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Abstract

We introduce a generalization of multiscale entropy (MSE) analysis. The method is termed MSEn, 

where the subscript denotes the moment used to coarse-grain a time series. MSEμ, described 

previously, uses the mean value (first moment). Here, we focus on , which uses the second 

moment, i.e., the variance.  quantifies the dynamics of the volatility (variance) of a signal 

over multiple time scales. We use the method to analyze the structure of heartbeat time series. We 

find that the dynamics of the volatility of heartbeat time series obtained from healthy young 

subjects is highly complex. Furthermore, we find that the multiscale complexity of the volatility, 

not only the multiscale complexity of the mean heart rate, degrades with aging and pathology. The 

“bursty” behavior of the dynamics may be related to intermittency in energy and information 

flows, as part of multiscale cycles of activation and recovery. Generalized MSE may also be useful 

in quantifying the dynamical properties of other physiologic and of non-physiologic time series.
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I have ideas and reasons,

Know theories in all their parts,

And never reach the hearts.

- Fernando Pessoa (translation)

licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative 
Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
*Author to whom correspondence should be addressed; mcosta3@bidmc.harvard.edu. Tel.: +1-617-667-2428; Fax: +1-617-667-4012. 

Academic Editor: Niels Wessel

Author Contributions
The authors contributed equally to this manuscript. Both authors have read and approved the final manuscript.

Conflicts of Interest
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
Entropy (Basel). Author manuscript; available in PMC 2016 April 18.

Published in final edited form as:
Entropy (Basel). 2015 March ; 17(3): 1197–1203. doi:10.3390/e17031197.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/4.0/


1. Introduction

The trajectories of the human heartbeat constitute an object of scientific, as well as literary, 

inquiry. Fluctuations in cardiac interbeat intervals (often termed heart rate variability) are 

regulated by the autonomic (involuntary) nervous system, which plays a fundamental role in 

integrative physiologic control. Heart rate time series, therefore, provide a unique window 

into the status of the cardiovascular system in health and disease and, more broadly, into the 

entirety of physiologic function [1].

From a dynamical perspective, cardiac interbeat interval time series pose major challenges to 

quantitative analysis. These signals are typically non-stationary, non-linear and exhibit 

complex fluctuation patterns over a wide range of time scales. The multiscale entropy 

method (MSE) [2] was developed to probe the information content of this class of signals. 

Using this method, we [3–7] have provided evidence that the complexity of cardiac interbeat 

interval time series decreases with aging and disease.

The MSE method employs an entropy measure to quantify the degree of unpredictability of 

time series derived from the original signal by an operation called coarse-graining. This 

operation consists of dividing the original signal ({xi}, 1 ≤ i ≤ N) into non-overlapping 

segments of equal length (τ) and calculating the mean value of the data points in each of 

these segments. The process is repeated for a range of window lengths, i.e., scales. 

Therefore, the derived time series are coarse-grained outputs of the dynamical system. The 

complexity index, based on the work of Zhang [8], is defined as the sum of the entropies 

computed for different scales, i.e., at different levels of resolution of the signal. Such a 

complexity measure yields low values for both highly regular (e.g., periodic signals) and 

highly irregular (uncorrelated random noise) signals and is near maximum for signals with 

1/f, long-range correlations. These observations are consistent with the notion that systems 

at either extremes of the “entropy spectrum” (i.e., having essentially zero entropy or being 

maximally entropic) are not complex [2–4].

Intuitively, by quantifying the level of disorder at all relevant levels of resolution of a signal, 

the MSE method yields a measure of its complexity. An unaddressed question is whether the 

coarse-graining procedure, itself, which uses a single property of the data, i.e., the mean 

value, to derive copies of the original signal at different levels of resolution, discards 

important information whose quantification could enhance our understanding of the 

underlying processes. To help address this question, we generalize the MSE method to a 

family of statistics (MSEn) by using different moments (n) of the distribution of a random 

variable to coarse-grain the original time series. The previously described MSE method is 

termed MSEμ, where μ refers to the mean (first moment).

Here, we implement the  method, which uses the variance (second moment) to 

coarse-grain the signals. We apply this new method to cardiac interbeat interval time series 

from healthy young and older subjects, and patients with congestive (chronic) heart failure 

[2,3,9]. This syndrome (especially the systolic type) develops when cardiac output is not 

sufficient to meet metabolic requirements, despite high ventricular filling pressures [10]. It 

represents one of the most extreme manifestations of loss of adaptiveness. The resulting 
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derangements alter autonomic function and, consequently, heart rate dynamics. To a lesser 

extent, the aging process also decreases adaptiveness and the complexity of cardiac interbeat 

interval dynamics [2–5,11].

We test the hypothesis that, under baseline (“free-running”) conditions, the heartbeat 

volatility time series from healthy young subjects are more complex than those of healthy 

older subjects, which, in turn, are more complex than those from patients with heart failure.

2. Methods

Consider a time series ({xi}, 1 ≤ i ≤ N). MSEn is computed as follows. First, the original 

signal is divided into non-overlapping segments of length τ. Second, a selected moment is 

estimated for the data in each of these segments to derive the coarse-grained time series at 

scale τ. Here, we focus solely on the second moment using an unbiased estimator 

 of variance. Third, a measure of entropy, sample entropy 

[12], is calculated for each coarse-grained time series. Fourth, a complexity index is derived 

by adding the entropy values for a selected range of scales.

We analyzed cardiac interval (RR) time series derived from approximately 24 h continuous 

electrocardiographic (ECG) Holter monitor recordings of 26 ostensibly healthy young 

subjects (13 men and 13 women, aged (mean ± SD) 35±7.4, range 20–50 years), 46 

ostensibly healthy older subjects (22 men and 24 women, aged 65 ± 4.0, range 58–76) and 

43 patients with moderate to severe congestive heart failure syndrome of various etiologies 

(28 men and 15 women, aged 55.5 ± 11.4 years, range 22–78) [3]. The ECG recordings from 

healthy subjects were sampled at 128 Hz. Fourteen recordings from patients with heart 

failure were sampled at 250 Hz and 29 at 128 Hz.

Datasets were filtered to exclude artifacts, premature ventricular complexes, and missed beat 

detections. The algorithm is available at http://www.physionet.org/physiotools/apdet/

apdet-1.0/filt.c [9]. Briefly, the central point of a moving window of length l is excluded if it 

lies outside the interval , where  represents the average of the data points in that 

moving window, calculated excluding the central point, and a is a positive number ≤ 1. Here, 

we used l = 41 and a = 0.2. For the calculation of the complexity index we selected scales 10 

to 100. For the calculation of SampEn we used m = 2 and r = 0.5% of the original time 

series’ standard deviations. Note that MSEμ analysis of the same data [3] was performed 

using m = 2 and r = 15% of the original time series’ standard deviations. The difference in 

the choice of the r values was due to the fact that the amplitudes of the variance coarse-

grained time series are much smaller than those of the mean coarse-grained time series.

3. Results

Figure 1 shows the RR interval time series from a healthy subject and from a patient with 

congestive heart failure (top panel), and the corresponding variance derived coarse-grained 

time series for scales 20 and 40 (middle and lower panels). The latter panels show complex 

fluctuation patterns with higher amplitude in the case of the healthy subject. We note that the 
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structure of the fluctuations appears to be preserved with re-scaling in both the healthy and 

pathologic cases.

Figure 2 shows the results of the  analysis of RR interval time series from three 

groups, comprising health young and older subjects, and patients with chronic heart failure 

syndrome. The mean and standard deviation values of the complexity indices for the young, 

older and heart failure groups were 75.2 ± 24.3, 39.0 ± 15.7 and 20.9 ± 14.1, respectively. 

The complexity indices of healthy young subjects were significantly higher than those of 

healthy older subjects (p < 0.0001, two-tail Mann-Whitney test) and of patients with heart 

failure (p < 0.0001). In addition, the complexity indices of the healthy older subjects were 

significantly higher than those of the heart failure patients (p < 0.0001). These intergroup 

differences were confirmed using a fixed r value (0.0002 s2) for the computation of sample 

entropy as described in [13], and using quadratic entropy [14] in place of sample entropy. 

Both of these methods mitigate the impact of outlier values on entropy estimates. In 

addition, comparable intergroup differences to those presented here were obtained using an r 
value that is a percentage of one of the first variance coarse-grained time series.

4. Discussion

This paper introduces a generalization of the multiscale entropy (MSEn) method based on 

employing different moments to coarse-grain a time series. The original method (MSEμ) 

quantifies the complexity of fluctuations in the local mean value of a variable. Here, we 

focus on , which quantifies the dynamical properties of volatility over multiple time 

scales. We use the variance to derive the coarse-grained time series and an entropy measure 

to probe their structure. We applied this technique to heartbeat time series from healthy 

young and older adults, and patients with congestive heart failure syndrome. Our method 

reveals that human heartbeat volatility time series (Figure 1) exhibit complex bursting 

behaviors over a wide range of time scales.

Traditional fractal analysis [15] methods essentially quantify how the mean amplitude of 

coarse-grained time series derived using standard deviation changes with scale factor, but do 

not probe the temporal structure of the signal at a given time scale. In contrast, 

quantifies the dynamics of each of the variance coarse-grained time series using an entropy 

measure.

A key physiologic finding is that the multiscale complexity of the volatility, not only of the 

mean heart rate [2–4], degrades with aging and pathology. The mechanism of healthy 

heartbeat volatility remains to be established. We speculate that this finding relates to 

bioenergetic fluxes. Cardiovascular function requires electromechanical pulses of activation 

and recovery (depolarization/repolarization and systole/diastole). The concept of the 

heartbeat pulse, which is definitional to basic physiology and clinical medicine, may deserve 

broader consideration as a multiscale, not just a single-scale, phenomenon.

Mathematical models purporting to capture the dynamics of healthy heartbeat variability 

should account for the observed multiscale volatility and for its degradation with aging and 

disease. Our method also opens up inquiries into the use of MSE methodology to probe 
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properties of the signals related to higher moments (e.g., the third moment, i.e., skewness) 

[16]. We will explore analytic analyses and numerical simulation studies of MSEn, as well as 

chronobiologic effects, in subsequent publications. Studies of the relationship between 

MSEn and multifractal and related measures [18–21] may also be productive. Furthermore, 

our method can be used to probe the properties of time series from other physiologic 

systems with known pulsatile behavior (e.g, speech, neural recordings, hormonal 

fluctuations, etc) and to test whether the complexity of physiologic volatility also degrades 

in different pathologies, including cancer. A requirement for such analyses is that the signals 

be recorded for sufficient duration and with high enough temporal resolution to afford 

adequate statistical representation of behavior across a relevant range of time scales. The 

MSE implementations introduced in [17] may be useful, especially for the analysis of 

relatively short time series. Finally, the MSEn analysis of non-physiologic time series, e.g., 

econometric, may be of interest.
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Figure 1. 
Top: Cardiac interbeat interval (RR) time series from a healthy 20 year-old subject (left) and 

a 53 year-old patient with congestive heart failure (right). Middle and bottom: Variance of 

the RR interval time series calculated in a 20 (middle) and 40 (bottom) data point moving 

window. The horizontal axes are the same for all plots.
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Figure 2. 

Multiscale entropy  analysis of cardiac interbeat interval time series from 26 

healthy young, 46 healthy older subjects and 43 patients with congestive heart failure (CHF). 

The time series were derived from 24 h Holter monitoring recordings. Parameters for 

calculating sample entropy: m = 2, r = .5% of the original time series’ standard deviations. 

MSEμ analysis of the same time series were presented in [3]. The symbols and the error bars 

represent mean and standard deviation, respectively. The time series are available at 

www.physionet.org/physiobank/database/, under nsrdb, nsr2db, chfdb and chf2db.
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