dl (2.19)

qLd � qLc = �j(L) +
2p

F0

LdZ
Lc

A · dl (2.20)

The second and fourth brackets calculate the phase difference ac-
quired along the contour inside the superconducting lead. To calcu-
late these terms, we recall eqns. (2.8) and (2.9), and assign L ⌘ m⇤

n⇤s q⇤2

(usually called the London coefficient) to obtain

qLc � qGb =

LcZ
Gb

rq · dl = 2p

F0

LcZ
Gb

LJs · dl +
2p

F0

LcZ
Gb

A · dl (2.21)
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qGa � qLd =

GaZ
Ld

rq · dl = 2p

F0

GaZ
Ld

LJs · dl +
2p

F0

GaZ
Ld

A · dl (2.22)

By substituting these four equations into eqn. (2.18) , and rearranging
for j(G)� j(L), we obtain

j(L)� j(G) =
2p

F0

I
C

A · dl + 2p

F0

GbZ
Lc

LJs · dl +
2p

F0

GaZ
Ld

LJs · dl (2.23)

A is the vector potential that gives rise to the magnetic field B. There-
fore by Stoke’s theorem, the contour integral of A becomes

H
C B·ds=F,

the total magnetic flux in the contour-enclosed area.
The last two terms on the right hand side of eqn. (2.23) denote

the line integrals of Js along the inside of the superconductors (Fig.
2.2, dashed red lines). We argue that the line integrals vanish overall
as follows. First, given the device geometry and the homogeneous
current assumption, we can assume that Js(x, y)=(Jx, 0), so the part
of the line integral taken along the y-axis (gl2?, and lg1? ) is essen-
tially zero. In addition, we note that the line integral along the x-axis
(g1,2�and l1,2� in the Fig. 2.2) also adds up to zero, as G and L are
infinitesimally separated by dy in the y-direction. Therefore the inte-
grals of the neighboring path taken in opposite directions will cancel
each other out. We can now conclude that

j(L)� j(G) =
2pF
F0

. (2.24)

The shift in the phase difference depends on the magnetic flux that
penetrates the closed loop.
To calculate the flux F, we first note that due to the Meissner effect,

the magnetic field decays from the edge of a superconductor as

B(x) = Bz0exp(
�(| x | �2/D)

lL
) (2.25)

,provided both that the insulating layer centers at x= 0, and lL is the
London penetration depth:

lL ⌘
s

m⇤

µ0n⇤s q⇤2
. (2.26)

Thus the magnetic field is essentially zero beyond this length from
the edge of the superconductor, and the area penetrated by the field
is 2lLdy. We can define an effective junction length D0 = D + 2lL,
such that the infinitesimal shift in phase difference equals 2pBD0

dy
F0

.
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Consequently, the phase difference across the junction as a function
of the y-coordinate is

j(y) =
2pBD0y

F0
+ j0, (2.27)

,where j0 = j(y = 0). By substituting (2.27) into (2.11), we obtain
the spatial dependence of the supercurrent density as

Js(y) = Jcsin
✓
2pBD0y

F0
+ j0

◆
. (2.28)

2.2.2.1 Fraunhofer diffraction pattern of maximum supercurrent

The total supercurrent Is(Bz) can be obtained by integrating Js(y)
along the y-axis:

Is(Bz) =

W/2Z
�w/2

Js(y)dy =

W/2Z
�w/2

Jcsin
✓
2pBD0y

F0
+ j0

◆
dy. (2.29)

Note that this is equivalent to the imaginary part of the integral

eij0 ·
•Z

�•

Jc(y)exp
✓
i
✓
2pBD0

F0
y
◆◆

dy, (2.30)

provided that Jc(y) = Jc for | y | W/2, and zero otherwise (no
supercurrent outside the junction). The maximum supercurrent Ic(Bz)
of the junction is the magnitude of this complex integral:

Ic(Bz) =

������
•Z

�•

Jc(y)exp
✓
i
✓
2pBD0

F0
y
◆◆

dy

������ (2.31)

, and we see that the maximum supercurrent as a function of the ex-
ternal field is simply the Fourier transform of the supercurrent spatial
distribution Jc(y). Note that up to now, we have assumed a homo-
geneous current density along the y-direction. However, the result
we obtained in eqn.(2.31) is more general, as the only constraint we
imposed to establish equivalence is that the supercurrent disappears
outside the junction (when | y |> W/2), irrespective of any detail
inside (when | y | W/2). For a spatially homogeneous current dis-
tribution Jc(y), the integration of eqn.(2.31) yields

Ic(Bz) = Ic

����� sin(
2pBD0

F0
W
2 )

2pBD0
F0

W
2

����� = Ic

����� sin(
pF
F0

)
pF
F0

����� . (2.32)
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Figure 2.3: The schematic of a standard two-arm SQUID.

The flux F is the product of the external magnetic field B and the
effective junction area with London penetration length lL taken into
account. This expression is identical to the well-known Fraunhofer
diffraction pattern, which is the (spatial) intensity distribution of a
coherent light after it has passed through a single slit.

2.2.3 Phase drop across a weak link in a SQUID-like device

The superconducting quantum interference device (SQUID) is a su-
perconducting ring interrupted by two weak links (Fig. 2.3). In the
presence of a perpendicular magnetic field Bz, two phase differences
Dq1 and Dq2 across a weak link would result in a phase difference
between the Josephson currents Is1and Is2 in two branches. The in-
terference between Is1 and Is2 gives rise to the total supercurrent am-
plitude | Is(F) |=| Is1 + Is2 | to oscillate with a periodicity equal to
F0 . A SQUID typically encloses a much larger area than an extended
Josephson junction does, as for the latter at least one dimension is lim-
ited by the coherence length x. For this reason,compared Josephson
junction, SQUIDs are more sensitive to small changes in the B-field
and are, therefore, widely used in magnetometry.

Here we do not derive the phase dynamics of a SQUID, which
can be found in a rich body of literature on this subject[43, 120, 67].
Instead, let us consider a special case: a ring of superconductor inter-
rupted by one weak link (Fig.2.4). Specifically, our goal is to deduce
the phase drop across the weak link between two points Qa and Qb,
with the assumption that Js is homogeneous and w0 ⌧ W.
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Figure 2.4: The schematic of a superconducting loop interrupted with a
weak link.

Following the same reasoning as in eqn.(2.2.2), we can take a closed-
loop as shown in Fig. 2.4, and calculate the line integral of rq along
the contour

I
C

rq · dl = (qQa � qQb)weaklink + (qQb � qQa)SC = 0(modulo2p),

(2.33)
where the first bracket denotes the gauge-invariant phase difference
in the weak link (solid line), and the second bracket is calculated
along a complementary path inside the superconductor (dashed line).
Once again, we impose the single-value requirement for the phase
acquired in a closed-loop.
The phase difference can be calculated from eqn. (2.13), which yields

(qQa � qQb)weaklink = j(Q) +
2p

F0

Z Qa

Qb

A · dl. (2.34)

whereas the second bracket can be written as

(qQb � qQa)SC =
Z Qb

Qa

rq · dl = 2p

F0

Z Qb

Qa

LJs · dl +
2p

F0

Z Qb

Qa

A · dl,
(2.35)

according to eqn. (2.8) and (2.9). By adding up both equations above,
imposing the single-value requirement, and rearranging for j(Q), we
obtain

j(Q) = �2p

F0

I
C

A · dl � 2p

F0

Z Qb

Qa

LJs · dl. (2.36)
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Note that the device we are discussing typically consists of a piece
of superconductor that is much thicker than its London penetration
depth lL. In this situation, it is always possible to choose the path
deep inside the superconductor, where Js is zero. Based on this choice,
we can omit the integral associated with Js. Finally, according to
Stoke’s theorem,

H
C A · dl =

H
C B · ds = F, we have

j(Q) = �2pF
F0

= �2pBLW
F0

. (2.37)

Therefore in a ring of superconductor interrupted by a weak link,
the phase change across the weak link is proportional to the magnetic flux
that the ring encloses. In Chapter 5, we will discuss how to study the
dynamics of Andreev bound states (discussed in the next section) by
performing tunneling spectroscopy in this kind of device.
Finally, it is important to note that although the derivation of the

phase dynamics is established for the S-I-S junction, the main results
should also hold for the SNS junction. Specifically, if ns in the normal
region is much smaller than its counterpart in the superconducting
leads, according to eqn.(2.8), the phase change across the weak link
will dominate the total phase acquired in a loop.

2.3 andreev reflection and the superconducting prox-
imity effect

When placed in good electrical contact with a superconductor, nor-
mal metal acquires some superconducting-like properties at a low
temperature. This phenomenon is called the superconducting prox-
imity effect (fig. 2.5). Known for 50 years, the proximity effect still
attracts enormous interest owing to the richness of its physics.
The key mechanism responsible for the proximity effect, the An-

dreev reflection, offers phase correlations in a system without inter-
acting electrons at mesoscopic scales; that is, the correlation is pre-
served at length scale that is larger than the Fermi wavelength or the
mean free path of the system. The coupling between the electron and
the hole excitation, when phase coherence is preserved, in either bal-
listic or diffusive normal metal is analogous to the clean and dirty
limit of superconductors.
In this section, we employ a semi-classical picture to illustrate the

processes of the Andreev reflection and the coherent transport of
charge carrier across a junction normal, metallic junction (the SNS
junction) .

2.3.1 Andreev reflection

A further confirmation of the existence of the Cooper pair and the
BCS gap is provided by the discovery of the Andreev reflection. Let
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Figure 2.5: Image adapted from ref.[38]. Proximity effect in a SNS sandwich
at T ⇠ TC. Variation of order parameter (D(x)) is plotted as
a function of position. At the S/N interface, D decreases from
its bulk value on the S side. In the normal region, D increases
to its maximum when moving toward the interface, but sees a
abrupt change across the interface. Also plotted in the middle is
f (x), the probability amplitude of finding two electrons in the
condensed state at a given position x. f (x) is reminiscent of the
localized Andreev bound state as we know today.

us consider an interface between a normal metal and a superconduc-
tor, as shown in Figure 2.6. If an electron in a Bloch state is character-
ized by it’s wave vector k (assume a very low level of disorder in the
crystal so that k remains a good quantum number), energy Ek, and
spin s moves toward the interface. Assume that the electron’s energy
is smaller than the superconducting gap of the superconductor,

Ek � EF < D

where EF is the Fermi energy of the normal metal. The electron
can not propagate into the superconductor due to the lack of a single
particle state in the gap. Therefore, the electron should be perfectly
reflected at the interface. This is the normal reflection that one is fa-
miliar with. However, Andreev noticed that another type of reflection
compatible with description given here: The incoming electron may
grab an electron with a spin and momentum that is opposite to its
own, thereby forming a Cooper pair that can propagate freely into
the gap, and so join the condensate in the superconductor. In regard
to conserving the momentum, spin , and charge, this process leaves
behind an empty electronic state (hole) with the opposite spin�s and
wave vector �k 3as shown in Fig. 2.6 by the dashed arrow. Known as
the Andreev reflection, this is the only physical process responsible
for charge transfer across the normal metal / superconductor (N/S)
interface at energy smaller than the superconducting gap.
An electron from normal metal that impinges on the superconduc-

tor with energy smaller than the gap can either be reflected as an elec-

3 In this chapter, the motion of the Andreev reflected missing electronic state is de-
scribed in terms of electronic wave vector.
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Figure 2.6: The Andreev scattering (reflection) in a normal metal that is in
transparent electrical contact with a superconductor kept below
its TC.

tron with a specularly reflected wave vector k0 and original spin s, or
as a hole with exactly the opposite wave vector �k and spin �s. This
means that the reflected hole would trace back exactly along the orig-
inal path taken by the incoming electron, just like rewinding a video.
In fact, one of the interesting features of Andreev reflection is that the
superconductor couples the time-reversed quantum states with a cor-
respondence of k ! �k, s ! �s and�e ! +e, through the pairing
potential (superconducting gap) D. This coupling proceeds naturally
from the fact that each Cooper pair in classical superconductors is
comprised of electrons in time-reversed sates of each other.

2.3.2 Normal or Andreev reflection?

We have discussed the fact that when reflected from the N/S inter-
face, an electron in a low-energy excitation state goes through one
of two possible processes: The electron will either bounce back as an
electron or Andreev-reflected as a hole. It will be helpful to see what
determines the probability of these two distinctive events. Assume
that the N/S interface is perfectly transparent; i.e., there is no other
scattering potential despite the superconducting gap on the S side.
And, also assume normal incidence of the incoming electron on the
N/S interface. Under these assumptions, the only scattering force ex-
erted on the electron is the negative potential gradient �rU. We can
estimate the force magnitude F by considering the change of potential
over a characteristic distance in the superconductivity as 4

F =
dU
dx

⇡ DSC
x0

(2.38)

4 We follow the reasoning given in reference [95]
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where Dsc is the superconducting gap and x0 is the superconducting
coherence length that can be viewed as the spatial extent (size) of
a Cooper pair in a semiclassical picture. The force should cause a
change in momentum by

∂P = F∂t = F
2x0

vF
(2.39)

where vF is the Fermi velocity. Further, we assume that the particle
experiences this force during a roundtrip over the distance 2x0. By
plugging force F into the expression of the change of momentum and
rewriting force F in terms of the Fermi momentum PF and the Fermi
energy EF, we obtain

∂P = 2
DSC
vF

= pF
DSC
EF

. (2.40)

We see that the ratio between the momentum change caused by the
superconducting gap and the incoming Fermi momentum is of the
same order as DSC/EF. This value is very small for metallic supercon-
ductors , as only a small fraction of the electron around the Fermi
surface will form the paired-condensate upon the superconducting
phase transition. In Nb (TC ⇠9K), for example, the ratio is ~ 1meV/5.4
eV~1.8⇥10�4. As back-scattering an electron takes ∂P = 2PF, normal
reflection assisted solely by the superconducting gap is very unlikely.
This reasoning also implies that to maximize the probability of the
Andreev reflection at N/S interface, the electrical contact between
the normal metal and the superconductor must be as clean (scat-
terer free) as possible. Formally, the transparency is characterized by
t = 1/(1+ Z2), where Z is the barrier strength, which ranges from 0

for a perfect interface, to • for a tunnel barrier[? ]. When the contact
is perfect, i.e. Z = 0, t = 1, the Andreev reflection process dominates.
One immediate consequence is that conductance is enhanced at a low
bias (Vbias < DSC) and low temperature across the interface. In a bal-
listic system with a perfectly transparent N/S contact, each electron
sent from the normal metal will end up in two electrons passing the
interface, so that the conductance is twice as large as the conductance
in the normal state.

2.3.3 Andreev reflection and the Cooper pair transport across SNS junc-
tions

The fact that the superconducting gap, also called the pairing poten-
tial 5, couples two time-reversed quantum states of the electron and
hole in normal metal suggests that the same process is possible for

5 The two terms are equivalent in the BCS picture, and can also be interpreted as
the density of Cooper pairs in the superconductor. It was shown later by Gorkov
et al, that the gap is equivalent to the Ginzburg-Landau order parameter in the
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hole excitation when the hole impinges on the N/S interface. Thus, a
hole excitation characterized by [+e,�k,�s] from normal metal will
be reflected by the superconductor as an electron characterized by
[�e,+k,+s]. This reflection provides a basis for considering an even
more interesting situation: What happens when two N/S-interfaces
are connected by a piece of normal metal?
Consider an SNS junction as illustrated in Figure 2.7. Two super-

conductors are linked by a piece of normal metal with length L. Let
us assume the same transparent N/S interface as in our previous dis-
cussion, and let us assume further that there is no impurity scattering
in the normal region. Under these assumptions, the Andreev reflec-
tion (AR) has the same probability of occurring at either interface. In
equilibrium, the superconductor on the right converts an electron, de-
noted by eR, into a hole excitation in its time-reversed state, which
will trace the path taken by the electron back to the superconductor
on the left-hand side. By the argument based on the symmetry de-
scribed, the hole will pass through the N/S interface with another
hole excitation that pairs with it (the Cooper pair of hole-like exci-
tation). A Cooper pair of electrons is thus broken, and an electron,
identical to eR in terms of charge, momentum and spin degree of
freedom is ejected into the normal metal and completes a roundtrip
on arriving at the superconductor on the right-hand side.
We can see that each roundtrip annihilates one Cooper pair in the

left superconductor, and creates another Cooper pair in the right su-
perconductor. Therefore, a Cooper pair is effectively transferred from
left to right. This microscopic process gives rise to the transport of
supercurrent across the SNS junction, in which current flows without
dissipation from one superconductor to another by passing through
a normal metal that is not inherently superconducting.

Figure 2.7: An SNS junction and Andreev roundtrips responsible for trans-
porting Cooper pairs across a normal metal weak-link.

G-L formalism as proposed before BCS theory. In this thesis, we use these terms
interchangeably in accordance with the context.
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2.3.4 Phase coherence in Andreev reflections

As we have shown, through Andreev reflections at the N/S interface,
some superconducting-like properties can be induced, at least in the
proximity of the interface, in normal metals provided both metals
are in good electrical contact. The most important property for the
Andreev reflection and the proximity effect that follows is the phase
coherence in the process.
The microscopic description of the superconducting state in an in-

homogeneous system starts with the Bogoliubov-de Gennes equation
for the electron- and hole-like wave functions ye(~r), yh(~r) of quasi-
particles [39]: 

H � EF D(~r)
D(~r)⇤ �(H⇤ � EF)

! 
ye(~r)
yh(~r)

!
= E

 
ye(~r)
yh(~r)

!
(2.41)

Here H denotes the single particle hamiltonian of the system without
superconductivity, D(~r) the space dependent pairing potential (su-
perconducting gap), EF the Fermi energy of the system, and E the
excitation energy measured with respect to EF. The Bogoliubov-de
Gennes equation describes the dynamics of electron- and hole-like
excitations in a system with spatially-varying pairing potential D(~r),
in a way that is similar to how the Schrödinger equation describes
the electron dynamics in a normal system.
An important distinction is the existence of the superconducting

pairing potential D(~r) as it couples the electron- and hole-like wave
functions ye(~r), yh(~r) together. The coupling is the quantum mechan-
ical description of the Andreev reflection process whereby an elec-
tron(hole) is absorbed into and a hole(electron) reflected onto the nor-
mal system. The Bogoliubov-de Gennes equation suggests that ye(~r)
and yh(~r) are phase-correlated, meaning that there is a fixed relation
between the phases of these two wave functions.
The phase acquired through the Andreev reflection that convert the

incoming electron into a hole can be expressed as

fe!h = f1 + arccos(
E
D
) (2.42)

where f1 denotes the phase of the superconductor on the right-hand
side of Figure 2.7. The first phase term results from the requirement
that particles absorbed by the superconductor must be in phase with
the macroscopic wave function that describes the condensate. There-
fore, the hole left behind by one of these particles will pick up the
same phase. The second phase term arccos( ED ) comes from the reflec-
tion probability amplitude[18], which depends on the relative strength
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of the excitation energy E and the barrier D. Similarly, the same phase
expression is expected for the opposite process:

fh!e = �f2 + arccos(
E
D
). (2.43)

We emphasize that so far, for simplicity, we have limited our dis-
cussion to ballistic normal metal, meaning that no scattering event
takes place within the roundtrip. However, the general results pre-
sented here hold even for diffusive metals. P.W. Anderson pointed
out[9] that in a highly disordered metal, where the Bloch wave vector
k is no longer a good quantum number, single-particle wave functions
still come in time-reversed pairs i.e.

yi"(r),y⇤
i#(r).

The superconductivity is insensitive to the impurities as long as the
phase coherence is preserved, whereas the characteristics of the dy-
namics differ depending on the regimes.

2.4 andreev bound states in ballistic junctions

We are ready to discuss one of the major topics of this thesis: supercurrent-
carrying Andreev bound states (ABS). The current understanding in
the field is that the Andreev reflection and the roundtrip taken by
phase-correlated particles are responsible for the transport mecha-
nism. However, the roundtrips differ in regard to the extent to which
they contribute to the supercurrent transport: only the roundtrips
that fulfill certain resonance conditions form energy bound states that
dominate the transport in a superconducting regime.

2.4.1 Transport resonance in the Andreev process

The bound-state energy can be obtained by requiring the phase accu-
mulated in the Andreev process to be multiples of 2p. Processes that
satisfy this requirement result in constructive interference of proba-
bility and will dominate the signal that can be measured.
Let us consider the roundtrip taken by the phase-conjugated elec-

tron and the hole excitation depicted in Figure 2.7. The phase related
to the Andreev reflection is given by eqns. (2.42) and (2.43). In addi-

tion, the dynamic phase fe(h) =
R ~ke(h) · d~l acquired by the traversing

of the electron(hole) between the superconductors also contributes to
the total phase accumulation. In a one-dimensional ballistic case, the

32



phase picked-up by an electron traveling from S2to S1 can be calcu-
lated simply as

fe = ke · L =

r
2m
h̄2

(E+ EF) · L (2.44)

and for the hole that travels from S1 to S2, with excitation energy
smaller than Fermi energy EF, the dynamic phase is

fh = kh · (�L) =
r

2m
h̄2

(EF � E) · (�L). (2.45)

As E ⌧ EF, the total dynamic phase can be written as

fe + fh = kFL
E
EF

(2.46)

to the first order approximation. We can now write the resonance
condition for the total phase acquired in a roundtrip taken by the
electron-hole pair coupled by the Andreev reflection as follows:

2 arccos(
E
D
)± (f1 � f2) + kFL

E
EF

= 2pn, (2.47)

where n is an integer and ± accounts for the two possible directions
the roundtrip can take. This resonance condition was first established
by Kulik, who rendered it for a clean S � N � S junction[83]. He
showed that from this expression, the bound-state energy as a func-
tion phase difference between S1 and S2 can be found.
Before we demonstrate this, let’s first look at the phase term as-

sociated with the junction length L. Eqns. (2.44) and (2.45) show
that the individual dynamic phase of Andreev-conjugated electron
and hole is not identical for |E| 6= 0. It is also suggested that the
Andreev-reflected hole does not completely “erase” the phase foot-
print left by the incoming electron in a retro-reflection process. Thus,
the net phase difference between the two motions, by electron and
hole respectively, is given by kFL E

EF
. The phase coherence between

the Andreev-reflected electron-and- hole pair can be maintained only
up to a certain distance, which is determined by |E|, the magnitude
of the excitation energy.

2.4.2 Andreev bound states in a short junction limit

The kFL E
EF

term also gives us the criteria to distinguish between short-
and long-junction limits. The junction is “short” if this term is negli-
gible, so that the phase depends almost completely on the Andreev
reflection and is insensitive to the geometry. This is equivalent to the
condition L ⌧ x, where x = h̄vF/2D is the coherence length in ballis-
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tic normal metal 6. In the short-junction limit, the bound state energy
can be solved from eqn. (2.47) as:

E±
A,L⌧x

(Df) = ±D cos(
Df

2
),�p < Df < p (2.48)

where Df = f1 � f2 is the phase difference between the two super-
conductors. Only one | EABS | is allowed within D.

2.4.3 Andreev bound states in a long junction limit

In the opposite limit, i.e., where L is much larger than the coherence
length while the metal remains ballistic, the phase acquired in each
roundtrip is dominated by the term associated with L. In addition,
due to the weaker quantum confinement in a long junction as com-
pared to that in a short junction, the energy spacing between bound
states decreases with L and thus multiple bound states can be accom-
modated within the gap. The low-energy (E ⌧ D) spectrum for the
bound states can be expressed as

E±
A,L�x

(Df) =
h̄vF
L


(n� 1

2
)p ⌥ Df

2

�
,�p < Df < p (2.49)

In both limits, phases of the macroscopic wavefunctions in super-
conductors play the central role in the dynamic of the normal region,
where essentially no Cooper pairs are present. In a ballistic SNS junc-
tion with given geometry, it completely determines the the spectrum
of energy bound states at equilibrium, without the application of any
bias or other means of intervention. Dependence on the supercon-
ducting phase difference is a signature property of Andreev bound
states. The phase dependence provides a very powerful tool for inves-
tigating the proximitized system.

2.4.4 Andreev bound state and the supercurrent transport in an SNS junc-
tion

We have established the relation between the Andreev reflection and
the (effective) transport of Cooper pairs across an SNS junction, as
well as the phase dependence of the Andreev bound state that carries
supercurrent in short- and long-junction limit. However, the relation
between the supercurrent and Andreev bounds states might not be
as straightforward as it appears. In fact in our discussion earlier, we
note that for each Andreev bound state, there is a degenerate state
in which the carrier moves in the direction opposed to its degenerate
counterpart, which cancels out the current flow carried by its coun-

6 This is readily derived from kFL E
EF

⌧ 1 by substituting E with the gap energy D as
the upper bound.
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terpart at the same energy. Does this mean that the net supercurrent
should be zero according to this model?
To clarify this subtle issue, it should be noted that the Andreev

bound states are simply discrete energy levels within the gap 7 that
maybe occupied by quasiparticles in the normal metal. To obtain the
total supercurrent, it is necessary to add up the electrical current[10]
I±n (f) 8 carried by quasiparticles occupying each Andreev level E±

ABS(n)(f)

(under the assumption that | EABS(n) |< D, so that the levels are dis-
crete). As the supercurrent flows at thermal equilibrium, we assume
that the levels are thermally populated by the quasiparticles accord-
ing to the Fermi distribution function f (E). The total current Id(f)
contributed by the quasiparticles occupying all Andreev levels is

Id(f) = Â
n
{I+n (f) f (E+

ABS(n)(f)) + I�n (f) f (E
�
ABS(n)(f))}, (2.50)

where the index “+(-)” denotes the left(right) moving particles at a
level above(below) the Fermi energy EF. From this perspective, the
expectation is that only levels below the Fermi energy (EABS(n)  0,
measured with respect to EF) can contribute to the supercurrent at
T = 0. At T 6= 0, the imbalance of occupancy between the right- and
left-moving states gives rise to a finite net supercurrent.

2.5 andreev bound states in disordered junctions

In the previous sections, we discussed the Andreev bound states in a
ballistic (scattering-free) channel. In practice, it is difficult to achieve
an absolutely impurity-free channel. The scattering source can be dis-
order in the normal metal or in the barrier between the superconduc-
tors and the normal metal. No matter its origin, the scattering results
in a modification to the ABS energy spectrum and the corresponding
supercurrent characteristics.

2.5.1 Channel with a single point impurity

Following Philip Bagwell ([10]), we model the impurity by a point
potential placed inside the junction

V(x) = Vsd(x� a), (2.51)

7 We confine ourselves to the bound states within the gap. There exists, however, an
energy continuum above the gap that also contributes to the total supercurrent which
we will discuss in Chapter 5.

8 For brevity, we use f in place of Df from now on, as we can always set f2 to zero
without changing any of the physics.
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where 0  a  L. The single-particle Hamiltonian that we used in the
Bogoliubov-de Gennes equation (2.41) now becomes

H(x) =
1
2m

✓
h̄
i
d
dx

� eA(x)
◆2

+V(x). (2.52)

We anticipate that elastic scattering between the electron and the po-
tential will only introduce an extra phase shift, which can be absorbed
into an effective phase term a that we will use to calculate the reso-
nance condition. Hence, eqn. (2.47) can be rewritten as

2 arccos(
E
D
) +

✓
L
x

◆✓
E
D

◆
± a = 2pn, (2.53)

where we have rearranged the term associated with junction length L
in terms of D and coherence length x = h̄vF

2D .
The effective phase a is defined by[10]

cos a = tcos(f) + r cos

(
L� 2a

x

)(
E
D
)

�
. (2.54)

Here, f is the phase difference between S1 and S2, as we have set
f2 = 0. t and r are the normal electron transmission and reflection
probability, respectively, through the channel given by a point-like
(d � f unction) potential:

t = 1� r =
1

1+ (mVs/h̄2kF)2
. (2.55)

We can see from eqn.(2.54) that if t ! 1, the impurity plays almost
no role and the Andreev reflection is recovered for a ballistic channel.
In the opposite limit, where t ! 0, the bound state becomes indepen-
dent of the phase f in the superconductor. This is the case because the
particle is strongly confined in the channel, in which the bound state
energy depends on the position of the potential barrier that defines
the configuration of the cavity. The second term in the expression of
the effective phase , eqn.(2.54), also suggests that the scattering poten-
tial contributes to the total acquired-phase in a similar way as in the
dynamic phase, which is the phase the electron and hole would gain
by traveling between the leads. From this perspective, we can say that
the scattering effectively increases the junction length 9.

9 This can be understood intuitively, as with t < 1, the electron must make multiple
attempts to pass the barrier. Bouncing back and forth between the barrier and leads
increases the average distance it needs to travel to complete an Andreev roundtrip.
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2.5.2 Andreev bound states in a short junction with impurity

When the junction length L is much shorter than the coherence length
x, we omit the term associated with L in eqn. (2.53) and solve for the
bound state energy for a 1-D channel as in eqn.(2.4.2):

E±
A,L⌧x

= ±D cos(
a

2
) = ±D

r
1� tsin2(

f

2
), (2.56)

where
cos(a) = tcos(f) + r. (2.57)

This is similar to the E±
A in a short ballistic channel (E±

A=±cos(f/2))
except that the degeneracy at f = p is lifted. Furthermore, an energy
gap is opened at f = p, as given by

Egap = 2D
p

r. (2.58)

Note that in a impurity free channel, E±
A correspond to left- and right-

moving states that are independent to each other. The presence of an
impurity mixes the states going in opposite directions ,as the elec-
tron has a finite probability of back-scattering upon impinging on
the potential. This back-scattering, which is most pronounced at the
degeneracy point f = p, changes the entire spectrum of E±

A in ex-
actly the opposite way, such that one travel direction becomes more
energetically favored than the other.

2.5.3 Andreev bound states in a long junction with impurity

In the opposite limit where L � x, with low energy excitation E ⌧
D,we obtain from eqn.(2.53):

E±
a ⇠ Dx

L
(2pn� p ⌥ a) =

h̄vF
2L

(2pn� p ⌥ a) . (2.59)

To see explicitly how the energy bound states vary with the supercon-
ducting phase f, we can rearrange eqn.(2.54) and write

cos2(
a

2
) = 1� tsin2(

f

2
)� rsin2

✓
(L� 2a)E

2Dx

◆
. (2.60)

If we place the impurity at the mid-point (a = L/2), the bound state
energy becomes

E±
A ⇠ p

✓
h̄vF
2L

◆(
2n� 1⌥ 2

p

cos�1

"r
1� tsin2(

f

2
)

#)
. (2.61)
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The gap at f = p around E = 0 can be obtained by taking the differ-
ence between E�

A(n) and E+
A(n� 1), which yields

Egap = 2p

✓
h̄vF
2L

◆✓
1� 2

p

cos�1p
r

◆
. (2.62)

For small r, cos�1p
r can be approximated by

�
p

2 �p
r

�
, such that

Egap ⇠ 2
✓
h̄vF
L

◆
p

r. (2.63)

We see that even when more states are packed within the supercon-
ducting gap D rather than only one | EA |, the basic characteristics
of ABS in long and short junctions in the presence of impurity are
qualitatively similar. The degeneracy at f = p which appears in the
clean junctions is lifted due to the finite back-scattering rate, and the
energy gap between neighboring left- and right-moving states is pro-
portional to the square root of the reflection probability r. However,
in the short-junction limit, Egap scales with the superconducting gap
D, whereas in the long-junction limit, the gap energy scales with the
level spacing h̄vF

L associated with the quantum confinement imposed
by the device geometry.
In chapter 5, we have the opportunity to study devices as described

in Figure 2.4, which allows us to see the manifestation of the theory
that we discussed in this chapter.
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3
SUPERCURRENT TRANSPORT IN D IFFUS IVE
GRAPHENE NANODEV ICES

Our study of the superconducting proximity effect in graphene starts
from the fabrication and characterization of superconductor-graphene-
superconductor (SGS) junctions. The flow of zero-voltage bias current
across the leads could be regarded as a benchmark for strong cou-
pling between the superconductor and the graphene. This flow also
ensures that the electronic temperature in the cryostat is well below
the Josephson coupling energy of the hybrid system.
Basic graphene device fabrication techniques are presented in this

chapter. In particular, some implementation issues and other issues
likely to arise with sputtering deposition of metals on atomic thin
layers will be discussed.
A cryo-free dilution refrigerator, and the associated measurement

setup we use for superconducting devices are introduced. In particu-
lar, the implementation of a low-pass filtering setup, which is crucial
to this type of measurements, is discussed.

3.1 nbn-graphene-nbn josephson junctions

Niobium nitride (NbN) is a type II superconductor with a rela-
tively high Tc(about 10~14K, depending on growing condition and
thickness). The induced superconducting gap in graphene contacted
by NbN is expected to be 10 times larger than that induced by alu-
minum, which is commonly used in studies of SGS systems. In com-
parison, this larger superconducting gap results in a more “robust”
proximity effect in graphene, which shows a higher critical current
and an improved immunity to noise. SN- or SNS junctions made by a
type II superconductor with large Hc2 (typically a few tesla) also pro-
vide the opportunity to study the magneto transport of superconduct-
ing charge carriers, such as the Andreev reflection at high magnetic
field[51, 71], focused crossed Andreev reflection[69], and the coupling
between Cooper pairs and quantum Hall states[116, 117, 138].
3.2 device fabrication

To fabricate an SGS device, a graphene monolayer is prepared by me-
chanical exfoliation following the procedure first developed by Geim
et al[97]. Highly doped (conductivity: 0.001~0.005 ohm-cm) Si wafer
(NOVA electronics, item # FP02-61160-AS), topped with 285 nm ther-
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mally grown SiO
2

, serves as the substrate and backgate for the de-
vice. The thermal oxide is dry-chlorinated and annealed in forming
gas by the manufacturer in order to reduce the charge trap in the ox-
ide layer, which might otherwise dope the graphene. The alignment
marker is defined by e-beam lithography followed by the deposition
of 5 nm of chromium and 120 nm of gold. E-beam-defined marker
typically gives alignment precision to within 100 nm. A standard Pi-
ranha cleaning (Appendix A.1) is performed on the substrate before
the graphene deposition. After the proper graphene monolayer has
been identified under an optical microscope, pictures of the flake are
taken with respect to neighboring markers and imported to CAD
software for patterning design. The lines that make up the pattern
are 1 µm wide and are typically separated from each other by 500 nm
for Josephson junctions. E-beam exposure (30 KeV, Raith 150) is per-
formed on the PMMA (polymethyl methacrylate) tri-layer (discussed
in 3.2.3) with a dosage of ~ 300 µC/cm2. After lithography, the sam-
ple is immersed in a solution of MIBK (methyl isobutyl ketone) and
IPA (isopropyl alcohol), with a 1:1 ratio, for one minute to dissolve
the exposed PMMA. We use MIBK:IPA =1:1 instead of the standard
1:3 solution to achieve a more aggressive development, which leaves
less PMMA residue in the developed area than the standard recipe
would. Ti (5nm) and NbN (45 nm) thin films are deposited on the de-
veloped sample with a UHV magnetron sputtering system (discussed
in 3.2.1), followed by a lift-off of the resists with acetone kept at 60°C.
The sample is then ready to be measured. More details about the
nanofabrication techniques are discussed in the following sections.

3.2.1 Sputtering deposition of superconductor on monolayer graphene

Sputtering deposition is a technique that is widely used to deposit
dielectrics or metals with very high melting points, to which other
physical vapor deposition, such as e-beam or thermal evaporation, is
not applicable 1. In a typical sputtering deposition process, gaseous
plasma is first created in the chamber, and the ions from the plasma
are accelerated toward the source material (target), which is mounted
on a negatively-charged electrode. The energized ions erode the tar-
get via energy transfer and eject the source material in the form of
neutral particles. A neutral particle travels in a straight line unless
it collides with other particles in the chamber. Thus, if a substrate is
placed in the path of these particles, it will eventually be coated with
a thin film of the source material[1]. The working principle, namely
the stochastic nature of sputtering deposition achieved by kinetic en-

1 We did try to evaporate pure Nb onto some devices using a high-power e-beam
evaporator. The resist (PMMA) hardened and cracked all over the entire surface.
We think that the high energy radiation generated during e-beam evaporation cross-
linked the PMMA, which actually can, in fact, be used as a negative-tone resist when
exposed to UV.
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ergy transfer among materials, implies two main issues in regard to
the nanofabrication of graphene devices.

3.2.2 Damage to graphene by energetic particles in sputtering

The energetic particles such as ions, clusters of source material,and
high-speed neutral gas atoms that populate the chamber during the
sputtering process can damage the graphene’s surface. Raman spec-
troscopy performed on graphene coated with thin sputtered film has
shown significant suppression of the characteristic G and 2D peaks
and a pronounced D peak, suggesting the amorphization of the sp2C-
C bonding[46, 74]. In addition, the damage caused to a multi-layer
flake decreases as the number of layers increases. Further investi-
gation by controlling the sputtering condition such as incident an-
gle, substrate temperature, discharge power density, and pressure,
shows that the gas neutrals constitute the primary cause of damage
in graphene[30].
Note that in a DC magnetron sputtering setup, as is the case pre-

sented here, charged particles, including ionized Ar and ionized sput-
tered target species , seldom reach the substrate, as they are strongly
confined around the cathode region by the electrostatic field. The two
remaining kinds of energetic neutral particles are (1) the sputtered
target species, of which the kinetic energy typically lies below 10

eV[128],and (2) the high-speed gas neutral , such as Ar atoms in the
present case, created either by a recombination of Ar ions or a colli-
sion with other energetic particles. In fact the gas neutral is shown
to be the dominant species in the energetic particles that bombard on
graphene surface[30].
It is also discovered that the grazing-angle configuration, elevated

substrate temperature (up to 200 °C), low discharge power density
(controlled by the target bias voltage) and low processing pressure
(<5 mTorr) in a DC sputtering process can preserve the crystallinity
of graphene to an extent that is comparable to the result that can be
obtained by e-beam evaporation [30].
Table 3.1 summarizes the typical sputtering condition of DC 2 mag-

netron sputtering for the devices discussed in this chapter. Instead
of being formed by sputtering directly a NbN target, the compound
is formed by reactive sputtering, that is, by sputtering Nb in a mix-
ture of Ar and N

2

gases. Following this recipe, we consistently obtain
NbN thin film (~ 40 nm) with a Tc ~ 12K, and the film remains super-

2 We found that our graphene device can only be contacted by DC sputtering. The
RF mode of magnetron sputtering leads to very high contact resistance ( a few kilo
ohms) , which prohibits the proximity effect. This is consistent with the finding
in [30],as in RF sputtering, the polarity of the target is reversed every half cycle,
allowing the charged particle to escape from the electrostatic confinement and reach
the substrate with higher probability.
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conducting up to at least 9 tesla, which is the highest magnetic field
achievable in the cryostat.

Parameter Experiment condition

Chamber base pressure 5x10-9 Torr
Sputtering temperature 50 °C
Sputtering pressure 3 mTorr
Argon gas flow 100 SCCM*

Nitrogen gas flow 13 SCCM*

Beam incidence angle ~ 45 degree
Distance from target to substrate ~ 40 cm

DC power (for Ti target) 300 watts
DC power (for Nb target) 180 watts

Deposition rate Ti: 0.1Å/sec, NbN: 1Å/sec
*Standard cubic centimeter per minute

Table 3.1: Sputtering condition for making NbN-graphene-NbN Josephson
junctions.

3.2.3 Tri-layer PMMA resist for sputtering deposition and lift-off of Ti/NbN

Given the isotropic nature of the sputtering process, we developed
a tri-layer PMMA (polymethyl methacrylate) resist structure for e-
beam lithography. PMMA 950 A4 (950,000 molecular weight, 4% in
anisole, from MicroChem) on the top and the bottom layers guaran-
tees high resolution in e-beam patterning whereas a more sensitive
PMMA 120 A5 middle layer facilitates a pronounced undercut for
the lift-off step. This PMMA structure allows us to easily lift off the
sputtered thin film using acetone. Fig.3.1 illustrates (a) the stacking
order and thickness of the tri-layer resist ,(b) the SEM micrographs of
under cut, and (c) the NbN pattern after lift-off.
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(a) Tri-layer PMMA structure. (b) SEM (scanning electron microscope)
image of the PMMA tri-layer resist
after exposure and development. Pro-
nounced undercut can be observed in
the middle of the image.

(c) SEM image of NbN pattern after lift-off in acetone. The pronounced
undercut rendered by PMMA tri-layer enables a clean lift-off of
metal, compatible with an isotropic metallization.

Figure 3.1: PMMA tri-layer stack for NbN sputtering and lift-off.

3.3 measurement setup

3.3.1 Cryo-free dilution refrigerator

3.3.1.1 Pulse-tube cryocooler

All quantum transport and spectroscopy measurements presented in
this thesis are performed in our cryo-free dilution refrigerator (Lei-
den Cryogenics BV CF-450). The cryo-free system, usually referred
to as a “dry fridge” because it does not need to be immersed in liq-
uid helium, uses a closed-loop cryocooler to provide cooling power
from room temperature to around 4K. Compared to a typical “wet
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fridge”, the closed-loop system eliminates the cost of liquid helium,
and requires less supervision during long measurement sessions. Our
system uses a pulse-tube cryocooler which offers several significant
advantages over other closed-loop cryocooler designs[50]. Specifically,
the pulse-tube cryocooler has no moving parts at the cold end; there-
fore it vibrates less and in principle requires less maintenance than
do other kind of cryocoolers. Modern design typically consists of two
stages of pulse-tube cooling to achieve a temperature as low as 2K.
Here, we show how a basic single-stage pulse-tube cryocooler works
in order to capture the principle of operation.
Figure 3.2 shows the basic elements of a pulse tube cryocooler. The

refrigeration cycle starts when the piston moves down to compress
room-temperature helium gas to go through the regenerator, and pass
the cold stage of the pulse tube. This hot compressed gas flows through
a constriction into a reservoir that is kept at room temperature, while
releasing the heat qhot through a heat exchanger when passing the
hot end of pulse tube. The gas flow stops when the pressure in the
pulse tube equals that in the reservoir. The piston then moves up
and causes the gas in the pulse tube to cool down due to adiabatic
expansion. The cold, low-pressure gas in the pulse tube is forced back
through the heat exchanger at the cold end by the reverse flow from
the reservoir, the pressure of which becomes higher instantaneously,
and absorbs heat qcold from the cold stage. This back flow stops when
the pressure in the pulse tube is in equilibrium with the pressure in
the reservoir, such that one cycle is completed. The pulse tube must be
well insulated at each of its ends and it must have sufficient volume
so that the hot gas from the hot end never reaches the cold end in a
cycle and vice versa. In fact, the gas in the middle of the tube never
leaves the tube, thereby forming a temperature gradient that insulates
both ends. Finally, the regenerator, which is made of materials with a
large heat capacity and a large surface area, is a heat exchanger that
pre-cools the incoming compressed gas before it reaches the cold end
of the pulse tube. The heat is stored in the regenerator during the first
half of the cycle, and is removed by the up-flowing cold gas.

3.3.1.2 Dilution refrigeration

The cryostat cools to a temperature below 300mK by dilution refrigeration[54].
This process uses a mixture of 3He and 4He gas, the two isotopes of
helium, which is pre-cooled to a temperature below 1K by the pulse-
tube refrigeration and pumping of the mixture. At temperature be-
low 870 mK, the mixture undergoes spontaneous phase separation
into an 3He-concentrated phase (highly purified 3He) and a diluted
phase composed of 6.4% 3He in 93.6% 4He liquids. At equilibrium,
the phase boundary is designed to settle within the mixing chamber,
where the 3He-concentrated phase sits on top of the diluted phase of
the mixture. 3He is the moving liquid in normal circulation driven by
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Figure 3.2: Operation of a pulse-tube cryocooler. Image adapted from [50]

several pumps within the mixture circuits. It is diluted when cross-
ing the phase separation boundary from the concentrated phase to
the diluted phase. Because the process of crossing the boundary is
endothermic in nature, 3He absorbs heat from the environment and
thus provides the cooling power of the fridge in a sub 1K regime. The
diluted 3He leaves the mixing chamber and enters the “still” (i.e., the
distillation chamber) , in which a gas-liquid phase boundary is main-
tained by pumping. The pump pumps out gaseous 3He, compresses
it through cold capillary impedance, and the feeds 3He liquid back
into mixing chamber (concentrated phase) to complete a cycle.

3.3.2 Filtering for quantum transport measurement

3.3.2.1 Why do we need to filter the signals?

From the principle of dilution refrigeration discussed in the subsec-
tion 3.3.1.2, it is evident that the mixing chamber has the lowest tem-
perature, known as the base temperature, inside a dilution fridge.
Therefore, if it is to reach the lowest temperature possible, the sample
must be thermally anchored to the mixing chamber plate. However,
thermally anchoring the sample in this way does not guarantee that
the sample will reach and then stay at the base temperature during
the measurement for two reasons: First, thermal coupling between
the sample and the cryostat is significantly suppressed at low temper-
ature due to the reduction of phonon modes, which is responsible for
the thermal conductivity in the lattice. Secondly, the leads that con-
nect the device to the apparatus at room temperature constantly feed
the “hot electrons” into the mesoscopic devices[124]. This implies that
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Figure 3.3: Schematic view of dilution refrigeration (adapted from [54])

electromagnetic noise at a frequency of up to 300 K kb/h ~ 6T Hz may
couple to the device, for which the characteristic energy scale might
be much smaller. For instance, NbN (Tc~10K in our experiment) has a
BCS gap of 0.5 T Hz and a Josephson coupling energy Ejthat can be as
small as a fraction of the gap. In order to measure sizable Josephson
current in Josephson junctions, it is necessary to reject high frequency
(G Hz ) electromagnetic noise , i.e., the “hot electrons”.
Most of the solutions proposed to effectively thermalize the exper-

iment at milli-kelvin temperature rely on shielded distributive RC
filters [110, 124, 85]. In comparison with reflective filters, RC filters,
given their dissipative nature, are less sensitive to impedance mis-
matches in the rest of the lines, from which spurious transmission
resonance may arise. Further, it is necessary for the RC filters to ther-
malize well with the mixing chamber in order to avoid a situation in
which the latter generates thermal noise by itself.

3.3.2.2 Noise filtering using distributive RC filter

Traditionally, low-pass filtering in an RF regime is achieved using a
powder filter[90], in which each line consists of a copper tube filled
with metallic powder (typically stainless steel or copper) with 1-meter-
long resistive wire coils inside. Each channel terminates with a coax-
ial connector (e.g., SMA connector ) and the entire filter connects to
coaxial cables. The space taken up by each channel and the amount
of mass (~ 100 grams/wire) that must be cooled down significantly
limits the number of DC lines that can be installed in a cryostat.
In address this limitation, several designs have been proposed and
investigated including micro fabricated filters[124, 85], silver-epoxy
filters[110], thermo-coax cables, and lossy transmission lines[114, 17].
Our homemade RF filter is made in accordance with the design de-

veloped by Spietz et al. from Robert Schoelkopf’s group [115]. The
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(a) Leiden CF-450 dilution refrigerator (b) Gas handling system panel

(c) Cf-450 DR (dilution refrigerator) unit (adapted from user’s manual by
Leiden Cryogenics)

Figure 3.4: Image of cryo-free dilution refrigerator
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filter consists of twisted resistive wires tightly enclosed in copper
tape (Fig.3.5 (a)). The tape acts both as the shield and the ground,
to which wires are capacitively coupled. The combination of the high
resistivity of the wire and its high capacitance to ground forms the
distributive RC filter. This “copper tape filter” has several advantages
over other customized designs: (1) it is relatively easy to make and
requires minimal machining and no microfabrication processing; (2)
the entire filter is compact in size and can easily be bent to fit into the
space of the cryogenic stage; (3) it allows numerous lines (24 in our
filter) to be packed into one filter without taking up either too much
space or requiring too much cooling power.
To make the copper tape filter, insulated Manganin wires (dia. 0.004

inches, MWS Wire Industry item # 1357) are twisted together to form
pairs of wires. Every four pairs of wires are enclosed in a single cop-
per tape (3M # 1194), which is folded in half lengthwise and pressed
with force to ensure a light-tight seal. Three identical copper tape fil-
ters were made and fit into grooves cut from a copper block (Fig.3.5
(b)), mounted on the (grounded) mixing chamber for thermalization.
Each copper tape filter is about 2 meters long, and the resistance of
each line is 120⌥2 W. The tapes are joined together at both ends by
two connectors (Cristek M83513/07-D ) ,which can readily connect to
the rest of the lines.
In order to test the performance of the copper tape filter in as close

to real-life condition as possible, we plugged the filter into a measure-
ment circuit that runs from a BNC breakout box outside the fridge to
the chip carrier on the cold finger. The transmission as a function
of frequency was measured on an Agilent E5071C network analyzer
from 100 KHz to 8.5 GHz with the fridge fully open. Figure 3.5(c)
shows the measurement taken over 15 different channels across all
three tape filters. In all the channels, -20 dB attenuation occurs at ~ 7

MHz, and -40 dB at 12MHz ~ 23MHz, well below the NbN supercon-
ducting gap at ~ 500 GHz. The filtering characteristics are similar to
those in the filters presented in Ref.[115]. Note that we performed the
transmission test in an open-fridge setup at room temperature, such
that it is reasonable to assume that we captured the lower bound of
the filtering capability. Characterization of electronic temperature of
the DC lines revealed by tunneling spectroscopy is discussed in 5.4.

3.3.3 Pseudo four-probe measurement of graphene Josephson junctions

The proximity effect requires two electrodes to be in close proxim-
ity to each other. It is, therefore, difficult to perform a standard four-
probe measurement of the device at mesoscopic scale. Instead, a “pseudo-
four” probe measurement with superconducting leads can be taken
in order to extract information about the 2-DEGS. Figure 3.6 shows
a typical pseudo four-probe current bias measurement configuration
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(a) Twisted pairs of resistive
manganin wires embed-
ded in the copper tape
(opened for illustration).

(b) Copper tape filter after
completion. Each tape in-
cludes 4 twisted-pairs of
manganin wire.

(c) Installation and thermal
anchoring of the copper
tape filter on the mixing
chamber plate.
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(d) Attenuation of transmission as a function of frequency, characterized for 15 different
channels in our copper tapes. The -20dB point occurs at ~7 MHz. Well below the fre-
quency corresponding to the NbN gap.

Figure 3.5: Copper tape filter
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Figure 3.6: Pseudo-four probe configuration for measuring Josephson effect
in a mesoscopic device.

across a piece of 2-dimensional material in contact with superconduc-
tors. If bias current I is injected from I

1

to I
2

and the voltage drop V is
measured at V

1

with respect to V
2

, the extracted resistance R is equal
to R

2DEGS+2Rcontact, provided that all the leads are superconducting
so that no voltage drop occurs in any of the leads. In an SNS junc-
tion, the contact resistance Rcontact is small so that the extracted R is
dominated by R

2DEGS, which is exactly what we want to study.

3.4 measurement results

3.4.1 Normal state characterization and quantum Hall measurement

3.4.1.1 Field effect mobility and the mean free path of the junctions

We first measured the sample at 4K in order to study the normal (non-
superconducting) properties of the devices. At 4K, all the NbN leads
were superconducting, but the temperature was still too high for the
graphene to be fully proximitized. All the measurements presented
in this chapter were taken using the pseudo-four probe technique as
discussed in 3.3.3 unless otherwise noted.
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Figure 3.7 shows the measurement taken in a standard monolayer
graphene Josephson junction, with a lead-to-lead distance L of 500 nm
3. This junction (circled in red), with LxW = 0.5µm⇥ 4.30µm, shows
a typical gate dependence in the resistance measurement as expected
for a graphene device. The total resistance R includes the resistance
from graphene Rgraphene and the contact resistance Rcontact at two con-
tact interfaces: that is, R = Rgraphene + 2⇥ Rcontact. The variation of R
when the backgate voltage VG is swept from -35V to +35V in Fig.3.7
shows that the Dirac point VD (the charge neutrality point) appears at
around -0.6 V and that R is significantly higher in the p(hole)-doped
region (VG<VD) than in the n(electron)-doped region (VG>VD). In Fig.
3.8(a), where a longer junction (LxW = 2.5µm⇥ 3.7µm, circled in yel-
low) from the same graphene flake is measured, we see that R is more
symmetric with respect to VD. This asymmetry can be attributed to
the doping effect from metallic contact, as we will discuss in 3.4.2,
and is more pronounced in a shorter junction than in a longer one,
as in the latter the contribution from the bulk of graphene dominates
the transport.
Figure 3.7(c) plots the field effect mobility calculated from the gate

dependence measurement. The mobility µ is given by s = enµ where
s is the conductivity (plotted in (b)) and n is the carrier density given
by the gate voltage using a simple parallel plate capacitor model C =
k#0Area/d. Here, we use d= 285 nm, and k = 3.9 for the SiO

2

substrate
in order to estimate the carrier density. The mobility of our devices
ranges from 3,000 to 10,0000cm2/Vs.
Using a semiclassical relation between the mobility and the mean

free path enµ = 2e2
h k f l, where the Fermi wave is vector k f =

p
pn, we

can estimate the mean free path l at different gate voltages from the
measurement[73] (Fig.3.7(d) and Fig. 3.8(d)). At higher carrier density
away from the Dirac point, | VG |> 10V, it os possible to estimate l
and k f because the electron-hole puddles or other types of inhomo-
geneity are well screened out[33, 89]. In all the devices we measured, l
falls in the range of 25 nm ~ 200 nm, much shorter than the respective
junction length L, thereby indicating that the junctions are diffusive.

3.4.1.2 Magneto resistance in a high magnetic field

Figure 3.9 (a) shows the two terminal magneto conductance mea-
sured as a function of the magnetic field (B) and the gate voltage
in one of the junctions: LxW= 0.5 mm x 4.3 mm, x = 0.12. The Landau
fan diagram shows the evolution of the conductance as the magnetic
field increases from 0.5 to 8.2 tesla. The two-probe measurement is
presented after contact resistance has been subtracted in order to re-
flect the intrinsic transport properties of the sample. The conductance

3 This is the nominal junction length as defined in the CAD software. The real junction
may be shorter due to the over-development we purposely performed to obtain
better electrical contact.
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Figure 3.7: Normal state characterization of a short junction (L~500 nm), cir-
cled in red. Gate dependence of resistance, conductivity, field
effect mobility and carrier mean free path are plotted.
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Figure 3.8: Normal state characterization of a long junction (L = 2.5µm),
circled in yellow. Gate dependence of resistance, conductivity,
field effect mobility and carrier mean free path are plotted.
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quantization becomes more pronounced as the B field increases and
pronounced plateaus emerge in both the n-doped and the p-doped
region respectively, showing the signature quantum Hall effect in a 2-
dimensional system. Due to the mixing of longitudinal and transverse
signals in the two-probe QHE measurement, it is not as straightfor-
ward to interpret as the multi-probe measurement is. However, the
two-probe QHE measurement is still a powerful tool for identifying
the number of graphene layers, especially when the size of the device
forbids other techniques such as Raman spectroscopy. The quantum
Hall plateau measured in a two probe configuration may not be as
well quantized as in a multi-probe measurement due to the non-zero
longitudinal conductivity of the former. However, it has been demon-
strated that for rectangular two-terminal devices with an aspect ra-
tio of x=L/W at extremum, that is to say, very wide or very narrow,
the quantization can be well-defined and shows characteristics that
depend on x [131]. In particular, for a wide junction (x<1), the con-
ductance minima are predicted to appear around the incompressible
densities, whereas in a narrow junction (x>1), it is the maxima that
are expected to center around incompressible states[2]. These predic-
tions have been verified in reference [131] with two-terminal devices
made with bi-layer and mono-layer graphene.
Figure 3.9(b) plots the conductance measured as a function of gate

voltage at 9 tesla. The first two conductance minima away from the
charge neutrality point (VCNP= -0.6 V) align with G=2*e2/h, and 6*e2/h
with a high level of accuracy, corresponding to filling factor n=±2,±6

Landau levels in monolayer graphene. The conductance minima de-
parts from the expected quantization values as the filling factor in-
creases in both polarity. We also notice that the conductance peaks
at the charge neutrality point up to G ~ 15 e2/h. Qualitatively, these
features are in good agreement with theoretical predictions and previ-
ous results [131, 2]for a wide junction (x = 0.12) made with monolayer
graphene. The QHE measurement was performed on all the devices,
and we confirmed that all the devices discussed in this chapter are
made with monolayer graphene.

3.4.2 Josephson effect in NbN-Graphene-NbN junctions

The NbN leads become superconducting as the fridge cools to below ~
12K. However the proximity-induced superconductivity in graphene
does not show up until the fridge reaches a much lower tempera-
ture, typically below 300mK, because (1) the Josephson energy EJin
a weak link is smaller than the superconducting gap energy; (2) the
electronic temperature of the device deviates significantly from the
base temperature of the fridge (~ 25 mK when we performed this ex-
periment): and (3) it takes time, typically 48 hours, to thermalize the
device mounted on the cold finger to equilibrium.
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(b) Conductance quantization of a wide,
monolayer graphene junction.

Figure 3.9: Two-terminal quantum Hall measurement of a monolayer
graphene device

The Josephson effect is measured in a current-bias configuration
either with a pure DC measurement or with the standard AC+DC dif-
ferential measurement with a lock-in amplifier. Figure 3.10 (a) plots
a typical low-bias current-voltage (I-V) characteristic of one junction
measured at various gate voltages. Each plot has a finite current range
with a zero voltage drop across the junction, meaning that the current
is flowing without resistance, a signature of dissipationless Josephson
current. The beginning and end of the zero voltage current defines the
maximum Josephson current IC, also called switching current in trans-
port measurement, in each trace. In the framework of the RCSJ (resis-
tively and capacitively shunted junction) model, the gauge-invariant
phase difference of a Josephson junction is analogous to a particle con-
fined in a so called “tilted washboard” potential [120]. In light of this
model, IC is the maximum dissipationless current that the junction
can support before the particle escapes from the local potential mini-
mum. At finite temperature, IC is subject to the junction geometry and
the actual electromagnetic environment in which the device is oper-
ated. Therefore, at finite temperature, IC is typically much smaller
than the intrinsic critical supercurrent I0of a weak link. In fact, only
IC unlike I0can be measured easily in transport measurements of SNS
junctions 4. As it is proportional to I0, IC still offers very rich infor-
mation about the electronic properties of the device in the supercon-
ducting regime. The value of IC demonstrates strong dependence on
carrier density. This dependence is more clearly seen in Figure 3.10
(b), given that the gate-dependent critical current IC can be read from
the boundary of the dark blue region, in which the differential resis-
tance dV/dI is essentially zero. In this junction , IC ranges from ~67 nA
(VG=VCNP= -4V ) to ~1000 nA (VG= 40 V). The gate dependence of the

4 We will use IC to denote the maximum supercurrent that we measure in transport
measurement.
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(b) Differential resistance dV/dI plotted as a
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where dV/dI= 0. IC shows a pronounced
dependence on carrier density, and is
larger in n-doped region at same carrier
density. Note that the critical current is
nonzero at the charge neutrality point.

Figure 3.10: Josephson effect in graphene as a function of gate voltages.

critical current can be qualitatively understood in terms of the popu-
lation of Andreev bound states, of which the highest energy must be
smaller than the chemical potential.
The measurement shows pronounced asymmetry in both the nor-

mal and the superconducting state. For all the junctions we measured,
charge neutrality points (the Dirac point VD) appear at negative gate
voltages (VD < 0), suggesting that the graphene flake is subject to
electron- or n-type doping, presumably from the contacting metals
or the SiO2substrate. First principle calculations based on density
function theory (DFT) have shown that contact doping in graphene
originates mainly from the difference in the work functions between
graphene and the contacting metal. Depending on the type of metal
and its distance from the graphene surface, this doping can shift the
Fermi energy of neutral (not gated) graphene by as much as few hun-
dred meV [63, 79]. Doping by metals becomes even more important
in regard to tunneling spectroscopy, as this technique (discussed in
Chapter 5) measures directly the doped region. As can be seen in
Fig. 3.7, the resistance measured in the p-doped region (VG< VD) is
larger than its counter part (same carrier density but with opposite
charge) in the n-doped (VG< VD) region. We attribute this to P-N
junctions formed at the interface between the differently doped re-
gions. Assume that the graphene underneath the contact is always
n-doped, then an N-P-N profile would form between contact and con-
tact when VG< VD , as the graphene in between is p-doped (Fig.3.11).
However, in the VG> VD regime, the device becomes an N-N’-N junc-
tion. The potential barrier across the P-N interface essentially reduces
the coupling strength between the graphene and the superconductor,

56



Figure 3.11: P-N junction created by contact doping in graphene
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Figure 3.12: Gate dependence of IC in another device

which may diminish supercurrent charge carriers and/or weaken the
induced superconducting gap in the graphene. However, it is diffi-
cult to discern the exact mechanism on the basis of transport mea-
surement, as the critical current being measured results from the in-
tegration over all possible channels. We will return to this subject in
Chapter 5 in which we discuss the tunneling spectroscopy of induced
superconductivity in graphene.
We can investigate the NbN-Graphene-NbN junction further by ap-

plying a perpendicular magnetic field. Figure 3.13 plots the differen-
tial resistance dV/dI measured as a function of magnetic field (B) and
bias current IBias in a junction with L⇥W = 0.5⇥ 2µm2. It is immedi-
ately evident that the critical current, defined by the boundary of zero
dV/dI region, oscillates and damps out as B increases. As discussed
in chapter 2 (2.2.2.1), what is known as the Fraunhofer pattern of the
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Figure 3.13: Fraunhofer oscillation of IC as a function of magnetic field at
VG = 40V. In a Josephson junction Fraunhofer oscillation of IC
is the Fourier transformation of supercurrent distribution along
the transverse axis. This pattern is indicative of a uniform dis-
tribution of supercurrent in our graphene device

critical current in an extended Josephson junction results from the
gradient (in the direction parallel to the leads, or for example, across
width w) of phase difference between the macroscopic BCS order pa-
rameter in two superconducting banks[120]. The Fraunhofer pattern
shown in Figure 3.13 is indicative of a uniform supercurrent spatial
distribution in a rectangular junction[5, 70].
In general, the flux in the SNS junction is given by F = Ae f f ective ⇥

B, where Ae f f ective = (L + 2l) ⇥W and l is the London penetra-
tion depth of the superconductor[120]. l extracted from our mea-
surement is ~ 450 nm, in reasonable agreement with previous results
that measure l(0) = 200nm ⇠ 700nm in epitaxially grown NbN thin
films[82, 98, 76] 5. On the other hand, field crowding, i.e., extra mag-
netic field in the junction that is expelled from the superconducting
lead due to diamagnetism ( the Meissner-Ochsenfeld effect), can also

5 Empirically, l(0) of NbN thin film varies significantly with the fabrication meth-
ods, thickness, and sample geometry. This l(0) decreases with film thickness, and
is found to be larger in lower-quality film. Using DC magnetron sputtering, an ultra
high vacuum chamber, and elevated substrate temperature (up to 800

0C) signifi-
cantly reduces the measured l(0). We did prepare our NbN film in a system with
such capability. However, we were forced to sputter the film at room or mildly ele-
vated temperature (~50 0C) due to the presence of PMMA.
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contribute to the total magnetic flux threading into the junction, caus-
ing a departure from expected periodicity. In Chapter 4 and 5, we
will see that this effect takes on great importance in the device prox-
imitized by aluminum contacts, whose London penetration depth l

is in general much smaller than that of NbN. As the NbN used in
the current experiment was not characterized explicitly, it is hard to
quantify the contributions from the respective causes 6.
Finally, Figure 3.14shows the dV/dI measurements (in a flake dif-

ferent from the one in Fig. 3.13) with an applied B-field of up to 66

mT. The proximity effect in graphene is suppressed monotonously
and disappears after 4 lobes of oscillations. We also see that at a field
beyond ~ 5mT, the differential resistance increases as the bias current
approaches zero (Fig. 3.14(a) inset, and (c)), which is indicative of
pronounced suppression of the Andreev reflection at the supercon-
ductor/graphene interface.

6 From the perspective of estimating the effective magnetic flux in the device, both
mechanisms yield the same number, as in practice we would take half the width of
lead wlead from both sides so that Ae f f ective = (L+Wlead)⇥Wgraphene.
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Figure 3.14: IC measurement at higher field up to 80 mT. At B>5mT, zero-
bias dV/dI starts to become larger than finite-bias dV/dI, mean-
ing that Andreev reflections are strongly suppressed

3.5 discussion

We have shown that graphene can be contacted by Ti/NbN by direct
reactive sputtering at room temperature. The Josephson current was
measured in all the short junctions (L = 500nm) and the critical cur-
rent reached a few micro ampere at a high carrier density. Compared
to graphene Josephson junctions with aluminum leads (TC~ 1.1 K)
and similar dimensions (Chapter 4), the critical current of the NbN
device is about one order of magnitude larger, indicative of a larger
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gap corresponding to TC ~ 12K. From the field effect variance of con-
ductivity, we infer the mean free path in each junction, and deter-
mine that lm f p is much smaller than the junction length L, suggesting
that the devices are all in a diffusive transport regime. Given the di-
mension of our device, the Josephson effect is strongly suppressed
when the perpendicular magnetic field is at a few mT. Beyond the
disappearance of the Josephson effect, the junction becomes more re-
sistive at zero bias than in the finite bias regime, which is indicative
of strong depression of the Andreev reflection at the interface. In par-
ticular, we do not see in our data any enhancement of conductance
at high magnetic field around the onset of the quantum Hall effect in
our devices. This is in contrast to the finding in reference [103], which
shows that in a Nb-contacted graphene device on SiO2, the conduc-
tance enhances with respect to the expected value at certain quantum
Hall plateau, at a magnetic field below the higher critical of Nb.
The results from this experiment suggest that although NbN con-

tact provides a superconducting gap about 10 times larger than that
of the commonly used aluminum, there is a significant drawback to
building graphene devices on an SiO

2

substrate. That is, the process
incorporates a high level of inhomogeneity, which renders the de-
vice unsuitable both for investigations that rely on ballistic transport
properties[121, 69] and for studying the physics involved at a lower
energy scale[13].
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4
SUPERCURRENT TRANSPORT IN DUAL -GATED ,
BALL I ST IC GRAPHENE DEV ICES

In Chapter 3, we demonstrated that although it is possible to prox-
imitize graphene with large-gap, type II superconductors such as
NbN, the transport properties of these devices are still in the diffu-
sive regime. That is, the carrier will go through multiple scattering
events before completing the transport (l ⌧ L,where l is the mean
free path and L is the distance from lead to lead[37]). From the per-
spective of electronic transport, this means that a charge carrier sees
a spatial variation of electrostatic potential that would scatter with
the particle and deflect it from its ballistic trajectory. In order to re-
alize some of the exciting theoretical prediction made for relativis-
tic superconductivity[14], namely, the superconductivity carried by
Dirac fermions, another ingredient is required: a graphene sample
with low disorder.
The road to the promised carbon flatland[57, 96], however, remains

bumpy and full of obstacles. It is the purpose of this chapter to
demonstrate how we can realize ballistic transport in graphene by
fabrication techniques that we have developed. In particular, ballis-
tic transport of charge carriers in both normal and superconducting
regimes are presented in this chapter.

4.1 graphene devices with low disorder

The spatial variation of potential in SiO2-supported graphene arises
from several sources, including geometrical corrugation, strain, sur-
face adatoms, and electrical or chemical doping. At low carrier den-
sity, in particular, the charge distribution breaks up into puddles of
electrons or holes[89], which gives rise to scattering at the nanometer
scale. Yet, the same experiment[89] also demonstrated that the density
fluctuation may not primarily comes from the trapped ions in the ox-
ide layer of the substrate. High resolution non contact atomic force
microscopy (NC-AFM) shows that graphene conforms to the surface
corrugation of the SiO2, whose root-mean-square roughness (RMS) is
typically 0.37 nm, down to 99% fidelity (RMS roughness of supported
graphene ~0.35 nm)[34]. This means that the charge carrier traveling
in graphene does not necessarily encounter an atomically flat surface
but a rather uneven landscape where scattering events can take place.
Finally, without post-fabrication treatment like forming gas anneal-
ing or Joule heating in vacuum, acrylic resists (PMMA) and other sol-
vents used in nanofabrication inevitably leaves residue on the surface
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of the graphene flake (Fig.??(a)), particularly in the bulk region where
the transport takes place. The residue inevitably causes structural in-
homogeneity or chemical doping. These constituents and associated
processes all contribute to the disorder in graphene that prohibits the
ballistic transport , and thus the low-excitation physics as a research
focus. It is, therefore, evident that a better substrate, or no substrate
at all, is required.
The first attempt to reduce the disorder in graphene caused by the

influence of substrate is to suspend the device. This suspension was
first achieved by etching a thin layer of SiO2 from substrate by using
hydrofluoric acid (HF) and drying in a critical point dryer[19]. The
suspension was also achieved later using polymer-based schemes[93,
122]. The mobility µ of this ultra-flat, ultra-clean (after Joule heating)
graphene can exceed 100,000 cm2/Vs or 1,000,000 cm2/Vs at room or
liquid helium temperature, respectively[48, 19, 26].
The improvement in device quality has, indeed, afforded the possi-

bility of accessing the theoretical limits of graphene’s intrinsic prop-
erties. Additinally, the improvement has led to the observation of fas-
cinating physical phenomena, such as the fractional quantum Hall ef-
fect, ballistic transport of charge carriers, and broken-symmetry states
in single or bi-layer graphene[48, 20, 53]. Yet, the complexity of the
fabrication procedures and the fragility of the suspended structure
significantly limits the production yield and the dimensions of the
devices (usually in a 2-probe configuration).
Another approach to obtaining high-quality graphene device by re-

ducing substrate-induced disorder is to use ultra-flat, ultra-clean in-
sulating substrates[88, 40]. This is the strategy we are pursuing as
discussed in detail in the following sections.

4.2 introduction to hexagonal boron nitride (h-bn)

Hexagonal boron nitride (h-BN) is the material we used as an atom-
ically flat and pristine substrate, a gate dielectric, an encapsulating
over-layer, and a tunneling barrier for high-quality graphene devices
for transport and spectroscopy experiments. The method, proposed
and pioneered by Philip Kim’s group at Columbia University (now at
Harvard University), has become one of the most prominent fabrica-
tion schemes for graphene research. Since its introduction to graphene
research in 2010[40], layered h-BN crystal has been used to contribute
numerous tremendous results to the field[41, 118, 134, 72, 42, 102, 119,
81, 7]. In addition, layered hBN crystal has opened up several new
directions in the physical sciences, including a brand new branch re-
ferred to as two dimensional Van-der-Waals heterostructures[55], a
category of mesoscopic devices to which the samples presented in
this study from this point on belong. We will discuss the latter in
greater detail in 4.3.2 after the describing the fabrication techniques.
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(a) (b)

Figure 4.1: STM topography images of monolayer graphene on different sub-
strates in a 100nm by 100nm area. (a) graphene on h-BN sub-
strate, roughness ~30 pm, and (b) graphene on SiO2 substrate,
roughness ~ 220 pm. Images adapted from Ref.[133]

A number of methods have been developed to improve the pro-
cess and the device quality thus rendered. Here we present only the
method that we used for the devices discussed in this chapter fol-
lowed by a more generalized version of the fabrication technique we
used for a wide variety of samples. References [40, 118, 127, 137]offer
a good overview for other techniques commonly used to integrate
h-BN into graphene device fabrication.

4.2.1 Basic properties of h-BN

h-BN is an insulating, layered material that consists of nitrogen and
boron atoms. An isomorph of graphite, h-BN’s Bernal A and B sub-
lattices are occupied by nitrogen and boron atoms respectively. The
atomically flat surface oh h-BN and its slight (1.7%) lattice mismatch
with graphite [64]makes it an ideal substrate for graphene, as the
rippling in the flake due to surface corrugation can be significantly
suppressed (Fig.4.1). Strong in-plane ionic bonding makes the h-BN
surface relatively inert and free of dangling bond or trapped charges.
These properties are all favorable for reducing doping or disorder in
graphene, which can originate from various sources.
Electronically, h-BN is an insulator with a large direct bandgap

(5.9 eV), relative permittivity ~ 3.9 (# ⇠ 3.9#0), and breakdown volt-
age Vbreakdonw ⇠ 0.7Vnm�1 [129, 40], which makes it an appropriate
substitute for SiO

2

(# = 3.4#0) as a gate dielectric. As an insulating,
single-crystal atomic sheet with a low defect density, h-BN can when
reduced to a few atomic layers can serve as a tunneling barrier for
mesoscopic devices ( [6, 23, 86, 22, 28]and Chapter 5).
Table 4.1 summarizes these parameters of h-BN as compared to

SiO2 and graphene. Note that all the h-BN crystals used in the exper-
iments presented in this thesis are provided by the authors of refer-
ence [129].
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(a) (b)

Figure 4.2: Spatial variation of density of states in monolayer graphene on
different substrates revealed by STM [133]. (a) Tip voltage at
Dirac point of monolayer graphene on hBN substrate as a func-
tion of position (b) Tip voltage at Dirac point of monolayer
graphene on SiO

2

substrate as a function of position. Images
adapted from Ref. [133]

Material bandgap dielectric constant lattice constant structure

h-BN 5.9 eV 3-4 (#0) 2.50Å layered crystal
Graphene gapless 1.8*(#0) 2.46Å layered crystal

SiO
2

9.3 eV 3.9(#0) amorphous amorphous
(*in-plane[109])

Table 4.1: Comparting h-BN, graphene, and SiO2

65



4.2.2 h-BN for superconducting graphene devices: advantages and techni-
cal challenges

Although h-BN is used a an remarkable substrate for non-superconducting
graphene devices, extra caution must be taken when using h-BN for
SGS samples. In fact, if h-BN is used only as a substrate, post fabri-
cation (resist lift-off ) treatment is required to remove the polymeric
residue left by the the e-beam or photolithography resists. The treat-
ment typically involved with thermal annealing in forming gas or
Joule heating in the cryostat 1, both reach temperatures of up to
a few hundred degrees Celsius locally. Figure 4.3 shows the NbN-
contacted SGS devices built on a h-BN substrate employing the fabri-
cation method described in references [118, 119]. Without any anneal-
ing, the device exhibited the Josephson effect at a low temperature, as
expected. However, the transport properties such as mobility did not
appear to be any better than those of the devices on SiO2 presented
in Chapter 3.
On the other hand, a high-temperature environment may lead to a

degradation of the graphene/metal interface for the superconducting
devices discussed herein. Empirically, we found that after either kind
of annealing, the contact resistance RC increased, the zero bias dV/dI
became greater than at finite bias, and the Josephson effect could no
longer be measured, all of which suggest that Andreev reflection at
the interface is strongly suppressed, even though the devices’s mo-
bility did improve significantly 2. We ascribe the degradation of the
contact quality to two possible causes: the oxidation of metallic con-
tacts (assuming the existence of residual O2 during annealing pro-
cess), and the breakage of the graphene sheet under those contacts
due to differing thermal expansion coefficients of graphene, which
is negative[135], and the adhesion metal (we used Ti for supercon-
ducting devices and Cr for normal contacts). Note that the increase
in RC may be more tolerable for devices intended for the quantum
Hall regime, high-impedance measurement or in a four probe con-
figuration in which the RC can be explicitly extracted. In addition,
for devices with normal contact, the Cr adhesion layer is deposited
with less than 1 nm to reduce the extent to which the graphene
breaks due to the thermal expansion effect. On the other hand, for
the superconducting contact on graphene, it is necessary to deposit
a few nanometers of Ti to lower Rc and achieve a highly-transparent
interface[103, 92].

1 Chemical treatments in a variety of solvents have been reported, see for example [32].
In our lab, we have tried cleaning the PMMA-contaminated graphene in chloroform
and trichloroethylene (TCE), yet neither of these approaches is as effective as high
temperature annealing.

2 We are aware that the SG- or SGS devices reported in [49, 93, 5] and the bi-layer
device in [4] did exhibit the proximity effect after undergoing current annealing
(Joule heating). It is, therefore, possible to current anneal and maintain the contact
quality in the SGS junctions simultaneously.
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NbN

h-BN

(a) Optical image of NbN-Graphene-NbN
junctions on h-BN substrate (the blue
background). Red dashed line depicts
the graphene area.

(b) AFM micrograph (amplitude signal)
of graphene (enclosed by dashed
line) on a h-BN substrate

Ibias ( A)

V G
 (V

)

(c) dV/dI plotted as a function of backgate VG and bias current Ibias. Superconducting
state is exhibited in the dark blue region where dV/dI = 0

Figure 4.3: NbN-Graphene-NbN devices on h-BN substrate. The device shows
typical behaviors in superconducting regime, as discussed in
chapter 3, but without thermal annealing, it does not exhibit sig-
nificant improvements in terms of mobility.
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4.3 pick-up and transfer method for making encapsu-
lated graphene devices

Given the limitations on making superconducting graphene nanode-
vices on an h-BN substrate, as discussed in section 4.2.2, particularly
when an open surface method is used, we decided to encapsulate
the entire device in h-BN. In principle, the h-BN protects the top
and bottom of the graphene, so that the pristine graphene flake is
not susceptible to the ambient environment or contamination during
the nanofabrication process. When we started to tackle this issue, a
h-BN encapsulated graphene device in Hall bar geometry had been
reported and showed micrometer-scale ballistic transport behavior at
room temperature [91], which is very encouraging.
Encapsulation with h-BN is a promising technique for obtaining

pristine graphene device without annealing. However, applying this
technique to superconducting devices, particularly the Josephson junc-
tion, is far from straightforward. The proximity effect requires a small
encapsulated region (characterized by the ballistic coherence length
h̄v f/4scwhere v f is the Fermi velocity of the normal metal and Dsc
the superconducting gap energy) and rectangular geometry (for a
regular Josephson junction), both of which make it difficult to use
exfoliated h-BN on top of the flake as in reference [91].

4.3.1 A polymer-based dry pick -up and transfer technique for Van-der-
Waals materials

As in the case of graphene, weak Van-der-Waals bonding between lay-
ers allows a thin h-BN flake to be obtained by mechanical exfoliation
from pure crystal 3. Our strategy for encapsulating graphene is to
cover the graphene on a h-BN substrate with a patterned h-BN mask.
The key to this fabrication is a method for picking-up and transfer the
pre-patterned h-BNmask onto a designated location with micrometer
scale precision.
We exploit the temperature dependence and thus the selectivity of

the adhesion power rendered by the polymers that we used for h-
BN transfer [118]. To pick up a flake from the SiO2 substrate with
the polymer, the adhesion between the polymer and the h-BN must
be stronger than either polymer-to-SiO2 or h-BN-to-SiO2 adhesion.
Although the adhesive power of the polymer increases monotonously
as the temperature increases, we found that for PMMA, the 85~100°C
temperature window offers the desired selectivity for picking up the
h-BN flake. At temperatures above 135°C, PMMA starts to re-flow

3 Empirically, h-BN seems to be more brittle and less ductile than graphene. When
larger flakes (a few tens of micron in lateral dimensions) are desired, we would use
less sticky tape than the one we use for graphene.
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Figure 4.4: Schematic of polymer-based dry pick-up and transfer technique
for Van-der-Waals materials

and sticks to the substrate very easily, which facilitates the transfer of
the picked-up flake.
Figure 4.4 illustrates a generalized, step-by-step pick-up and trans-

fer process[126]. A polymer stack consisting of PDMS (polydimethyl-
siloxane), clear tape, and sticking polymer ( PMMA or PPC(polypropylene
carbonate) ) is mounted on a glass slide, through which the stack
can be aligned with any target on the substrate with a long working
distance microscope of the transfer setup (see 4.3.3). To pick the h-
BN mask, the polymer stack is brought into contact with the h-BN
and heated to ~100°C for 5 minutes. The polymer stack then disen-
gages from the substrate by either an abrupt separation at 100°C (if
using PMMA) or a gentle lift-off as the temperature decreases (if us-
ing PPC), whereas the h-BN will come off with the polymer. With
more robust polymer like PPC or PC (polycarbonat), this step can be
repeated several times until a desired heterostructure is obtained. Fi-
nally, the heterostructure is transferred onto the bottom part of the
final device, which can be a h-BN substrate, a backgate electrode, or
pre-deposited leads, and eventually heated to above 130°C in order
to release the sticking polymer. After the polymer has been dissolved
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Polymer Use/materials P temp. T temp. Disengage

PMMA single P&T/hBN 85~100°C >140°C abrupt

PC multi-P&T/graphene, hBN�1L
60~100°C >150°C smooth

,graphite nano rods, TMD
PPC multi-P & T/hBN, TMD 30~ 100°C >70°C smooth
MMA T/graphene, hBN, TMD N/A >130°C N/A

P: pick-up
T: transfer
PMMA: 950A5 (5% in anisole)
PC: polycarbonate (6% in chloroform)
PPC: polypropylene carbonate (15% in anisole)
MMA: EL-6 (6% in Ethyl Lactate)
TMD: transition metal dichalcogenide

Table 4.2: Sticking polymers used in pick-up and transfer process

in solvent, the heterostructure is ready for subsequent steps of the
nanofabrication.
The choice of sticking polymer and related processing parameters

varies a lot with the target materials. Table 4.2 summarizes some of
the parameters used for different polymers in our lab at the time this
dissertation was being composed.

4.3.2 Van-der-Waals heterostructures

The polymer-based pick-up and transfer technique applies not only to
h-BN masks but also to a much wider variety of 2-D Van-der-Waals
materials, including semi-metal, semiconductor, topologic insulator,
and superconductor[55, 49, 126]. In addition, one-dimensional edge
contact [127] has propelled advances in the fabrication of heterostruc-
tures consisting of several atomic layers of 2-D materials made in
an ambient environment. In particular, fully encapsulated SGS junc-
tions contacted by type-II superconductors at a one-dimensional edge
have also been reported as showing ballistic transport behavior at low
temperatures[24, 113].

4.3.3 Transfer setup

Figure 4.5 shows the home-built transfer setup used for the pick-
up and transfer process. The whole setup is installed on a vibra-
tion isolation table sitting on a heavy, sturdy foundation (Fig.4.5(a)).
The sample is vacuum-mounted on an aluminum block that can be
heated to 200°C (Fig.4.5(c)). A glass slide mounted to a 3-axis micro-
manipulator stage allows alignment of the material on polymer stack
with features on the chip with a micrometer-scale precision (Fig.4.5(e)).
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Figure 4.5: A home-built transfer setup in Jarillo-Herrero Lab. (a) Transfer
setup. (b) Sample holder and micro0manipulator for alignment.
(c) Vacuum-mounted sample on a heated stage. (d) Polymer
stack on a glass slide for picking-up flakes. (e) Polymer stack-
/Glass slide mounted to the micro-manipulator (f) Engaging the
polymer to substrate.

A microscope with a long working distance is attached to a CCD
camera in order to observe the process on a monitor and minimize
vibrations caused by manual manipulation (Fig.4.5 (a) (f)).

4.4 dual-gated graphene josephson junctions in ballis-
tic regime

Fully encapsulated graphene provides an ideal system for studying
the ballistic transport in both the normal and the superconducting
regimes. The h-BN-graphene-hBN heterostructure thus made allows
electrostatic gating from both sides of the graphene and a combi-
nation of global amd local gating is possible. Owing to the gapless
bandstructure and the chirality of Dirac fermions in graphene, an al-
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ternating texture of polarity, namely P-N or P-N-P(N-P-N) junctions
with high transmission probability given by Klein tunneling[130, 100,
136, 68, 105], can be realized in nanoelectronics. In particular, the P-N
interface in graphene can be highly transparent for charge carriers,
while their trajectories could resemble that of refracted light at the
interface of metamaterials with negative refractive index[29].
Thus, the combination of a ballistic device with electromagnetic

field control of the charge carrier together with the quantum confine-
ment thereby provided, also opens up an exciting field of electron-
optics in solid state systems[29, 136, 25, 119, 105, 68] which, by anal-
ogy between optics and mesoscopic quantum transport of electrons,
offers novel ways to manipulate electronic systems.
Klein tunneling in graphene is also of interest in the context of

superconductivity. The Andreev reflection at the superconductor/-
graphene interface and Klein tunneling across a P-N junction in graphene
each couples the electron and hole excitation, through the supercon-
ducting pair potential D and the electrostatic potential U respectively.
Further, it has be shown theoretically that these two processes have
identical energy spectra at low energies (# ⌧ D), suggesting that the
analogy between the two goes beyond their quasi-classical trajectories
but purely quantum mechanical[15].
Figure 4.6 illustrates the Andreev reflections in an S-G-S device

with local gating. The charge carrier converts to its counterpart Dirac
fermion upon entering the locally-gated region and converts back to
the original type again when it re-enters the region with global back-
gate only. Graphene P-N-P (N-P-N) junctions that carry Josephson
current thus provide a system through which investigating the in-
terplay between Klein tunneling and Andreev reflection is possible,
whereas the quantum confinement and the focusing effect for elec-
tron flow[29] may offer new ways to modulate the supercurrent in a
superconducting circuit.

4.5 device fabrication

Patterning h-BN mask

The fabrication of the device discussed in this section started with
preparing the h-BN mask. First, h-BN flakes were deposited on a
piranha-cleaned (see A.1 ) SiO2 substrate. Flakes ranging from 15

to 30nm thick (identified by optical microscope) are chosen and pat-
terned with e-beam lithography. PMMA 950A5 serves as both e-beam
resist and the dry-etch mask. After pattern development, the sample
is etched by reactive ion etching (RIE) with a gas mixture of Ar (10
sccm), O2 (2 sccm), and CHF3 (10 sccm) at 10 mtorr total pressure 4.

4 This is the current recipe being used at the time of writing. We first used a mixture
of Ar, O2, H2and CF4 as etching gas which etches h-BN much faster and showed
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Figure 4.6: Schematics of the Andreev reflection with local variation of elec-
trostatic potential

The etching rate is roughly 0.3 nm/sec, but we found that it varies
from time to time (depending on the condition of the chamber) and
that it is not linear for at least the first 10 seconds. Figure 4.7 (a) shows
the h-BN (structures in blue) after dry etching. The anisotropic nature
of reactive ion etching provides a very sharp and well-defined edge
profile (confirmed by AFM) of the h-BN masks.
Figure 4.7(b) shows h-BN masks on the polymer stack after the

pick-up step described in 4.3.1. This step can be followed by succes-
sive picking-up of other Van-der-Waals materials if robust polymers
such as PC or PPC (Table 4.2) are used. PMMA has a much lower
yield for successive picking-up, as it tears or ripples more easily when
disengaged from the substrate.

A two-stack approach

Although it is possible to build heterostructures by multiple pick-up
followed by one final transfer to the bottom layer, we typically build
our devices in a two-stack fashion especially when the heterostruc-
tures consist of many layers. The bottom stack, typically made of a
large pirece of graphene (a few µm2 in area) together with a h-BN
substrate and a graphite backgate, can be made more efficiently (the
alignment is trivial). However , in more efficient processes, bubbles
from and ripples become trapped between layers more easily. Unfor-
tunately, the majority of these surface irregularities can not be de-
tected with an optical microscope during the transfer process, and

similar etching rate for both h-BN and SiO2. The current recipe has a much higher
selectivity between hBN and SiO2.
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only AFM imaging after the entire stack is annealed can reveal the
quality of the heterostructures. On the other hand, a top stack, which
typically includes smaller structures such as a h-BN mask, a fine
graphite tunneling probe, and an ultra-thin h-BN tunneling barrier
(discussed in Chapter 5) require highly invested fabrication but con-
tain a much lower density of bubbles after annealing (the small scale
of the structure allows them to flatten out relatively easily). In prac-
tice, when fabricating the top stack is the apparent bottleneck of the
entire process, transferring the top stack onto a clean, flat area on
the bottom stack will optimize yield and efficiency. The bottom stack
in Figure 4.7(c) consists of a graphene flake (dark region in the mid-
dle) on a h-BN substrate. The graphene can be patterned by e-beam
lithography and dry (RIE) etching if necessary and must be cleaned
by thermal annealing or contact mode tip cleaning (Appendix A) be-
fore the top stack is transferred onto the graphene flake.

(a) Patterned h-BN mask on SiO2 substrate.
Thickness of the h-BN ~25 nm.

(b) Optical image of picked-up h-BN mask
on PMMA/tape/PDMS stack

(c) The bottom stack of the heterostructure
that consists of graphene (dark region
in the middle) and h-BN substrate.

(d) h-BN-graphene-h-BN heterostructure af-
ter completion

Figure 4.7: Pick-up and Transfer h-BN mask onto a graphene/hBN struc-
ture.
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Parameter Topgate Superconducting leads

Material Ti (5nm)/Au (35nm) Ti (7nm)/Al (70nm)

Lateral dimension min. line width ~ 150 nm
line width 1.15µm,

spacing 400~800 nm

E-beam lithography 550 µC/cm2@ 30KeV 500 µC/cm2@ 30KeV

Development H
2

O:IPA=1:3, 1min. @0°C H
2

O:IPA=1:3, 1min. @0°C

Evaporator base pressure 1⇥ 10�6torr
Ti: 1.1⇥ 10�7torr*1,

Al:  3.5⇥ 10�7torr*2

Deposition rate 1Å/sec 0.5Å/sec
*1:After overnight pumping, at least 8 hours
*2:We found that if the pressure is larger than ⇠ 5⇥ 10�7torr after the Ti
evaporation is complete and before the Al evaporation starts, the number
of fully proximitized graphene Josephson junctions yielded will be signifi-
cantly lower than when the pressure is lower.

Table 4.3: Parameters for e-beam lithography and superconductor deposi-
tion.

Lithography and metallization

E-beam lithography was performed on the heterostructure (fig.4.7(d))
after the structure had been flattened via thermal annealing (3 hours,
350°C in forming gas). The first lithography was performed for the
topgate, which was evaporated with Ti/Au (5nm/35nm) using ther-
mal evaporation (orange part in Fig. 4.8(b)). After the topgate had
been made, another lithography is performed for the superconduct-
ing leads. Note that each window opened in the resist is purposely
larger than the area between the neighboring h-BN mask in order to
achieve a small overlap between the metal and the mask (circled in
dashed lines in Fig. 4.8(c)). This ensured that the graphene can be
fully sealed by either the h-BN or the metal.
We used a solution of water and IPA (H2O : IPA = 1:3 by weight)

to develop the exposed PMMA resist at 0°C. Compared to the effect
of the more popular MIBK/IPA developer, H2O/IPA has been found
to subject the film to less stress and to render polymer higher sensi-
tivity to the e-beam dosage. Developing the exposed PMMA at low
temperature increases the contrast by a factor of ~2[107]. Therefore,
H2O/IPA is a more favorable development procedure for heterostruc-
tures with finely-spaced leads than MIBK/IPA is 5.
The sample was deposited with Ti (7 nm) and Al (70 nm) in a ther-

mal evaporator as superconducting leads. The evaporation conditions
and other related fabrication parameters are summarized in Table 4.3.

5 We often observe cracks in the resists around the corners of hBN substrates after
developing in MIBK/IPA solvent.
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(a) 3-D schematic of a dual-gated SGS junction. The part of graphene participating in
transport is fully sealed by either h-BN mask of the metallic contact.

(b) Optical image of the device be-
fore measurement. The bright
yellow leads are superconduct-
ing aluminum contacts, and
the orange-color leads are Au
topgate electrodes.

(c) AFMmicrographs of the dual-gated SGS junctions. Junc-
tion circled in white dashed line is the same junction as
the one circled in (b). The bright rims around each h-BN
mask results from overlapping between metal(Al) and
the h-BN in to ensure full encapsulation for the flake.
Scale bars in both images represent 1µm.

Figure 4.8: Dual-gated graphene Josephson junctions
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4.6 measurement results

4.6.1 Implementation of discrete RC filters and characterization of elec-
tronic temperature in the measurement setup

Measurements of the dual-gated SGS junctions were performed in the
same setup described in Chapter 3. In order to measure the Josephson
current induced by aluminum, whose superconducting gap is about
10 times smaller than that of NbN (4Al ⇠ 170µeV, 4NbN ⇠ 2meV)
, we installed at the mixing chamber stage a discrete RC (low-pass)
filter consisting of surface mount components on a PCB board (Fig.
4.10(b)). The cut-off frequency (-3dB) is 8K Hz with two equivalent
RC stages (R=2KW, C=10nF). To demonstrate the effect of low-pass
filtering, Figure 4.9 shows the I-V measurement of an Al-graphene-Al
weak link on a SiO2 substrate measured (a) with a cryogenic copper
tape filter only and (b) with an extra RC circuit (using one stage of the
same RC as in the PCB-board filter) connected to the break out box.
The I-V characteristics recovers from nearly-ohmic to fully Josephson-
like behavior when the RC filter is implemented. The effect of RC
filtering is obvious even though the filter is installed at room tem-
perature and was not properly shielded. In addition, the cable that
connects the breakout box and the fridge’s electrical feedthrough was
not filtered and may still have picked up some noise along the path.

Figure 4.9: Effect of RC filtering on the measurement of Josephson current
in a Al-graphene-Al weak link. R=2k, C=10 nF

We can further characterize the electronic temperature by perform-
ing tunneling spectroscopy on a superconductor with a superconduct-
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(a) Discrete PCB RC filter mounted on
the mixing chamber of the fridge.

(b) Surface mount components of
discrete RC filter.

Figure 4.10: Pictures of home-made RC filter on a PCB board.

ing gap of a known size. The electronic temperature can be extracted
from the measured gap based on BCS theory (see 5.4 in chapter 5).

4.6.2 Normal state characterization

Quantum confinement and Fabry-Pérot oscillation of resistance in a locally-
gated region

Without loss of generality, we use the measurement taken on the
longest junction (L⇥W = 0.85µm⇥ 2.80µm) in Figure 4.8(b) (circled
with white dashed lines) to demonstrate the main results of this ex-
periment unless otherwise specified.
Figure 4.11 shows the resistance measured as a function of top-

gate VTG and backgate VBG. The resistance was measured with a stan-
dard lock-in technique by applying 1µA current excitation, which was
much larger than the critical Josephson current of the device. There-
fore, no Josephson effect is assumed in this measurement.
The topgate in the middle of the SGS junction offers an extra knob

to tune the carrier density in the locally gated region. The polarity of
the entire device can, therefore, be determined by an arbitrary com-
bination of VTG and VBG. Regardless of the doping effect from the
contacts, these combinations result in four distinct regions in the 2-
D resistance map, i.e., P-N-P, N-P-N, P-P’-P, and N-N’-N as shown in
Figure 4.11. If the aluminum contact doping is taken into account, the
encapsulated device is terminated by two n-doped regions as shown
in [70, 47].
The most obvious feature in the resistance plot is the oscillation

observed in the bipolar (P-N-P or N-P-N) regions. In order to under-
stand the oscillation, let us first look at the N-P-N potential profile
in Figure 4.6 (superconductors play no role in the discussion here).
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Figure 4.11: Normal state characterization: resistance as a function of top-
gate voltage VTG and backgate voltage VBG (a) A 2-D resistance
map as a function of VTG and VBG. Combination of the two gate
voltages defines four different regions in the map. Pronounced
oscillation is observed in the bi-polar (N-P-N, or P-N-P) regions
as a result of quantum confinement and phase coherent trans-
port. (b) Line-cut along VTG axis at VBG = 25V, showing vivid
oscillation of resistance.

The two N-P interfaces, and the corresponding potential barrier in
the graphene create a quantum confinement cavity for the charge
carriers. In graphene, however, the potential barrier can be highly
transparent, as the chiral Dirac fermion can pass the potential barrier,
regardless of the potential height and depth (the length of the cavity),
via Klein tunneling with a high transmission probability as discussed
in Chapter 1. Analogous to wave optics, the locally gated region can
be regarded as a Fabry-Pérot cavity for the charge carriers (Fig. 4.12).
When phase coherence is preserved, successive transmitted rays T1
and T2 have a dynamic phase difference Df = 2kLcavity cos q , where k
is the wave vector of the ray, Lcavity the length of the cavity, and q the
incidence angle. Total transmission probability T(q) can be obtained
by summing all the partially transmitted rays which yields

T(q) =
1

1+ Fsin2(Df/2)
, (4.1)

where F is the finesse of the cavity defined as F = 4 | r1 || r2 |
/ | t1 |2| t2 |2, with r1,2 and t1,2 the reflection and transmission rate
amplitude at two interfaces. Constructive interference, or say the reso-
nance condition T(q) = 1, occurs when Df = 2Np,where N = 0, 1, 2...
corresponding to the number of roundtrips between two successive
waves.
A Fabry-Pérot interferometer (etalon) can be tuned to resonance by

varying Lcavity or the wavelength of light. In a dual-gated graphene
device, Lcavity is pre-determined by the dimension of the topgate elec-
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Figure 4.12: Schematic of a Fabry-Pérot cavity

trode and, therefore, cannot be changed. However, the wave vector k f
can be tuned by gating by k f =

p
np,where n is the carrier density.

The conductance (resistance) resonance condition in a gate-tunable
graphene P-N-P (N-P-N) junction is, therefore, Dk f Lcavity = p, which
can be expressed as Dn = 2

p
pn/Lcavity. Dk f and Dn denote the dif-

ference in wave vector and density, respectively, between two consec-
utive conductance (resistance) peaks.
By taking a line-cut from the 2-D resistance map at VBG= 25 V, we

can identify the Fabry-Pérot cavity where oscillation in bipolar do-
mains originate, as shown in Figure 4.11(b). In the VTG < �1 volt re-
gion, peak separation around the Dirac point (more precisely, around
the charge neutrality point in the locally-gated region) corresponds
to Dn ⇠ 1010cm�2 at a gate voltage where n ⇠ 1011cm�2. The effec-
tive Lcavity for our device is therefore ~ 100 nm, which is in good
agreement with the geometrical width of the top gate. This result is
consistent with those reported in the literature[136, 25] and tells us
that charge carriers in the locally-gated region remain phase coherent
and ballistic.
The line-cut in Figure 4.11(b) shows an oscillation with a fairly

constant contrast, independent of the potential barrier at the P-N
interfaces, whose height is set by | VTG |, whereas VBG provides a
global potential background. This is characteristic of Klein tunneling
of Dirac fermions[77], in which the transmission amplitude t1,2is inde-
pendent of the barrier height and width (Lcavity in our case) when im-
pinging normally (q = 0 6) on the barrier. Note that in an Fabry-Pérot
interferometer, visibility of the interference pattern is determined by
the finesse F = 4 | r1 || r2 | / | t1 |2| t2 |2, so that the fairly con-
stant contrast observed in our oscillation is consistent with what is
expected for Klein tunneling.

6 We consider mainly the contribution from normal incidence, as the transmission
amplitude drops rapidly with q . See, for example [77, 104]
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Figure 4.13: Fabry-Pérot cavities in a dual-gated junction. Multiple cavity
modes are defined by different interfaces within the junction.

Ballistic or diffusive?

The goal of the experiment in this chapter is to induce
superconductivity in ballistic graphene. However, the ballistic

transport across the entire device can not be concluded from the
Fabry-Pérot oscillation observed in the bipolar domains, as it only
suggests the existence of phase-coherent, ballistic transport in the
locally-gated region, which has been observed in devices on SiO2

with topgate narrower than 20 nm[136]. In fact, as the
inhomogeneity of carrier density imposes finite-reflective interfaces
in the 2-DEGS, we should expect to see more than one Fabry-Pérot

mode given the configuration of our device (Fig. 4.13).

In Figure 4.14, a numerical derivative of resistance is taken with
respect to VBG shown as a function of gate voltages in order to clar-
ify the oscillatory features in our measurement. With the n-doped
graphene under the leads taken into account, the four domains can
be relabeled as n-P-P’-P-n, n-N-P-N-n, n-N-N’-N-n, and n-P-N-P-n,
where the lower-case n denotes the aluminum contact-doped region
(n-type doping by Al[63]). We observe at least one extra oscillation
over the background which is shown in the n-P-P’-P-n domain (guided
by the black lines in Fig. 4.14 ), whereas the n-N-N’-N-n domain,
which is unipolar and imposes much weaker confinement in compar-
ison, remains featureless.
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This new oscillation is omnipresent in the n-P-P’-P-n domain with
varying visibility, as can be seen in the zoomed-in image shown in
figure 4.14(b). At carrier density n ⇠ 2.0⇥ 1012cm�2 (enclosed by the
dashed lines in Fig. 4.14(b)), the change of carrier density Dn that
corresponds to one oscillation is ~5.8⇥ 1010cm�2, leading to a cavity
length of L ~ 870 nm. This value agrees fairly well with the size of
our hBN mask (L=850 nm) for this junction. We conclude that this
oscillation in an n-P-P’-P-n domain must arise from quantum inter-
ference over the entire device, that is, from the p-type charge car-
riers traveling ballistically across the entire length of device L and
partially bouncing back by the n-doped region. In general, the oc-
currence of the Fabry-Pérot oscillation in electronic transport implies
that the phase-coherence length exceeds twice the cavity length[104].
The fact that we can deduce a Fabry-Pérot cavity length that is close
to the contact-to-contact distance from the interference pattern can
be regarded as a sign of phase coherent ballistic transport across the
entire device 7.

7 We also calculated lm f p using the semiclassical relation as described in Chapter 3

(3.4.1). Due to the limit in device geometry, we could only perform a two-probe
measurement, which revealed only the lower-bound of the mobility and lm f p. The
extracted lm f pis about 390 nm, comparable to the longest distance from the contact
to the edge of the locally gated region[126]. The result was expected, as the transport
measurement integrates all transport channels whereas with an interference pattern
it is possible to distinguish among different modes.
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(a) Numeric derivative of the measurement shown in fig.4.11(a) with respect to VBG. An
extra set of oscillation now can be observed in the n-P-P’-P-n region (highlighted by
black dashed lines for guiding) The small periodicity corresponds to a longer cavity,
which is the lead-to-lead distance in our device.

(b) A closer look into the P-P’-P region of (a). The oscillation highlighted by the white
box exhibits a Fabry-Pérot mode that corresponds to a cavity length ~ 870 nm, which
is very close to the length h-BN mask, i.e. the entire encapsulated region.

Figure 4.14: Fabry-Pérot cavity corresponding to the full length of the junc-
tion.
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Figure 4.15: Induced superconductivity in dual-gated, ballistic graphene de-
vice

4.6.3 Measurement in the superconducting regime

Induced superconductivity in the Josephson weak-link made with ballistic
graphene

Figure 4.15 (a) plots the I-V characteristics of a dual-gated Josephson
weak link at various backgate voltages when measured in a small
bias current regime. The current is dissipationless, i.e., no voltage
drop accompanies the finite current flow, in the flat region beyond
which the junction switches to normal state. This behavior is similar
to the NbN-based SGS junctions discussed in Chapter 3, despite the
smaller critical current that is dictated by the aluminum gap. The
gate-dependence of the proximity effect can be seen more clearly in
Fig. 4.15(b) where the superconducting state is illustrated by the zero
dV/dI region. The proximity effect is strongly suppressed in the region
where VBG= -15V ~ 0V, showing no sign of the Andreev reflection at
VBG around -13 volts as dV/dI peaks at zero current bias.
We ascribe the region with suppressed superconductivity to the ver-

tical, highly-resistive strip observed in the 2-D normal state resistance
map (Fig. 4.11(a)), whose origin is not clearly understood from our
measurement 8. In a Josephson weak link, the product of the critical
current Ic0 and the normal state resistance RN remains constant at a
given temperature T below Tc[120]. In particular, the relation for a
ballistic S-G-S junction can be written as[121]

Ic0RN = aD0/e (4.2)

8 This strip occurs in all the dual-gated junctions that we have measured. The fact that
it shows no dependence on the topgate implies that it may originate from the doping
caused by the topgate material.
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, where a = 2.08 at the Dirac point and 2.44 in the high carrier density
regime. Thus when RN is too large, the maximum Josephson current
may become too small to be detected.

4.6.3.1 Fabry-Pérot oscillation of the maximum Josephson current

The relation in 4.2 also explains the observed oscillation of the max-
imum Josephson current Ic in the bipolar domaines, as depicted in
Figure 4.16 when VTG <-0.5 V. Here, the differential resistance as a
function of the bias current is plotted along the line cut in Figure 4.11
(b), which is also presented here for comparison. Here, Ic , defined by
the boundary of the zero dV/dI region, oscillates out-of -phase with
the Fabry-Pérot oscillation of normal state resistance RN , as expected
from 4.2[24, 113, 4].

Figure 4.16: Fabry-Pérot oscillation of Josephson effect. The critical current
IC oscillates out-of-phase with the normal state resistance RN
as expected for a Josephson junction.

Figure 4.17 shows the Fabry-Pérot oscillation of Ic along two line-
cuts in the 2-D resistance map. Both graphs show pronounced oscil-
lation of Ic in the n-N-P-N-n and n-P-N-P-n regions. In the measure-
ment along line-cut A, we also observe oscillation in the n-P-P’-P-n
region, which is equivalent to the bipolar domain (n-P-n, in our no-
tation) created by contact doping and the global backgate in ballistic
junctions where Fabry-Pérot oscillation of Ic is observed[24, 113, 4].
Analysis shows that the Fabry-Pérot oscillation of Ic has the same pe-
riodicity as the oscillation shown in Figure 4.14 (b) which corresponds
to the interference across the entire junction length. We conclude that
at least a certain fraction of the Josephson current is carried by ballis-
tic transport from lead to lead.

Figure 4.18 plots the same measurement of line-cut A in a different
color scale to emphasize the oscillation in both domains.
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Figure 4.17: dV/dI versus bias current measured along different cuts in the
2-D resistance map. Oscillation in Ic is consistent with the RN
oscillation. Line-cut A shows oscillation of IC in both regions.

Figure 4.18: Plot of cut A in different color scale to emphasize the oscillation
in n-P-P’-P-n regime
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4.6.3.2 Ballistic Josephson effect from a scaling point of view

One of the signatures of the Josephson effect in ballistic graphene
is what is referred to as the pseudo-diffusive behavior, according to
which for a short and wide junction at the Dirac point ( µ ⌧ h̄v/L,
L ⌧ W, x, where x is the coherence length) , Ic scales with the dimen-
sion of the junction as [121]

Ic = 1.33
eD0

h̄
W
pL

(4.3)

Thus, at the Dirac point, the critical current in a ballistic S-G-S junc-
tion is formally identical to that induced in a piece of diffusive metal.
This is consistent with the finding that ballistic Dirac fermions have
the same shot noise as do diffusive nonrelativistic electrons and that
the transport arises from evanescent electronic states [121, 44, 35].
At the high carrier density limit (µ � h̄v/L), Ic in a short and wide

ballistic S-G-S junction can be expressed as

Ic = 1.22
eD0

h̄
µW
ph̄v

(4.4)

Ic depends on only one geometrical factor, the width W , as the to-
tal current is proportional to the number of ballistic channels that
mediate the electronic transport.
It is very challenging to measure the critical current at the Dirac

point, as the current might be too small to determine. However, we
can explore the ballistic characteristics in the opposite limit by com-
paring critical current Ic measured in two junctions with different
dimensions (Fig.4.19). WithVBG =35 volt, VTG = 0.28 volt (ne =
2.5⇥ 1012cm�2) and L = 850nm (the longer junction of the two), the
ratio between µ and h̄v/L is ~ 238:1 (184 meV: 0.77 meV). Thus, it is
reasonable to assume the high density limit described by eqn. (4.4).
Table 4.4 summarizes the comparison between the two junctions.

We notice that although junction A is more than three times longer
than junction B (LA/LB = 3.4), and wider by only 20%, the maxi-
mum supercurrent in junction A is still significantly larger than that
in junction B at the same chemical potential 9. We emphasize that
the two junctions were built on a single piece of monolayer graphene
on the same h-BN substrate, such that the only varying parameter in
eqn. (4.4) is the width W. Note that in diffusive metal, the conduc-
tance, and thus the Ic it sustains, is expected to scale with aspect ratio
W/L. The fact that Ic measured in the encapsulated device exhibits
very weak or even no dependence on junction length L and increases

9 Junction B is so narrow that we did not implement any topgate in the middle. We
compared the two junctions at very similar carrier density, where VBG is kept the
same, and the VTG in junction A is very small (0.28 V). Also, as the locally-gated
region is only ~12% of the area in junction A, the value of VTG does not affect
overall density significantly.
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Figure 4.19: Comparison of maximum supercurrent Ic in two junctions of
different dimensions. Ic exhibits weak dependence in the junc-
tion length L but increases with the width W, as expected for
ballistic channels. Note that all junctions are built on one single
graphene flake and shares the same backgate.

Junction L(µm) LA
LB W(µm) WA

WB
Ic(nA) IcA

IcB
µ(meV)

A (blue) 0.85
3.4 2.8

1.2 105

1.5 ~185
B (orange) 0.25 2.4 70

Table 4.4: Comparison of critical current in junctions with different dimen-
sions.

with width W suggests that the characteristic is consistent with the
ballistic model.

4.7 conclusion

We have demonstrated that by encapsulating a graphene flake be-
tween clean h-BN sheets, it is possible to achieve an electron mean
free path that is comparable to the distance between the most sep-
arated leads. In the case presented herein, the longest distance is ~
850 nm owing to the requirement for the superconducting proximity
effect. The phase coherence of electronic transport manifests itself in
the Fabry-Pérot oscillation of normal state resistance, suggesting that
the electron travels ballistically within cavities defined by interfaces
of differently doped regions. Despite the oscillations observed in the
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n-P-N-P-n, and n-N-P-N-n regions, the existence of oscillations in the
n-P-P’-P-n region is of particular importance, as the cavity length de-
rived from the periodicity is very close to the length of the junction.
This implies that our fabrication method can be used to facilitate ap-
preciable ballistic transport across the entire device.
In the superconducting regime, the oscillation of the maximum su-

percurrent Ic shows good agreement with the ballistic behavior ob-
served in normal regimes. In addition, by comparing the Ic at two
encapsulated Josephson junctions that differ in size, we observe that
the scaling with geometry is compatible with the ballistic model at a
high-density limit.
We conclude that this fabrication technique is able to produce bal-

listic SGS junctions.
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5
TUNNEL ING SPECTROSCOPY OF
SUPERCURRENT-CARRY ING ANDREEV STATES IN
GRAPHENE

5.1 introduction

The use of tunneling spectroscopy to study superconductivity has a
long history dating back to the 1960’s. In fact, this technique, intro-
duced by Giaever in 1960[60, 61], was used at first to measure the
existence of the BCS gap in aluminum/aluminum oxide/lead sand-
wiches. Subsequently, planar tunneling from a normal metal to super-
conductor and planar tunneling between two superconductors[59, 62]
provided more support for the BCS theory and substantiated our un-
derstanding of this subject.
The invention of the scanning tunneling microscope (STM) in 1981

by Bining and Rohrer provided a spatially-resolved tunneling spec-
troscopy tool for the study of solid state systems. The atomic reso-
lution offered by STM makes it a promising tool for studying the
proximity effect in a hybrid superconducting system. With a cryo-
genic AFM+STM system, H. LeSueur et al.[84] measured the induced
superconducting gap or mini-gap in a diffusive silver nanowire prox-
imitized by a superconductor on both ends. The size of the measured
mini-gap diminishes as the STM tip moves away from the supercon-
ductor, and is weaker in longer than in shorter junctions. In addition,
the phase-controlled oscillation of the mini-gap is reminiscent of the
behavior of Andreev bound states. The proximity effect has also been
investigated in a disordered 2-dimensional system[112], whereas su-
perconducting islands are grown in-situ on thin, diffusive metal films,
resulting in a network of SNS junctions that can be probed by STM.
Direct observations of Josephson cores[106] in such a system demon-
strate how the macroscopic phase in superconductors strongly influ-
ences the proximitized region.
Advances in microfabrication has also promoted the study of the

hybrid superconducting system at the mesoscopic scale. Precursors of
discrete Andreev levels in ballistic SNS channels have been shown to
exist inNb-contacted InAs 2DEGS samples via energy spectroscopy[94].
However, it was not until an experiment performed by J.D. Pillet et
al.[101] that a single Andreev bound state in a hybrid system was
directly observed. In this experiment, a carbon nanotube was cou-
pled to an aluminum ring, and a quasi-particle energy spectrum was
obtained by a tunneling probe positioned on top of the weak link.
The local density of states exhibit a strong gap associated with the
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aluminum superconducting gap. When a magnetic field is threaded
through the loop formed by the aluminum and the carbon nanotube,
the size of the induced gap in carbon nanotube oscillates with a peri-
odicity equal to the magnetic flux quantum F0. On the basis of both
data analysis and modeling, the conclusion drawn from this experi-
ment is that the Andreev bound states are localized in the quantum
dot region, which is defined by superconducting leads and the tun-
neling probe. In 2013, the existence of the Andreev excited state E+

A
(the higher energy state in each pair in the Andreev bound state so-
lution) was confirmed in the superconducting atomic contacts shown
by Landry Bretheau et al.[21].
Also, in 2010, transport through Andreev bound states in a super-

conductor/oxide/graphene system was reported in ref.[45]. In this
experiment, the gate-tunability of graphene manifests itself in the
varying quantum dot energy level which is Andreev-coupled to the
superconductor. Direct observation of the induced superconducting
gap in graphene was presented in 2013[123], in a study in which
graphene was grown on a superconducting rhenium film and probed
by STM in-situ.
In this chapter, we discuss our study of the superconducting prox-

imity effect in the energy domain, which has not been researched
extensively in regard to the graphene proximity effect. Based on the
fabrication techniques we developed earlier, as discussed in Chap-
ter 3 and Chapter 4, and innovations introduced for this particu-
lar experiment, we are able to probe the local density of states of
superconducting-proximitized graphene. Based on a SQUID-like ge-
ometry, the phase difference across the weak link can be well-controlled
by applying an external magnetic field, resulting in the variation of
the gap size that we recognize as a modulation of the Andreev ener-
gies.
The purpose of this experiment is to study the superconducting

proximity effect in 2-dimensional limit. In this sense, the graphene
heterostructure is regarded as an easily accessible host of 2-DEGS.
On the other hand, the unique electronic properties of graphene may
exhibit novel phenomenology, which can be explored using the spec-
troscopic technique.

5.2 tunneling spectroscopy of andreev bound states in

graphene

5.2.1 Quantum tunneling and the density of state

In this sub-section, we demonstrate how the density of states (D.O.S.)
of a solid state system can be extracted by measuring the tunneling
current between the sample and a probe, the latter of which is usually
a metallic lead with known density of states.
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Figure 5.1: Illustration of tunneling spectroscopy as a tool to probe D.O.S..
A barrier, typically a vacuum or thin insulating layers, separates
two electrodes and allows tunneling between the two. Particles
can tunnel from filled states to the available (empty) states at the
same energy. When the bias voltage V is varied, the separation
between the two Fermi levels makes it possible to map out the
density of states of the sample on the left.

Consider two independent systems A and B separated by a thin
barrier that allows quantum tunneling of the electrons (Fig. 5.1). Tun-
neling current from B to A, up to a proportionality constant omitted
here, can be written as[120]

Ib�a =
Z +•

�•
|t|2 Na(E) [1� f (E)]Nb(E+ eV) f (E+ eV)dE, (5.1)

where N(E) is the density of states, f (E) is the Fermi-Dirac distribu-
tion function at temperature T, V is the bias voltage across the tun-
neling barrier, and t denotes the tunneling matrix element between
A and B, which is assumed to be a constant in this expression. By
definition, factors Nb f and Na(1� f ) represent the number of occu-
pied states in B and the available(empty) states in A per unit energy
interval, respectively. Similarly, the tunneling current associated with
the inverse process can be expressed as

Ia�b =
Z +•

�•
|t|2 Na(E) f (E)Nb(E+ eV) [1� f (E+ eV)] dE. (5.2)

The total tunneling current can be obtained by summing up the two
processes which yields

Itunneling = |t|2
Z +•

�•
Na(E)Nb(E+ eV) [ f (E)� f (E+ eV)] dE, (5.3)

where we assume an energy-independent tunneling probability t. In
a tunneling spectroscopy experiment using standard a lock-in tech-
nique, we typically measure the differential conductance G ⌘ dItunneling

dV ,
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which can be obtained by imposing a small sinusoidal oscillation dV
on bias voltage, and measuring the associated change in tunneling
current dI as a function of bias voltage. Furthermore, the spectroscopy
is typically measured with a probe that has a known or constant den-
sity of states. In the latter case, the differential conductance can be
expressed as

G =
dItunneling

dV
= |t|2 Nb

Z +•

�•
Na(E+ eV)e

�∂ f (E+ eV)
d(eV)

dE, (5.4)

where we assume system B is the probe with a constant density of
states Nb. Note that the factor ∂ f (E+ eV)/∂V is a bell-shaped weight-
ing function peaked at E = �eV, with a width of ⇠ 4KT and a unit
area under the curve[120]. As temperature T ! 0, ∂ f (E+ eV)/∂V!
d(E+ eV), then

G |T=0=
dItunneling

dV
|T=0= |t|2 NbNa(e |V|) = const.⇥ Na(e |V|). (5.5)

At T ! 0, the density of states of the sample Na(eV) is proportional
to the differential conductance G. Varying the bias voltage , thus, al-
lows the density of states Na(E) to be probed at various energy away
from the Fermi level.
In practice, G is measured at a low temperature via a tunneling

probe which has a well-defined or constant Nb(E) in the energy range
of interest, so that Na(E) can be extracted directly.

5.2.2 Andreev bound states in 2-dimensional limit

In Chapter 2 (2.4.2), we discussed Andreev bound states in both long
and short 1-dimensional channels. The distinction between the two
limits stems from the relative strength between the confinement en-
ergy and the superconducting gap. This can be seen from the criteria
for the short junction limit kFL E

EF
⌧ 1, which is equivalent to stat-

ing that the level spacing hvF
L due to quantization in the longitudinal

direction, is much larger than the superconducting gap D.
For a 2-dimensional system at the mesoscopic scale, the same argu-

ment can be applied and the transverse modes would form Andreev
bound states within the superconducting gap when the channels cou-
ple to the superconductor. The junction may fall well within the short
limit in its longitudinal dimension (in parallel with the supercurrent
transport), which allows only one pair of Andreev bound states in
the gap (eqn.(2.48)). However the extended dimension in the perpen-
dicular direction may accommodate multiple pairs of Andreev bound
states that differ from each other in terms of EA’s. To understand how
Andreev bound states may differ from the states we discussed in a 1-
dimensional model, let’s consider a 2-dimensional SGS junction, as
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(a) ABS in 2-dimensional (graphene) system at high carrier density.
Transverse modes with energies lower the Fermi energy are popu-
lated.These modes may form Andreev bound staets in the weak linke
when coupled to superconductors.

(b) ABS in 2-dimensionl (graphene) system with low carrier density. The
number of modes are lmited by the low Fermi energy near charge
neutrality point.

Figure 5.2: Andreev bound states in 2-dimensional (graphene) system. Note
that we assume single longitudinal mode for the purpose of il-
liustration.
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shown in Figure 5.2(a). The number of transverse modes is expected
to depend on the width W and the chemical potential µ of the nor-
mal metal. By requiring traveling wave solutions for the supercurrent
transport in the x-direction with given W and µ

k2Fx =
✓

µ

h̄vF

◆2
�
⇣

p

W

⌘2
n2y > 0 (5.6)

, we can solve for the upper bound for the number of transverse
modes ny as

ny <
Wµ

ph̄vF
. (5.7)

Thus, the number of transverse modes is proportional to the width
W and the chemical potential µ as expected 1.
Thus for a 2-dimensional SNS system in general, the superconduct-

ing gap will be populated with Andreev bound states formed by the
coupling between these ny transverse modes and the superconductor.
Instead of seeing a single Andreev bound state as in a proximitized
carbon nanotube[101], which is exactly one-dimensional, we should
expect to see an Andreev band consisting of multiple Andreev bound
states at various E0

As. Note that the spectra of this Andreev energy
band should still vary with the macroscopic phase f according to eqn.
2.48 or eqn. 2.49, depending on the junction length in the x-direction.
Graphene in general behaves like a purely 2-dimensional system;

however, its gate-tunability allows us to tune the Fermi energy to
essentially zero. Thus, for a short, ballistic SGS junction, it is possible
to achieve a very small number of Andreev bound states (Fig.5.2(b)),
such that the isolated Andreev bound state can be resolved within
the gap by tunneling spectroscopy. The graphene thus behaves like a
pseudo 1-dimensional system in terms of superconducting transport.
For a short, ballistic SGS junction with W = 500nm,ny <15 can be

achieved at µ ⇠ 60 meV. Such a low chemical potential, correspond-
ing to a carrier density of ~ 2⇥ 10�11cm�2, is achievable (nontrivially!)
in a high quality graphene device.

5.3 fabrication of tunneling device

The device discussed in this chapter is encapsulated between h-BN
top and bottom layers. Thus, techniques developed for the encap-
sulated device discussed in Chapter 4, such as picking-up, transfer,
cleaning, thermal treatment, and device characterization, can be used
to fabricate tunneling devices.

1 The result is derived for massless Dirac Fermions in graphene. For massive particles
with quadratic dispersion, ny is proportional to Wp

µ as derived in ref.[99].
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However, from a fabrication point of view, devices for tunneling
spectroscopy differ significantly from the encapsulated devices meant
for transport measurement in the following aspects:

1. One of the encapsulation h-BN layers, in our case the top layer,
needs to be uniform and of appropriate thickness (see 5.3.1).
This is because the top layer h-BN layer serves as the tunnel-
ing barrier, instead of merely as a protection for graphene. The
thickness and uniformity of a tunneling barrier, especially in a
planar tunnel junction, has a significant effect on the signal to
noise ratio and on the measurement result.

2. Following point 1, the device can not be regarded as fully pro-
tected by h-BN, as a large portion of area (80% in our case) is
covered by only one or two layers of h-BN, which is far from
sufficient to isolate the electrostatic doping induced by contam-
inants immediately on top. Thus, more implementation needs
to be addressed to reach the truly ballistic regime, especially at
low carrier density. We will discuss this issue in the following
sections, which focus on measurements and perspectives.

3. In order to measure a “strong induced superconducting gap”
in graphene, the tunneling probe must be placed as close to the
superconducting lead as possible if the 2-DEGS is not purely
ballistic[84]. This means that the device must be as compact as
possible, but without shorting the probe to the leads.

4. The choice of tunneling probe is crucial. The tunneling probe
is isolated from the exact area of the graphene to be probed
by ultra-thin h-BN (less than 1nm), which means that doping
from the tunneling lead is non-negligible. This is in remarkable
contrast to the dual-gated device where the metallic top-gate is
tens of nanometers away from the 2-DEGS.

These considerations, as reasonable and obvious as they now appear
to be, were recognized sequentially in the course of our endeavor.
This section summarizes what we have learned so far about making
these kinds of devices. The fabrication of the device currently being
measured (as of November 2015) will be discussed in detail. The lat-
est version with significant improvements based on the measurement
results so far will also be presented.

5.3.1 Ultra-thin h-BN as a tunneling barrier

We have demonstrated that h-BN can be used as an ideal substrate as
well as a protective over-layer to render a graphene sample with low-
disorder. These properties can be attributed to h-BN’s ultra-flatness,
crystalline structure, and large band gap which makes it insulating
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up to a few eV in energy scale. Further, h-BN is a single crystal with
a low defect density within the area of a typical nanodevice.
These properties make ultra-thin h-BN an attractive candidate for

a tunneling barrier for the spectroscopic study of graphene[6] and
other Van der Waals heterostructures. Figure 5.3 shows the I-V char-
acteristics of thin (1~4 L) h-BN flakes measured by conductive AFM
(C-AFM)[86] and planar electrodes[23]. Both experiments show that
the conductance measured between two conductors, separated from
each other by h-BN flakes, decreases exponentially with the number
of h-BN layers, as expected for electronic transport dominated by a
tunneling process. From the planar junction measurement (Fig.5.3(b)),
where tunneling is measured between graphite and gold electrodes,
the zero-bias conductivity is deduced to be ⇠ 1KW�1

µm�2 for mono-
layer h-BN, and decreases to 0.1GW�1

µm�2 for 4-L h-BN[23].
Note that the conductivity derived from this type of experiment de-

pends directly on the type of electrodes being used, as the tunneling
current is proportional to the density of states on both sides of the
barrier as discussed in 5.2.1.
The resistance map obtained by conductive AFM shows only ~10%

variation over tens of square micrometers, and the typical breakdown
voltage is ⇠ 1volt · nm�1. These results suggest that thin h-BN is a uni-
form 2 insulating layer within the typical energy range of tunneling
experiments.

5.3.2 Hunting for ultra-thin h-BN and determining the number of layers
with Raman spectroscopy

Choosing the appropriate number of h-BN layers is crucial in our ex-
periment, as the number of layers dictates the signal to noise ratio
of the measurement. In a typical aluminum-contacted device, the up-
per bound of the induced gap is about 150 µeV. To resolve features
within this gap at sufficient resolution, one should expect to use AC
excitation (in a standard lock-in measurement) not exceeding 10% of
the gap, namely 15 µeV. In a measurement setup with a 10�12 ampere
noise floor, this means an upper bound of of 15 MW for tunneling re-
sistance. For a metal-hBN-graphene tunneling device, similar to that
modeled in Figure 5.3(b), this implies that a h-BN tunneling barrier
should not exceed 3L. In a real device, the tunneling area is typically
0.15µm(L) ⇥ 1µm(W); therefore the number of layers must be even
smaller. Thus, we are restricted to use 1~2L h-BN for an aluminum-
contacted device.
The question is: How do we determine the number of layers for

ultra-thin h-BN?

2 Uniform but not defect free. The results in ref.[23, 86] are obtained by C-AFM. In
planar (2-D to 2-D) tunneling, the effect of defects is prominent as it averages over
the whole tunneling region. See, for example, ref. [28], in which an experiment is
performed on h-BN from the same source.
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(a) I�V characteristics of h-BN obtained by
conductive AFM (image adapted from
ref.[86]). Each curve of current shows
non-linear dependence on the bias volt-
age and (inversely to) the number of lay-
ers, as expected for the tunneling pro-
cess.

(b) Zero-bias, area-normalized tunneling
resistance of thin h-BN (1L to 4L)
sandwiched between the graphite and
gold electrodes (image adapted from
ref.[23]).

Figure 5.3: h-BN tunneling barrier.

As an insulator with a ~ 5.9eV gap, h-BN deposited on 285 nm-thick
SiO2 substrate appears to be much less contrasted than graphene with
the same number of layers. Figure 5.4 shows optical images of thin (1L
to 3L) h-BN flakes, monolayer graphene(MLG), and bilayer graphene
(BLG) on 285 nm-thick SiO2. It is evident that the 3L h-BN is very
close to MLG in terms of optical contrast to the background, whereas
2L and 1L h-BN are even fainter. The poor optical contrast of h-BN
against the substrate also implies that it is very difficult, if not impos-
sible, to accurately identify the number of layers using an optical mi-
croscope. We will see in subsequent sections that we are restricted to
using 1L-hBN as a tunneling barrier for aluminum-contacted devices:
therefore, exactly determining 1L-hBN becomes the starting point for
making our devices.
Also note that although AFM in general has a sub-nanometer verti-

cal resolution and can resolve monolayer h-BN (thickness ~ 300 pm),
AFM is not sufficient to determine the number of h-BN layers down
to 3L (~1nm thick ) unless the thin flake is deposited on an atomi-
cally flat background, such as graphite or h-BN both of which must
be thicker than 10 nm. However, the h-BN must be deposited on SiO2
first in order to be picked-up, which is not possible if the flake is on
“sticky” h-BN or graphite, and transferred onto graphene to make the
device. As we have seen in 4.2.1, the RMS roughness of SiO2 substrate
(220 pm) is comparable to the thickness of monolayer h-BN (~300 pm).
The local fluctuation of SiO2 surface in height signal is typically 1nm,
which completely obscures the distinction between thin layers.

98



Figure 5.4: Comparison of thin h-BN and graphene with different numbers
of layers. Compared with graphene of the same thickness, the
h-BN appears much fainter. In our optical setup, 3L-hBN(e) is
similar to MLG (b) in terms of contrast. Image (f) shows 1L-hBN
and 2L-hBN side-by-side, indicating the difficulty of distinguish-
ing between the two. For the purpose of demonstration, optical
images (a) ~ (e) are taken under the same condition of the optical
microscope.

5.3.2.1 Using Raman spectroscopy to determining the number of h-BN
layers

The solution to determining the number of h-BN layers on a SiO2
substrate is to perform Raman spectroscopy on the flake. It has been
demonstrated[66] that Raman spectroscopy can reliably identify thin
h-BN flakes from a monolayer up to a few layers, beyond which the
differentiation is obscured due to saturation, in terms of the position
of the Raman peak and the integrated intensity. In particular, with a
green laser (l = 532nm), bulk h-BN has a Raman peak at 1366 cm�1

99



3 which shifts to ~ 1369 cm�1 when there is only one layer of h-BN,
and the integrated intensity decreases linearly with the number of
layer N. In particular, we have found that, with regard to the setup
we used, integrated intensity under the same acquisition conditions
is the most reliable parameter for determining the number of h-BN
layers on SiO2 substrate.
In practice, Raman spectroscopy setup as a shared facility has sig-

nificant fluctuations in its signal. We have found that it is not uncom-
mon to obtain very different values of integrated intensity from the
same device across sessions separated by a few days or as little as
a few hours even when all the controllable parameters are identical.
Hence, although capable of differentiating between flakes with differ-
ent numbers of layers down to DN = 1, Raman spectroscopy does
not provide the absolute N consistently.
In order to identify the absolute value of N consistently and effi-

ciently before characterizing new samples, we calibrate the Raman
signal with respect to a standard sample that has h-BN flakes with a
definite number of layers. By comparing the signal from new sam-
ples to the one obtained from the standard sample, under the same
acquisition conditions, we can determine the absolute number of h-
BN layers. The result is self-consistent as long as the standard sample
and the new sample are measured using identical parameters dur-
ing one session. In fact, with a standard sample, Raman spectroscopy
can be performed consistently across various setups, as is sometimes
necessary due to the use of a shared facility.
Figure5.5 shows a typical Raman spectrum of 1L, 2L, and 3L h-BN

deposited on a 285 nm SiO2 substrate 4. Note that in order to exclude
probable contributions to the intensity from residues on h-BN (com-
ing from sticky tape), the flakes are thermally annealed in forming
gas at 350C for 3 hours before undergoing Raman spectroscopy.

5.3.2.2 Establishing Raman standard for ultra-thin h-BN

In our group, the Raman standard h-BN sample is indispensable for
anyone who is working on thin h-BN and needs to know the abso-
lute number of layers in the flake. This approach has proved to work
consistently in different Raman setups (at Harvard CNS and MIT
ISN), for h-BN on either a 90 or 285 nm SiO2 substrate by numerous
group members who may use different parameters for the Raman
spectroscopy. Figure 5.4 (a) (c) (e) shows images of these standard
flakes, each of which has been through hundreds of Raman scanning
sessions with no sign of degradation observed (by either Raman or

3 This peak comes from the E2G phono mode and is analogous to the G peak in
graphene[66].

4 At present, we are using 90 nm SiO2 for thin h-BN deposition, as this substrate offers
better optical contrast for thin h-BN. However, no change in Raman results has been
observed, and we are still using the same reference.
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Figure 5.5: Raman spectrum of 1L, 2L, and 3L h-BN deposited on a 285nm
SiO2 substrate. The integrated intensity shows dependence on
the number of layers.

AFM). Once the first standard sample is made, more can be repro-
duced by referencing it.
We prepared the standard sample by following this procedure:

1. Mechanically exfoliate h-BN and deposit the flakes onto piranha+HF
cleaned (A.1) 285 nm SiO2 substrate.

2. Hunt for flakes with optical microscope. We use 50x objective
for h-BN flake hunting in order to increase the probability of
finding thin flakes. Take optical images with the same parame-
ters.

3. Categorize images of the flakes according to optical contrast. In
our case, only h-BN flakes with L<3 are relevant. Try to find
the lowest three levels of contrast recognizable in the optical
microscope. Ensure that each category has multiple flakes.

4. Anneal the sample in forming gas (Ar/H2) at 350oC for 3 hours.

5. Perform Raman spectroscopy on each flake in a single session,
with 10 sec acquisition time and 15 accumulations for each
flake.

6. Categorize the flakes according to the integrated Raman peak
intensity of each. This categorization should agree with the sort-
ing in step 3.

7. Prepare an atomically flat surface for the AFM measurement:
deposit h-BN on another substrate, select thick (> 15 nm) pieces
with a much larger area than any one of the thin h-BN flakes to
be determined. Anneal as in step 4, check the homogeneity of
hBN surface using AFM.
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8. Pick up and transfer (5.3.3) at least one thin flake from each
Raman signal category as determined in step 3 onto the thick
h-BN substrate. Leave the rest of the thin flakes on the chip,
which will eventually become the standard sample.

9. Remove the polymer used for pick-up and transfer in solvent.
Anneal the stack as in step 4.

10. Measure the step height of each transferred thin h-BN with re-
spect to the h-BN substrate. Monolayer h-BN should measure ~
280 pm, with about the same increment size across each extra
layer.

11. Establish the correspondence between height (number of layers)
information and Raman intensity.

12. The Raman standard sample is made. Keep it with care!

5.3.2.3 Improving the yield of ultra thin h-BN deposition

The poor optical contrast of h-BN against SiO2 makes it very difficult
to find thin h-BN flakes in what we call the flake hunting practice,
namely, scanning the entire chip at high magnification (20X~50X ob-
jective). To make the process even more challenging, the h-BN flake
has a much lower yield from deposition than does graphene, as the
adhesion between h-BN and SiO2 is weaker than that of graphene.
Finally, the ultra-thin h-BN flakes are in general much smaller than
graphene flakes. This is because h-BN is more brittle than graphene
and thus breaks up more easily when subject to mechanical exfolia-
tion with sticky tape.
Empirically, we found that the yield of reasonably-sized (~ 40 µm2)

thin h-BN flakes can be improved by using the following techniques:

• Perform moderate exfoliation: Exfoliate two to three times with
sticky tape to preserve the size of the flakes(Fig. 5.6(a)).

• Deposit on warmed substrate: Heat substrate up to ~ 110C on a
hot plate before deposition. This allows uniform adhesion and
reduces the number of bubbles trapped between the tape and
the substrate (Fig. 5.6(b) (c)).

• Peel the tape from the chip as slowly as possible. Figure 5.6(d)
shows a home-made (by Valla Fatemi et al.) exfoliation stage (the
EXFOLIATRON!) equipped with a micro stepper actuator. This
allows the tape to be peeled off in a slow, smooth, and steady
way (Fig. 5.6(e)). For ultra-thin h-BN deposition, the speed of
the tape motion is ~ 50 µm/sec.
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Figure 5.6: Mechanical exfoliation and deposition of ultra-thin h-BN. (a) The
tape after two or three exfoliations. The shiny pieces on the tape
are thick h-BN crystals. (b) The tape is placed on a warmed chip.
The middle of the tape is placed on the chip first and then the
rest of the chip is brought into contact with the chip. (c) After 5
minutes of resting, the tape spreads out and adheres to the chip
with just a few bubbles trapped between the tape and the chip.
(d) The EXFOLIATRON consists of a gel-pad that holds the chip
and peels-off the tape with a micro stepper actuator. (e) The tape
is peeled off the substrate. (f) h-BN crystals are deposited on a
90 nm SiO2 substrate.

5.3.3 Assembling graphene/h-BN heterostructures for tunneling spectroscopy

5.3.3.1 Manipulating ultra-thin h-BN

Soon after its introduction in 2010 to the field of graphene research,
thin h-BN came to be regarded as a promising tunneling barrier. Fur-
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ther, the ability of thin h-BN to function in this way with graphene
devices is of particular interest given its high level of compatibil-
ity with graphene. On the other hand, the initial transfer method
[40, 118] involves depositing graphene or h-BN directly onto a highly-
transparent polymer stack. In this scheme, finding thin h-BN with an
optical microscope is extremely challenging due to the poor optical
contrast given by the thin h-BN. An alternative way is to deposit
and locate thin h-BN onto a SiO2 substrate, followed by etching away
the substrate in etchants [6]. However, this approach exposes the sur-
face of h-BN to liquids such as etchant, water, and/or solvents. This
exposure to liquids inevitably undermines the quality of the final de-
vice, as contaminants can become trapped between the h-BN and the
graphene.
The pick-up and transfer method for Van der Waals materials devel-

oped by Philip Kim’s group at Columbia University [42]and also de-
veloped independently in our group [31] shed new light on the ways
in which these materials can be used. By depositing h-BN on clean
SiO2 substrate and picking-up the h-BN flakes with polymer, the dry
polymer-based technique allows a h-BN surface to be preserved in a
pristine state and brings it in contact with graphene. Although this
approach reliably picks up thick h-BN (>5 nm), attempts to pick up
atomically thin h-BN with polymers such as PMMA, MMA and PPC
results in very little success.
We started to tackle this issue in early 2014. After trying various

kinds of polymers as investigated in the literature [42, 137, 126], we
concluded that PC (Poly(Bisphenol A) Carbonate, analytical standard,
Mw ⇠ 28, 200, from Fluka Analytical) film on PDMS stack is most ef-
fective for picking up monolayer h-BN or graphene flakes from a
SiO2 substrate. The stronger adhesion of PC is responsible for its
greater “picking-up power” as compared with that of PMMA or PPC,
which allows us to pick up not just thin h-BN or graphene flakes
with an appreciable area (~ 10 µm2), but also fine graphite nano-rod
(LxW ⇠ 5µm ⇥ 100nm), which we use as tunneling probes. The ro-
bustness of this film also allows us to perform multiple pick-up and
transfer iterations in order to make highly complex heterostructures.
Currently, the PC/PDMS polymer stack is prepared according to

the following procedure:

1. Clean two glass slides with IPA and blow dry with nitrogen.

2. Drop ~5 ml PC solution ( 6% by weight in chloroform) onto one
glass slide (Fig. 5.7(a)).

3. Press the other glass slide onto the PC solution and swiftly
“smear and glide” this slide across the first glass slide. This
process requires practice, but when performed correctly, it will
leave a thin PC film on the first glass slide[137]. The film should
dry completely in about 1 minute (Fig. 5.7(b),(c)).
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Figure 5.7: Preparation of PC/PDMS polymer stack for picking-up ultra
thin h-BN. (a) Drop PC liquid onto a clean glass slide. (b) Press
and smear the liquid with another glass slide. (c) Slide the tip
glass slide over the bottom one swiftly in order to render a uni-
form film. (d) Use sticky tape to pick up and transfer the PC film
onto a PDMS block. Ensure that the film is stretched enough to
create a flat surface that conforms to the PDMS.

4. Cut out a piece of PDMS block (L⇥W⇥T ⇠ 2.5mm⇥2.5mm⇥1.5mm)
and place it on another glass slide. Ensure that there are no bub-
bles between the PDMS and the glass slide. Place double-sided
tape around the PDMS block.

5. Punch out a hole with an area larger than that of the PDMS
block in step 4 in a piece of double-sided tape. Use this tape
to pick up PC film from the glass slide in step 3

5. Ensure that
the picked-up film remains intact, although it might be rather
wrinkled due to the weak support at the edge.

6. Align and center the PDMS block with the circular PC film.
Place the PC film on the PDMS, tap around the film with tweez-
ers to ensure that it firmly adheres to the tape around the PDMS.
The tension should flatten out the wrinkles in the PC film, thereby
resulting in a flat polymer surface (Fig. 5.7(d)).

5 Over time, we have realized that the adhesion between PC film and the glass has a
very strong dependence on humidity. During the winter in Cambridge, MA, the film
can stick to the glass so firmly that a razor blade is required to peel off the film, and
the resultant film is often too strained to be useful.

105



5.3.3.2 Pick-up and transfer fine structures with PC/PDMS stack

The PC/PDMS stack is used to perform multiple pick-up and trans-
fer process. The procedure is basically the same as the one discussed
in Chapter 4 (4.3) using the same setup. The only different param-
eters are the temperatures associated with picking-up and eventu-
ally releasing the film onto the bottom stack, as summarized in Table
4.2. Chloroform is the solvent we use to make the PC solution for
preparing the films. After the final transfer is complete, the sample
is submerged in chloroform for five minutes to dissolve the PC film,
followed by rinsing with IPA, and finished with thermal annealing in
forming gas.
Figure 5.8 shows one of the devices we made at an earlier stage

of this experiment. In this device, the tunneling barrier is made of
2L-hBN that was picked up and transferred onto a graphene/h-BN
bottom stack on SiO2. A gold tunneling probe is deposited between
the superconducting leads to measure the local density of states. The
metal/h-BN/graphene tunneling configuration is similar to the model
system shown in Figure 5.3(b). The zero-bias, area-normalized tun-
neling resistance falls between tens of KW to 150 KW, depending on
the gate voltage VBG. The zero-bias tunneling resistance measured in
this device and another one with 3L-hBN in general agrees with the
finding in ref. [23]. Further implications associated with this type of
device are discussed in the next subsection.

5.3.4 Choice of tunneling probe and tunneling barrier for ABS spectroscopy

The gate-tunability of graphene allows for the study of physics in
either a high density regime or around graphene’s charge neutrality
point, where density of states essentially diminishes. As discussed
in 5.2.2, one of our motivations for studying ABS in a graphene sys-
tem is because the diminishing density of states around the charge
neutrality point may result in isolated Andreev bound states. The
ability to address these states independently may lead to a deeper
understanding of the proximity effect. A high-quality, low-disorder
graphene device is, therefore, required in order to render a measure-
ment that is as close as possible to the charge neutrality point.
In Chapter 4, we show that encapsulating graphene between h-BN

flakes is an effective way of obtaining a device of this kind. However,
the scenario is not as straightforward as might be expected.
The challenge stems from the local doping of the graphene by

the tunneling probe, which is usually made of metal. The transport
measurements in Chapter 4 demonstrate that due its proximity to
graphene, metallic contact can shift the local chemical potential, re-
gardless of the gate voltage. Even when the metal contact is isolated
from the graphene by a relatively thick (>10nm) layer of h-BN, the
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(a) Optical images of a SQUID-like device for tunneling spectroscopy
of Andreev bound sates in graphene. The graphene is contacted
by Al , whereas the tunneling probe is made of Ti/Au(5nm/30nm),
deposited on a 2L-hBN tunneling barrier.

(b) Upper panel:schematic of device with relevant dimensions. Lower panel: measure-
ment configuration for tunneling spectroscopy.

Figure 5.8: SQUID-like tunneling device with a metallic tunneling probe.
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shift in electrostatic potential is still pronounced enough to dominate
the local chemical potential, within the attainable range of gating. Fig-
ure 4.11(a) shows such an effect in the VBG= -20V ~ 0V region, where
the resistance plateau shows no dependence on the topgate voltage
VTG at all.

Figure 5.9: Effect of local doping in transport V.S. in tunneling measure-
ments

In a transport measurement, where the overall contribution from
the entire device is summed up as the signal, doping from the top-
gate can be minimized by reducing the area of the locally-gated re-
gion. This is not a viable strategy in a tunneling device, as the probe is
the source of doping, and predominantly measures the locally-doped
region (Fig.5.9). Perhaps even more importantly, the tunneling probe
must be very close (~ 1nm) to the graphene surface in order to obtain
an appreciable tunneling current. The strength of the doping, there-
fore, is much greater than that from a topgate.
Figure 5.10(a) shows the differential conductance (proportional to

the local D.O.S.) obtained by a tunneling measurement performed
on the device shown in Figure 5.8. The tunneling probe is a Ti/Au
lead deposited on a 2-L h-BN tunneling barrier (thickness ~6Å). The
D.O.S. decreases with VBG but never reaches a local minimum within
the allowed range of VBG (gate dielectric:15 nm h-BN+285 nm SiO2).
This suggests that the region underneath the Au tunneling probe is
heavily p-doped and and that VCNP > 50V.
In Figure 5.10(b) (c), we show the measurement taken on another

device, which employs 3-L h-BN (thickness ~ 9Å) as a tunneling bar-
rier and a Ti/Al tunneling probe. Instead of having a SQUID-like con-
figuration, this device is a Josephson junction with a tunneling probe
in the middle, similar to the dual-gated Josephson junction discussed
in Chapter 4. The configuration of this device makes it possible to
perform both tunneling (Fig. 5.10(b)) and transport (Fig. 5.10(c)) mea-
surements across the same junction. The contrast between the two
measurements is striking: in the tunneling measurement, VCNP, de-
fined by the minimum of D.O.S., appears at ~ -2.5V; in the transport
measurement, VCNP, defined by the peak of resistance, appears at ~
-0.04V. These measurements imply that the region underneath the tun-
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neling probe is much more strongly n-doped than is the entire flake
on average 6.
A theoretical calculation based on density function theory [63, 79]

shows that doping originates from the difference in work functions
between graphene and metal. Figure 5.11 shows the Fermi level shift
DEF as a function of graphene-metal distance for different metals
(adapted from ref.[63]). At relevant distances (6Å for Au and 9Å for
Al), our observations agrees qualitatively with the theoretical calcula-
tion.
As work function mismatch is believed to be the origin of a pro-

nounced Fermi level shift up to hundreds of meV, graphite stands
out as the most promising choice for a tunneling probe material 7.
Being almost identical to graphene in regard to work function, the
graphite tunneling probe also provides an atomically flat surface that
couples to graphene via thin h-BN. Therefore, the graphite tunnel-
ing probe can be incorporated into Van der Waals heterostructures
without compromising the quality of the device.
Finally, in comparison with a metal/h-BN/graphene system as char-

acterized in Figure 5.3(b), for a graphite/h-BN/graphene tunneling
configuration, we expect to measure larger tunneling resistance per
unit area. This larger tunneling resistance can be attributed to the
fact that graphite has a smaller density of state than metals do[23].
In subsection5.3.2, we estimate that 2L-hBN is suitable for a metal/h-
BN/graphene tunneling measurement to have a decent signal to noise
ratio. This is confirmed in the measurement performed on the device
shown in Figure 5.8.
Thus, in order to obtain signals of similar strength (as from the

device shown in Fig. 5.8) using a graphite tunneling probe, we must
choose monolayer h-BN as our tunneling barrier. Figure 5.12 shows
the device we fabricated to calibrate the tunneling resistance of 1L-
and 2L-hBN, each with multiple graphite and aluminum probes. We
conclude that the zero-bias resistance in a graphite/1L-hBN/graphite
tunneling configuration is about a few tens KW per µm2 8.

6 The first device uses a global Si backgate, and the second device uses a local graphite
backgate (gate dielectric:10 nm h-BN). Thus, the two devices differ significantly in
terms of the range of backgate. Roughly speaking, 1 volt in local backgate is equiv-
alent to 30 volt in global backgate voltage. Therefore, the difference between two
VCNP’s is equivalent to a 75-volt shift of VCNP in a device on SiO2. We assume that
this is of the same order of magnitude as found in the first device, but in opposite
polarity. The doping effect is enormous.

7 In principle, doping can be counter-balanced by applying a large VBG, but this in-
evitably creates P-N junctions within the tunneling device. The inhomogeneity thus
induced may add unwanted complexity in the measured signal. Also, the Dirac point
in the transport data looks much narrower than that obtained in the tunneling mea-
surement, suggesting that a metallic probe not only causes Fermi level shifting, but
may also increase local disorder in graphene.

8 We could only calibrate the order of magnitude of the resistance, as the exact values
exhibited a variation up to 50% among all the graphite probes, which might depend
on the effective area of tunneling or on local barrier strength. However, the results
consistently showed that the graphite tunneling probe yielded larger tunneling resis-
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(a) Differential conductance dI/dV ver-
sus gate voltage measured in
a Au/2L-hBN/graphene tunneling
device. dI/dV decreases almost
monotonously with VBG, showing
no local minimum (corresponding
to the charge neutrality point) in the
allowed range of VBG. This measure-
ment suggests that at ~6Å away, the
Au probe dopes the graphene into
a p-type semiconductor. This obser-
vation is consistent with the theoret-
ical prediction based on DFT (Fig.
5.11).

(b) Differential conductance dI/dV ver-
sus gate voltage measured in a
Al/3L-hBN/graphene tunneling de-
vice. dI/dV shows a minimum at
VBG ⇠ �2.4V, which is identified
as the charge neutrality point of the
graphene immediately underneath
the probe. This measurement sug-
gests that at ~9Å away, the alu-
minum probe dopes the graphene
into an n-type semiconductor. This
observation is consistent with the
theoretical prediction based on DFT
(Fig. 5.11).

(c) Transport measurement of R versus
VBG taken from the same device in
(b). The two leads positioned on ei-
ther side of the tunneling probe thus
the result includes the overall contri-
bution of the entire flake. In contrast
to the tunneling result, the charge
neutrality point is very close to zero.
This is the case even though the de-
vice is still slightly n-doped, as can
be seen from the shift of VCNP to the
left and the resistance plateau in the
p-region.

Figure 5.10: Charge neutrality point measured by transport and tunneling
measurement.
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Figure 5.11: Fermi level shift DEF as a function of graphene-metal distance
for different metals, adapted from ref.[63]

(a) Image of a tunneling device that we fab-
ricated for characterizing tunneling re-
sistance in a graphite/h-BN/graphene
system, using the thin h-BN piece
shown in (b). Alternating Al and
graphite tunneling probes are deposited
on both regions in order to tunnel to the
graphite underneath.

(b) Ultra thin h-BN flake on a SiO2 sub-
strate before being transferred onto a
graphite substrate. Yellow dashed line
marks the boundary between the mono-
layer and bilayer h-BN.

Figure 5.12: Tunneling device made for tunneling resistance calibration.

5.3.5 Making tunneling devices with self-aligned graphite tunneling probe

Placing a fine graphite tunneling probe in the middle of a Joseph-
son junction, which has an inter-lead distance of ~ 500 nm, seems
practically impossible within a typical pick-up and transfer scheme.
Therefore, we developed a series of new techniques in order to make
a tunneling device with a self-aligned graphite tunneling probe.

tance than the metallic probes did. The probes in this calibration sample were of the
size and shape we would use for real ABS tunneling. The increase in tunneling resis-
tance is similar in samples (not shown in this thesis) with a much larger tunneling
area (~ 6µm2).
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Figure 5.14 illustrates the procedures we followed to make this type
of device. A step-by-step description of the procedures is also given
as follows.
Note: Any substrate mentioned below is cleaned by our standard

piranha+HF cleaning process in order to preserve a pristine surface
that will be in touch with the active area of the device. The pick-up
and transfer is carried out with a PC/PDMS stack.

1. Exfoliate graphite and deposit it onto a substrate. Locate ho-
mogeneous graphite pieces with area of ~ 15µm⇥ 15µm and a
thickness of 5 ~10 nm.

2. Spin PMMA (950A5, thickness ~300 nm), which will serve as the
e-beam lithography resists and as the etch mask. Pattern with e-
beam into parallel narrow stripes. The dimensions are typically
L⇥W = 150nm⇥ 5µm (Fig. 5.13(a)). Note: We always pattern
from the edges of the selected graphite flakes in such a way that
only three sides of the final graphite nano-probe are exposed to
the O2 plasma (RIE) etching. This is extremely important be-
cause the O2 plasma tends to “graft” carbon atoms at the edge
to the oxide surface very strongly. In our experiments, we found
that graphite nano-probes that had been etched all around the
edges adhered to the substrate so firmly that they could not be
picked up. In fact, we did not succeed in picking up even one
graphite nano-probe that had been etched in this way. On the
other hand, leaving a short edge (150 nm) that is not exposed
to O2 plasma makes it possible to pick-up nano-probes with a
reasonable rate of success (> 50 %). This is because the non-
exposed edge serves as a “handle” that the PC film can hold-on
to in order to start to peel the graphite from the substrate. In a
more recent version of the device, we purposely increased the
area of this handle, as shown in Figure 5.14, to increase the pick-
up success rate.

3. Etch graphite with O2 plasma. The etching is performed via
an anisotropic reactive ion etching system. The etching gives a
sharp edge with no undercut. Lift-off the PMMA etch mask in
acetone followed by IPA rinsing.

4. Pick-up graphite nano-probes and transfer them onto mono-
layer h-BN as identified with Raman spectroscopy (Fig.5.13(b)).

5. Spin PMMA, pattern with e-beam lithography into the size and
shape of a Josephson junction (L⇥W ⇠ 500nm⇥ 5µm). This is
equivalent to the h-BN mask described in Chapter 4 for encap-
sulated SGS junctions.

6. Following the same recipe discussed in Chapter 4: Etch the h-
BN mask with RIE and remove the PMMA mask in acetone,
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followed by IPA rinsing. Anneal in forming gas at 350o C for
three hours.

7. Exfoliate graphene and deposit it onto a substrate. We chose
narrowly-shaped graphene with diminishing width (Fig.5.13(c)),
in order to limit the number of transverse modes. Graphene that
is naturally-cleaved has sharp, well-defined edges. This has the
advantage of saving an extra round of lithography and etch-
ing, and this quality may benefit investigations of edge sensitive
modes.

8. Pick up the stack of graphite probe and monolayer h-BN, pick
up the graphene flake, and transfer them onto the bottom stack.
Remove the PC film in chloroform, rinse with IPA and anneal
in forming gas at 500oC for at least 3 hours. This annealing is
not meant for cleaning, as the graphene is already encapsulated,
but rather for smoothing the whole stack. At high temperatures,
bubbles trapped between layers of heterostructures can migrate
more easily, with a higher chance of escaping from the edge.

9. Perform e-beam patterning and metal deposition, following the
recipe described in Chapter 4 for Ti/Al superconducting con-
tacts.

10. Perform PMMA lift-off, after which the sample is ready for mea-
surement.
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Figure 5.13: Procedures for making a graphene tunneling device with self-
aligned graphite tunneling. (a) Graphite tunneling probe made
by e-beam lithography and RIE etching. (b) Graphite tunnel-
ing probes picked-up and then transferred onto a monolayer
h-BN (c) Narrow graphene flakes on a SiO2 substrate. (d) Bot-
tom stack with h-BN and graphite. (e) Full stack of graphite/1L-
hBN/graphene/h-BN substrate/graphite backgate. (f) Com-
pleted device after Ti/Al deposition and lift-off. Ready for mea-
surement.
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Figure 5.14: Procedures for making a tunneling device with self-aligned
graphite tunneling probe

5.3.6 Device structure and geometry

Figure 5.15 shows the tunneling device for ABS spectroscopy. In par-
ticular, we will discuss the measurement from junction A (red dashed
line) and junction B (green dashed line) in section 5.5, which is dedi-
cated to measurement results.
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In fact, this is the first full device that we constructed by using 1-L h-
BN as a tunneling barrier, following the procedure presented in 5.3.5.
The materials in these heterostructures, in order from top to bottom,
are a graphite tunneling probe ! 1L-hBN!MLG!h-BN substrate
(~15 nm)!graphite backgate on a SiO2 substrate. AFM images were
taken after the completion of the full heterostructures (Fig.5.15(c)). It
is evident that the graphite tunneling probes are positioned in the
middle of the 1L-hBN tunneling barrier. This mask spans the entire
graphene underneath the tunneling barrier, in order to ensure that we
are measuring the global signal of the 2-D system. As the graphene
is naturally cleaved in exfoliation, the edge is sharp up to the reso-
lution of the AFM. Junction A (red dashed line) appears to be quite
flat and uniform; however, ripples and topographic anomalies can be
observed in junction B (green dashed line). The dimensions of each
junction (the region that overlaps between graphene and the h-BN
tunneling barrier) is L ⇥W = 500nm ⇥ 700nm for junction A, and
L ⇥W = 500nm ⇥ 2µm for junction B, whereas L(tunneling probe)=
100 nm. Multiple SQUID-like junctions are fabricated in this device.
Various SQUID loop sizes and graphene widths allow us to study
devices with different Areagraphene/Areasquid ratios, and the effect of
phase gradient in the transverse direction of the junction.
We followed the same recipe presented in Chapter 4(4.5): 7 nm Ti

adhesion layer and 70 nm of Al, which was thermally evaporated to
make electrical contact to graphene monolayer, tunneling probe, and
the graphite backgate.
In principle, the fabrication of this type of device could be simpli-

fied by using 1-dimensional edge contact (ref.[127]) for the supercon-
ductor. However, for the “development phase” of this type of tun-
neling device, we decided to start with the long-tested recipe, which
consistently provides good superconducting contact, even when it is
coupled to very narrow graphene stripes such as in the present case.
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(a) Optical image of device after completion. Measurements taken from junction A
(red dashed line) and junction B (green dashed line) are discussed in section 5.5.

(b) 3-D illustration of ABS spectroscopy
device

(c) AFM (amplitude signal) of junction A
(red dashed line) and junction B (green
dashed line) before Al-contact depo-
sition. The self-aligned graphite tun-
neling probes are positioned in the
middle of the 1L- h-BN tunneling bar-
rier (mask), which spans the entire
graphene.

Figure 5.15: Graphene SQUID for ABS spectroscopy.
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5.4 characterization of base electronic temperature

by tunneling spectroscopy of aluminum bcs gap

Figure 5.16: Al/h-BN/graphite tunneling device for calibrating the elec-
tronic temperature. Four Ti/Al probes are deposited on a 2L-
hBN/graphite/h-BN heterostructure.

Before the actual tunneling spectroscopy of proximitized graphene is
performed, it is important to validate the feasibility of using graphite
and thin h-BN as a tunneling probe and tunneling barrier, respec-
tively. We also need to know the true electronic temperature, as the
spectroscopy is a measurement in the energy domain around a rel-
atively small bias range (DAl ⇠ 170µeV). Any small fluctuation in
voltage induced by thermal noise or magnetic flux picking-up will
undermine the energy resolution of the measurement and heat up
the device.
To test our assumption, we fabricated tunneling calibration devices,

as shown in Figure 5.16. The idea is to tunnel into a BCS supercon-
ducting gap with a well-defined temperature dependence[120], in this
case the aluminum gap at T < Tc, which we then used in subsequent
experiments on graphene. By fitting the measured gap to the tem-
perature dependence of the BCS gap in aluminum, we can infer the
temperature of the electrons as they enter the device.
For this metal/h-BN/graphite tunneling, 2L- and 3L- h-BN were

chosen as the tunneling barrier (see 5.3.4). The device was constructed
via the pick-up and transfer method as described previously. Ti/Al
(7nm/70 nm) 9 electrodes having the same size and shape as tunnel-
ing probes in used actual graphene devices were evaporated on top
of the thin h-BN.
Figure 5.17 shows representative results of the characterization: the

blue curves are the real measurements, and the green curves are ob-
tained by fitting. We see that by BCS fitting for the 2L-hBN tunneling

9 As we will see later, Al of this thickness yields a gap size that agrees with the theory.
In one of the devices for which we evaporated 7 nm Ti but accidentally evaporated
only 20 nm of Al, the measured gap was smaller by 40%. This was probably due to
the inverse proximity effect from Ti.
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(a) Device with a 2L h-BN tunneling barrier.
D = 142µeV, Te = 148mK, RN = 8.26kW.

(b) Device with a 3L-hBN tunneling barrier.
D = 170µeV, Te = 83mK, RN = 17MW.

Figure 5.17: BCS fitting of the measured Al gap. Blue and green curves plot
the measurement data and numerical fitting respectively.

barrier, the normal resistance is RN ⇠ 8.3kW, the measured gap size
is ~142µeV, and the electronic temperature is Te ⇠ 148mK . For the
device using 3L-hBN (RN ⇠ 17MW), the measured gap size is about
170µeV, and the electron temperature is Te ⇠ 83mK.
The deduced value of Te is in striking contrast to the base temper-

ature measured by the thermometry coupled directly to the mixing
chamber (TMC ⇠ 17mK). This result suggests that there is room for
improvement with regard to electronic thermalization and noise fil-
tering.
Te measured in 3L-hBN devices is generally lower than that ob-

tained in 2L-hBN devices. This is attributed to the much larger RN
in the latter, which can contribute to RC filtering. All 2L-hBN devices
show finite zero-bias differential conductance, i.e., non-zero density
of states in the superconducting gap, which may suggest the existence
of pin-holes or leakage in h-BN at this thickness.
Finally, differential conductance measured above the gap appears

to be fairly constant 10up to ~ 10DAl , suggesting that graphite is an
appropriate tunneling probe.

5.5 measurement results

We present major tunneling measurement results in normal and su-
perconducting regimes, with greater emphasis on the latter, in this
section. All measurements are taken in the cryo-free dilution refrig-
erator at base temperature ~ 20 mK. All DC measurement lines are
filtered by multi-stage, low-pass filters as discussed in chapter 3 and
chapter 4. Without the loss of generality, discussion will focus on the
data taken from junction-B, which is more investigated in the time
being.

10 A small finite slope is observed in some of the test devices, such as the one shown
in Fig. 5.17(b), which may have arisen from the graphite density of states. However,
for measurements taken within a few D bias range, the slope can be regarded as
negligible.
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Figure 5.18: dI/dV (proportional to density of states) versus Vg. In contrast
to previous samples made with a metallic probe, the minimum
dI/dV, corresponding to the charge neutrality point, is located
close to zero gate voltage. Two giant peaks, one at Vg ⇠ �3.7V
and the other at Vg ⇠ 3.5V, accompanied by smaller peaks are
observed.

5.5.1 Characterization in normal state

Figure 5.18 shows the dI/dV, a quantity that is proportional to the
density of states (D.O.S.), measured as a function of gate voltage Vg.
The overall shape of the D.O.S. versus Vg is close to the theoretical
calculation based on tight-binding models [27]. Minimum D.O.S. oc-
curs close to zero gate voltage with a shift of ~0.045 volts. Around the
minimum, D.O.S. does not diminish progressively but flattens out at
n ⇠ 1.2⇥ 1011cm�2 (inset in Fig.5.18), corresponding to a broadening,
to an extent of4EF = 40 meV, of Fermi energy at the Dirac point. The
onset density of flattening implies a comparable density of impurities,
around which electron-hole puddles build up [89, 6].
Resonant peaks in D.O.S. are observed within the full gate voltage

range, Vg�max = ±5V and nmax ⇠ 9 ⇥ 1012cm�2. Two giant peaks
appear nearly symmetrically about the Dirac point at Vg = �3.7V
and Vg = 3.5V, which are assumed to be different in terms of origin
from the much weaker satellite peaks due to the contrast in mag-
nitude. The origin of these giant peaks requires more investigation,
for example, under a strong magnetic field. However, we notice that
they are reminiscent of the Van Hove singularity (VHS), as observed
by STM measurement reported in Ref. [87], where a small twist an-
gle between two graphene creates satellite Dirac points that hybridize
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with the main Dirac point and form saddle point region in D.O.S. (the
Van Hove singularity) at a much lower energy than in an isolated (not
coupled to any other crystal) graphene.
The resonance peaks of smaller magnitudes are attributed to para-

sitic quantum dots formed in the path of the tunneling current, which
may originate from the disorder in graphene or from defects in the
h-BN tunneling barrier[28].
The normal state measurement demonstrates the improvement of

our tunneling device, which shows typical characteristics of graphene
D.O.S. and a charge neutrality point with a small shift from zero gate
voltage. Also, the peak broadening is much smaller in comparison
with the measurement shown in Figure 5.10(b).

5.5.2 Measuring induced superconducting gap in graphene as a function
of phase

In this subsection, we discuss measurements at small biases with the
presence of a perpendicular magnetic field B. The associated energy
range is about ±500µeV, covering at least 3DAl in positive and neg-
ative energy. The differential conductance dI/dV is measured by a
standard lock-in technique with a voltage modulation dV = 10µV.
Figure 5.19(a) shows the schematics of junction-B that we will dis-

cuss in this section. The device is a superconducting ring interrupted
by a graphene weak link (Fig. 5.19(c)). In Chapter 2 (2.2.3), we dis-
cussed the phase drop across the weak link that can be related to flux
penetrating the loop as

f = �2pF
F0

= �2pB · Area
F0

.

Thus, by varying the B-field, we can twist the phase across the weak
link, which is a graphene-based Josephson junction with a tunneling
probe, and modulate the Andreev bound state energy by

E±
A,L⌧x

= ±D
r

1� tsin2(
f

2
), (5.8)

where t is the transmission probability of the supercurrent carriers.
The Al-enclosed loop area is ⇠ 5.9µm2, and the graphene area is

⇠ 1.88µm2 . The magnetic field corresponding to one flux quantum
F0 is BF0 =

2.067⇥10�15(webers)
5.9⇥10�12(m2) ⇠ 0.35mT.
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(a) Schematic of junction B (not to scale), showing the relevant dimensions of the device.

(b) Schematic of tunneling measurement of a
graphite/h-BN/graphene/h-BN/graphite het-
erostructure

(c) A squid-like superconduct-
ing loop interrupted by a
graphene weak link (2.2.3),
on which tunneling spec-
troscopy is performed to
probe the Andreev bound
state modulated by varying
magnetic flux.

Figure 5.19: Illustrations of device (junction B) geometry and measurement
configuration

5.5.2.1 Phase-modulated induced superconducting gap in graphene

Figure 5.20(a) shows dI/dV measured as a function of bias voltage
Vb and magnetic field B. A dip centered around Vb = 50µV is ob-
served and dI/dV increases on both sides until two peaks, one at
Vb = �110µV and the other at 201µV are reached 11. From the color
plot, we can see that the pattern oscillates with a periodicity of ~ 350

µT, which agrees with the estimated BF0 within an accuracy of 10%.
The agreement indicates that the oscillation is precisely phase depen-
dent along the superconducting loop. Figure 5.20(b) plots line-cuts of
the color map within the dashed-line region, corresponding to half of
the period.
We attribute the dip in dI/dV to the induced superconducting

gap[84, 101] in graphene. The line-cuts in Figure 5.20(b) show a typ-
ical soft-gap profile in a proximitized normal metal, with two peaks
separated by ~ 311 µV, corresponding to an induced gap size of D~
155 µeV, close to the aluminum gap that we characterize in 5.4. In

11 There is a voltage offset consistently in our measurement setup.
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order to emphasize the phase modulation, we subtract the average
along the vertical B-axis at each bias voltage from the entire color plot
and re-plot it in Figure 5.20(c). The averaged-background subtracted
color plot shows the oscillation with the flux even more vividly. The
oscillation of the induced gap is observed within the gap range; how-
ever, the oscillatory patterns above the gap can be seen more clearly.
The out of gap oscillation will be discussed in 5.5.3.

Figure 5.20: Density of states modulated by the perpendicular magnetic
field, measured at Vg=0.89 V. (a) A typical 2-D scan of dI/dV
measured as a function of B and Vb. A dip in dI/dV is observed
in a range corresponding to the superconducting gap of alu-
minum, and oscillates with a periodicity equal to the flux quan-
tum. (b) The line-cuts of the dI/dV color plot, which cover half
of the period of the oscillation (enclosed by dashed line in (a).
(c) Same measurement with averaged background subtracted.
Oscillation of signal above the aluminum gap is observed more
clearly. (d) Line-cuts of (c), which cover half of the period of the
oscillation (enclosed by dashed line in (a).

The phase dependence of the induced gap that we measure agrees
qualitatively with eqn. (5.8) , provided that the transmission probabil-
ity is less than unity, as the gap does not vanish completely at f = p.
To further understand the measured oscillation, three line cuts along
the B-axis are taken at Vb = �112, 206 and 50µV , which correspond
to the two divergence points and the center of the gap (Fig. 5.21(a)),
repsectively. The dI/dV curves against B are plotted in figure 5.21(b),
which clearly shows a p � shi f t between the divergence point (red
and blue curves) and the gap (green curve) oscillation. We interpret
this out-of-phase behavior, in light of eqn.(5.8), as a collective motion
of multiple Andreev bound states inside the gap: at f = 0, most of
the ABS’s are located at the gap edge where D.O.S. peaks, whereas
at f = p, the Andreev energies E0

As decrease to their minimum value
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Figure 5.21: p � shi f t between the gap and the divergence peak oscillations.
(a) A typical dI/dV map taken at Vg = �0.8V. Three dashed
lines indicate the location of the line-cuts. (b) Line cut of dI/dV
along the B-axis. Upper (red and blue) plots are taken at Vb =
�112 µV and 206 µV where the divergence in dI/dV appears.
The green line at the bottom is take in the middle of gap. The
upper and lower plots are compensating perfectly to each other,
as expected for Andreev bounds states.

and the Andreev bound states move from the gap-edge to the middle
of the gap, as indicated by the increase in D.O.S..
Note that although we refer to the short junction limit of ABS (eqn.

(5.8)) to qualitatively explain our data, as well as to demonstrate the
existence of Andreev bound states, we do not observe purely short-
junction behavior in any of the devices we have measured so far. The
non-vanishing, compared to the “base-line” obtained by the calibra-
tion measurements (see 5.4), density of states inside that gap at all
fields suggests that the gap is filled with Andreev bound sates whose
E0
As span the full spectrum within the gap. These Andreev bound

states can be regarded effectively as contributed by a set of long
junction modes, whose origin may be the weak coupling between
graphene and the superconductor, impurity scattering within the nor-
mal region, and low-energy transverse modes.

5.5.2.2 Andreev bound states that couples strongly to superconductor and
the complete closing of the induced gap

Even though the gap is filled with a mixture of numerous short and
long Andreev modes, it is still possible to observe Andreev bound
states explicitly associated with a short ballistic junction.
Figure 5.22 shows the measurement taken at Vg = 2.4 (ne = 4.5⇥

1012cm�2), where the gap closes almost completely at f = p. In the
line-cut shown in Figure 5.22(b), we can see clearly the filling of the
gap, which suggests that the modes that contribute to the observable
oscillation at this point have t ⇠ 1. Note that tis a generic parameter
that describes the overall transmission probability across the Joseph-
son junction [10]. The enhancement of tmay be attributed to various
causes such as the screening of impurity scattering at high carrier
density, stronger coupling between the channel and superconductor,
and/or the gate dependent contact resistance of graphene[132].
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Figure 5.22: Complete closing of the induced gap at f = p. The closing is
an indication that coupling strength tis close to unity.

5.5.2.3 Difference in p- and n-doped regions

In Chapter 4, we see the effect of contact doping and the effect of
P-N junctions on the size of the maximum supercurrent that the de-
vice is able to sustain. In general, aluminum-based SGS is n-doped
by contacts, so a suppression of IC is always observed when the flake
is gated to a p-type semiconductor. The built-in P-N-P junctions in
the device introduce stronger scattering and a lower probability of
transmission, which results in a larger effective length since the parti-
cle must make multiple attempts (probabilistically) to enter the weak
link[10].
We can see signs that are consistent with this model by performing

Andreev spectroscopy in the n-doped and p-doped regions with com-
parable carrier densities. Figure 5.23 shows two representative plots
of gaps measured for this comparison. In general we observe that
the gaps are sharper and narrower in the p-doped region than in the
n-doped region.
The narrower gap corresponds to a set of lower EA, and suggests

that the behavior of the junction is closer to that in the long-junction
limit, compared to when the device is operated in the n-doped regime.

5.5.2.4 Andreev spectroscopy near the charge neutrality point: the disap-
pearance of phase modulation

One of the motivations for this experiment is to study the Andreev
bound states in graphene around the Dirac point, where the small
number of transverse modes allows for the isolated Andreev bound
states instead of an “Andreev energy band”.
However, as we measure the phase-dependent gap oscillation pro-

gressively toward the Dirac point, in the Vg = 0 ⇠ 0.1V region where
dI/dV flattens out (Fig. 5.18), we observe that the modulation becomes
weaker and weaker and disappears entirely at around Vg = 0.15V ⇠
0.2V (Fig.5.26 ). The oscillation revives after Vg = 0.3V and returns to
the normal oscillation that we typically observe.
Figure 5.24 shows the progression of the phase-dependent oscil-

lation versus various gate voltages that span from p-doped to n-
doped regimes. The suppression of oscillation is observed from Vg =
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Figure 5.23: Comparison of the induced gap in the n- and p-doped regions.
The gap in the n-region is generally wider than that in p-region,
suggesting a higher EA in the n-doped region.
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0 ⇠ 0.15V. Figure 5.25 shows the same set of data with an averaged
background removed from the color maps. Consistently, the typical
checker-board pattern becomes blurry in Vg = 0 ⇠ 0.15V.
The suppression of oscillation can be attributed to the diminishing

number of strongly-coupled (t ⇠ 1) Andreev bound states in the
low density regime. Note that the densities where oscillation is sup-
pressed overlap significantly with the density window where dI/dV
flattens out (fig.5.18). Microscopically, when the charge carrier den-
sity is lowered to a level that is comparable to the density of electron-
hole puddles, the charge carriers are expected scatter more with the
impurities before completing the transport. Therefore, the transmis-
sion probability t becomes smaller, and the phase dependence of the
gap is substantially suppressed.
This picture also implies that in order to observe an isolated An-

dreev mode within the gap, we need to further improve the quality
of the samples. We will address this point in the final section.

Figure 5.24: ABS measured around the Dirac point. The oscillation damps
out progressively as the gate voltage moves toward the
flattened-out region of dI/dV (Vg = 0 ⇠ 0.1V) and revives again
with pronounced oscillations
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Figure 5.25: ABS measured around the Dirac point with averaged back-
ground subtracted. The modulation pattern is smeared-out pro-
gressively as the gate voltage moves toward the flattened-out
region of dI/dV (Vg = 0 ⇠ 0.1V) and becomes vivid again.

Figure 5.26: Line-cut at Vg = 0.2V, showing complete suppression of phase-
dependent modulation.

5.5.2.5 Andreev spectroscopy at high carrier density

Figure 5.27 shows the Andreev spectroscopy at the opposite limit of
the carrier density. Measurements at three high-density points in the
n-doped region are presented. We see that the Andreev bound states
at point C, which is near the peak of the giant resonance, differs from
the other two points 12 significantly. The same results (not shown) are

12 Although the 2-D dI/dV plots look different at point A and point B, they seem to be
of the same nature as can be seen from the subtracted map (rightmost panel).
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observed in the p-doped region. This anomaly is still under investiga-
tion.

Figure 5.27: Andreev spectroscopy performed in a high carrier density
regime. Measurements are performed at three distinct points
around the giant resonance peak. The induced gap is super-
imposed on top of a large density of state at each point. The
Andreev bound state measured at point C looks strikingly dif-
ferent in raw data and the background-subtracted map

5.5.3 Observation of Andreev scattering sates and strong coupling above
the superconducting gap

One of the most striking features we have observed so far in the
Andreev spectroscopy is a periodic pattern that occurs above the
superconducting gap (Fig. 5.28). This pattern is readily seen in the
dI/dV map, but is even more evident when the background is re-
moved. Along the B-axis, the out-of-gap pattern oscillates in phase at
the same periodicity as do the Andreev bound states within the gap.
Along the Vb-axis, the periodicity is ⇠ 2D. This oscillation is ubiqui-
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Figure 5.28: ABS scattering state above the superconducting gap. Top
panel:background-removed dI/dV measurement as a function
of B and Vg. Lower left panel: raw data of dI/dV map. Lower
right panel: line-cuts in the half flux period.Note that this data
is measured from junction-A.

tous in our measurements with varying contrast and extends to at
least 3D in energy.
The fact that this “checker-board” pattern is modulated by the

macroscopic phase of the superconductor and is quantized in D on
the Vb-axis implies that it is the oscillation of the energy continuum
above the superconducting gap. This energy continuum consists of
the solutions to the Bogoliubov-de-Gennes equation with eigen-energy
larger than the superconducting gap (|E| > D). The Andreev con-
tinuum also contributes to the transport of the supercurrent, but is
negligible in the short junction limit (L ⌧ x0)[10].
Unlike Andreev levels with |E| < D , which are localized in the

weak link, the Andreev continuum can be regarded aa “leaky” An-
dreev bound states[12, 10]. At |E| > D, the electron or hole compos-
ing the Andreev bound state has a finite probability of escaping from
the junction by transmitting over the superconducting gap. Therefore
the particle is no longer bounded by the gap, but merely scatters co-
herently with the pairing potential instead.
It is still unclear to us why these Andreev scattering states are so evi-

dent in the tunneling spectroscopy of supercurrent-carrying graphene.
One possible explanation is that some of the scattering states couple
strongly to the superconductor, so that their oscillation with the phase
becomes more evident than others.
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We have seen that the Andreev continuum exhibits phase-dependent
oscillation at an energy scale that is close to the gap. This suggests
that particles with energy slightly above the superconducting gap
can still scatter with the pairing potential D, and remain its phase
coherence to some extent.
The top panel in Figure 5.29 shows such a resonant peak whose

energy is very close to the gap. Andreev spectroscopy is performed
at four different densities (Vg), with increasing resonance strength (in
terms of amplitude of the signal) from A to D (fig.5.29 left panel).
In the middle panel, which shows 2-dimensional dI/dV maps, an An-
dreev scattering state emerges at Vg ⇠ 400µV , whereas the contrast
and the pattern become more and more well-defined as the resonance
strength increases from A to D. The fact that we can trace this os-
cillation as a single peak, particularly in cut-B and cut-C , and the
amplitude ⇠ D, implies that we are observing a single Andreev scatter-
ing state formed by the coupling between the superconductor and a
resonance state.
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Figure 5.29: Strong resonant state coupled to the superconducting leads. Sin-
gle Andreev scattering state occurs at Vg ⇠ 400µV.

5.6 discussion and perspectives

In this chapter, we investigated the proximity effect in the energy do-
main by performing tunneling spectroscopy on aluminum-contacted
graphene. Andreev bound states in the 2-dimensional limit are mea-
sured in a device with squid-like geometry, which allows us to accu-
rately control the phase difference across the weak link. Within the
superconducting gap, the measured density of states behave like a
collection of Andreev bound states associated with channels of vari-
ous transmission probability t.
The oscillation of Andreev bound states is strongly suppressed

around the Dirac point, which prevents us from observing an iso-
lated Andreev bound state in a 2-dimensional system. Normal state
characterization also shows a flattening out of the density of state at
low carrier density.
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We realize that all the tunneling devices we have measured so far
are of lower quality, compared to the encapsulated devices we fabri-
cated for transport measurement. This is because the top h-BN can
not be thicker than ~ 1nm if it is to be an effective tunneling barrier.
In the specific case of tunneling spectroscopy at the DAl energy scale
measured by a graphite tunneling probe, we are obliged to use only
1L-hBN as the top layer. Thus, a large portion of the graphene area is
“encapsulated” by only one atomic layer of h-BN, which is obviously
not enough to isolate graphene from the organic residue that results
from nanofabrication.

(a) 3-D illustration of the fully encapsulated tunneling device. The
graphite tunneling probe is encapsulated between thick h-BN on top
and 1L-hBN at the bottom. The entire tunneling module will be used
to pick up a graphene flake and transfer it to a bottom stack.

(b) Optical image of the next device:
A fully-encapsulated (thick)h-
BN/graphite/1L-hBN/graphene/h-
BN/graphite stack, which is ready for
superconductor deposition.

(c) AFM micrograph (amplitude signal)
of the fully encapsulated stack.

Figure 5.30: Next measurement: a fully-encapsulated tunneling device

Figure 5.30 shows the latest version of our sample, which will be
measured soon. As illustrated in Figure 5.30(a), the graphite probe is
encapsulated with a thick h-BN layer (at least 10 nm) from top and
by 1L-hBN from the bottom in order to form a “tunneling module”.
This structure will be used to pick up a graphene flake and the entire
stack will be placed on a bottom stack (of h-BN/graphite backgate).
In this design, the entire graphene flake is either covered by a thick
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h-BN layer or the metallic contact with no separation in between. In
such a way, any organic residue resulting from nanofabrication will
be isolated from the graphene by a thick h-BN layer. Figure 5.30(b)
(c) shows the optical and AFM images , respectively, of a stack that is
to be contacted by superconducting electrodes. Another improvement
rendered in this new design is that it allows us to make a shorter junc-
tion (smaller separation between the superconducting leads) without
the risk of shorting the tunneling probe to the leads. This new device
will be contacted with Al superconducting leads and used to repeat
the series of measurements discussed in this chapter.
This new fabrication will also be used to make devices that we in-

tend to proximitize with NbN superconducting leads. With a super-
conducting gap that is ten times larger than that of Al, NbN allows
a larger energy window for spectroscopy[111]. In principle, the mea-
surement will be less sensitive to thermal noise, which broadens the
spectroscopic features. Using NbN leads for Andreev spectroscopy
also allows us to study the Andreev bound states in a large mag-
netic field. Measuring induced superconducting gap in quantum Hall
regime will be of particular interest.

134



APPENDIX

135



A
WAFER AND SAMPLE CLEANING REC IPES

a.1 piranha + hf cleaning recipe for sio

2

wafer

This cleaning is performed on the SiO2 substrate onto which any 2-D
material is deposited.

1. Dice the wafer into chips of desired size and load the chips
in a Teflon chip carrier (Fig. A.1). then Successively sonicate
subsequently in Acetone, IPA and then DI water, for 2 minutes
in each liquid.

2. Move the chips into a glass beaker of piranha solution (a 3:1mix-
ture of sulfuric acid (H2SO4) and hydrogen peroxide(H2O2))
and clean for 30mins. Piranha is also made in a separate glass
beaker, which will be cleaned and used as a water bath after the
cleaning.

3. Empty the water bath beaker and fill the beaker with DI water.
Transfer the chips into the water bath beaker and flush with
running DI water until at least 20-times volume of water has
been replaced.

4. Prepare a 1:10, 50% HF to H2O , solution in a plastic beaker.
Submerge the chip in the diluted HF for 15 seconds. After the
HF dip, chips are transferred into a water beaker and then
flushed in the sink with at least 20-times volume of water.

5. Sonicate the chip in water beaker for two minutes. Transfer the
chip into a beaker filled with IPA and sonicate another 2 min-
utes.

6. Dry the chip, one at a time, with nitrogen gas.

a.2 heat annealing of van der waal heterostructures

Heat annealing is performed on the h-BN flakes or heterostructures
in order to remove residue or flatten the surface. The standard heat
annealing recipe is described as follows:

1. Place the sample on a quartz boat and insert the boat into a
quartz tube.

2. Close both ends of the quartz tube. Connect the inlet of the tube
to the flow regulator of argon and hydrogen gas. The annealing
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Figure A.1: Si chips in a teflon carrier.

(a) Sample on a quartz boat before load-
ing into the quartz tube.

(b) Image of the furnace with sample
loaded inside the quartz tube.

Figure A.2: Heat annealing of samples.

is performed under the atmospheric pressure, with flow con-
trolled at ~ 30 sccm for both gases. The ratio is kept roughly at
1:1.

3. Ramp up the temperature from room temperature to 350oC in
1 hour. Anneal at 350oC for three hours.

a.3 mechanical cleaning of 2-dimensional material

Following [65], we occasionally perform the mechanical cleaning of
h-BN or graphene using AFM operated in the contact mode. This
technique is particularly useful when the heat annealing can not re-
move completely the organic residue on h-BN or graphene.
Figure A.3shows a demonstration of this technique. The sample is

a piece of graphite deposited on SiO2 substrate. The graphite was
spun with PMMA 950A, baked at 180oC for 10 minutes, and dipped
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Figure A.3: Demonstration of the mechanical cleaning using contact mode
AFM. The sample is a piece of graphite contaminated with
baked PMMA. The contact mode AFM swept out a square area
at the center of sample. The PMMA residue accumulated in the
lower left portion of the sample, indicating that the AFM tip did
not pick up the residue but merely swept the residue aside.

in acetone for lifting-off the resist, in order to emulate the condition
of graphene surface after resists lift-off. As can be seen clearly on the
upper right corner, the sample is covered with an appreciable amount
of PMMA residue. The mechanical cleaning leaves a clean area in the
central part of the sample. Blocks of PMMA residue observed around
the lower left corner indicate that the mechanical cleaning only sweep
the residue aside instead of picking up the residue.
This technique can also be used for cleaning the developed area of

graphene after exposure, in order to lower the contact resistance due
to the PMMA residue.
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(a) AFM height signal image of a graphene
area covered with PMMA residue after e-
beam exposure and standard development
precess. The large structures on top and bot-
tom of the image are un-exposed PMMA.
The central part was e-beam exposed and
then developed in a MIBK/IPA solution (
the standard recipe). A substantial coverage
of PMMA remains on the developed area.
This residue is expected to increase the con-
tact resistance.

(b) AFM height signal image of graphene sam-
ple after mechanical cleaning with contact
mode AFM. The dashed blue line encloses
the area shown in (a). The graphene and
hBN surfaces are residue free up to the res-
olution of the AFM.

(c) AFM amplitude signal of (a). (d) AFM amplitude signal of (b).

Figure A.4: Removing the PMMA residue that remains after development
in an e-beam exposed graphene area.
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