Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version
doi:10.1073/pnas.1011737107

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26835959

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes

Patrick Veiga\textsuperscript{a,b}, Carey Ann Gallini\textsuperscript{c}, Chloë Beal\textsuperscript{b}, Monia Michaud\textsuperscript{c}, Mary L. Delaney\textsuperscript{c}, Andrea DuBois\textsuperscript{c}, Artem Khlebnikov\textsuperscript{b,d}, Johan E.T. van Hylckama Vlieg\textsuperscript{b}, Shivesh Punia\textsuperscript{e,1}, Jonathan N. Glickman\textsuperscript{c,e,2}, Andrew Onderdonk\textsuperscript{c,e,e}, Laurie H. Gimlicher\textsuperscript{a,d,e,f}, and Wendy S. Garrett\textsuperscript{a,e,g,3}

\textsuperscript{a}Harvard School of Public Health, Boston, MA 02115; \textsuperscript{b}Danone Research, 91767 Palaiseau, France; \textsuperscript{c}Brigham and Women’s Hospital, Boston, MA 02115; \textsuperscript{d}Dannon Company Inc., White Plains, NY 10603; \textsuperscript{e}Harvard Medical School, Boston, MA 02115; \textsuperscript{f}Ragon Institute of MGH, MIT and Harvard, Charlestown, MA 02129; and \textsuperscript{g}Dana Farber Cancer Institute, Boston, MA 02115

Edited by Peter K. Vogt, The Scripps Research Institute, La Jolla, CA, and approved September 8, 2010 (received for review August 5, 2010)

Intestinal health requires the coexistence of eukaryotic self with the gut microbiota and dysregulated host-microbial interactions can result in intestinal inflammation. Here, we show that colitis improved in T-bet\textsuperscript{−/−}Rag2\textsuperscript{−/−} mice that consumed a fermented milk product containing Bifidobacterium animalis subsp. lactis DN-173 010 strain. A decrease in cecal pH and alterations in short chain fatty acid profiles occurred with consumption, and there were concomitant increases in the abundance of select lactate-consuming and butyrate-producing bacteria. These metabolic shifts created a non-permissive environment for the Enterobacteriaceae recently identified as colitogenic in a T-bet\textsuperscript{−}/Rag2\textsuperscript{−} ulcerative colitis mouse model. In addition, 16S rRNA-based analysis of the T-bet\textsuperscript{−}/Rag2\textsuperscript{−} fecal microbiota suggest that the structure of the endogenous gut microbiota played a key role in shaping the host response to the bacterial strains studied herein. We have identified features of the gut microbiota, at the membership and functional level, associated with response to this B. lactis-containing fermented milk product, and therefore this model provides a framework for evaluating and optimizing probiotic-based functional foods.

Enterobacteriaceae | intestinal inflammation | microbiota | probiotics | colitis


Conflict of interest statement: L.H.G. is a member of the Board of Directors of and holds equity in the Bristol Myers Squibb Corporation. P.V., C.B., A.K., and J.E.T.v.H.V. are employees of and hold equity in Groupe Danone.

This article is a PNAS Direct Submission. Freely available online via the PNAS open access option.

Data deposition: The 454 pyrosequencing reads reported in this paper have been deposited in the NCBI Short Read Archive (accession no. SRX0258345).

1Present address: Department of Cell and Developmental Biology, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089.

2Present address: GI Pathology, Boston Caris Diagnostics, Newton, MA 02464.

3To whom correspondence should be addressed. E-mail: wgarrett@hsp.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1011737107/-/DCSupplemental.

1073/pnas.1011737107/7-DC5Supplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1011737107
a nonpermissive environment for the Enterobacteriaceae recently identified as colitogenic in a T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> ulcerative colitis mouse model (23). In addition, 16S rRNA-based analysis of the T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> fecal microbiota suggest that the structure of the endogenous gut microbiota plays a key role in shaping host response to probiotics. We have identified features of the gut microbiota associated with response to a B. lactis-consuming fermented milk product, and therefore this model provides a framework for evaluating and optimizing probiotic-based functional foods.

**Results**

**B. lactis-Containing Fermented Milk Product Improves T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> Colitis and Requires Live B. lactis.** T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> mice consumed a B. lactis-containing fermented milk product (BFMP) or nonfermented milk product (MP) starting at 4 wk of age for 4 wk; a sham feeding and handling control was performed using sterile water (sham). Mice were provided with additional BFMP, MP, or water (100 mg/per mouse provided in its cage). Colitis scores were decreased in the BFMP group (1.67 ± 1.53) compared with MP (4.11 ± 1.53; P < 0.0001) and sham (5.43 ± 0.98; P = 0.0001) (Fig. 1A). We recently identified T-bet<sup>−/−</sup>Rag2<sup>−/−</sup>-containing fermented milk product (BFMP) without live bacteria in the majority of mice both at early stages and at late stages of disease when intestinal inflammation was more severe.

To determine whether these observations were dependent upon live bacteria in the BFMP, we generated BFMP without live bacteria by irradiation (4.4 × 10<sup>9</sup> Gy). The product was only orally instilled in these experiments—ensuring that it was free of live bacteria and unlikely to support the growth of environmental bacteria as might occur if placed in the cage. Colitis scores in the live BFMP were lower than those of the irradiated product (3.0 ± 1.75 vs. 4.44 ± 1.13, P = 0.03) or sham (6.0 ± 1.22, P = 0.018) (Mann–Whitney test) (Fig. 1C). The BFMP reduced colitis scores in the majority of mice both at early stages and at late stages of disease when intestinal inflammation was more severe.

**Consumption of B. lactis-Containing Fermented Milk Product Creates a Nonpermissive Environment for Colitogenic T-bet<sup>−/−</sup>Rag2<sup>−/−</sup>-Enterobacteriaceae.** Select Enterobacteriaceae instigate inflammation in T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> mice (23). BFMP consumption decreased fecal levels of Enterobacteriaceae sevenfold (P = 0.0132, Mann–Whitney test) as compared with MP by RT-quantitative PCR (Fig. 2A). We recently identified T-bet<sup>−/−</sup>Rag2<sup>−/−</sup>-derived strains of Klebsiella pneumoniae and Proteus mirabilis as specific Enterobacteriaceae that were capable of inducing colonic inflammation in concert with the endogenous gut microbiota (23). Quantitative culture-based fecal counts of both K. pneumoniae and P. mirabilis markedly decreased in response to BFMP consumption (P = 0.0031 K. pneumoniae, P = 0.02 P. mirabilis, Mann–Whitney test) (Fig. 2B). For seven mice, K. pneumoniae was below our limit of detection as was P. mirabilis for four mice (Fig. 2B).

Because acidic pH can inhibit the growth of the Enterobacteriaceae, we measured theecal pH. Indeed, theecal pH of T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> mice was markedly lowered 8 h after BFMP consumption (P < 0.0001, one-way ANOVA) (Fig. 2C). Survival of lactic acid producing bacteria from the BFMP could account for the decreased pH. Fecal levels of the four lactic acid producing species present in the BFMP: S. thermophilus, L. bulgaricus, L. lactis, and B. lactis were measured by qPCR and RT-qPCR. The BFMP species were detected in most of the postconsumption BFMP group and all changes observed in response to BFMP were significant (B. lactis, P = 0.006, S. thermophilus, P = 0.0139, Wilcoxon signed rank test; L. bulgaricus, P = 0.0001, L. lactis, P = 0.0002, Mann–Whitney test) (Fig. 2D).

**Altered SCFA Profiles and Increased Levels of Specific Lactate-Consuming and Butyrate-Producing Bacteria Define the Nonpermissive Environment for the Colitogenic T-bet<sup>−/−</sup>Rag2<sup>−/−</sup>-Enterobacteriaceae.** The detection of lactic acid producing bacteria suggested that lactic acid may be responsible for the lowecal pH observed, so we measured SCFA levels. Acetic, propionic, and butyric acid levels increased (P < 0.0001, one-way ANOVA), whereas lactic acid decreased (Fig. 3A). This observation was counterintuitive, as the BFMP strains are lactic acid producers. However, the decreased lactic acid and increased butyric acid could come from increased endogenous lactic acid-consuming and butyrate-producing bacteria. qPCR and RT-qPCR of fecal material of T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> mice pre- and postconsumption revealed increases in the lactate-consuming Desulfovibrio spp (P = 0.0089) and of the lactate-consuming, butyrate-producing Anaerostipes caccae subgroup (P = 0.02) and Eubacterium hallii (P = 0.004) (Mann–Whitney test) in response to the BFMP as compared with the MP (Fig. 3B). These shifts were specific, as there were not significant shifts in other butyrate producers, such as the Blautia coccosides subgroup, Clostridium leptum subgroup, or the Roseburia subgroup (Fig. 3B).

Bacteriostatic and bactericidal activities have been ascribed to volatile SCFAs (24, 25), and thus theecal conditions of T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> mice that consumed the BFMP might be inhospitable to K. pneumoniae and P. mirabilis, as suggested by Fig. 2A and B. We prepared media that modeled theecal conditions of the mice that consumed the BFMP or MP with respect to pH and volatile and nonvolatile SCFA concentrations (VFA and non-VFA, respectively).
respectively). Media with the mean cecal pH of these two groups but without the SCFAs were also prepared. *K. pneumoniae* growth was inhibited by media with the pH of the BFMG group (pH 4.50) but without the SCFAs.

![Fig. 2.](image-url) Consumption of *B. lactis*-containing fermented milk product creates a nonpermissive environment for colitogenic T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> *Enterobacteriaceae*. (A) qPCR using primers targeting *Enterobacteriaceae*. Pre- and postconsumption levels for MP (●) or BFMG (○) (y axis), expressed as log<sub>10</sub> (equivalent cells/g feces). Each circle indicates data from one mouse; horizontal bars show the mean. *P* values, Mann-Whitney test. (B) Quantitative fecal culture pre- and post-BFMP and MP (as in A). Colony counts for *K. pneumoniae* (■) and *P. mirabilis* (□); detection limit is shown. Each symbol shows data from one mouse; bars show the mean; *P* values, where significant, are shown. (C) Cecal pH for T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> mice that consumed BFMP, MP, or sham and for sham Rag2<sup>−/−</sup> mice. Mean values from three independent experiments are shown (n = 5 mice/sample). Error bars represent SD. (D) qPCR and RT-qPCR of fecal samples pre- and postconsumption of MP or BFMP. Data expressed as log<sub>10</sub> (equivalent cells/g feces).

![Fig. 3.](image-url) Altered SCFA profiles and increased levels of specific lactate-consuming, butyrate-producing bacteria define a nonpermissive environment for colitogenic T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> *Enterobacteriaceae*. (A) Volatile and non-volatile SCFA levels of cecal contents for BFMP, MP, and sham T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> mice and sham Rag2<sup>−/−</sup> mice. Bars show mean values from three independent experiments (n = 5 mice/sample). Error bars indicate standard deviation. (B) qPCR and RT-qPCR using primers targeting the indicated bacteria genera or species. Pre- and postconsumption levels for MP (●) or BFMP (○) shown along the y axis (log<sub>10</sub> (equivalent cells/g feces)). Each circle indicates data from a single mouse. Horizontal bars show the mean. *P* values were calculated by Mann-Whitney test or Wilcoxon signed-rank test. (C) Growth kinetics of T-bet<sup>−/−</sup>Rag2<sup>−/−</sup>-derived strains of *K. pneumoniae* and *P. mirabilis* over a 3-h time course in media with pH and SCFA concentration adjusted to model cecal contents of T-bet<sup>−/−</sup>Rag2<sup>−/−</sup> mice that consumed BFMP or MP.
Structure of the Gut Microbiota Influences Response to B. lactis-Containing Fermented Milk Product. To identify additional features of the microbiota that could explain why T-bet−/−Rag2−/− mice respond to the BFMP, we performed a 16S rRNA gene-based survey of the fecal microbiota of T-bet−/−Rag2−/− and Rag2−/− mice before BFMP consumption (n = 10/group, age 4 wk). Multiplex pyrosequencing of amplicons generated from the V5 and V6 regions of the 16S rRNA gene was performed (n = 20 samples; 7579 ± 2379 reads/sample). Compared with Rag2−/− controls, T-bet−/−Rag2−/− samples had a significantly lower proportional representation of operational taxonomic units (OTUs) belonging to the families Bifidobacteriaceae (P = 0.022), Porphyromonadaceae (P = 0.011), Prevotellaceae (P = 0.011), and Staphylococcaceae (P = 0.0037) (Mann–Whitney test with Bonferroni correction) (Fig. 4A). In contrast, the proportional representation of the Lachnospiraceae (P = 0.05, Mann–Whitney test with Bonferroni correction) was higher in T-bet−/−Rag2−/− samples vs Rag2−/− (Fig. 4A). The reduced relative abundance of the Bifidobacteriaceae was particularly striking, as it suggests a deficiency in T-bet−/−Rag2−/− mice. The BFMP may replete this deficiency, leading to decreased intestinal inflammation.

To validate and quantify the reduced proportional representation of bifidobacteria, we measured fecal Bifidobacterium levels from T-bet−/−Rag2−/− mice (n = 20) at 4 wk of age (the onset of colitis detectable by histology) and healthy age-matched Rag2−/− mice (n = 11) by qPCR. There was a 316-fold mean reduction in Bifidobacterium genus levels in T-bet−/−Rag2−/− relative to Rag2−/− mice (P = 0.0005, Mann–Whitney test) (Fig. 4B). Thus T-bet−/−Rag2−/− mice were indeed relatively deficient in bifidobacteria.

We asked whether there was an association between repleting these decreased bifidobacterial levels, as measured by recovery of live B. lactis from the feces of mice that consumed the BFMP, and colitis score. B. lactis was recovered from mice with colitis scores of 0–3 but was below detection (10^5 CFU/g feces) in mice with higher scores and was not detected in controls (Fig. 4C). This observation raised the question as to whether subsets of mice could be identified, before product consumption, that would or would not respond to the BFMP. A hierarchical cluster analysis using the family level OTU assignments (Fig. 4D) revealed that T-bet−/−Rag2−/− with colitis score ≥2 (F, G, I, and J) clustered together in two subsets. Both samples I and J had markedly elevated proportional representation of the Lactobacillaceae (27.9% and 31.9%, respectively, approximately two standard deviations above the mean) relative to the other T-bet−/−Rag2−/− mice. The F and G subset were also notable for low levels of the strains following 4 wk of BFMP (Fig. 4E).

In aggregate, these data suggest that the structure of the gut microbiota may influence and predict response to the BFMP.

Discussion

Here, we have used a murine model of colitis to gain insight into how a defined probiotic-containing food reduces intestinal inflammation. In this study, we focused on the microbiota and its response to host consumption of BFMP containing B. lactis, L. lactis, L. bulgaricus, and S. thermophilus. We found that T-bet−/−Rag2−/− mice have a relative deficiency of Bifidobacterium, that (Fig. 3C), and these slowed growth kinetics were observed up to pH 5.8. In contrast, P. mirabilis growth appeared selectively inhibited by media that contained both the lower pH and VFA and non-VFA of the BFMP group (Fig. 3C). Growth inhibition for P. mirabilis was significant at the 3 h time point (P = 0.05, one-way ANOVA), and decreased growth at 3 h was also significant for K. pneumoniae when both BFMP group pH media were compared with the higher-pH MP group media (P = 0.005, Mann–Whitney test). Thus, both in vivo and in vitro experiments suggest that consumption of this BFMP creates a nonpermissive environment (low pH and altered SCFA profiles) for colitogenic T-bet−/−Rag2−/− Enterobacteriaceae.
supplementation with a BFMP reduced intestinal inflammation, and that recovery of live *B. lactis* from mice correlated with optimal response. Consumption of this BFMP resulted in an increase of certain lactate-consuming and butyrate-producing bacteria, decrease inecal pH, and increases in select cecal SCFAs. These conditions proved inhospitable to *T. bio* /Rag2 dismantle members of the *Enterobacteriaceae* that we have recently identified as colitogenic. This study provides a gut microbe-based framework for evaluating responses to probiotic interventions in IBD.

How probiotics and commensal bacteria communicate with each other and host immune cells to ensure intestinal homeostasis still remains unclear. SCFAs, in particular butyric acid, is a molecule of interest as BFMP consumption led to increased levels of butyrate and butyrate-producing commensal anaerobes. This may result from metabolic cross-feeding between the BFMP strains and resident butyrate-producing Firmicutes (26). SCFAs affect more than microbes. Both GPR41 and GPR43 bind SCFAs and are expressed in the colonic mucosa (27), and butyrate is an important energy source for colonic epithelial cells (28). Studies of GPR43 are demonstrated a role for this G-protein–coupled receptor in regulating inflammatory responses in a murine model of colitis, suggesting that host sensing of SCFA is important for host–microbial homeostasis (29). Furthermore, proinflammatory cytokines, such as TNF-α, can impair butyrate oxidation by the colonic mucosa, and increasing luminal levels may be beneficial (30).

In addition to butyric acid, propionic and acetic acids were also elevated in theecal contents of BFMP-treated mice. These SCFAs inhibit *Escherichia coli* (E. coli) and *Salmonella* spp. growth in vitro (31) and may impair growth by their effects on pathways, resulting in methionine depletion and homocysteine accumulation (32). Theecal pH and SCFA profiles of mice that consumed this BFMP had a clear growth-inhibitory effect on the colitogenic *Enterobacteriaceae* of T-bet /Rag2mice in vivo and in vitro. These observations may help to inform selection of IBD patients likely to benefit from specific strain-based treatments. Adherent-invasive *E. coli* colonize ileal lesions and contribute to chronic inflammation in a subset of Crohn’s disease patients (33, 34). Consumption of this BFMP may create unfavorable conditions for adherent-invasive *E. coli*, potentially reducing colonization and inflammation. Gram-negative aerobes and, in particular, the *Enterobacteriaceae*, are increasingly being recognized as microbial “inflammatory allies” contributing to the pathogenesis of IBD (35). The role of this BFMP on DN−173 010-based functional foods may represent an approach to keep gastrointestinal *Enterobacteriaceae* in check to promote health.

Probiotic bifidobacteria and lactobacilli can influence both microbial and host physiology. Certain bifidobacteria may influence *Enterobacteriaceae* by decreasing their virulence gene expression, such as shiga toxin 2 expression in enterohemorrhagic E. coli (U5777), H7 (36) and the expression patterns of the *Salmonella* pathogenicity islands SPI1 and SPI2 (37). Probiotic strains may also exert direct effects on the host mucosa. Oxidative stress driven by reactive oxygen species production is a key feature of inflammation in infectious enteritis and IBD, and probiotic lactobacilli may ameliorate this oxidative stress, e.g., by expression of superoxide dismutase (38, 39). Probiotic lactic acid-producing bacteria may also shift cytokine balance in intestine inflammation, decreasing host IL-6 levels and increasing IL-10 (40). As such, the dramatic effects of this BFMP on intestinal inflammation in the T-bet /Rag2−/− colitis model likely are not solely restricted to the microbiota.

Although the BFMP with live bacteria was most effective at lowering the colitis score, the irradiated product showed a trend toward lowering intestinal inflammation. The presence of bacterial products (e.g., DNA and cell wall constituents), which engage the host immune system through pattern recognition receptors, may furnish an explanation. Bacterial DNA from certain strains exerts anti-inflammatory effects (41). Exopolysaccharides from *B. lactis* have been shown to modify the composition of the microbiota in fecal culture (42). Functional foods may confer beneficial effects through a panoply of structural and metabolic microbial features, and thus further research is needed to determine the contribution of the specific microbial components in this BFMP to the reduction of intestinal inflammation observed.

Understanding both the microbial community and host response differences underpinning the spectrum of responses to probiotic-based treatments in inflammation will be essential for realizing the full potential of these treatments. Our results demonstrate that this BFMP is effective in T-bet /Rag2−/− mice whose disease is in part driven by colitogenic members of the *Enterobacteriaceae*. In addition, the data from our 16S rRNA sequencing and qPCR-based experiments suggest that the structure of a host’s gut microbiota influences response to probiotics. Thus, the development of gut microbe-based biomarkers for both identification of those individuals likely to benefit from probiotics and for monitoring response to probiotics seems an attainable goal. The BFMP used in these studies is a complex mixture of live bacterial strains, bacterial products, and fermentation products that exert effects on gut microbes as well as host cells. Characterization of both gut microbiomes and host responses to functional foods will benefit from emerging metagenomic and metatranscriptomic techniques, as further light is shed on how chronic inflammation resolves in response to consumption of these products.

Materials and Methods

Animal Husbandry. *T. bio* /Rag2−/− mice, their husbandry, and chow have been described (23, 43). Animal studies and experiments were approved and carried out according to Harvard University’s Standing Committee on Animals as well as National Institutes of Health guidelines.

**Study Product.** The test product was a fermented milk (Activia; Danone); details are given in *SI Materials and Methods* for product strain details. The control product was a milk-based nonfermented dairy product without bacteria and with 1.6% lactose per serving. Control product details are provided in *SI Materials and Methods*. Products were provided by Danone Research. A 100- mg quantity was orally instilled daily at the same time daily and, if indicated, 100 mg per mouse in its cage was provided for additional consumption.

**Production Sterilization.** The BFMP was sterilized with 4.4 × 10⁴ Gy in a gamma irradiator. To confirm product sterility after irradiation, the product was cultured under aerobic and anaerobic conditions.

**Histology.** Colonos were prepared for histology, and histopathology was evaluated in a blinded fashion (with respect to genotype and experimental protocol) by J.N.G. as previously described (43).

**Fecal Collection, Storage, and RNA and DNA Extraction.** Fecal pellets were collected into tubes and weighed. RNAlater (Ambion) was added to the fecal pellets and stored at −80 °C until RNA and DNA were extracted as described previously (44).

**Quantification of Bacteria Equivalents by qPCR and RT-qPCR.** Determination of bacterial concentration was based on the quantification of either DNA or RNA molecules using primers targeting 16S rRNA sequences (Tables S1–S3). Additional details are provided in *SI Materials and Methods*. The qPCR and RT-qPCR reactions were performed according to previously published work (44, 45). Primers and their annealing temperature are found in Tables S1–S3.

**Fecal Collection and Culture of Gram-Negative Aerobes.** From each mouse, four to six pellets were collected. Pellets were resuspended in sterile PBS, and 10-fold serial dilutions were generated, plated on MacConkey’s medium, and incubated in ambient air at 37 °C overnight. Biochemical assays with the API-20E panel (bioMerieux) confirmed that colony morphology correlated with identification as *K. pneumoniae* and *P. mirabilis*.

**Cecal pH and SCFA Measurement.** Cecal contents were collected after the animals were killed. An aliquot was removed for pH measurement and the remaining sample was flash frozen in N₂(0). SCFA analyses were performed...
Growth Kinetics in Modeled Media. Brain-heart infusion medium was prepared to generate the following media. Cecal pH of BFM mice (BHI pH 4.50), MP mice (BHI pH 6.07), cecal pH of BFMP mice with VFA and non-VFA (BHI pH 4.50, 99.2 mM acetic acid, 31.05 mM propionic acid, 43.87 mM butyric acid, and 2.08 mM lactic acid), and cecal pH of MP mice with VFA and non-VFA (BHI pH 6.07, 2.35 mM acetic acid, 1.34 mM propionic acid, 0.37 mM butyric acid, and 12.9 mM lactic acid). VFA and non-VFA were added to the media, and the pH was subsequently adjusted. We defined an upper limit of pH 5.8 for which these growth kinetic effects were observed.

Metagenomic Sequencing and Analysis. The VS and V6 regions of the 16S rna gene were targeted for amplification and multiplex pyrosequencing with error-correcting barcodes. Sequencing was performed using a Roche FLX Genome Sequencer at DNAVision. Data were preprocessed to remove sequences with low-quality scores (7,579 ± 2,379 high-quality reads per sample, mean read length: 278). Taxonomy was assigned using RDP classifier v.2.01 and similar sequences were binned into operational taxonomic units (OTUs). Phylogenetic trees were used to identify and quantify bacterial species present in each sample. Conjugate base concentrations were weight corrected and converted to conjugate acid concentrations using the cecal pH and Henderson–Hasselbalch equation. Additional details on VFA and non-VFA extractions are provided in SI Materials and Methods.

B. lactis Quantitative Culture. Quantitative fecal culture was performed using Roga media supplemented with 1% irradiated sterile fermented milk product. Plates were incubated for 5 d (anaerobic conditions). Gram stains were performed and morphotypes consistent with Bifidobacterium were identified as well as control were screened by PCR (46). B. lactis counts were then calculated from the quantitative fecal culture and PCR results and weight corrected based on fecal dry weight.

Statistical Analysis. Error bars represent standard deviation. Statistical tests used follow the stated P value. Prism (GraphPad) was used for statistical calculations. The Bonferroni correction was applied as noted for multiple comparison correction.

ACKNOWLEDGMENTS. We thank D. Zhang for histology expertise and M. Montesalvo and staff of the University of Massachusetts Lowell Radiation Laboratory for use of their Gamma Cave Irradiator Facility. This work was supported by National Institutes of Health Grants CA112663 (to L.H.G.) and K08AI078942 (to W.S.G.) and by a grant from Danone Research.