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Abstract. Changes in heart rate are a useful physiological measure in infant studies. We present an algorithm
for calculating the heart rate (HR) from oxyhemoglobin pulsation in functional near-infrared spectroscopy (fNIRS)
signals. The algorithm is applied to data collected from 10 infants, and the HR derived from the fNIRS signals is
compared against the HR as calculated by electrocardiography. We show high agreement between the two HR
signals for all infants (r > 0.90), and also compare stimulus-related HR responses as measured by the two meth-
ods and find good agreement despite high levels of movement in the infants. This algorithm can be used to
measure changes in HR in infants participating in fNIRS studies without the need for additional HR sensors.
© 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.6.067010]
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1 Introduction
The limited behavioral repertoire of young infants has made
physiological recordings a useful measure of many aspects of
infant development, particularly attention. One such measure
that has proven particularly helpful is the recording of heart
rate (HR) and heart rate variability (HRV).1,2 After the age of
2 months, decreases in HR, or decelerations, have been inter-
preted as an index of an orienting response; conversely,
increases in HR (accelerations) are often interpreted as arousal.
These changes in HR are on the timescale of several seconds and
depend on the length of stimulus presentation. Over and above
HR, HRV quantifies individual differences in autonomic
responses to different stimuli and different stimulus classes.
HRV can be quantified in short-term recordings over the course
of several minutes or in long-term recordings which may last
several hours.3

HR and HRV provide a measure of autonomic nervous system
(ANS) activity, but do not directly reflect cortical activity. One of
the many tools currently being employed as a means of direct
visualization of the brain at work is functional near-infrared spec-
troscopy (fNIRS). FNIRS has been employed to measure cortical
responses4 or resting-state connectivity5,6 in infants (also see
recent reviews7–9). NIRS has several advantages over other meth-
ods for functional brain imaging in infants. The method is rela-
tively movement tolerant and allows infants to be seated
comfortably in the presence of a caregiver. Additionally, infants’
thin skulls allow light to easily reach the brain, and the resulting
hemodynamic measurement can be compared to adult fNIRS
responses or adult functional magnetic resonance imaging
(fMRI).

In theory, simultaneous recordings of both fNIRS and HR
would allow for complementary views of infants’ autonomic
and central nervous system responses to various task conditions.
HR changes are a measure of attention and orienting; therefore,

having this information available would inform investigators of
how the subjects perceive the task. HR is also thought to be
modulated by subcortical structures that are not accessible
with fNIRS; therefore, the addition of this measure adds
Dcomplementary information to the fNIRS measurements.
Conversely, fNIRS can provide more specific information
about cortical regions involved in stimuli processing than can
be inferred from changes in HR. Typically, HR is measured
with electrocardiography (ECG), and is calculated by finding
the time difference between subsequent R waves (R–R intervals)
in the QRS complex. While there is no technical reason why
simultaneous ECG and fNIRS cannot be performed, in practice
this involves detailed setup procedures, including optodes
placed on the head and electrodes placed on the chest. This
setup is far from ideal when studying infants, who have very
limited attention spans and ability to regulate their emotions.
Thus, extracting the HR signal from the fNIRS signal would
be preferable to separate ECG collection if it could be shown
to have similar accuracy to using additional ECG sensors.

Prior work has shown that HR can be reliably extracted from
the fNIRS signal in adults.10 However, extracting the HR from
infant fNIRS presents additional challenges not present in the
adult paradigm. Infants cannot be instructed to remain still during
recording, resulting in high levels of movement artifacts in infant
fNIRS data. Infants also have a faster resting HR than adults,
which could potentially impact HR extraction algorithms. HRs
of 180 beats per minute (BPM) or 3 Hz are not unusual in resting
infants.2 Signals on this timescale are considerably faster than the
usual hemodynamic timescale that NIRS instruments’ sampling
rates are optimized to capture. Additionally, infants have thinner
skull and scalp tissue layers, which could be potentially problem-
atic if most of the cardiac pulsation is coming from these layers,
although cardiac pulsation has been inferred in the brain itself
using fMRI.11 Ideally, the program to extract the HR from the

*Address all correspondence to: Katherine Perdue, E-mail: Katherine.Perdue@
childrens.harvard.edu 0091-3286/2014/$25.00 © 2014 SPIE

Journal of Biomedical Optics 067010-1 June 2014 • Vol. 19(6)

Journal of Biomedical Optics 19(6), 067010 (June 2014)

http://dx.doi.org/10.1117/1.JBO.19.6.067010
http://dx.doi.org/10.1117/1.JBO.19.6.067010
http://dx.doi.org/10.1117/1.JBO.19.6.067010
http://dx.doi.org/10.1117/1.JBO.19.6.067010
http://dx.doi.org/10.1117/1.JBO.19.6.067010
http://dx.doi.org/10.1117/1.JBO.19.6.067010


fNIRS signal would be freely available and able to be used on
data collected with different instruments.

In this work, we propose an algorithm for extracting instan-
taneous HR from the fNIRS signal, and apply the method to
fNIRS data collected from 10 infants. We validate the method
with a simultaneous ECG, and apply the HR extraction method
to calculate a stimulus-induced change in HR. We show that
infant HR can be reliably and robustly extracted from fNIRS
data collected for cognitive studies in infants, eliminating the
need for ECG sensors and allowing for additional information
to be extracted from fNIRS data that have already been collected
for other purposes.

2 Methods

2.1 Functional Near-Infrared Spectroscopy and
Electrocardiography Data Collection

A Hitachi ETG-4000 NIRS system was used to collect the
fNIRS data. The probe design included 18 sources and 15 detec-
tors arranged to cover the frontal, parietal, and temporal cortices
with 3 cm source-detector distances. Continuous wave sources
were at 695 and 830 nm. The probe layout and 46 resulting
channels are shown in Fig. 1, along with a schematic of the posi-
tioning of the probe on the head and a photograph of the probe
on a subject. Data were collected at 10 Hz.

ECG was recorded using a three-lead Biopac wireless
Nomadix system (BIOPAC Systems, Inc., Goleta, CA) with a
sampling frequency of 1000 Hz. Leads were attached using dis-
posable sticker electrodes. Accelerometer data were also col-
lected using a triaxial accelerometer (TSD109C1, BIOPAC
Systems, Inc., Goleta, CA) attached to the forehead portion
of the NIRS cap. The accelerometer was used to quantify infant
head motion during the stimulus presentation. The accelerom-
eter data were numerically integrated and combined across
dimensions to provide a nondirectional measure of speed at
each time point. It is worth noting that with our sensor on
the fNIRS probe, the motion we are quantifying is the move-
ment of the head only, and movements of the extremities will
not be recorded unless it also causes head motion.

2.2 Participants and Stimulus Design

Infants were recruited from a registry of local births to partici-
pate in a longitudinal study of emotion processing. The partic-
ipants were typically developing and had no known prenatal or
perinatal complications. The experimental protocol was
approved by the IRB of Boston Children’s Hospital, and
informed consent was received from parents before beginning
the sessions. The 10 participants in this study were 7-month-
old-infants (7 males, Mage ¼ 208.8 days, SD ¼ 4.2). An addi-
tional two infants were tested but refused the fNIRS head probe.
No infants refused the ECG sensors. The infants were held on
their caregiver’s lap while photographs of emotional faces
(N ¼ 6) or animals (N ¼ 4) were presented on a computer
screen at a distance of approximately 63 cm. The pictures
were presented in a block design, with five photographs of dura-
tion 1 s presented per block and a randomly generated intersti-
mulus interval of 200 to 400 ms between images. Stimulus
blocks were followed by a 10 s animation of abstract shapes.
A total of 30 stimulus blocks were presented to each infant
as tolerated with breaks as necessary. The overall length of
fNIRS recordings was between 7.5 and 14.5 min. Sessions
were video recorded, and the videos were used to assess if
the infants were looking at the stimulus while it was on the
screen as a measure of attention. Videos were coded offline
and a block was included in the stimulus-related averages if
the infants viewed at least 3 of the 5 presented photographs.

2.3 Electrocardiography Heart Rate Extraction

ECG R–R intervals were determined using a modified
Pan–Tompkins algorithm12 implemented in AcqKnowledge
software v4.2 (BIOPAC Systems, Inc., Goleta, CA).
Manual correction was performed for dropped or spurious
beats according to the instructions presented with the soft-
ware. The HR data were then low-pass filtered with a cutoff
frequency of 0.3 Hz to eliminate high frequency noise using a
third-order IIR Butterworth filter applied in the forward and
reverse directions to avoid phase distortion. The low-pass fil-
ter cutoff frequency was selected through systematic param-
eter variation. Sections of ECG data where the HR could not
be calculated due to large artifacts were eliminated from fur-
ther comparison with the fNIRS HR estimates. Bad sections
were found in 5 of the 10 subjects, and in those subjects the
mean length of the removed segments represented 4% of the
total data length.

2.4 Functional Near-Infrared Spectroscopy Heart
Rate Extraction Algorithm

The fNIRS raw data were converted to changes in chromophore
concentration using the modified Beer–Lambert law as imple-
mented in HOMER213 after low-pass filtering with a third-order
IIR Butterworth filter with a cutoff frequency of 4 Hz. The filter
was applied in the forward and reverse directions to avoid phase
distortion. The HR was extracted from each channel, and the
channels with HR components were combined to create an over-
all estimate of the HR from the fNIRS recordings. The auto-
mated channel selection algorithm avoids experimenter bias
in channel selection and allows the algorithm to be applied
to datasets that do not have ECG for comparison and channel
selection. The two main components of the fNIRS HR algorithm
are, therefore, the channel selection component and the HR

(a)

(b)

Fig. 1 Sources are red circles, detectors are blue squares. (a) Probe
with source and detector locations showing 3 cm spacing between
source detector pairs, (b) left: Schematic of probe on flattened
head showing probe locations compared to anatomical landmarks
and EEG landmarks (diamonds), (b) probe on subject.
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extraction itself. A schematic of the algorithm for calculating
the HR from the NIRS data is presented in Fig. 2. The algorithm
parameters were systematically explored and values were
chosen that optimized correspondence between the fNIRS
and ECG HR signals.

2.4.1 Functional near-infrared spectroscopy channel
selection

Channels with cardiac components were identified in the fre-
quency domain. The multitaper method (MTM) power spectral
density (PSD) estimate for each channel was calculated using
the PSD MTM (PMTM) function in MATLAB® R2012b
(The MathWorks Inc., Natick, Massachusetts). The multitaper
method was used to estimate the PSD due to its excellent stat-
istical properties including minimized bias and low variance.14

A Gaussian was fit to each spectrum using the FMINSEARCH
function in MATLAB with the maximum in the power spectrum
as the initial guess of the central frequency. Channels with
Gaussian peaks of more than 6 dB in the infant HR range of
1.5–3.5 Hz were deemed as having sufficient cardiac signal
to be included in future analysis. The peak height of 6 dB
was chosen using a systematic parameter variation.
Additionally, channels were marked bad if they had a signal
of less than 2% of the raw intensity range or more than 98%
of the raw intensity range for at least 5 s during the recording,
indicating low-light intensity signal, or a railed signal.

2.4.2 Functional near-infrared spectroscopy heart rate
calculation

The HR was initially estimated for each channel separately.
First, the oxyhemoglobin (HbO) data for each selected channel
were upsampled from 10 to 100 Hz using a polyphase imple-
mentation as provided with the RESAMPLE function in
MATLAB. In adult fNIRS data, upsampling to 100 Hz from
the relatively low-initial sampling frequency of 10 Hz has
been shown to improve accuracy in HR estimation due to the
better time resolution of the estimation of the interbeat inter-
vals.10 The HbO signal is often used in studies where a high
physiological signal content is desired.11 The HbO signal was
filtered from 1.5 to 4 Hz using a third-order IIR Butterworth
filter to eliminate motion artifacts and low-frequency compo-
nents. Peaks in the HbO signal were found using the
FINDPEAKS routine in the MATLAB signal processing tool-
box, with a minimum spacing equivalent to 200 BPM.
Interpeak intervals were calculated, and intervals which were
longer than the mean interval plus three standard deviations
were assumed to include dropped beats and were, therefore, di-
vided in half. The standard deviation threshold was chosen using
a systematic parameter variation. Instantaneous HR was calcu-
lated from the inverse of the peak differences times and inter-
polated to 20 Hz using the INTERP1 MATLAB routine. Finally,
an overall HR estimate was calculated by taking the median
HR over the selected channels at each time point, and the result-
ing time series was low-pass filtered with a third-order IIR
Butterworth filter with a cutoff frequency of 0.3 Hz. The filter
was applied in the forward and reverse directions to avoid phase
distortion. The low-pass cutoff frequency was chosen using sys-
tematic parameter space exploration and was also required to
match the low-pass filter of the ECG HR estimate.

2.5 Functional Near-Infrared Spectroscopy Heart
Rate Algorithm Evaluation

The accuracy of the HR timecourse calculated from the fNIRS
signal was quantified by calculating the normalized cross
covariance r for the fNIRS HR trace and the ECG HR trace.
The covariance was scaled; therefore, the autocovariance was
1 for each signal at time lag 0. The time lag between the
two traces was allowed to vary, and the highest r value is
reported along with the corresponding lag.

2.6 Stimulus-Related Heart Rate Changes

The mean HR response to the stimulus presentation was calcu-
lated by averaging over all stimulus blocks in each subject. The
HR response was calculated relative to the baseline of −4 to
−2 s prestimuli. Blocks were only included in the average if
the subject was looking at the screen for at least 3 of the 5 pre-
sented images, as determined by reviewing the video recordings
of the sessions. For comparison, the HR response was also cal-
culated from the ECG signal with the same stimulus inclusion
criteria. If HR was not recoverable from the ECG, the trial was
eliminated from both the ECG and fNIRS averages. The root-
mean-square (RMS) error is reported along with the highest
covariance r and the corresponding lag. An overall group aver-
age response for the HR calculated from the ECG and from the
fNIRS recordings was also calculated.

Fig. 2 Schematic showing the algorithm for estimating HR from fNIRS
signal. The main steps in the algorithm are shown in the central path
with details for each step on the sides.
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3 Results

3.1 Functional Near-Infrared Spectroscopy
Algorithm Parameter Setting

Parameters that were systematically varied to choose the optimal
values were Gaussian peak height, low-pass filter cutoff fre-
quency, and dropped beat identification threshold. Changing
the selected parameters affected the performance of the HR
extraction algorithm as shown in Fig. 3, which shows how
the algorithm performance changes when one parameter is sys-
tematically varied and the others are held constant at their opti-
mal values. The analysis was performed both with the full
dataset and with every unique subset of five infants (252
total subsets) to probe the robustness of the parameter setting.

The Gaussian peak height parameter is used to select which
channels are included in the overall HR calculation by quantify-
ing how much signal is in the frequency band where the cardiac
signal is expected. As shown in Fig. 3, the correlation between
the fNIRS and ECG HR estimates is not very sensitive to
changes in the Gaussian peak parameter, with median correla-
tion values all within 0.005 of each other. However, the percent-
age of channels included in the overall HR calculation is
dependent on the parameter and declines sharply for a
Gaussian peak threshold larger than 6 dB. Accordingly, the
Gaussian peak threshold was set to 6 dB in the algorithm.

The dropped beats’ threshold is a metric which determines
how long an interbeat interval can be before it is assumed to
have contained a dropped beat. The unit is standard deviations
of the overall beat time, i.e., beats must be longer than the mean

interbeat interval plus the number of standard deviations in order
to be classified as containing a dropped beat. The standard devi-
ations are calculated for each subject individually to account for
variability in resting HR. Low values of this parameter may
cause true long interbeat intervals to be “corrected” i.e., split,
while high values of this parameter may not catch all true
dropped beats. As shown in Fig. 3, low values of this parameter
do cause marked decreases in the correlation between the fNIRS
and ECG HR traces, along with more than 25% of the beats in a
session being marked as dropped. Increasing this parameter
caused sharp increases in fNIRS and ECG HR correlations
and decreases in the percentage of beats marked as dropped.
A threshold of three standard deviations was chosen to define
dropped beats as it had the highest median correlation between
ECG and fNIRS HR measures, which corresponded to approx-
imately 1% of beats being classified as dropped.

The overall low-pass filter parameter shows how the agree-
ment between fNIRS and ECG HR measures depends on the
frequency content in the HR signal. For the purposes of looking
at task-related changes in HR, we are looking for slow changes
in the HR signal. We also expect that high frequency, non-
physiological noise will persist in the HR signal as calculated
with both methods, and we do not want to compare this
noise between methods. Figure 3 does show a decrease in cor-
relation between fNIRS HR and ECG HR as the low-pass filter
cutoff frequency increases. However, we also expect that if fil-
tering is too severe, the full extent of the HR response will not be
included in the response estimate. In order to test how the low-
pass filtering parameter impacts the mean over subjects, the
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Fig. 3 Parameter setting results. (a) Row shows changes in median ECG HR and NIRS HR correlations
with parameter variation, (b) row shows the mean percentage of channels used, mean percentage of
dropped beats, and the mean magnitude of the ECG response. Black lines show the parameter curves
from the full dataset, gray lines show the curves for every possible subset of five infants.
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magnitude of the ECG response is used as a proxy for the overall
response magnitude. The magnitude of this response increased
with higher cutoff frequencies, perhaps due to the increased
noise in the signal. However, it appears that choosing a low-
pass cutoff frequency of 0.3 Hz retains high correlations
between the NIRS and ECG HR signals without sacrificing
too much signal magnitude; therefore, this value was chosen
for use in further analyses.

3.2 Presence of Motion in Recordings

The infants’ heads were moving during the recordings, with a
group average speed of 0.099 m∕s (group median of average
speed is 0.077 m∕s) over the sessions. A representative speed
graph is shown in Fig. 4. This graph shows that there is frequent
motion throughout the recording, and the speed is mostly less
than 0.2 m∕s. Speed was less than 0.2 m∕s for 90% of the
recording time on average, and greater than 0.05 m∕s for
70% of the recording time on average. This speed distribution
shows that the infant movements are frequent but usually not
fast. Data were not excluded from further analysis on the
basis of motion, but the accelerometer recordings were used
to confirm that head motion was occurring and thus that the pre-
sented algorithm is robust to head motion.

3.3 Channel Selection

The number and locations of usable channels are shown in
Fig. 5. The number of usable channels for each subject ranged
from 9 to 38 out of 46 (M ¼ 20.9 channels, SD ¼ 9.4). The
spatial distribution of usable channels in all subjects as
shown in Fig. 4 indicates that there was not an overall spatial
pattern where the usable channels were most likely to be located,
indicating the benefit of picking channels based on individual
signal characteristics over simply using a single channel in
all subjects.

3.4 Overall Electrocardiography and Functional
Near-Infrared Spectroscopy Heart Rate
Correspondence

An example showing the correspondence between the ECG- and
fNIRS-derived HR in a representative subject is shown in Fig. 6.

Correlations between ECG and fNIRS ranged from 0.9297 to
0.9872 with a median of 0.9618, and are presented for each sub-
ject in Table 1. For 9 of the 10 subjects, the fNIRS–ECG HR
correlations derived from multiple HbO channels were higher
than the best individual channel calculation, supporting the
use of channel combination in the proposed algorithm. This
result also implies that it is not necessary to guess the most accu-
rate channel when ECG is not available for comparison, but that
a group of useful channels can be selected with just the infor-
mation from the fNIRS recording itself.

The HR fluctuations as recorded by fNIRS were delayed
compared to those captured by the ECG. The overall delay
for each subject ranged from 0.15 to 0.60 s, with a mean of
0.31 s. These lags for each participant are also listed in Table 1.

3.5 Stimulus-Related Heart Rate Responses

The group’s mean change in HR during stimulus presentation is
shown in Fig. 7. The magnitude of the decrease in HR with
response to the stimulus is approximately 4 BPM. The HR
deceleration begins prior to the stimulus onset, indicating the
orientation of the infants to the screen before the stimulus is pre-
sented. Error metrics comparing the ECG HR and fNIRS HR for
each infant are presented in Table 2. The correlations between
the fNIRS and ECG HR remained high, with a minimum value
of 0.9591, maximum of 0.9937, and median of 0.9811. The lags
to the maximum correlation value ranged from 0 to 0.40 s, with a
group mean of 0.21 s. The RMS error, calculated with the mean
lag between fNIRS and ECG HR, had a median of 0.16 BPM
and was below 1.3 BPM in all subjects, indicating good
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Fig. 4 Head speed (a) and acceleration (b) for infant 1 showing rep-
resentative motion throughout the fNIRS session.

Fig. 5 Number of usable channels summed over 10 subjects, shown in their location on the optical head
probe. Color and size of dot indicate the number of subjects that had a usable channel at each location.
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agreement between the HR estimation for the two methods. The
number of blocks used for each subject is also listed in Table 2.

4 Discussion
In this work, we describe an algorithm that accurately and
robustly extracts the HR from the fNIRS signal. The ability
to determine HR from the fNIRS signal eliminates the need
for additional ECG sensors on infants, allowing for more infor-
mation to be recorded with a simpler setup. HR information cal-
culated from the fNIRS data allows for a greater understanding
of infant responses to stimuli that is available from the standard
fNIRS analysis, capturing both cortical and ANS responses.

The correlations between ECG- and fNIRS-derived HR for
the entire session and the stimulus-related responses were sim-
ilar; however, the correlations for the stimulus-related responses
were slightly higher, with a median of 0.9618 versus 0.9811.
This higher correlation for the stimulus-related responses
may reflect trials removed from the average due to infants look-
ing away or otherwise not engaged in the stimulus. These
removed trials may be more likely to include infant motion,
and their removal may be the cause of the higher correspon-
dence between the fNIRS and ECG stimulus-related signals.

A subject-dependent time lag of 0.15 to 0.60 s was found
between the HR as recorded by the ECG and the fNIRS-derived
HR. This delay is relatively short compared to the usual time-
scale of hemodynamic measurements, which are often several
seconds long. It is not surprising to see a delay in the HR as
measured by fNIRS due to the time needed for the pressure
wave from the contracting heart as measured by ECG to

Fig. 6 ECG- and fNIRS-derived instantaneous heart rate over time in infant 1. (a) plot shows the HR as
estimated by both ECG and NIRS, (b) plot shows the residual (NIRS-ECG).

Table 1 r values for optimal lag, maximum individual channel r , and
optimal lag (fNIRS later than ECG).

Subject r
Maximum individual

channel r Lag (s)

1 0.9787 0.9238 0.20

2 0.9872 0.9320 0.30

3 0.9307 0.8673 0.60

4 0.9297 0.9296 0.40

5 0.9382 0.9434 0.15

6 0.9624 0.9454 0.20

7 0.9855 0.9499 0.30

8 0.9408 0.8739 0.50

9 0.9612 0.9147 0.25

10 0.9658 0.9218 0.20
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Fig. 7 Group mean stimulus-related change in heart rate as extracted
from the fNIRS and ECG signals. Shaded areas show standard error
of the mean.
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propagate to the head. This delay was subject dependent and
may be influenced by factors such as subject size and stiffness
of blood vessels. In our stimulus-induced HR responses, we also
see a slight delay in the HR deceleration as measured by fNIRS
as compared to the ECG, with a range from 0 to 0.40 s.
However, the subject dependence of the optimal lag raises an
issue if the method was applied on fNIRS data for which
there was no ECG reference to calculate each subject’s optimal
lag between fNIRS HR and ECG HR. If we, instead, calculate
correlations at only the fixed mean lag previously reported, the
differences in the fNIRS–ECG correlations are small. For the
total session metrics, the largest change in r is a decrease of
0.0074 if the mean lag instead of the maximum lag is used,
and the median change is a decrease of 0.0013. For the stimu-
lus-related responses, the largest change in r is a decrease of
0.0212 and the median change is a decrease of 0.0031. The
small changes given a fixed delay between the fNIRS and
ECG derived HR signals indicate that if ECG is not available
for comparison, using a small fixed delay will still yield accurate
fNIRS HR measures.

Movement-related noise affects the ECG and fNIRS signals
differently. In our ECG signal, noise from infant motion is usu-
ally a sharp peak. The method for extracting HR from the ECG
signal involves finding peaks on approximately the same time-
scale as the movement artifacts. Because of the similarity of
movement artifacts and the QRS complex as recorded by
ECG, it might, in fact, be more accurate to calculate the HR
based on photoplethysmography, usually via a pulse oximeter
on the finger or foot, as compared to ECG. Motion artifacts
in photoplethysmography signals are also sharp peaks, but
the HR signal of interest is a slower wave corresponding to
the pulsation in the blood vessels. The spectral separation of
HR signals and motion artifacts in photoplethysmography
have led some to postulate that it might be easier to get an arti-
fact-free signal using photoplethysmography measures when
recording in a high-motion environment, especially if acceler-
ometer data to quantify motion is also available.15 However,
this assumption is difficult to prove given that the HR as calcu-
lated from the ECG is used as the gold standard, and therefore is
assumed to be defect free. In this study, we have looked at the

correspondence between the HR with ECG and fNIRS using the
assumption that the ECG is correct. It is worth considering that
in our high-noise environment, even with precautions to elimi-
nate noise from the ECG signal manually, some noise may per-
sist in the ECG signal, making disagreement between the fNIRS
and ECG HR signals not solely due to defects in the
fNIRS HR reconstruction. It is also possible that some of the
difference between the two signals may reflect anatomical or
physiological differences in the two recordings, i.e., the HR
on the scalp may, in fact, be slightly different than the HR as
measured by the heart contractions by ECG.

In our stimulus-related responses, we show that there is a
decrease in HR with the presented stimulus, which has been
shown elsewhere in infants as recorded by ECG.16,17 In this
work, we have collapsed the stimulus-related HR responses
over stimulus type to allow for easy comparison between
ECG and fNIRS HR signals. However, differences in HR decel-
erations have been used to infer differences in attention to stimu-
lus classes. The specific shape of the HR deceleration can be
used to quantify the different attentional processes.18 The mag-
nitude of the decrease in HR of about 4 BPM is similar to what
has been reported elsewhere.17

The correlation between HR as recorded by ECG and the HR
extracted from fNIRS is somewhat lower than has been reported
elsewhere in adult data.10 However, the method presented here
does not require signals to be free of movement artifact, which is
a large advantage when infant applications are considered. Our
algorithm also does not require the experimenter to select a par-
ticular channel of interest for the HR calculation, and instead
uses all channels with a sufficient HR spectral content in the
HbO signal. While the method presented here has been designed
for infant data, there is no reason why it could not be applied to
adult data as well with appropriate alteration of the expected HR
frequency band. The algorithm might be especially useful in
adult studies when a high degree of participant movement is
expected during the session.

The availability of HR data from fNIRS allows for the pos-
sibility of simultaneous resting state fNIRS and respiratory sinus
arrhythmia (RSA) studies using only fNIRS sensors due to the
similar study designs of these protocols. Changes in RSA have
been linked to clinical problems, such as sudden infant death
syndrome,19 social developmental delays,2 and autism.20 RSA
in infants have also been linked to other cognitive processes
such as attention,21 emotion regulation,22 and behavioral mea-
sures such as temperament.23 RSA has also been shown to
be a particularly robust metric in infants due to the large changes
in the HR as modulated by respiration. It has already been
shown that RSA can be reliably calculated from the pulse oxi-
metry signals.24 While RSAwas not quantified in this study due
to the task-related experimental design, the method outlined in
this paper suggests that it would be straightforward to combine
resting-state fNIRS studies with a respiratory measure to do
simultaneous cortical connectivity and RSA studies.

5 Conclusion
HR can be successfully recovered from fNIRS data in infant
studies, eliminating the need for additional HR sensors. The
algorithm presented here extracted the HR from the fNIRS sig-
nals with a correlation with the ECG HR of above 0.92 in all 10
infants. The algorithm was robust, as these results were achieved
despite frequent infant head movements. The correlation
between the HR estimated with both ECG and fNIRS was

Table 2 HR metrics for stimulus-related responses.

Subject r Lag (s) RMS error (BPM) Usable blocks

1 0.9937 0.15 0.14 23

2 0.9607 0.10 0.01 27

3 0.9754 0.40 0.39 18

4 0.9868 0 0.16 19

5 0.9754 0.40 0.19 28

6 0.9874 0.10 0.07 21

7 0.9889 0 0.11 23

8 0.9591 0.35 0.63 22

9 0.9691 0.40 1.28 22

10 0.9886 0.20 0.15 24
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high over the whole session and in the stimulus-related
responses. The stimulus responses have an RMS error less
than 1.3 BPM in all 10 infants. Extraction of HR from the
fNIRS signals will also allow previously collected infant data
to be reanalyzed for measures of attention, increasing the utility
of fNIRS as a simultaneous measure of infant physiology and
brain functioning.
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