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Clusters of transcription factor binding sites (TFBSs) which direct gene expression constitute cis-regulatory modules
(CRMs). We present a novel algorithm, based on Gibbs sampling, which locates, de novo, the cis features of these
CRMs, their component TFBSs, and the properties of their spatial distribution. The algorithm finds 69% of
experimentally reported TFBSs and 85% of the CRMs in a reference data set of regions upstream of genes
differentially expressed in skeletal muscle cells. A discriminant procedure based on the output of the model
specifically discriminated regulatory sequences in muscle-specific genes in an independent test set. Application of the
method to the analysis of 2710 10-kb fragments upstream of annotated human genes identified 17 novel candidate
modules with a false discovery rate �0.05, demonstrating the applicability of the method to genome-scale data.

[Supplemental material is available online at www.genome.org.]

Technologies for large-scale assessment of gene expression have
become a mainstay of the postgenome era. Such profiling studies
in yeast have been analyzed to gain insights into the regulatory
program of this organism (Segal et al. 2003). Unfortunately, how-
ever, application of profiling technologies in higher eukaryotes
all too often yields little more than a laundry list of genes that are
differentially expressed along with speculation about their po-
tential common functions. A greater focus on mechanistic con-
nections would be useful to address this deficiency, but the
means to identify these are currently limited. Some progress to-
wards this end has been achieved when prior models of the bind-
ing patterns of cognate transcription factors are known. Progress
has been more limited when such patterns are not available. Here
we describe a two-step procedure that identifies cis-regulatory
modules (CRMs) de novo, and uses the resulting models as the
basis of a discriminant procedure to identify additional genes in
the regulon.

The CRM can be viewed as a circuit translating input signals
from diverse pathways into an output, gene activity, through the
binding of multiple transcription factors in a combinatorial fash-
ion. Though regulatory circuits can be defined through extensive
laboratory effort, most tissues and contexts are insufficiently
characterized to allow such approaches. Although pattern discov-
ery techniques have proven effective in the identification of tran-
scription factor binding sites (TFBSs) for several single-celled or-
ganisms (McCue et al. 2000, 2002; Rajewsky et al. 2002a), suc-
cessful applications in higher eukaryotes have been sparse and
only partially effective (Aerts et al. 2003). Transcription factors
can tolerate widely varying target sequences, resulting in com-
putational binding profiles of low specificity. Such weak patterns
become impossible to distinguish when regulatory regions are
embedded within long candidate regions.

Cross-species comparison of sequences from orthologous
genes, or phylogenetic footprinting, shortens the amount of se-
quence under consideration by focusing attention on conserved
regions that are more likely to serve a biological function

(Wasserman et al. 2000; Boffelli et al. 2003). Although such
methods can increase binding-site densities by fivefold, only the
strongest sites are detected at this level (Wasserman et al. 2000).
Recently, based on the synergy arising from clusters of TFBSs
with known binding patterns, a variety of computational meth-
ods have been created for the discrimination of CRMs. These
include composite site models and statistical models of TFBSs
(Wasserman and Krivan 2003). It is often the case that no prior
information exists on binding patterns of any relevant transcrip-
tion factors for sets of genes identified in large-scale expression
studies. One approach is a method for identification of modules
using known motifs, but it includes a preliminary step of motif
identification using either a Gibbs sampling algorithm or an al-
gorithm based on overrepresented oligonucleotide sequences
(Rajewsky et al. 2002b). Another approach uses suffix-trees and a
word consensus approach rather than a statistical model to locate
ordered collections of motifs (Marsan and Sagot 2000). In this
method, sites of each motif type are assumed to occur exactly
once in each module. An expectation-maximization algorithm
based on a discriminant model with multiple iterative optimiza-
tion steps has also been described (Segal and Sharan 2004). Al-
though these approaches are promising, computational identifi-
cation of CRMs and TFBSs without prior knowledge of binding
patterns remains elusive.

Protein interactions provide the mechanistic basis for much
of gene regulation in all organisms (Wei et al. 2004). The activity
of a particular transcription factor (TF) cannot be considered in
isolation. Often, a particular TF can be stimulated either posi-
tively or negatively by its interaction with either cis-binding fac-
tors or coactivators (Latchman 1998). There is considerable evi-
dence that cis-elements occur in clusters, in which the weak in-
dividual signals provide a collectively strong signal (Frith et al.
2002). For example, it has been shown that for proper spatial
expression in the endoderm of the sea urchin, one particular
pairing of Gata sites is essential and that these function syner-
gistically with an adjacent Otx site (Yuh et al. 2004). To model
modules of cis-elements, one must determine the essential spatial
and ordering properties. Because synergy-based discrimination
functions surpass the performance of models for individual
TFBSs (Halfon and Michelson 2002), it is reasonable to expect
that de novo pattern discovery methods based on regulatory
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modules will perform better than methods for detection of indi-
vidual motifs.

In the present study, we developed a synergy-based de novo
algorithm that models neighbor interactions among TFBSs. We
also explored the utility of using aligned human–mouse se-
quences as an input data set for training the algorithm. We found
that the use of aligned human–mouse sequences and the use of
neighboring interactions both enhance the specificity of site and
module predictions. We show that this model can be used to
specifically discriminate regulatory sequences from control se-
quence in an independent test set, and we use the resulting dis-
crimination procedure to predict additional genes that are likely
to be regulated in a manner similar to those in the study set.

RESULTS

Positive Training Model
To explore the utility of human–rodent sequence comparison (an
evolutionary distance of 50–100 million years) for locating
CRMs, we selected a study set of 24 3-kb upstream regions of
orthologous gene pairs specifically up-regulated in human skel-
etal muscle tissue. These genes were selected because they con-
tain numerous reported TFBSs as determined from biochemical
and genetic studies (Wasserman and Fickett 1998). Thus, each
gene has at least one experimentally defined upstream TFBS that
has a functional role in skeletal muscle-specific expression
(Wasserman et al. 2000).

Within our study set, there are a total of 188 reported sites
(94 mouse/human pairs). Because the regulatory mechanisms
governing the expression of these genes have not been fully de-
lineated, additional functional sites are likely to be present. After
masking repetitive sequences in the human gene sequence with
RepeatMasker (A.F.A. Smit and P. Green, unpubl.; http://
www.repeatmasker.org/), using BLASTZ (Schwartz et al. 2003) to
align the human–mouse pairs of sequences, and excluding all

ungapped segments that were less than 65% identical, we re-
duced the searchable sequence to ∼41% of the original length.
The aligned sequences, not surprisingly, contained aligned
TFBSs, allowing the sampling of aligned pairs of sites. We present
the algorithm’s performance on the identification of each of the
following: (1) sequence locations of the CRMs, (2) location of
specific TFBSs within these modules, and (3) parameters of the
derived motif models, the position weight matrices.

We defined a CRM to be a fragment of sequence in which
there are at least two reported TF binding sites with intersite
spaces �100 bp and similarly for predicted CRMs. In the 24 ref-
erence sequence pairs, there were a total of 20 sequence pairs
containing experimentally reported modules, and four that did
not. As reported in Table 1A, the algorithm predicts 85% (17/20)
of these modules with at least 50% overlap of the reported mod-
ule. The algorithm predicts a module in only one of the four
sequences that does not have a reported module.

Similar to the analysis by Wasserman et al. (2000), our
analysis focuses on the well defined TFBSs for Myf, Mef2, and
SRF. As shown in Table 1B, on average 69% of the reported Myf,
Mef2, and SRF sites are correctly predicted. Mef2 shows the best
correspondence, covering 87% of the reported sites and only four
novel predictions. Because the laboratory characterization of
these sequences is not complete, predictions of such nonanno-
tated elements are ambiguous, representing either false positives
or unreported sites.

Sequence logos (Schneider and Stephens 1990) of four of the
predicted motifs (Fig. 1) correspond well with motifs of the re-
ported sites of the factors Mef2, Myf, SRF, and SP1 (Wasserman
and Fickett 1998; see also weight matrices in the TRANSFAC da-
tabase, http://www.gene-regulation.com; Matys et al. 2003). A
fifth uncharacterized motif is also predicted. Mef2 and SRF are
both members of the MADS-box family of transcription factors,
and as such have binding patterns with an A-T rich core (Shore
and Sharrocks 1995). We found that we could only separate these
two related motifs with the use of a fragmentation algorithm (Liu
et al. 1995). Information on frequencies of neighboring relation-
ships is reported in the Supplemental material.

In order to examine the contributions of the various com-
ponents of the algorithm, we compared its performance to two
other modes of Gibbs sampling (Thompson et al. 2003). The first
of these, the “Motif sampler,” looks for sites without additional
restrictions, and the second includes the restriction that the sites
must be �100 bp apart. As Table 2 shows, the most improvement
in site identification emerges with phylogenic footprinting (the
addition of the mouse sequences). Table 2 also shows that infer-
ences of neighboring pair relationships that are unique to the
module sampler also strongly improves site identification.

To compare the module sampler results with predictions
obtained when motif models were known a priori, we obtained
the COMET software (Frith et al. 2002) from http://zlab.bu.edu/
∼mfrith/comet/ and applied it to the human sequences from our
training set. Using the default parameters and matrices derived
from the reported Myf, Mef-2, SRF, SP1, and Tef aligned pairs of

Table 1A. Number of Modules Correctly Predicted by the
Sampling Algorithm

Reported
modules

Predicted
modules

Correctly
predicted modules

Sequences with no
predicted modules

20 21 17 3

Three of the 24 pairs of sequences contained two distinct modules.
The current algorithm can find at most one module per sequence, so
in one execution of the algorithm, a maximum of 40 (20 pairs) mod-
ules and 96 reported Myf, Mef2, and SRF sites are identifiable. The
three sequences with no predicted modules were not found to con-
tain reported modules. A series of predicted motifs was considered as
overlapping a reported module if they overlapped the reported mod-
ule by at least half the length of the reported module as measured
from start location of the reported TFBS proximal to the 5� end of the
gene to the end of the most distant TFBS.

Table 1B. Predictions of the Module Sampler for the Sequence-Specific Mef2, Myf, and SRF Bindings Sites

TF type
Reported

sites
Predicted

sites
Number overlapping

reported sites
% of reported

sites found
% of predicted

overlapping reported sites
Additional

predicted sites

Mef2 30 30 26 86.7 86.7 4
Myf 40 40 22 55.0 55 18
SRF 26 34 18 69.2 52.9 16
Total 96 104 66 68.75 63.4 38
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sites, COMET, at an E-value cutoff of 1.0, correctly predicted 63%
(30 of 48) reported Myf, Mef-2, and SRF TFBSs with 15 ambiguous
predictions. It also correctly predicted 13 of the 20 reported mod-
ules and six modules that do not overlap a reported module
(�50% overlap). The module sampler correctly located 33 re-

ported Myf, Mef-2, and SRF TFBSs with 19 ambiguous sites in the
human sequences and 17 reported modules. (The human se-
quences represent half the totals in Table 2.) Thus, COMET pre-
dictions were somewhat more specific and slightly less sensitive
than the module sampler’s (see Table 2). These results demon-
strate that the incorporation of aligned sequence pairs and neigh-
bor interactions can circumvent the need for large reference col-
lections.

In addition to the muscle-specific sequences, we collected a
set of 10 human upstream sequences from genes expressed in
liver tissue and their rodent orthologs (Krivan and Wasserman
2001). The sequences were aligned as described above, and the
module sampler was applied to the aligned sequence pairs. The
module sampler was run with four different motif models. One of
the resulting predicted models strongly matched the pattern for the
HNF-1 TFBS (Krivan and Wasserman 2001). Similar to the results
described in Table 2, the module sampler in the absence of neigh-
bor interactions produced similar models and a slightly higher
maximum a posteriori probability (MAP) value (Liu et al. 1995) but
yielded more ambiguous predictions. The motif sampler with no
restriction on spacing or number of sites per sequence failed to find
the HNF-1 model and did not produce any significant result.

Finding New Muscle-Specific Genes
One of the critical goals of the CRM discovery algorithm is the
identification of additional genes that are likely to be regulated in
a similar manner. To address this goal, we developed a discrimi-
nant method that uses for its positive control the CRM model
derived above. To obtain negative data for training and cross-
validation, we began with a set of 10-kb upstream regions from
2910 human genes labeled as “reviewed” or “provisional” in the
RefSeq database (Pruitt and Maglott 2001) and the corresponding
mouse orthologous sequences. The sequences were aligned and
repeat-masked as described above. We randomly chose 100 pairs
from this set as a negative training set and screened these against
the literature to remove genes with any reports suggesting that
they could be differentially expressed in muscle. Two sequences
from the randomly selected set were eliminated by the literature
review and subsequently replaced.

We found that models built with these data using unin-
formed prior models contained very few sites, and that the re-
sulting models were so unlike those found in the muscle-specific
set that they were of little value for discrimination. To force the
negative model to focus on muscle-like features, we used the five
predicted motif models shown in Figure 1 as very strongly in-
formed prior motif models, and we set the distribution of the
number of sites per sequence to that obtained from the original
muscle-specific sequence pairs. Consequently, the discrimina-
tion of muscle-specific modules from negative controls stems pri-
marily from the posterior differences in numbers of sites, the
frequencies of each predicted type of site, and the neighboring
relationships among them. Using these parameters, the algo-
rithm predicted modules in 24 of the 100 negative training se-
quence pairs.

The ratio of the probability of a given sequence under the
positive model to the probability under the negative model de-
fines a Bayes factor ratio (Gelman et al. 1995), which gives the
odds that the sequence is regulated in a manner similar to that of
the muscle genes in our positive training set. Figure 2 illustrates
the distribution of Bayes Factors. The Supplemental text gives
details of the Bayes factor calculations.

Validation
For direct validation, we performed an intensive search of the
literature and found a set of 13 additional human genes with

Figure 1 Sequence logos (Schneider and Stephens 1990) of the motif
models predicted by the module sampler for the 24 pairs of human–
mouse sequences in the positive training set. The logos for the reported sites
were produced by aligning the reported human sites for each motif type.
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evidence of specific expression in muscle tissue and reported
TFBSs. For each of these positive test sequences, we selected a
10-kb noncoding fragment that included the reported TFBS. We
processed these and aligned them with mouse sequences as
above. We randomly sampled another 100 from the remaining
2810 10-kb upstream regions as the negative test set. The module
sampler was applied to both sets, using the parameters learned in
training. Modules were found in nine of the 13 positive sequence
pairs and in 22 of the 100 negative sequence pairs. Figure 3A
shows a histogram of the Bayes ratios for these 31 positive and
negative direct validation sequence pairs. The negative controls
contained candidate CRMs with low Bayes ratios; the maximum
Bayes ratio was only 90.0 with only two values greater than 10.
Among the nine positive sequence pairs, five had ratios greater
than 90 and three had ratios much above 90. A Kolmogorov-
Smirnov test (Venables and Ripley 1999) of the difference be-
tween the distribution of the Bayes factor ratios of the sequence
pairs for the positive sequences with predicted modules and
those from the negative sample with predicted modules indicates
that they are very unlikely to be drawn from the same distribu-
tion, with a P-value of ∼0.

To test the algorithm with a larger set of positive sequences,

we used cross-validation. In this process one sequence pair at a
time, the target pair, was removed from the data sets. For the 24
positive training-sequence pairs, the positive models were re-
built, as necessary, with the remaining 23 sequence pairs. Bayes

Figure 2 Histogram of the Bayes ratios for 688 intergenic pairs from the
human and mouse genomes, that had predicted modules, plotted on a
log base 10 scale. The asterisk at log10(194.5)∼2.3 indicates the position
of the Bayes ratio cutoff. Sequences above this point have a q-
value � 0.05. The line shows the robust fit to the Bayes ratio distribution.

Figure 3 (A) Histogram of the Bayes ratio, on a log10 scale, for the
positive and negative validation sequence pairs in which a module was
predicted. There are nine positive sequences with a predicted module,
and 22 negative sequence pairs. (B) The distribution of Bayes ratios, on a
log10 scale, for positive and negative training sequences from cross-
validation which contained a predicted module. A rebuild of the models
was required for only the 24 negative pairs with predicted modules from
the original negative training set, as the other sequences contributed
nothing to the model.

Table 2. The Performance of the Various Sampling Modes in the Prediction of the Sequence-Specific Myf, Mef2, and SRF Sites

Total no. of
reported

Mef2, Myf,
and SRF sites

Total no. of
predicted Mef2,

Myf, and SRF sites

No. matching
reported Myf, Mef2,

and SRF sites

% of predicted
sites overlapping

reported sites

No. of sites predicted
(includes predicted

SP1 model and
unknown model)

Motif (no mouse)a 48 123** 13 27.1 369
Motif b 96 72 48 50 132
Module (no mouse)c 48 9* 0 0 109
Clustered sitesd 96 112 52 54.2 222
Modulee 96 104 66 68.75 176

To examine the importance of the alignment of homologous sequences in finding regulatory modules and the role of clustering and neighboring
interaction, we compared five versions of the algorithm: aRow 1: the motif sampler similar to the one used by Wasserman et al. (2000) (no restrictions
on the clustering of sites and no neighboring effects) applied to the human sequences only; bRow 2: the motif sampler modified to sample
simultaneously from aligned sequence pairs; cRow 3: the module sampler applied to the human sequences only; dRow 4: the module sampler applied
to aligned human mouse sequence pairs but with the neighboring interaction component inactivated (thus, yielding a model that enforces clustering
but has no neighboring effects); eRow 5: the full module sampler, including both clustering and neighboring applied to aligned human mouse
sequence pairs. In all cases, we searched for five different models simultaneously. The * indicates that the algorithm did not predict a Mef2 or SRF-like
model, but only a Myf-like model. ** indicates that two different weak Myf-like models were predicted.
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ratios for these are shown in Figure 3B. This cross-validation pro-
cess was also applied to the 100 negative training sequences, and
a module was identified in 24 of these. The Bayes ratio was below
10 for 21 of these negative pairs. The remaining three had ratios
of 22.5, 35.8, and 130.8. Thirteen of the positive sequences had
Bayes ratios above 130.8 and, as shown in Figure 3B, most of
them had ratios several orders of magnitude higher.

Sequence Data Mining
To search for unreported modules and their associated genes, we
searched for modules in and calculated the Bayes factor ratio for
each of the remaining 2710 human–mouse sequence pairs de-
scribed above. To test for modules, each sequence pair was
sampled by the module sampler using the parameters learned
from the positive model with the modification that the align-
ment and models were not updated. As above, we defined a pre-
dicted CRM to be a fragment of sequence in which there are at
least two predicted sites with intersite spaces �100 bp. In this
case, we reported the sequence pair as having a predicted module
if sampling the sequences with the positive model predicted a
CRM at least one time in 10 rounds of sampling. The probability
of the sequence data was calculated using the positive and the
negative model, and the Bayes factor ratio was calculated. Details
of the procedure are given in the Supplemental text. No module
was predicted in 2022 of the sequence pairs. Figure 2 shows a
histogram of the log of the Bayes ratios for the candidate CRMs
detected in the remaining 688 sequence pairs. To minimize the
risk of erroneously recommending a negative gene for further
study, we calculated the false discovery rate (FDR; Storey and
Tibshirani 2003) as follows. The distribution of the log of the
Bayes ratio of the 688 sequence pairs with predicted modules was
fitted to a normal distribution by robust estimation of the distri-
bution’s location and scale (Venables and Ripley 1999). P-values
were calculated using this normal distribution. The P-values were
used to estimate q-values and the FDR (Storey 2002). Set-
ting the FDR cutoff at 0.05 gives 17 predictions with q-
values less than or equal to a critical Bayes ratio value of
194.5. Table 3 lists these 17 sequence pairs containing the
candidate skeletal muscle CRMs. Eight of the candidate
CRMs are supported by evidence in the literature indicat-
ing that the associated gene is either muscle-specific or
displays selective elevation of expression in muscle. Our
FDR cutoff indicates that �5% of observations above this
critical value are expected to be negative; equating to ∼one
false positive among these 17 pairs. The full results for all
2710 genes are available at http://bayesweb.wadsworth.
org/gibbs/module/.

DISCUSSION
We introduce an algorithm, based on a generative statis-
tical model, for finding CRMs in sequence data that re-
quires only aligned human–mouse sequence pairs of likely
coregulated genes, and does not require prior knowledge
of motif models or other parameters. It makes only mini-
mal assumptions about the sizes and numbers of differing
kinds of binding sites. We also introduce a novel discrimi-
nant procedure for using the inferred models to search for
other genes that might be specifically expressed in a man-
ner similar to those in our study set. Our tests of this pro-
cedure, using both cross-validation and direct validation,
indicate that a subset of muscle-specific genes can be dis-
criminated from control sequences. Application of this
procedure to 2710 upstream sequences from the human
genome identifies 17 genes containing a module (q-
values � 5%).

The algorithm performs well on the positive training set
data, a well studied collection of muscle-related genes with
known regulatory sites. It locates ∼69% of the major reported
TFBSs, and returns motif models matching the binding specific-
ity of the four critical TFs—Mef2, Myf, SRF, and SP1 (Fig. 1).
COMET, which requires prior weight matrices for the TFs, iden-
tified 63% of reported Mef2, Myf, and SRF sites. Thus, COMET
was somewhat more specific but slightly less sensitive than the
module sampler on these data. These results indicate that the use
of aligned human and mouse data and the inclusion of addi-
tional features in the module sampler largely compensate for the
absence of prior knowledge of motif binding patterns.

The predicted motif models were used to search the JASPAR
database of transcription factor binding profiles (http://
jaspar.cgb.ki.se; Sandelin et al. 2004). The predicted Mef2, MYF,
SRF, and SP1 motif patterns each matched their respective bind-
ing patterns in the database as either the top or second hit, with
P-values less than 0.012. Multiple runs of the program on the 24
muscle-specific sequence pairs produced similar models with
similar MAP values (Liu et al. 1995) and small variations in the
number of predicted sites and the number corresponding to re-
ported sites. The results presented here are for the solution with
the highest MAP value. The program had difficulty locating
known binding sites for Tef, a TF linked to regulation in a subset
of skeletal muscle fiber types. Although a fifth motif model was
identified on most runs, the characteristics of the model were not
consistent across the runs. The fifth model sometimes, but not
always, contained reported Tef sites, but none of the associated
motif models matched an entry in the JASPAR database.

The number of different motif models was initially set to
five to facilitate the search for Mef-2, Myf, SRF, SP1, and Tef
binding motifs, as suggested by others (Wasserman and Fickett
1998; Frith et al. 2002). We examined the effect of variations in
the number of different models. With four models, we found that

Table 3. Sequence Pairs Having Both a Bayes Ratio Greater Than 194
and a Predicted Module

Gene
Human

RefSeq ID
Mouse

RefSeqID
Bayes
ratio

EGR1 (Aicher et al. 1999;
Tsai et al. 2000)

NM_001964 NM_007913 2.3854e+09

CSNK1E NM_001894 NM_013767 4.5797e+04
ACTG2 (Carson et al. 2000) NM_001615 NM_009610 3.9155e+04
RXRG (Downes et al. 1994;

Georgiades and Brickell
1997; Rebhan et al. 1997)

NM_006917 NM_009107 2.9500e+04

EEF1A2 (Bischoff et al. 2000;
Knudsen et al. 1993;
Rebhan et al. 1997)

NM_001958 NM_007906 4.5916e+03

STK23 (Brenner 1998) NM_014370 NM_019684 2.4573e+03
IL17B (Fohr et al. 1993;

Hazama et al. 2002)
NM_014443 NM_019508 1.4638e+03

NGFB NM_002506 NM_013609 9.1709e+02
KRT15 NM_002275 NM_008469 7.0175e+02
PVALB NM_002854 NM_013645 5.4857e+02
VAMP3 NM_004781 NM_009498 3.0971e+02
RING1 NM_002931 NM_009066 2.9679e+02
CYR61 NM_001554 NM_010516 2.8015e+02
PPAP2B NM_003713 NM_080555 2.5995e+02
TCAP (Rebhan et al. 1997;

Valle et al. 1997)
NM_003673 NM_011540 2.2401e+02

LZTR1 NM_006767 NM_025808 2.0356e+02
TRIM8 (Vincent et al. 2000) NM_030912 NM_053100 1.9458e+02

Referenced genes have literature evidence of being muscle-specific or of hav-
ing emphasized expression in muscle tissue.
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one of the motifs was a blend of two of the motifs found when
using five different models, and thus we found a more specific
result with five models. The blended motif typically contained a
mixture of reported Mef-2 and SRF sites, which are both members
of the MADS-box family of transcription factors. In our trials
with six motif models, the sixth motif was often empty, or when
not empty was a weak motif that was not reproducible for mul-
tiple runs, which indicated to us the presence of no more than
five identifiable motif types.

Our model distinguishes itself from previous de novo mod-
els in four ways: it (1) incorporates terms that seek to capture
interaction of neighboring TFs, (2) explores variations in the
patterns of conserved base pairs in a binding motif via a frag-
mentation step, (3) searches for sites common to a pair of species,
and (4) employs a generative statistical model. Our results
show that the first three of these factors improved the perfor-
mance of the algorithm. (1) The incorporation of neighbor
interactions into the CRM pattern discovery process im-
proves performance. In the absence of neighbor interactions, the
module sampler produced a solution with a MAP value approxi-
mately equal to the MAP value produced by the full module
sampler. However, in the absence of neighbor interactions, the
number of reported sites correctly predicted for the solution
with the highest MAP was lower (56% vs. 69%) and the total
number of predicted sites was higher (222 vs. 176). An addi-
tional test with a liver-specific data set behaved similarly.
Thus, these interactions seem to contribute significantly to
specificity and sensitivity of the algorithm. (2) We found that
use of the fragmentation algorithm was re-
quired to distinguish SRF sites from MEF
sites. (3) The use of aligned sequence pairs
greatly improved the Gibbs sampler’s abil-
ity to detect TFBSs and CRMs, as shown in
Table 2. In calculating the sampling distri-
bution, we assumed that the individual se-
quences in the pairs were independent. Al-
though this is almost certainly incorrect,
we found that a down-weighting of the
mouse sequences, to adjust for phylogenic
correlation, adversely affected perfor-
mance. We prefer the use of generative sta-
tistical models, because they provide a fac-
ile means for the future incorporation of
additional models of biological processes
such as selective evolutionary pressures.
Our experiences with Gibbs sampling mod-
els from this class and the experiences of
others with hidden Markov models from
this class suggest that taking this path,
though somewhat more demanding at the
outset, will in the long run promote exten-
sions that model emerging biological find-
ings on the mechanisms of transcription
regulation.

We examined three different prior dis-
tributions of the total number of sites per
sequence. Both a prior that was equal to the
reported number of sequences and a Pois-
son prior with � = 3.5 produced very similar
results (results from the former are shown
in Table 1B). The latter yields very similar
motif models for Myf, Mef2, SRF, and Sp1
with 184 total sites and correctly predicts
64.6% of the reported Myf, Mef2, and SRF
sites. Uninformed prior models did not per-
form as well, correctly predicting a much

lower proportion of the reported sites and making a larger num-
making a larger number of predictions.

The relatively small proportion of the total number of hu-
man genes represented by the orthologous gene pairs in our se-
quence mining set stems primarily from a requirement to iden-
tify unique mouse orthologs for each candidate human gene. We
know of no reason why the resulting set should be biased, but we
also have no good evidence that the set is not biased. However,
it was the data set available from the human genome assembly at
the time of the study. The latest revision of the human genome
does not substantially increase this proportion of human genes
with useful mouse orthologs.

We were somewhat surprised that the sampler failed to iden-
tify a CRM in three of the sequence pairs in the positive training
set. However, this finding is consistent with the fact that the
sequences making up the positive training set are regulatory re-
gions of a heterogeneous mixture of regulatory mechanisms. This
heterogeneity is further reflected by the findings from the test
set, in which the sampler could not identify a module in four of
the 13 positive control sequences. We thus suspect that the mod-
ules that we do detect are germane to some specifically regulated
subset of muscle-specific genes.

The use of the FDR approach gave us a means by which to
select a critical value cutoff that did not require input from our
validation studies. The fact that this FDR-based critical Bayes ra-
tio of 194.5 is somewhat greater than the highest ratio among the
negative validations results supports its use. Throughout this
study, our focus has been on producing CRM predictions that are

Figure 4 General parameters that the module sampler attempts to discover. A priori, motif
binding models were modeled by uniform Dirichlet prior models. Nearest neighbor interactions
were modeled as transition probabilities of a Markov chain. This allows us to calculate the posterior
mean estimate of the transition probabilities based on the number of times that each specific type
of binding site follows another and prior pseudocounts. A priori, we assume that all neighboring
pairs also have uniform Dirichlet prior models. The algorithm also allows us to draw inferences
regarding the number of sites per sequence. We chose a prior distribution on the number of sites
per sequence based upon the distribution of reported sites. The separation distance was modeled
as a flat function truncated at 100 bp.
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unlikely to include false positives, that is, which have low q-
values. We thus intentionally tipped the balance toward speci-
ficity with a concomitant loss of sensitivity. In our opinion, the
confidence gained in the predicted set is well worth the tradeoff
of missing some additional muscle-specific genes remaining in
the data set that we mined.

Coexpression alone does not imply coregulation. Genes
may be expressed within a given type of cell through multiple
and cascading responses to a single stimulus, to say nothing of
the complexity that exists in heterogeneous tissues containing
multiple cell types. Thus, even though the module sampler has
the capacity to ignore sequences that do not contain a cis module
pattern common to the rest, we recommend that this approach
be applied only to sets of genes that are likely to be coregulated,
for example, to subsets from large-scale expression studies in cell
cultures that follow a consistent and common time course. For
such sets of coregulated genes, the present results indicate po-
tential to unravel the mechanisms behind their coexpression pat-
terns, through the identification of CRMs and specific TFBSs, and
our findings also show that the resulting models may be em-
ployed to identify additional genes that are regulated in a similar
manner.

METHODS
We adopted a procedure similar to that of Wasserman et al.
(2000). First, we aligned orthologous sections of human and
mouse sequence and identified conserved fragments. Next, we
applied a new Gibbs sampling algorithm, the module sampler,
which simultaneously identifies CRMs (clusters of regulatory
sites), the binding patterns (motifs of unidentified transcription
factors), specific binding sites for each motif, the neighboring
relationship between sites, and site frequencies. Figure 4 illus-
trates the features of the algorithm.

Modules for different genes may vary in the total number of
contributing transcription factors, and in both the number and
order of binding sites for each type of factor. Some of the se-
quences in a data set may contain no sites at all, or no sites for
one or more of the factors involved in regulating the rest. Because
the algorithm is focused exclusively on cis-regulation, it makes
no direct inferences regarding the trans components, the tran-
scription factors. Rather, it infers the DNA binding patterns of
unspecified transcription factors in the form of p different statis-
tical models or motifs. The algorithm infers the total number,
0 � k � kmax, of TFBSs in each module, and the overall distribu-
tion of the number of sites per module. Because the order of the
sites among the CRMs may vary but still reflect ordering prefer-
ences arising from protein–protein interactions, the algorithm
also infers the frequencies of neighboring pairs of TFBSs. To ad-
dress our key aim of finding modules without prior information
on motif binding patterns, we employed uniform (i.e., unin-
formed) prior motif models. In addition, modules are kept com-
pact by the requirement that no successive pair of TFBSs within
a CRM be separated by more than 100 bp.

The algorithm has two phases. The forward phase, as de-
scribed in the Supplemental material, uses recursive sums over all
possible alignments of 0 � kn � kmax sites in the nth sequence, to
obtain Bayesian inferences on the number of TFBSs in the nth
sequence, and partial sums required for its back sampling phase.
Although the algorithm is similar to a hidden Markov model, it
is in fact a change-point algorithm (Liu et al. 2002). This recur-
sion examines the simultaneous placements of all TFBS by sum-
ming over all possible combinations of the placement of p motifs
in up to kmax sites per sequence. For each sequence, the algorithm
infers the total number of sites, kn, the number of each of the p
motifs, and the alignments and orderings of these sites in the nth
sequence. In its back sampling step it simultaneously samples all
kn sites in the nth sequence according to these inferences. As in
previous Gibbs sampling algorithms, the widths of sites are in-
ferred using a fragmentation algorithm (Liu et al. 1995). The
sampling process iterates over the sequences one at a time, using

currently sampled values from all other sequences, to guide the
sampling process toward a converged result. The algorithm is an
extension of the propagation Gibbs sampling algorithm (Liu et
al. 1999) for the alignment of protein sequences. It is imple-
mented in a manner similar to that of the Gibbs Recursive Sam-
pler (Thompson et al. 2003) but differs from it in the inclusion of
site spacing terms and neighboring interactions. For the purposes
of sequence mining, sites were sampled in the sequences 10 times
by the module sampler with the modification that the site align-
ment and models were not updated. If the Bayes factor ratio was
much greater than the critical value associated with the pre-
scribed FDR and the sampler predicted a module, the sequence
pair was deemed likely to be regulated by a module similar to
those found in the muscle-specific regulatory sequences. See the
Supplemental material for details.
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