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ABSTRACT 

Note: Portions of this section have been submitted for publication as: 
Santarnecchi E, Khanna AR, Museus C, Benwell C, Davila P, Pascual-Leone A, Shafi MM. EEG 

microstate correlates of fluid intelligence. Proceedings of the National Academy of 
Science (Submitted, under review); 2016. 

 

The neurobiological correlates of human fluid intelligence (Gf) remain elusive. 

Converging lines of evidence suggest a pivotal role for the efficiency and connectivity of 

anatomically-defined brain networks, but little is known about Gf-related electrophysiological 

dynamics of these networks occurring at native timescales, such as those measured via 

electroencephalography (EEG). Spatiotemporal analysis of state-space dynamics of the EEG 

signal, involving examination of fast-changing, recurring, topographically-defined electric 

patterns termed “microstates,” may enable investigation of the electrophysiological activity of 

distributed cortical networks and their relation to brain characteristics, including Gf. Here, we 

correlated EEG microstate patterns with multiple fluid intelligence measures, and assessed 

changes in microstate patterns after cognitive training aimed at improving intelligence. We found 

that the frequency of activation of specific brain topographies, spatially associated with visual 

(microstate B) and executive control (microstate C) networks, were inversely related to Gf 

scores. When Gf scores were separated into two distinct “dimensions” of intelligence using latent 

factor analysis, each “dimension” correlated with a different microstate, suggesting that each 

microstate class represents a distinct cognitive modality. Cognitive training resulted in a 

posterior shift in the topography of microstate C, possibly reflecting increased prefrontal 

inhibitory control over parietal brain regions. These results highlight the role of fast-changing 

brain electrical states related to visual and executive functions in Gf, as well as the mechanisms 

behind Gf enhancement after cognitive training.  
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GLOSSARY OF ABBREVIATIONS 

 

BOMAT Bochumer Matrizentest 

EEG  Electroencephalography 

ERD  Event related desynchronization 

fMRI  Functional magnetic resonance imaging 

g  General factor (general intelligence) 

Gf  Fluid intelligence 

Gc  Crystallized intelligence 

IQ  Intelligence quotient 

MEG  Magnetoencephalography 

P-FIT  Parieto-frontal integration theory 

RAPM  Raven’s advanced progressive matrices 

RSN  Resting-state network 

tACS  Transcranial alternating current stimulation 
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I. INTRODUCTION 

Note: Portions of this section appeared in the following published work, and is reproduced here 
in accordance with the content license agreement with the publisher: 
Khanna A, Pascual-Leone A, Farzan F. Reliability of resting-state microstate features in 

electroencephalography. PLoS One. Public Library of Science; 2014;9(12):e114163. 
 
Note: Portions of this section have been submitted for publication as: 
Santarnecchi E, Khanna AR, Museus C, Benwell C, Davila P, Pascual-Leone A, Shafi MM. EEG 

microstate correlates of fluid intelligence. Proceedings of the National Academy of 
Science (Submitted, under review); 2016. 

 

Formulation of human intelligence: G, Gf, and Gc 

In 1904, Charles Spearman observed that the performance of schoolchildren on a variety 

of school performance measures, including French and English grammar, mathematics, Classics, 

pitch discrimination, and musical ability, were all positively correlated with each other – far 

beyond what would be expected if each measure involved an independent component of mental 

ability (1). He hypothesized that these measures constituted a “Hierarchy of Intelligences,” atop 

which was a factor termed “General Intelligence,” or g, which was an intrinsic feature of each 

child’s overall intellectual ability and explained the high degree of correlation among 

performances on seemingly disparate tasks. The g factor quantifies the degree of correlation 

among such tests, and aims to measure the degree of overall intellectual ability of each subject. 

This finding – of positive correlation among mental test scores, despite large variation in test 

content – has been repeatedly observed in studies of different populations, age groups, test types, 

difficulty levels, and time constraints (2,3). Indeed, this autocorrelation has been called 

“arguably the most replicated result in all psychology” (4). 

 Catell and Horn subsequently modified Spearman’s formulation of g by suggesting that g 

was separable into two factors, termed crystallized intelligence (Gc) and fluid intelligence (Gf). 

Crystallized intelligence is a knowledge-based component that refers to abilities accrued across 

one’s lifespan through education and experience. Tests of Gc broadly involve challenges of 

information retention, organization, and retrieval. In contrast, fluid intelligence refers to the 

ability to think abstractly, solve novel problems, apply logical and probabilistic reasoning, and 

learn – skills with a “fluid quality of being directable to almost any problem” (5). Fluid and 

crystallized intelligence are correlated (6). Some authors have taken this correlation to suggest a 

higher-level construct of g, of which Gc and Gf are components (7), while others have argued 
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that g is a statistical artifact, perhaps arising from imperfections in tests used to measure Gf and 

Gc, and that g holds limited neuropsychological relevance (8). Catell proposed an “Investment 

Theory,” in which individuals “invest” fixed amounts of Gf into acquiring Gc (5,9). Despite 

debate on the nature of their relationship, the distinction between Gc and Gf as separate 

constructs of human intelligence is widely accepted. 

 While Gc can be increased with schooling, study, experience, and other means of 

information acquisition, Gf seems to be less mutable. The rank order of performance on general 

intelligence tests loading on Gf-related components remains remarkably stable over time. For 

example, a study of repeated intelligence quotient (IQ) testing using the revised Wechsler 

Intelligence Scale for Children (WISC-R) on 794 children at age 7, 9, 11, and 13 concluded that 

there was very little naturalistic change in IQ from ages 7-13, and that idiosyncratic, 

unpredictable factors were responsible for the minority of cases in which students exhibited 

significant improvements in IQ (10). Another longitudinal study found that scores on a general 

intelligence test taken at ages 11 and 79 had an estimated correlation of 0.73, suggesting a high 

degree of stability over the entire lifespan (11). Moreover, Gf is highly heritable, suggesting a 

physiologic basis for individual differences in Gf and its stability over time (12,13).  

Despite this apparent stability, the idea of Gf as a stable and immutable cognitive 

characteristic has been recently challenged by studies demonstrating enhancement of Gf in 

healthy individuals following external interventions. This was vividly demonstrated by Jaeggi et 

al., who showed that cognitive training with a demanding working memory task over 8-19 days 

resulted in performance improvement on different tests of Gf in a dose-dependent manner with 

respect to amount of training (14). A later meta-analysis of 20 studies showed that training using 

an n-back program produced small but significant improvements in Gf (15). In addition to 

cognitive training paradigms, a few studies have demonstrated that application of transcranial 

alternating current stimulation (tACS) is also capable of transiently improving Gf. This was first 

shown by Santarnecchi et al., who applied γ-frequency tACS over the left middle frontal gyrus 

that resulted in shortening of time required to find the correct solution in a visuospatial abstract 

reasoning task used to measure Gf (16,17). Another group showed that θ-frequency tACS over 

left frontal and left parietal areas resulted in similar improvements, with greater improvements 

observed after left parietal vs frontal stimulation (18). Together, these reports indicate a highly 



EEG microstate correlates of Gf  Arjun R. Khanna 
 

8 

dynamic neurophysiological component of Gf, and enable study of dynamic brain rearrangement 

following external “perturbation” eliciting an increase in performance (see below). 

 There is considerable interest in understanding the basis of individual differences in g, 

and in particular Gf. This is because Gf is correlated with several socioeconomic factors, such as 

academic achievement and occupational success. Intriguingly, there is a robust association 

between Gf and longevity (19). For example, in a systematic review of 9 studies in which early 

life IQ was compared to mortality, all 9 studies showed that mortality increased in groups with 

lower IQ; belonging to the lowest quartile of IQ compared to the highest quartile was associated 

with between 50-100% increased risk of death (20).1 Moreover, Gf usually declines with age and 

in many neurodegenerative disorders, which plays a key role in the dramatic functional 

impairment of many chronic-degenerative neurological conditions (21). Thus, a greater 

understanding of the basis of differences and changes in Gf has widespread relevance for aging, 

education, neuropsychiatric disease, socioeconomic health disparities, and more.  

 

Neurobiology of Gf: Convergence toward P-FIT theory 

The neurobiological basis of Gf is one of the most enduring and elusive questions in 

modern psychology and neuroscience. Over more than two centuries of research into this 

question, two schools of thought emerged: one suggesting that the entire brain functions as a 

single entity, from which higher cognitive function, including intelligence, emerges; and another 

proposing that discrete cortical regions are independently responsible for different cognitive 

facilities. These ideas were integrated by Pavlov, who first suggested that higher cognitive 

function was due to interactions between distributed cortical loci – an idea that has persisted to 

the present day. This concept has guided modern neuroanatomical and neuroimaging studies of 

Gf, in which the activity of specific cortical loci – or the functional interaction between them – 

are studied in relation to intelligence. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 Some have argued that the association between intelligence and mortality is confounded by socioeconomic status; 
specifically, that intelligence is associated with more education, which may ultimately place individuals of higher 
intelligence into healthier environments. Statistical adjustment for socioeconomic status does lessen or eliminate the 
association between intelligence and mortality, but not consistently (20). Furthermore, the direction of causality 
between intelligence and education/environment is unclear; while individuals with more education may achieve 
higher IQ, it may also be true that higher IQ makes an individual more likely to undergo more education. Indeed, 
one provocative paper has suggested that variance in intelligence is the “fundamental cause” of the association 
between socioeconomic status and health disparities (105). 
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There is now a large and rapidly growing body of neuroanatomical and neuroimaging 

literature on the subject of the neurobiological bases of Gf. Recently, Jung & Haier (2007) 

conducted a comprehensive review of all modern neuroimaging studies and identified 

convergence among these studies toward a central role for discrete parieto-frontal networks in 

human intelligence (22). Their proposed “Parieto-Frontal Integration Theory” (P-FIT) involves 

integration of multiple distributed brain regions into large-scale networks that involve a variety 

of tasks, including perception and early processing of visual and auditory information 

(extrastriate cortex, fusiform gyrus, and Wernicke’s area), abstraction and elaboration of input 

(supramarginal, superior parietal, and angular gyri), solution generation and testing (frontal 

cortex), and suppression of competing responses (anterior cingulate cortex), all of which requires 

intact white matter tract to pass information among these distributed loci. Although the P-FIT 

theory has been challenged, it nevertheless is recognized as a reasonable model roughly 

consistent with existing neuroimaging data, and provides a valuable framework for the 

generation and testing of future hypotheses. 

 Notably, Jung & Haier did not include EEG or magnetoencephalography (MEG) data in 

the formulation of P-FIT, citing difficulties with spatial localization of electric sources for these 

techniques, but acknowledging their superiority in providing greater temporal resolution for the 

study of parieto-frontal networks. Indeed, although there are some reports of EEG correlates of 

intelligence, understanding the relationships among EEG, distributed cortical networks as 

identified in P-FIT, and Gf remains difficult. 

 

Electroencephalographic correlates of Gf 

 Correlations between resting-state EEG measures and Gf have been reported in numerous 

prior studies, and have been reviewed extensively elsewhere (23). These studies have repeatedly 

shown that, in general, there is a positive correlation between resting-state EEG power within the 

α frequency bandwidth and a negative correlation between EEG power within the (lower-

frequency) δ bandwidth (23,24). Interestingly, when challenged with a cognitive task, the reverse 

associations are observed – a large phasic decrease in α power is observed, while a large phasic 

increase in δ power can be observed in certain cases (25,26). This attenuation of α rhythms in 

response to stimulus or cognitive load has been termed “event-related desynchronization,” or 

ERD. Interestingly, ERD evoked from visual stimuli is separable into two components, one 
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focused over the occipital lobes in the high α range (10-12 Hz), and another over the parietal 

areas in the low α range (6-8 Hz) (27).  

The functional interpretation of these findings is based on the hypothesized 

neurophysiological basis of the α rhythm itself – α oscillations measured at the scalp represent 

synchronized neuronal activity within a relatively large number of cortical modules over a few 

square centimeters (28). Thus, high resting-state α power reflects a high degree of baseline 

synchronization, while task-associated ERD of the α rhythm represents local desynchronization 

of these neural ensembles – likely representing transient activation, decreased local coherence, 

and increased complexity. Spatial and spectral distinction between two independent components 

of visual-evoked ERD may represent processing of input stimuli in different brain regions and by 

different subsets of neurons. Interpretation of the correlation between resting-state (tonic) α 

power and intelligence is less clear, but may represent a form of “neural efficiency,” by which a 

high degree of resting α synchronicity reflects low baseline occupation of underlying ensembles, 

allowing a greater degree of activation (ERD) in response to cognitive load.  

 

Spatiotemporal EEG analysis: Microstate analysis 

Traditional techniques of analyzing resting-state EEG, such as those described above, 

involve analysis of individual waveforms at selected sites of interest over the electrode array, 

typically converting the recorded signal to the spectral (frequency) domain to make inferences 

about the nature of patterns of neuronal activity in relation to neurocognitive phenotypes of 

interest. However, this approach has several important drawbacks. First, it does not encode 

spatial characteristics of signal simultaneously generated at all electrodes over the scalp, which 

contains potentially important information about the distribution and temporal dynamics of 

neural signal generators. Second, conversion to the spectral domain assumes the EEG signal can 

be represented as a linear dynamical system that can be represented through the Fourier series as 

a linear function of a set of sine waves. However, neural activity is likely better represented as a 

nonlinear dynamical system. Furthermore, conversion to the spectral domain requires loss of 

temporal resolution, which may preclude detection of certain fast neural phenomena. Third, 

analysis of individual waveforms is highly dependent on the reference electrode(s) selected. 

Spatiotemporal analysis is an alternative approach that simultaneously considers the 

potential recorded at all electrodes over the scalp array, defining a “map topography” of the 
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spatially distributed electric field that is completely independent of the reference chosen. 

Microstate analysis is one such spatiotemporal approach, in which these instantaneous potential 

topographies are considered representations of the “state” of the system, and the temporal 

evolution of these states is analyzed. The method is described in detail in METHODS, and is 

summarized in FIGURE 1. This method was first proposed by Lehmann in 1987, who showed 

that the α frequency band (8–12 Hz) of multichannel resting-state EEG could be parsed into 

discrete states in this way (29). When the multichannel resting-state EEG signal is considered as 

a time series of topographies of electric potentials, two remarkable properties emerge. First, 

although there are a large number of possible topographies in multichannel recording, a majority 

of the signal can be represented by surprisingly few maps. Interestingly, most studies of resting-

state EEG consistently find the same four archetypal maps – labeled A, B, C, and D – that 

explain more than 70% of the total topographic variance. Second, there is a well-defined 

temporal structure of these maps, in that a single topography remains dominant for about 60-100 

ms before abruptly transitioning to another topography. These periods of quasi-stability of a 

single topography are “microstates.” Thus, the multichannel EEG signal can be represented by a 

single time series of microstates alternating among themselves at discrete intervals. 

Compared to traditional frequency power EEG analysis, spatial analysis of EEG using 

microstates has several advantages. Perhaps most importantly, spatial EEG microstate analysis 

integrates information from all electrodes over the scalp to generate an instantaneous depiction 

of the electric field distributed over the entire electrode array. Analysis of the temporal evolution 

of these electric topographies gives insight into quasi-stable periods of long-range coherence 

between distant electrodes, reflecting functional coordination within large-scale cortical 

networks. Furthermore, this technique does not assume the EEG signal is a linear dynamical 

system. The spatial topography of the EEG signal can be defined at any point in time 

independently of the preceding or subsequent topography and therefore has sub-millisecond 

resolution, unlike conventional frequency power analysis that integrates activity over sliding 

time windows. Finally, microstate maps are completely reference-independent. Microstates are 

therefore better suited to detect rapid, dynamic activity in large-scale neurocognitive networks 

than traditional spectral analysis of EEG. 

 

Microstates and resting-state networks 
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 The neurophysiological significance of EEG microstates is not precisely known, but there 

is evidence to suggest that microstates are each associated with distinct cognitive modalities that 

arise from the activity of distributed cortical networks. Early indication that EEG microstates 

encode physiologically relevant information about cortical activity came from several studies 

observing abnormalities in the microstate time series that were specifically associated with 

certain neuropsychiatric disorders. For example, the average duration of microstates B and D are 

significantly shortened in schizophrenia relative to controls (30), while the average duration of 

microstate C is significantly shortened in frontotemporal dementia (31). Other microstate 

aberrancies have been noted in Alzheimer’s dementia, depression, Tourette’s syndrome, and 

panic disorder, and have been reviewed by the present author elsewhere (32). 

 In addition to disease states, individual microstates have been associated with specific 

cognitive modalities. In one early study, volunteers undergoing resting-state EEG recording were 

asked to write down “what went through his mind just before” an audio prompt was played. The 

authors found that thoughts related to visual imagery vs abstract thought were associated with 

different preceding microstate topographies (33). A more recent study primed healthy volunteers 

with visual prompts intended to engage the subject in object-visualization, spatial-visualization, 

and verbalization cognitive modalities, and found that the percent of total time spent in 

microstate A was greater during visualization, whereas the percent of total time spent in 

microstate B was greater during verbalization (34). Taken together, these results indicate that 

different microstate classes reflect the activity of underlying neural generators that drive distinct 

modes of cognition. 

 There is emerging evidence that EEG microstates arise from the activity of so-called 

resting-state networks (RSNs) that have been identified in functional magnetic resonance 

imaging (fMRI) studies (35,36). Exploiting the scale-free nature of the EEG microstate time 

series (37), Britz and colleagues convoluted the EEG microstate time series with resting-state 

BOLD fMRI signal and found one-to-one temporal correlations between microstates A, B, C, 

and D, with RSNs associated with phonological processing, the visual network, the saliency 

network, and attention, respectively (38). Two other studies have also found correlation between 

microstates and RSNs, but they did not limit their analysis to the four archetypal resting-state 

EEG microstates found previously and in the study by Britz et al., so a comparison between these 

findings is difficult (39,40). Nevertheless, these combined EEG-fMRI studies suggest that EEG 
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microstates and fMRI RSNs may arise from the activity of the same underlying neural 

generators. Although further work is required to corroborate and further explore the association 

between EEG microstates and RSNs, these preliminary data indicate that microstate analysis 

may represent a novel approach to interrogating the activity of RSNs at native temporal 

resolution that is unobtainable by fMRI or other imaging modalities. 

 

Motivation and study design 

 Our motivation for the present study is as follows. The neurobiological basis of Gf 

remains unclear. Neuroimaging studies have suggested that integrated, distributed parieto-frontal 

networks play an important role, but the temporal dynamics of these networks are uncertain. 

EEG microstate analysis is a spatiotemporal approach to multichannel EEG analysis that can 

give insight into the temporal dynamics of distributed cortical networks. Thus, we endeavor to 

identify EEG microstate correlates of Gf to gain insight into the temporal dynamics of cortical 

networks that underlie intelligence. 

 To gain insight into this question beyond a cross-sectional correlational analysis between 

Gf and EEG microstates, some subjects underwent a cognitive training program aimed at 

transiently increasing Gf, as has been successfully accomplished in prior studies. Thus, by 

examining the degree of convergence between behavioral and microstate patterns observed 

before and after intervention to improve Gf, we hoped to obtain more valuable insight into core 

neurophysiologic features responsible for fluid cognitive capacity. 

 In the present study, 64 subjects underwent baseline testing involving resting-state EEG 

and Gf measurement using three standard tasks – Raven’s Advanced Progressive Matrices 

(RAPM), Sandia matrices, and Bochumer Matrizentest (BOMAT). 42 of these subjects 

underwent 10 cognitive training sessions each lasting 30 minutes on an online platform. After 3 

weeks, all subjects were re-tested with resting-state EEG and Gf measurement. Microstate 

analysis was performed on EEG recordings and was correlated with Gf measures. 

 There are multiple models of the role of various brain networks in performing Gf-related 

tasks, each emphasizing different contributions for visual, parietal, and prefrontal regions. Some 

have argued that increased efficiency at lower levels of processing – early perceptual stages, 

loaded on occipital and parietal cortices – might enhance higher-level prefrontal computation and 

therefore represent the primary source of Gf variance (41,42). Others suggest that core prefrontal 
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regions related to cognitive control are responsible for the bulk of processing, and play the most 

relevant role in explaining Gf variance (43,44). Intermediate scenarios have also been proposed 

(45).  

 These models and the data that underlie them indicate high correlation between visual 

perceptual regions (early processing), as well as prefrontal regions (cognitive control), and Gf. 

Thus, we hypothesized that (i) features of specific EEG microstates related to the activity of 

prefrontal and visual areas will display the tightest link with individual Gf profiles, with (ii) 

behavioral changes after cognitive training correlating with modification of the same microstates 

and little or no involvement of other states. Moreover, we predicted that (iii) successful training 

outcomes would correspond to an enhancement of the pre-existing relationship between Gf and 

aforementioned microstates. 
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II. METHODS 

Note: Portions of this section have been submitted for publication as: 
Santarnecchi E, Khanna AR, Museus C, Benwell C, Davila P, Pascual-Leone A, Shafi MM. EEG 

microstate correlates of fluid intelligence. Proceedings of the National Academy of 
Science (Submitted, under review); 2016. 

 

The study protocol described below was approved by the Beth Israel Deaconess Medical 

Center Ethical committee. 

 

Subject Recruitment 

Data were collected as part of an ongoing study at the Berenson Allen Center for 

Noninvasive Brain Stimulation (Beth Israel Deaconess Medical Center, Boston, MA) designed to 

test the effect of cognitive training on Gf. Participants were recruited from the community by 

online advertisement, and contacted by e-mail or by phone. Inclusion criteria were as follows: 

age 18-65 years, normal healthy volunteer, English native-speaker. Exclusion criteria were as 

follows: corrected visual acuity <60%, pregnancy, sleep deprivation (less than 6 hours a day), 

history of migraines, history of fainting spells of unknown or undetermined etiology that might 

constitute seizures, history of seizures, diagnosis of epilepsy, history of abnormal (epileptiform) 

EEG or family history of treatment resistant epilepsy, contraindication to MRI (e.g. 

ferromagnetic implant, significant claustrophobia), any implanted medical devices (i.e. Cardiac 

pacemaker, deep brain stimulator, medication infusion pump, cochlear implant, vagal nerve 

stimulator) unless otherwise approved by the responsible MD, and substance abuse or 

dependence within the past 6 months. 

 Recruitment and selection resulted in a final sample of 74 subjects. These subjects 

underwent baseline testing, cognitive training or no intervention, and post-training assessment as 

described below. Six subjects did not complete the cognitive training or post-training assessment, 

and were excluded from the study. The final sample was composed of 68 subjects (38 males, 30 

females), with mean age of 29 years (21-49, SD=12) and a mean of 15 years of education (range 

11-23, SD=3).  

 

EEG recording & data preprocessing 
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Resting-state EEG was recorded using a 20-channel, gel-electrode system from 

Neuroelectrics (Barcelona, Spain). The system includes 20 leads covering 19 positions of the 10-

20 system (C3, C4, O1, O2, Cz, F3, F4, F7, F8, Fz, Fp1, Fp2, P3, P4, Pz, T3, T4, T5, T6) and 

was recorded at a sampling rate of 500 Hz. Data were collected while the participants sat 

comfortably with their arms placed on an armrest, eyes open, fixating on a crosshair placed on a 

white wall in front of them. Recording lasted for 5 minutes.  

 We used the EEGLAB toolbox (v13.2.1) in MATLAB (vR2012b) to preprocess recorded 

EEG data (46). Data were first visually inspected, and channels showing significant artifact or 

noise were removed. Data were filtered for power line noise using a notch filter at 60Hz. The 

data were bandpassed between 1-100 Hz using a zero-phase second-order Butterworth filter, and 

were subsequently divided into 3-second epochs. Ocular, muscle, and electrode artifacts were 

removed using the ADJUST EEGLAB plugin (47), a tool previously developed for independent 

component analysis (ICA) and semi-automated detection and removal of eye movements and 

electrode discontinuities. We developed and used custom scripts for removal of independent 

components corresponding to muscle artifact. Rejected channels were then interpolated using 

built-in EEGLAB scripts. Cleaned data were used for microstate analysis as described below. 

Four subjects had EEG recordings with more than 2 channels excluded or with persistent 

significant muscle or electrode artifact after the ICA preprocessing, and were excluded from the 

study. Our final sample contained 64 subjects with both pre- and post- training microstate results. 

 

EEG microstate analysis 

Microstate analysis of the collected spontaneous EEG recording was performed 

according to a protocol described and validated elsewhere (48). For each of the 128 individual 

EEG recordings (64 pre- and post-training), we first identified points of highest topographic 

signal-to-noise ratio (SNR) by calculating the global field power (GFP) at each data point. The 

GFP is a single numerical representation of the magnitude of the field strength at each moment in 

time (49), and is equal to the root-mean-square across the average-referenced electrodes 

(equivalently, the standard deviation of the signal at all electrodes): 

!"#(!) = !!(!)− !(!) !!
!!!

!  
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Where !!(!) is the voltage at electrode ! at time !, !(!) is the mean voltage across all 

electrodes at time !, and ! is the number of electrodes. Topographies that occur at local maxima 

of the !"#(!) curve represent instants of highest field strength and greatest SNR. Furthermore, 

EEG topography tends to remain stable around topographies at local maxima of the !"#(!) 
curve, and these topographies are representative of topographies at surrounding points in time 

(48,49). Thus, representation of the original data as a set of topographies at local GFP peaks is a 

valid method of data reduction. We extracted these topographies at local GFP maxima, hereafter 

referred to as “original maps” from each of the 128 individual recordings. 

 Each of the 128 sets of original maps was then individually submitted to a topographic 

atomize and agglomerative hierarchical clustering (TAAHC) algorithm using the CARTOOL 

software (50). Details of the TAAHC algorithm can be found elsewhere (48). Briefly, the 

algorithm begins with each original map considered an independent cluster. Each iteration of the 

algorithm begins with ! clusters, each comprised of a set of member topographies. Each of the n 

clusters is topographically represented by an “average cluster map,” which is derived by taking 

the electrode-by-electrode mean of the set of member topographies. (In the first iteration, all 

submitted topographies are considered to be individual clusters.) The “worst” cluster is then 

identified; in our implementation, this is the cluster with the lowest summated correlation 

between each constituent map and the average cluster map. Correlation is analogous to the 

Pearson product-moment correlation coefficient between two vectors: 

! = (!! ⋅ !!)!
!!!

!!!!
!!! × !!!!

!!!

 

The “worst” cluster is eliminated (“atomized”), and its member topographies are 

reassigned (“agglomerated”) to any one of the remaining ! − 1 clusters based on the degree of 

correlation between the member topography and the average cluster map of each cluster. After 

each iteration, measures of clustering quality were recalculated. Specifically, we calculated the 

cross-validation (CV) criteria (51) and the Krzanowski-Lai (K-L) criteria (52). This process is 

iteratively repeated. After conducting TAAHC on each of the 128 individual recordings, we 

analyzed the clustering quality metrics for each dataset to identify the optimal number of 

microstates to identify in the data. Across all 128 individual recordings, CV criteria was 

minimized at 2.75 ± 0.57 clusters, and the K-L criteria indicated an optimal 4.03 ± 0.39 clusters, 
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suggesting that 3 or 4 clusters would optimally describe the data. This is consistent with a 

number of prior studies of resting-state EEG that have described optimal clustering with 4 

microstate classes (24, 35). Thus, we chose to extract four clusters from each recording. 

 The data consisted of two subject groups in two conditions (before and after 

intervention). We collected the four average cluster maps from each EEG recording within each 

of these four groups and submitted them to another round of TAAHC to derive four group-level 

representative microstate maps. The four representative microstate maps in each group were 

labeled A, B, C, and D, and strongly resembled the “archetypal” microstates A, B, C, and D that 

have been identified in many prior studies (FIGURE 1A) (53). In the final step, the microstates 

A, B, C, and D from each group were fit onto the original maps from all EEG recordings within 

each respective group. Each original map is labeled A, B, C, or D depending on which microstate 

map has the highest correlation to the original map. Thus, each recording can be re-expressed as 

an alternating sequence of microstates A, B, C, and D. A number of values can be calculated 

from these sequences. We calculated the average microstate lifespan, frequency of appearance, 

and fraction total covered time of each microstate – values that have been calculated in numerous 

prior studies and whose test-retest reliability has been previously validated (48). The lifespan of 

each microstate is calculated as the time during which all successive original maps were labeled 

as the same microstate, starting and ending halfway between the last original map of the 

preceding microstate and the first original map of the following microstate, respectively. The 

frequency of each microstate is the number of new appearances of each microstate per second. 

The fraction total covered time of each microstate is the percentage of total time that is spent in 

each microstate class (note that these three values are not completely independent measures). We 

compared these values between the two groups and conditions, and determined the correlation 

between these values and measures of fluid intelligence. 

 

Fluid intelligence measurement 

 We tested all subjects before and after cognitive training vs. no intervention using three 

different tests previously reported to measure Gf, namely, Raven’s Advanced Progressive 

Matrices (RAPM) (54), Sandia matrices (55) and BOMAT (56). As previous authors have 

argued, these tests of Gf likely stress slightly different subcomponents of Gf, such as filtering, 

working memory, visuospatial reasoning, and mental rotation, which in turn load on different 
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brain regions (57,58). Thus, we performed a dimensionality reduction procedure (latent factor 

analysis) based on principle component analysis (PCA) to use the results of these three tasks to 

identify independent “factors” encoded in these measures. 

RAPM is a commonly used abstract reasoning test considered to be an excellent 

estimator of g (59). The test involves selection of one out of six options given that best completes 

a rectangular spatial pattern presented in each challenge. RAPM provides a measure of Gf by 

sampling from verbal-analytic and visual-spatial domains that have been shown to be predictive 

on a variety of related cognitive tasks (59). The number of RAPM stimuli is fixed and limited. In 

this study, two balanced lists of matrices were created for Pre- and Post-testing by using statistics 

obtained in a separate longitudinal study of a separate cohort. 

Sandia matrices were recently developed as an alternative to RAPM to overcome the 

fixed number of available Raven’s matrices by providing more than 3000 challenges created by 

combining shape, color, orientation, and other stimuli (55). The structure of Sandia matrices 

closely resemble RAPM; subjects are presented with a 3x3 stimulus grid with one missing, and 

given 8 possible choices from which to choose the one that best completes the grid. Each 

question is categorized based on the number of mental operations required to identify the correct 

solution; we used only 3-relation matrices in this study to avoid the ceiling effect observed with 

1- and 2-relation tests. Furthermore, Sandia questions involve either logical operand 

manipulation (LOG tasks) or relational syllogisms (REL tasks). In this study, we created two 

balanced lists of 45 stimuli containing both LOG and REL tasks for testing before and after 

intervention. 

BOMAT was motivated by the need to measure and discriminate Gf among high 

performers. It has similar structure to RAPM and Sandia; the subject is asked to identify the 

missing item that best completes a pattern of a 5x3 matrix, choosing from six options. In this 

study, we used the “advanced-short” version of BOMAT. Two lists of stimuli were been created 

as specified in the test manual for pre- and post-testing. 

 

Identification of task-independent components of fluid intelligence 

 To obtain task-independent measures of Gf, and to attempt separation among components 

of Gf that load on different cognitive substructures, we performed a PCA procedure on these 

three Gf measures (RAPM, Sandia, and BOMAT) to identify independent components measured 
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by these tests. This PCA procedure is based on the varimax rotation (60) applied on the 

correlation matrix of the results obtained from each measure. Given prior evidence that Sandia 

LOG and REL components engage different cognitive processes that load on different brain 

regions, these were considered as separate measures (55). At baseline (pre-intervention), scores 

on Gf tests were (mean +/- SD, range): RAPM, 77% +/- 15%, 13-100%; Sandia-LOG, 57% +/- 

16%, 19-94%; Sandia-REL, 57% +/- 16%, 18-82%; and BOMAT, 54% +/- 23%, 7-100%. We 

employed a data-driven approach to select the optimal number of components among these 

scores (eigenvalue > 1), which resulted in two components (FIGURE 2A; component 1 

eigenvalue = 3.355, component 2 eigenvalue = 1.24, total variance explained = 81%, component 

1 variance explained = 58%, component 2 variance explained = 23%). Component 1 (Gf-1) 

includes scores from RAPM and Sandia-LOG, whereas component 2 (Gf-2) includes scores from 

BOMAT and Sandia-REL. We applied the Bartlett transformation on individual scores to 

convert scores on the administered tests into weighted component values. The Bartlett 

transformation is a least-squares procedure which minimizes the sums of squares of the factors 

over the range of variables, and is advantageous for its univocality, i.e. each variable is highly 

correlated with one factor only, enabling easier interpretation (61). The transformed scores (Gf-1 

and Gf-2) did not show any sex differences (FIGURE 2D). 

 

Cognitive training 

42 subjects underwent a computer-based executive-function training program developed 

for this study by SIM-COACH Games (http://www.simcoachgames.com/). This computer game 

is based on multiple executive function tasks, including working memory, inhibitory, and 

switching abilities (62,63), and includes an adaptive progression algorithm that allows the user to 

move to higher levels only after specific proficiency is achieved. At higher levels, users are also 

challenged with logical operands (e.g. AND, OR, XOR) for training of abstract-reasoning skills. 

Training involved 10 sessions each lasting 30 minutes over the course of two weeks that 

was administered under observation at our laboratory. Participants received brief instructions 

prior to the first training session, and then received hints and suggestions as needed during the 

course of training. 26 subjects did not receive any intervention for 3 weeks, only receiving pre- 

and post-Gf and EEG measurements. 
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 A few prior studies have indicated that transcranial electrical stimulation may be effective 

in improving Gf or potentiating its improvement by interventions designed to improve Gf, such 

as cognitive training (64,65). In an effort to achieve this effect, some participants underwent 

transcranial electric stimulation concurrently during the training program (transcranial random 

noise stimulation, n=13; transcranial direct current stimulation, n=10; multifocal transcranial 

direct current stimulation, n=8; transcranial alternating current stimulation, n=7). The objective 

of the present study was not to examine or delineate among the effects of transcranial 

stimulation; thus, they are not considered in the following analysis. However, they were included 

in the final statistical model as covariates. 

 

Statistical analysis 

 All analyses were performed using IBM SPSS Statistics (Version 21, release 21.0.0) and 

MATLAB (Release 2012b, Mathworks). 

 

Baseline correlates of Gf 

 To determine baseline correlates of Gf, the Pearson product-moment coefficient between 

both Gf Bartlett scores and factors calculated from the microstate time series (frequency, 

coverage, average life, GFP peaks/appearance, transition probabilities among microstates, global 

GFP peaks/sec, global frequency, and global average life) were calculated. The results are 

displayed for all n=64 subjects prior to intervention, with α=0.05 corrected for multiple 

comparisons using the Bonferroni correction. 

 

Changes in Gf and microstate properties after cognitive training 

 Separate repeated measures Analysis of Covariance (rm-ANCOVA) models for Gf-1, Gf-

2, and all microstate time series properties (listed above) were constructed, including factors 

“TIME” (2 levels, PRE vs POST) and “INTERVENTION” (2 levels, TRAINING vs. 

CONTROL). Gender, age, education, and transcranial electric stimulation group were included 

as covariates. In the event of significant TIME or INTERVENTION effects, further simple main 

effects were analyzed using a similarly structured ANCOVA to decompose the effect. Post-hoc 

comparisons were conducted using α=0.05 corrected using the Bonferroni correction for multiple 

comparisons. 
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Microstate topographic changes after cognitive training 

 The impact of cognitive training on microstate structures was evaluated with a 

topographic analysis of variance (TANOVA) test to compare each microstate class (A, B, C, and 

D) among the two subject groups in the two conditions (TRAINING vs. CONTROL). TANOVA 

utilizes randomization statistics to test the magnitude of the difference between two groups of 

maps against the null hypothesis that the assignment of maps to groups is random (66). The two 

groups of maps to be compared are each electrode-by-electrode averaged to produce two group-

averaged maps. The test statistic representing the magnitude of the difference between these two 

group-averaged maps is the global map dissimilarity between them: 

!"#(!, !) = (!! − !!)!!
!!!

!  

Where !! and !! are the potentials at electrode ! in the maps being compared. 

 After the actual test statistic is calculated, the maps are randomly shuffled between the 

two groups, and the test statistic is recalculated. This process is repeated 5000 times to generate a 

distribution of test statistics under the null hypothesis that the maps are randomly distributed 

between the two groups. The fraction of test statistics greater than the actual test statistic is the p-

value. 

 

Interaction between microstate changes and Gf changes after cognitive training 

Changes in Gf-1 and Gf-2 after cognitive training (vs. no contact) were calculated for the 

entire sample, and correlated with all calculated microstate properties (frequency, coverage, 

average life, GFP peaks/appearance, transition probabilities, global GFP peaks/sec, global 

frequency, and global average life). Changes were calculated in a paired fashion: baseline scores 

were subtracted from post-intervention scores to obtain the magnitude and direction of change in 

each measure. Post-intervention Gf scores were subjected to the Bartlett transformation based on 

weights obtained on pre-intervention data. All analyses were conducted with α=0.05 corrected 

for multiple comparisons with the Bonferroni correction. 
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III. RESULTS 

Note: Portions of this section have been submitted for publication as: 
Santarnecchi E, Khanna AR, Museus C, Benwell C, Davila P, Pascual-Leone A, Shafi MM. EEG 

microstate correlates of fluid intelligence. Proceedings of the National Academy of 
Science (Submitted, under review); 2016. 

 

Baseline correlates of Gf 

 All microstate values calculated are reported in SUPPLEMENTARY TABLE 1. 

Correlation between Gf scores and microstate values revealed distinct patterns of correlation 

between specific microstate values and Gf-1 vs. Gf-2. There was a significant negative 

correlation between Gf-1 and the frequency of microstate C (r = –0.503, p = 0.002) and the 

average number of GFP peaks/sec (r = –0.451, p = 0.008). There was a significant negative 

correlation between Gf-2 and the frequency of microstate B (r = –0.346, p = 0.012), the transition 

probability of A�B (r = –0.281, p = 0.019), and the transition probability of D�B (r = –0.279, 

p = 0.018). A full set of correlation coefficients is presented in SUPPLEMENTARY TABLE 2. 

 

Changes in Gf after cognitive training 

The rm-ANCOVA model for Gf-2 revealed significant effects of TIME [F(1,132) = 

4.376, p<0.05] and INTERVENTION [F(1,132) = 4.931, p<0.01], with a significant interaction 

between the two factors [F(1,132) = 4.74, p=0.023]. The simple main effect for TIME was 

significant for Gf-1 [F(1,132) = 9.79, p<0.01; +16%] and Gf-2 [F(1,132) = 7.43 p=0.009; +28%] 

(FIGURE 4A). The simple main effect for INTERVENTION was significant only for Gf-2 

[F(1,132) = 4.73, p=0.019]. The significant interaction term was driven by an improvement in 

Gf-2 scores observed in the cognitive training group, but not for participants in the no-contact 

group [t(61) = 3.92, p=0.012]. 

 

Topographic changes in microstates after cognitive training 

Individual microstate topographies are thought to emerge from the activity of underlying 

brain networks. To identify whether cognitive training affects microstate topographies, we 

extracted a set of four microstates from each subject before and after intervention. These 

topographies were each labeled A, B, C, and D depending on the degree of correlation between 

each map and the “archetypal” maps A, B, C, and D that have been identified in many previous 
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studies (24, 35, 88). The set of maps A, B, C, and D were compared across conditions using 

TANOVA as described in Materials and Methods. There were no significant differences between 

the topographies of A, B, C, or D between controls and subjects at baseline (p>0.05 for each 

comparison between maps A, B, C, and D). Controls did not show any significant difference in 

topographies 3 weeks after baseline evaluation. However, among subjects who underwent 

cognitive training, there was a significant difference in microstate C following intervention 

(p=0.0064). Topographically, this corresponded to a more posterior isoelectric point in the map 

of microstate C after cognitive training (FIGURE 4B). No other significant differences among 

groups were found. 

 

Changes in microstate properties after cognitive training 

The rm-ANCOVA revealed significant effects of TIME [F(1,132) = 8.749, p<0.01] and 

INTERVENTION [F(1,132) = 7.575, p<0.01], whereas a significant interaction between the two 

factors was not present [F(1,132) = 0.43, p=0.253]. Simple main effects of TIME and 

INTERVENTION were analyzed separately. The simple main effect for TIME was significant 

for average life of microstate C [F(1,132) = 10.92, p<0.006; +8.2%] and microstate D [F(1,132) 

= 7.91, p<0.002; –9.8%] (see Figure 5A-B), with similar changes for the frequency and coverage 

of microstates C and D, respectively, but that were not statistically significant. 

  

Correlation between changes in microstates and changes in Gf scores 

Differences in Gf-1 and Gf-2 obtained at before and after intervention were calculated 

and correlated with changes in microstate properties (frequency, coverage, GFP peaks, 

transition) for microstates A, B, C and D, for both cognitive training and no contact (control) 

groups. We found a significant negative correlation between the fraction coverage of microstate 

B and changes in Gf-2 for participants undergoing the cognitive training (r = –0.379, p = 0.012) 

(FIGURE 5C), but not among control subjects. 
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IV. DISCUSSION, CONCLUSIONS, & SUGGESTIONS FOR FUTURE WORK 

Note: Portions of this section have been submitted for publication as: 
Santarnecchi E, Khanna AR, Museus C, Benwell C, Davila P, Pascual-Leone A, Shafi MM. EEG 

microstate correlates of fluid intelligence. Proceedings of the National Academy of 
Science (Submitted, under review); 2016. 

 

Human intelligence has been related to several intrinsic properties of the human brain 

interrogated using a variety of neuroimaging and electrophysiological techniques. An emerging 

consensus derived from studies using these techniques emphasizes the role of distributed brain 

regions functionally organized into large-scale networks that facilitate progressively higher 

orders of cognitive processing that collectively constitute intellectual ability (22,67). Scalp EEG 

is capable of depicting the brain's electrical activity at native timescales, and the use of 

spatiotemporal microstate analysis of multichannel EEG may give insight into the activity of 

large-scale cortical networks at unprecedented temporal resolution. Previous studies of EEG 

microstate analysis have correlated each microstate class with distinct cognitive functions (34) 

and activation of distinct brain regions (38). Based on these prior data, we hypothesized that Gf 

would most closely relate to microstate features associated with visual networks (reflecting low-

level visual/perceptual processing loaded on occipital and parietal regions) as well as microstate 

features associated with prefrontal activation (reflecting higher-level cognitive processing). 

Furthermore, we hypothesized that improvement in Gf after cognitive training would be reflected 

by changes in microstate features specifically limited to these networks.  

Overall, our data confirm our hypotheses by showing that Gf is inversely correlated with 

specific properties of microstates B and C, which have previously been shown to load on 

prefrontal and occipital regions, respectively (38). A shift in topography of state C was observed 

after cognitive training aimed at increasing fluid intelligence. Separation of Gf into two 

independent components revealed that components Gf-1 and Gf-2 were specifically correlated 

with microstate C and B, respectively, suggesting that these microstates represent distinct 

cognitive processes. Finally, improvement in Gf-2 after cognitive training was significantly 

correlated with reduction in the stability (average lifespan) of microstate B. The present results 

suggest a pivotal role for brain regions related to visual processing and executive control 

networks in Gf. These data are also a compelling demonstration of how intervention to raise Gf 

can be a powerful method to identify neurophysiological correlates of Gf. Furthermore, these 
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findings indicate that EEG microstate analysis is a powerful method to interrogate cortical 

network electrophysiology with high temporal resolution, and can supplement other methods, 

such as fMRI, to provide additional insight into the function and significance of cortical 

networks. 

 

Gf components and activity in visual and cognitive control regions 

 Measurement of Gf with any single standardized assessment is complicated by the 

multidimensional nature of Gf and the likely involvement of multiple different cognitive 

processes, including working memory, pattern recognition, mental rotation, filtering, inhibition 

of irrelevant stimuli, and others (68–70). We measured Gf in our sample using three well-studied 

tests (RAPM, Sandia, and BOMAT), which engage slightly different, but overlapping cognitive 

processes. To derive two independent measures of Gf from scores on these tests, we applied 

latent factor analysis and successfully delineated among two distinct factors – Gf-1 and Gf-2 – 

that were mathematically independent and comprised of distinct sets of scores; Gf-1 is comprised 

of RAPM and Sandia-LOG, while Gf-2 is comprised of Sandia-REL and BOMAT. The 

distinction among these tests may be due to the nature of the stimuli presented in each, which is 

further reflected by the fact that Gf-1 and Gf-2 correlated with different EEG microstate classes. 

 Gf-1 is driven by RAPM and Sandia-LOG scores, and is (inversely) associated with the 

frequency of microstate C. A seminal prior study by Britz and colleagues determined that 

microstate C is most closely associated with the so-called “salience network,” a resting-state 

functional network between the anterior cingulate cortex (ACC), bilateral inferior frontal gyri, 

right anterior insula, and left claustrum (38). Together, these regions are known to be crucial 

nodes for executive function and processing of logical or conditional rules, which have been 

repeatedly shown to correlate with performance in RAPM and similar abstract reasoning tasks 

(71,72). Furthermore, one functional study suggested that gray matter volume and homogeneity 

of regions belonging to the salience network are significantly associated with Gf measured by 

RAPM (73). Together, these prior studies seem consistent with ours in suggesting that the 

correlation between Gf-1 and microstate C is a result of activation of cortical and subcortical 

regions comprising the salience network as defined my numerous prior functional studies. 

 The second component, Gf-2, loads on BOMAT and Sandia-REL scores, and is 

(inversely) associated with the frequency of microstate B. Britz and colleagues have previously 
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associated microstate B with BOLD activity in the bilateral extrastriate visual areas (Brodmann 

Areas 18 and 19), which are known to be involved in spatial attention (74–76). This suggests that 

performance on BOMAT and Sandia-REL, together comprising Gf-2, relate to the spontaneous 

activity of the parieto-occipital cortex, possibly reflecting cognitive processes such as visual 

search, feature selection, and visuospatial abilities, as compared to prefrontal abstract reasoning 

skills. Notably, BOMAT matrices present a more dense array of stimuli than Sandia (5x3 vs 3x3 

grid into which subjects must fill in the missing piece); this may elicit larger involvement of 

visual areas during the early stages of visual problem solving and demand a higher visual 

working memory load (77). Based on this reasoning, some have suggested that BOMAT (and 

perhaps Sandia-REL) engages subcomponents of Gf related to visual processing and visual 

working memory, rather than purely abstract reasoning (prefrontal) processes (57). This seems 

consistent with the statistical delineation between Gf-1 and Gf-2 based on the scores we obtained 

in our study. Based on the tests and microstates with which they are most associated, Gf-1 

appears to reflect a cognitive control, prefrontal network, while Gf-2 appears to reflect a visual 

cortical network related to visuospatial working memory. 

  

Higher fluid intelligence, reduced specific microstate activations 

The observed negative correlation between specific microstates properties and Gf offers 

an interesting insight about the relationship between microstates and spontaneous cerebral 

activity patterns. Specifically, if the frequency of appearance of a microstate class represents the 

propensity for its underlying neural generators to become activated (32), our results suggest that 

increasing Gf-1 and Gf-2 scores correlate with relatively reduced resting-state engagement of the 

networks underlying microstate C and B, respectively. There are two possible explanations for 

these inverse associations. First, this may represent a form of so-called “neural efficiency,” 

whereby lower activity of the network in the resting state represents heightened efficiency and 

enables better performance during a cognitive task (78,79). In our subjects, lower spontaneous 

recruitment of microstate B or C at rest may represent more “reserve” to be exploited during 

relevant cognitive engagement. Alternatively, these individuals may have lower activation of 

networks underlying microstate B or C in general, due to greater network efficiency regardless of 

cognitive demand (80,81).  
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A second potential explanation for the negative association between Gf scores and the 

frequency of microstates B and C was recently proposed by Milz et al., who remarked that 

oscillations within the alpha band, which dominates the frequency bandwidth from which 

microstates are calculated, typically represents inhibitory rather than excitatory control on 

modality-specific processing (34). The authors postulate that decreasing microstate activity may 

actually reflect disinhibition of the underlying brain regions and corresponding cognitive 

processes (34). Under this hypothesis, the α synchronization reflected by the appearance of a 

microstate represents an “idle state” of its underlying network(s), and activity of these underlying 

network(s) is associated with α desynchronization – analogous to the ERD effect that has been 

reported previously in EEG intelligence literature. Alternatively, they suggest that if decreasing 

activity of a given microstate class reflects reduced activity of corresponding brain regions, that 

this reduced activity might represent release of tonic inhibition on other brain regions or 

processes. According to this reasoning, our finding of decreasing frequency of microstate C 

correlating with increasing Gf-1 may reflect reduced inhibition of frontal control networks (e.g. 

ACC, inferior/middle frontal gyri), or may reflect reduced inhibition by frontal control networks 

on other networks. Similarly, decreasing activation of microstate B, which shows a right-

posterior source in the study by Milz and colleagues (i.e. parieto-occipital), may be associated 

with disinhibition of areas related to visuospatial processing – such as the right posterior parietal 

cortex (82) – correlating with increasing Gf-2 scores. 

 Moreover, Milz and colleagues also related individual microstate classes with particular 

modalities of thinking, specifically “object visualization,” “spatial visualization,” and 

“verbalization”, compared to rest (34). Interestingly, the authors report that both object and 

spatial visualization were associated with increased average lifespan (here, interpreted to reflect 

increased stability of underlying networks) of microstate C, related to sources in prefrontal 

regions that are putatively less relevant for object/spatial visualization. On the other hand, the 

frequency, duration, and coverage of microstate B was increased in verbalization compared to 

visualization (i.e. increased inhibition of non-verbal, posterior regions). This is consistent with 

our findings relying on a Gf assessment based on culture-fair tasks (83,84), inherently loading 

more on object and spatial visualization than verbalization.  

Clearly, such precise association between specific microstates and behavior requires 

much additional validation, and should be interpreted carefully. Regardless of a putative role 
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assigned to a given microstate, any behavioral or mental modality implies the co-existence of all 

microstates classes identified so far (34). Thus, the ratio of relative contributions of microstates 

is likely more relevant to ongoing resting-state brain activity than the absolute dominance of a 

single microstate during any given moment. 

 

Intelligence, the α rhythm, and microstates 

 A number of studies employing spectral EEG analysis have described a complex 

relationship between α power and cognitive performance (23,24,85,86). When EEG is recorded 

in the resting state, α power positively correlates with performance in a number of cognitive 

tasks, including semantic memory performance, verbal reasoning and tests of general 

intelligence such as the IST-70 and LGT-3 (24). We have recently shown that α power is 

strongly negatively associated with overall microstate frequency (48). Furthermore, given that 

the GFP curve is driven by the dominant frequency band in the EEG signal, the number of GFP 

peaks per second is positively correlated with increasing α power and negatively correlated with 

increasing β power (Khanna et al., unpublished results). Our parsing of the EEG signal into 

discrete microstates enabled us to identify changes within individual microstate classes that 

underlie the negative correlation between GFP peaks/sec and Gf-1 in our data. Indeed, reduced 

GFP peaks/sec in the overall data did not translate to a reduced frequency of all microstates, as 

might be expected in the case of a global oscillation slowing (or a global increase in relative α 

power); instead, this effect was limited to a reduced frequency of one specific microstate class, 

i.e. microstate C. Together, these data suggest that a slowing of the activity of the neural 

generators underlying microstate C relates to intelligence, an idea corroborated by the 

corresponding significant change in microstate C topography observed after cognitive training. 

These results also show that EEG microstate analysis can identify changes in the spatiotemporal 

dynamics of specific neural generators otherwise undetectable using traditional spectral EEG 

analysis. 

 

Enhanced cognition, decreased inhibition? 

 Participants who underwent a cognitive training program aimed at improving fluid 

intelligence had a significant increase in Gf-2 scores; no such improvement was seen in control 

subjects who did not undergo cognitive training. The cognitive training group also showed a 
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change in the topographic map corresponding to microstate C, characterized by a posterior shift 

in the isoelectric point. In addition, the degree of Gf-2 improvement after training was 

significantly negatively correlated with the change in the stability (average lifespan) of 

microstate B (FIGURE 5B). The negative correlation between changes in stability (average 

lifespan) of microstate B and Gf-2 scores after training is consistent with the context highlighted 

by Milz and colleagues as discussed above (34), and supports the association between microstate 

B and cognitive modalities related to Gf-2 that were identified at baseline in our dataset. 

Specifically, as discussed above, better baseline Gf-2 scores, which negatively correlated with 

the frequency of microstate B, could be related to resting-state disinhibition of posterior visual 

processing regions. Therefore, the negative correlation between changes in microstate B lifespan 

and the improvement in Gf-2 scores suggests that a training-associated disinhibition of visual 

regions – captured by microstate B activity – is associated with (and in fact may underlie) 

improvement on the BOMAT and Sandia-REL Gf tasks (in our data, Gf-2). However, whether 

the changes in microstate B activity are causally related to the improvement in task performance 

cannot be assessed using our data. 

 The interpretation of changes in the topography of microstate C is more complex. We 

suggest that our finding of a more posterior centroid for microstate C after cognitive training 

might reflect integration of more posterior regions with the frontal executive/control networks, 

typically thought to be involved in microstate C activity (38,87). Interestingly, prior studies 

assessing the impact of various forms of cognitive training (e.g. inhibition, task switching) have 

shown a shift in the pattern of fMRI activations after training, describing an increased prefrontal 

activation with corresponding reduction in contribution from parietal regions (88). This 

dynamical rearrangement of cognitive resources, pointing to a switch from the “perceptual to the 

logical brain” (88) might fit with the posterior displacement observed in our data, as a reflection 

of an increased frontally-mediated inhibitory control towards posterior regions (89,90). Other 

studies have supported such a hypothesis by showing that regions involved in inhibitory control 

(e.g. dorsolateral, inferior and medial prefrontal cortices) are more engaged when participants 

successfully overcome perceptual mismatches – a process engaging the parietal lobes – in order 

to provide a logical response (91).  

Overall, the present data suggest a training-related (i) increase of prefrontal cognitive 

control of parietal regions, and a (ii) disinhibition of visual areas specifically associated with a Gf 
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component requiring visuospatial processing, as potential correlates of fluid intelligence 

improvement in humans. Further studies, possibly including multiple imaging techniques (e.g. 

fMRI and perfusion MRI), are warranted to verify such hypotheses and to test for the additional 

crucial role played by top-down modulation processes involving prefrontal and visual areas 

suggested by our data (44). The present findings also highlight the value of addressing the quest 

for the neurobiological basis of human intelligence by means of a confirmatory approaches based 

on “cognitive perturbation” aimed at observing convergence of behavioral and 

neurophysiological results, which extend beyond the speculative nature of correlational studies. 

 

Limitations 

 There are a number of limitations to this study that warrant careful consideration. The 

motivation of this study was to identify neurophysiological correlates of human fluid 

intelligence. To achieve this goal, we used a spatiotemporal EEG analytic method designed to 

detect the activity of large-scale cortical networks to identify correlates of Gf in a cohort of 

healthy volunteers, and implemented a 3-week cognitive training program to examine the 

convergence between Gf improvement and microstate correlates. 

 We were successful in identifying baseline microstate correlates of two mathematically 

independent factors of Gf, and attempted to interpret these correlations based on previous data 

examining the relationship between microstates, cognitive modes, and RSNs. However, the 

relationship between the four resting-state microstates we identified in our data and RSNs has 

only been explored in a single study (38), and although other studies relating microstates with 

RSNs have been published (40), these studies did not use a consistent set of microstate 

topographies and had significant methodological differences, so comparison among them is 

difficult. Although there are converging lines of evidence to suggest that microstates and RSNs 

arise from the same set of signal generators (32,38,40,92), the specific assignment of brain 

regions or networks to RSNs and microstates requires additional validation. Furthermore, 

although fMRI has been able to identify functionally correlated brain regions in the resting state, 

these measurements require time averaging over about 5 minutes, and so are incapable of 

discerning whether all identified regions within the network are simultaneously active, or 

synchronized at specific phase delays – indeed, anatomic identification of RSNs using fMRI 

does not give any temporal information about the nature of their functional correlation. Thus, 
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although Britz and colleagues identified temporal correlation between the microstate time series 

and the BOLD signal, without information about which component(s) of each RSN are active at 

any given epoch of the BOLD signal, correlation with microstate topographies is difficult, and 

one-to-one assignments between RSNs and microstates should be interpreted with caution. 

 We attempted to supplement a cross-sectional correlation between Gf and EEG 

microstates by employing a cognitive training program aimed at increasing Gf based on 

published data suggesting that such transient improvement in Gf is possible using a cognitive 

training program (14,15). However, these data have been criticized on methodological grounds, 

as well as on the broader question of how intelligence is quantified and how changes in 

intelligence quantification can or should be interpreted!(93). In our study, subjects improved in 

Gf-2 but not Gf-1, suggesting improvement in visuo-spatial processes but not executive, 

prefrontal tasks. The significance of this finding is uncertain. It may reflect genuine 

improvements in task-independent visuo-spatial reasoning ability, or may reflect task-specific 

improvements that are a result of repeated exposure to related stimuli during training. 

Furthermore, the real-world importance of such improvements in visuo-spatial reasoning, and 

their application to problems other than the tests we employed, remain to be seen. 

Finally, we are limited by the cognitive training design in failing to achieve significant 

improvements in Gf-1 in order to supplement baseline microstate correlations. It is unclear 

whether an alternative cognitive training program may have been able to induce improvements in 

Gf-1 to achieve this aim; future studies are warranted to determine this possibility. 

 

Further studies 

The results and limitations of this study suggest promise for future investigation. These 

future studies should focus on two broad topics: first, improvement of the method of EEG 

microstate analysis, and second, further study into the neurophysiological processes that together 

generate Gf. 

The method of EEG microstate analysis has undergone considerable evolution since it 

was first proposed in 1971. The current approach involves two primary steps: first, microstate 

maps are identified using a mathematical clustering algorithm applied to original maps in the 

data; and second, the original maps are each assigned to the microstate with which it best 

correlates, enabling re-expression of the series of original maps as a sequence of alternating 
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microstates. Although this approach yields reliable results (48), future studies should explore 

optimization of each step in this approach. 

First, the use of mathematical clustering algorithms (e.g. k-means clustering, or atomize 

and agglomerative hierarchical clustering) to identify natural clusters within the data suffers the 

same set of challenges inevitable in mathematical clustering procedures in general. Perhaps most 

importantly, clustering gives no information about how many clusters naturally occur within the 

data or “optimally” describe the data. In resting-state EEG microstate analysis, this manifests as 

uncertainty about the “correct” number of microstates to extract from the pool of original maps. 

Because of the number of degrees of freedom in even 19-channel EEG, and given an expected 

level of noise in the signal, more microstate maps will always explain a greater proportion of 

total variance. To address this ambiguity, mathematical criteria have been proposed to evaluate 

the “correctness” of each number of clusters (51,52), but these encode implicitly subjective 

weights to certain factors, and may not be valid for all electrode montages (94). Finally, these 

clustering algorithms are frequently computationally intensive. An alternative to traditional 

mathematical clustering analysis to identify microstate maps should be considered in future 

studies. This may come from the field of nonlinear dynamical analysis (95). Specifically, each 

instant of the multichannel EEG signal (represented by a topographic map) can be expressed as a 

vector with dimension equal to ! electrodes; this vector can be embedded into phase space with 

dimension !, from which features of the evolution of the complex multidimensional time series 

may be calculated. In fact, in its current implementation, the process of microstate analysis can 

be thought of as a procedure involving spatial embedding of the signal into phase space and re-

representation of the nonlinear time series using symbolic dynamics, where the phase space is 

partitioned according to proximity to each microstate map (96). The use of tools in nonlinear 

dynamical analysis to extract the microstates themselves is less clear, but nevertheless promising. 

For example, a method to generate data-driven partitions of phase space for use in symbolic 

dynamic analysis has been proposed, which may be able to extract nodes representing microstate 

maps (97). We speculate that, in phase space, microstates would manifest as unstable periodic 

orbits (UPOs) around attractors of the nonlinear system (98–100); techniques to extract these 

UPOs and attractors have been proposed (100–103), and may be useful in identifying microstates 

(attractors) without traditional clustering methods.  
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In the second step of microstate analysis, original maps are each assigned a label based 

on which microstate map it most resembles. In general, original maps have high correlation with 

one of the microstate maps, and the assignment is a valid method of data re-expression. 

However, there are original maps that do not resemble any of the microstate maps – yet the 

algorithm as currently implemented forces an assignment to one of the microstate maps and 

thereby detracts from the validity of data re-expression as a series of microstate maps. The 

original maps that do not resemble any microstate could represent a microstate not represented 

by the applied set of microstate maps, may reflect brief periods of chaos within the otherwise 

periodic signal evolution centered about microstate attractors (104), or could be a product of 

noise or artifact. Delineating among these possibilities will be laborious, but immediate 

improvement in the validity of data re-expression can be achieved by assigning an original map 

to a microstate only if the correlation between them meets a certain threshold. In this way, 

ambiguous original maps do not distort the microstate model. We are currently investigating this 

improvement. Overall, rethinking microstate analysis as an implementation of nonlinear 

dynamical analysis may yield novel approaches to these and other methodological questions. 

The current results also point to exciting new areas of investigation into the neural basis 

of Gf. For example, adding additional functional imaging modalities to this experimental 

paradigm, such as fMRI or PET, would enlighten the interpretation of microstate correlations 

with Gf. Our study indicates that different microstates correlate with distinct factors of Gf; this 

can be corroborated and further explored by using tests of intelligence other than the three used 

here that are known to engage different cognitive processes. Additionally, further studies 

evaluating microstate syntax during various steps of the abstract-reasoning processes (e.g. during 

rule inference vs. response generation phases) (77) could confirm and expand on current 

findings. Finally, our results suggest that neurophysiological monitoring using EEG microstates 

are effective in detecting changes in the brain that correspond to improvements in performance 

on tests designed to measure Gf; therefore, EEG microstates may be valuable in future studies 

examining the effect of cognitive training, transcranial electric stimulation, or other interventions 

designed to improve Gf. 
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V. SUMMARY 

 

 In this study, we sought to use EEG microstate analysis to study neurophysiological 

correlates of fluid intelligence (Gf) in healthy humans by examining microstate correlates of Gf 

at baseline and after a 3-week cognitive training program designed to improve Gf. We show that 

Gf scores measured by three common tests are differentiable into two factors. These factors 

correlate with microstates associated with cognitive control (microstate C) and visuospatial 

processing (microstate B), respectively. Cognitive training significantly improved scores in the 

Gf factor related to visuospatial processing, which was accompanied by destabilization of the 

corresponding microstate (B). Cognitive training also caused a significant posterior shift in the 

topography of microstate C, possibly reflecting greater integration of parietal circuits in frontal 

cognitive control processes. The degree of spontaneous activity of brain regions related to 

cognitive control and visual processing seems able to explain both variability in individual 

cognitive profile and the response to a cognitive training exerting significant changes on fluid 

intelligence levels. The present data also support the idea that EEG microstates represent an “idle 

state” of underlying cognitive networks, offering a new insight about the link between human 

fluid intelligence and spontaneous EEG activity. Furthermore, our findings confirm that EEG 

microstate analysis is a powerful method to interrogate cortical network electrophysiology with 

high temporal resolution to provide insight into the function and significance of cortical 

networks related to Gf. 
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VII. TABLES & FIGURES 

Note: These tables and figures have been submitted for publication in: 
Santarnecchi E, Khanna AR, Museus C, Benwell C, Davila P, Pascual-Leone A, Shafi MM. EEG 

microstate correlates of fluid intelligence and response to cognitive training. 
Proceedings of the National Academy of Science (Submitted, under review); 2016. 

 

TABLE 1: Microstate properties. Average values and standard deviation for each microstate 

feature extracted from the overall sample at baseline is reported. Values grouped around three 

categories, related to (i) the intrinsic characteristic of each microstate, the (ii) dynamic transition 

between each pair of states, (iii) overall properties referred to the state space with no reference to 

specific states. 

 

Avg Life A 48.84 7.27
Avg Life B 48.53 7.23
Avg Life C 50.46 7.70
Avg Life D 60.83 8.53

Freq A 4.19 1.14
Freq B 3.91 1.31
Freq C 3.36 .50
Freq D 5.14 .77

Coverage A 21.24 7.43
Coverage B 19.91 7.94
Coverage C 20.97 7.98
Coverage D 37.88 13.55

GFP Peaks/Appear A 1.31 .13
GFP Peaks/Appear B 1.29 .12
GFP Peaks/Appear C 1.32 .15
GFP Peaks/Appear D 1.85 1.24

Transitions
A → B .27 .11
A → C .27 .09
A → D .45 .13
B → A .29 .10
B → C .26 .09
B → D .45 .13
C → A .28 .09
C → B .26 .10
C → D .47 .15
D → A .34 .10
D → B .31 .10
D → C .35 .13

Global Scores
Global Avg Life 58.26 15.79

Global Freq 17.78 2.55
Global GFP Peaks/sec 26.27 2.26

Standard 
Deviation

Mean
Microstates 
properties
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TABLE 2:!Correlation between microstate properties and Gf scores. Pearson product-moment 

coefficient, as well as p.values, for the correlation between microstate properties and Gf-1 and 

Gf-2 individual scores are shown. (*) and (**) respectively highlight statistically significant 

correlations at p<0.05 and p<0.01.  

 

   

 Gf 1 Gf 2 Gf 1 Gf 2

State properties Transitions

corr coeff 0.016 -0.096 corr coeff -0.014 -0.281 (*)

p.value 0.867 0.313 p.value 0.884 0.019
0.094 -0.081 -0.030 0.048

0.325 0.397 0.751 0.613

-0.089 0.036 0.036 0.029

0.349 0.705 0.709 0.763

.189* 0.033 -0.164 -0.102

0.046 0.726 0.084 0.285

-0.163 -0.147 0.024 0.043

0.085 0.121 0.798 0.654

-0.031 -0.346 (*) 0.091 0.031

0.745 0.012 0.340 0.742

-0.503 (**) -0.132 -0.174 -0.089

0.002 0.136 0.066 0.353

0.126 -0.114 -0.006 -0.095

0.186 0.232 0.948 0.320

-0.131 -0.099 0.109 0.116

0.169 0.300 0.251 0.221

0.008 -0.101 -0.126 -0.115

0.933 0.288 0.186 0.227

0.022 0.048 0.078 -0.279 (*)
0.821 0.616 0.411 0.018
0.048 0.071 0.034 0.174

0.613 0.459 0.725 0.066

-0.181 -0.059

0.057 0.539

-0.039 -0.056

0.683 0.557

0.019 -0.014

0.840 0.887

-0.073 0.113

0.442 0.237

Global Scores
corr coeff 0.012 0.077

p.value 0.901 0.419

-0.107 -0.071

0.261 0.457

-0.451 0.086

0.008 0.367

Coverage C

Avg Life A

Avg Life B

Avg Life C

Avg Life D

Freq A

Coverage D

GFP Peaks/Appear A

GFP Peaks/Appear B

GFP Peaks/Appear C

GFP Peaks/Appear D

Freq B

Freq C

Freq D

Coverage A

Coverage B

D → B

A → B

A → C

A → D

B → A

B → C

D → C

Global Avg Life

Global Freq

Global GFP Peaks/sec

B → D

C → A

C → B

C → D

D → A
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FIGURE 1: Schematic overview of the method of EEG microstate analysis. (A) Each individual 

EEG recording is initially individually analyzed. First, the GFP at each time point is calculated 

and plotted to construct a GFP curve for each recording (red). Maps at local maxima of the GFP 

curve represent instances of highest topographic signal-to-noise ratio and are reliable 

topographic representations of surrounding points in time; therefore, they are selected for further 

analysis. The maps at all local maxima of the GFP curve are identified as “original maps.” All 

original maps from each recording are submitted to a clustering algorithm individually, and four 

cluster maps are generated for each individual recording. (B) The four cluster maps generated for 

each individual recording are used to conduct topographic analysis of variance (TANOVA) to 

assess for topographic differences in any microstate class across groups or conditions. (C) 

Cluster maps generated for each individual recording are grouped according to group and 

condition. Maps in each group are submitted to another round of clustering to generate a set of 4 

group-level maps for each group. These group-level maps are fit onto the original data by 

labeling each original map A, B, C, or D depending on which group-level map it most closely 

correlates to. Each original recording is ultimately re-expressed as a sequence of these labels, 

from which values of interest can be calculated. Note that only the map's topography is 

important, whereas polarity is disregarded in the spontaneous EEG clustering algorithm. 
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FIGURE 2. Fluid intelligence components at the latent variable level. Panel (A) shows the 

loading of each Gf task in the rotated space obtained using PCA, with the two components 

highlighted in red and blue, respectively. (B) Resulting individual Bartlett scores for the PCA 

components show good statistical separation of the two Gf components (Pearson "r" coefficient 

is close to 0). (C) Correlations between Gf-1 and accuracy levels for each Gf task show that Gf-1 

loads primarily on RAPM and Sandia-LOG at baseline (red and orange dots, respectively). (D) 

Mean scores for the fluid intelligence tasks show no gender related differences. Note: all straight 

lines represent a linear fit for the different data, with the percentage of explained variance 

reported using R squared values. 
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FIGURE 3. Baseline correlation of fluid intelligence with microstate features. (A) Significant 

negative correlation between Bartlett scores derived for the first component (Gf-1) and the 

frequency of appearance of microstates C. (B) Gf-1 also showed a significant negative 

correlation with the number of GFP peaks per sec. (C) Significant correlations between Bartlett 

scores for Gf-2 and the frequency of microstate B, as well as with the probability of transition 

from state A and D towards microstate B. Note: straight lines represent a linear fit for the 

different data, with the percentage of explained variance reported using R squared values. 3D 

brains show a schematic view of the anatomo-functional localization of microstates B and C as 

reported in Britz et al. 2010 (38). 
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FIGURE 4: Behavioral and Topographic differences before and after intervention in controls and 

trained subjects. Panel (A) reports the comparisons between the Bartlett scores for the two Gf 

factors calculated before and after the intervention in the two groups. A significant effect of 

cognitive training is observed for Gf-2 in the cognitive training group (*). (B) Original maps at 

local maxima of the GFP curve for each EEG recording were submitted to a topographic 

clustering algorithm to derive four representative microstate maps for each recording. Maps in 

each set of four were labeled A, B, C, and D depending on their topographic correlation with the 

"archetypal" microstates A, B, C, and D that have been described in numerous prior studies. 

These sets of maps from individual EEG recordings were compared using the topographic 

analysis of variance (TANOVA) randomization statistical test. The microstates A, B, C, and D 

shown for each group represent electrode-by-electrode averages of all microstates of the given 

class within each group. TANOVA revealed a significant difference in the topography of 

microstate C after cognitive training (p<0.01). No other significant topographic differences were 

identified. Note: 3D brains show a schematic view of the anatomo-functional localization of 

microstates B and C as reported in Britz et al. 2010 (38). 
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FIGURE 5: Training effects on microstates properties. Panel (A) and (B) report results of the 

repeated-measures-ANCOVA run on the average lifespan values of each microstate class. The 

only significant results were related to the effect of TIME on the average lifespan of microstate C 

and D (*), with no significant differences between participants in the cognitive training and no-

contact group. No significant results were identified for the interaction between TIME and 

INTERVENTION, as well as for the remaining microstates properties (e.g. frequency, coverage, 

GFP peaks). (C) Scatterplot displays the negative correlation between changes in microstates 

properties and fluid intelligence scores after training, with the average life of state B being 

inversely correlated with changes in Gf-2 in the group receiving cognitive training. No other 

correlation coefficients reached the significance level (p<0.05 Bonferroni corrected for multiple 

comparisons).  

 


