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Abstract  
 

Quantitative imaging is a rapidly growing area of interest within the field of 

bioinformatics and biomarker discovery. Due to the routine nature of medical imaging, there is 

an abundance of high-quality imaging linked to clinical and genetic data. This data is particularly 

relevant for cancer patients who receive routine CT imaging for staging and treatment purposes. 

However, current analysis of tumor imaging is generally limited to two-dimensional diameter 

measurements and assessment of anatomic disease spread. This conventional tumor-node-

metastasis (TNM) staging system stratifies patients to treatment protocols including decisions 

regarding adjuvant therapy. Recently there have been several studies suggesting that these 

images contain additional unique information regarding tumor phenotype that can further aid 

clinical decision-making. 

In this study I aimed to develop the predictive capability of medical imaging. I employed 

the principles of quantitative imaging and applied them to patients with non-small cell lung 

cancer (NSCLC). Quantitative imaging, also termed radiomics, seeks to extract thousands of 

imaging data points related to tumor shape, size and texture. These data points can potentially be 

consolidated to develop a tumor signature in the same way that a tumor might contain a genetic 

signature corresponding to mutational burden. To accomplish this I applied radiomics analyses to 

patients with early and late stage NSCLC and tested these for correlation with both 

histopathological data as well as clinical outcomes.  

Patients with both early and late stage NSCLC were assessed. For locally advanced 

NSCLC (LA-NSCLC), I analyzed patients treated with preoperative chemoradiation followed by 

surgical resection. To assess early stage NSCLC, I analyzed patients treated with stereotactic 

body radiation therapy (SBRT). Quantitative imaging features were extracted from CT imaging 

obtained prior to chemoradiation and post-chemoradiation prior to surgical resection. For 

patients who underwent SBRT, quantitative features were extracted from cone-beam CTs 

(CBCT) at multiple time points during therapy. Univariate and multivariate logistic regression 

were used to determine association with pathologic response. Concordance-index and Kaplan-

Meier analyses were applied to time dependent endpoints of overall survival, locoregional 

recurrence-free and distant metastasis. 

In this study, 127 LA-NSCLC patients were identified and treated with preoperative 

chemoradiation and surgical resection. 99 SBRT patients were identified in a separate aim of this 
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study. Reduction of CT-defined tumor volume (OR 1.06 [1.02-1.09], p=0.002) as continuous 

variables per percentage point was associated with pathologic complete response (pCR) and 

locoregional recurrence (LRR). Conventional response assessment determined by diameter 

(p=0.213) was not associated with pCR or any survival endpoints. Seven texture features on pre-

treatment tumor imaging were associated with worse pathologic outcome (AUC 0.61-0.66). 

Quantitative assessment of lymph node burden demonstrated that pre-treatment and post-

treatment volumes are significantly associated with both OS and LRR (CI 0.62-0.72). Textural 

analyses of these lymph nodes further identified 3 unique pre-treatment and 7 unique post-

treatment features significantly associated with either LRR, DM or OS. Finally early volume 

change showed associated with overall survival in CBCT scans of early NSCLC. 

Quantitative assessment of NSCLC is thus strongly associated with pathologic response 

and survival endpoints. In contrast, conventional imaging response assessment was not 

predictive of pathologic response or survival endpoints. This study demonstrates the novel 

application of radiomics to lymph node texture, CBCT volume and patients undergoing 

neoadjuvant therapy for NSCLC. These examples highlight the potential within the rapidly 

growing field of quantitative imaging to better describe tumor phenotype. These results provide 

evidence to the growing radioimics literature that there is significant association between 

imaging, pathology and clinical outcomes. Further exploration will allow for more complete 

models describing tumor imaging phoentype with clinical outcomes.  
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Glossary 
 
AUC: Area under the curve 
CBCT: cone beam CT 
CT: computed tomography 
DM/DR: distant metastasis/recurrence 
GLCM: gray level co-occurrence matrix 
GLSZM: gray level size zone matrix 
GRD: Gross residual disease 
LoG: Laplacian of Gaussian 
LRR: locoregional recurrence 
MRD: Microscopic residual disease 
MRI: Magnetic resonance imaging 
NSCLC: Non-Small Cell Lung Cancer 
OS: overall survival 
PCA: principal component analysis 
pCR: pathologic complete response 
PET: positron emission tomography 
PLNS: positive lymph node stations  
RECIST: Response Evaluation Criteria in Solid Tumors  
RLGL: run length gray level 
ROC: Receiver operating characteristic 
SBRT: Stereotactic body radiation therapy  
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1. Introduction 
1.1 Background 

Lung cancer is the cause of the greatest number of cancer related deaths worldwide. In 

2010, lung cancer represented 19% of all cancer deaths [1] with a 5-year survival of only 15.9% 

[2]. Despite efforts to limit risk factors such as tobacco, the global burden of lung cancer is 

expected to increase in the near future. [3]. The predominant histological subtype of lung cancer 

is non-small cell lung cancer (NSCLC), which comprises ~80% of lung cancer cases. Within 

NSCLC, approximately 50% have adenocarcinoma histology and 40% have squamous cell 

carcinoma [4]. The greatest risk factors for NSCLC is smoking or exposure to tobacco although 

genetic susceptibility is thought to play a large role in certain populations such as Asian, female, 

nonsmokers [3,5]. 

Current standard of care for patients with NSCLC involves the combination of a platinum 

based chemotherapeutic agent, external beam radiation therapy, and/or surgery [6]. Treatment 

protocols can vary dramatically based on tumor stage, lymph node involvement and presence of 

metastases. For example, surgery can be the only treatment modality required for stage I 

NSCLC. The development of such treatment protocols including those tailored to tumor 

histology, have resulted in increases in incremental improvements survival compared to 

historical rates[7]. More recently, there have been numerous advances in targeted and immune-

based therapies [8,9].  

Targeted therapies are directed towards specific mutations within oncogenic proteins. 

Mutations within the genes KRAS, EGFR, ALK, and BRAF are the most commonly identified in 

NSCLC, with KRAS and EGFR making up approximately 30% of adenocarcinoma mutations. 

The EGFR inhibitors erlotinib and gefitinib are examples of therapies that have successfully 

targeted an oncogenic mutation [10]. However, not all mutations show benefit to targeted 

inhibition. For example, KRAS mutations are found in approximately 20% of NSCLC patients 

and are mutually exclusive of EGFR mutations. KRAS mutations are associated with a poor 

prognosis [11] however attempts to inhibit KRAS have not shown significant benefit to date 

[12]. Similarly, while p53 mutations are associated with worse prognosis [13], these mutations 

have not emerged as targets for therapy. Additionally, since patients who respond to targeted 
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therapies for EGFR and ALK inevitably acquire resistance [14,15], there is need for improved 

methods of tumor surveillance even for patients who have known genetic mutations.  

Thus, despite advances in the genomic characterization of tumors, improving survival 

continues to remain challenging for a significant proportion of NSCLC patients. Although the 

development of novel therapeutics will remain an important priority and cornerstone of cancer 

treatment, there is a concomitant need for better prognostic tools to assess therapeutic response, 

monitor tumor progression, and predict clinical outcomes. Such tools could better stratify 

patients to optimal treatment protocols based on risk and eventually lead to more individualized 

treatment regimens. This goal has led to the aim of improving non-invasive methods of 

describing tumor phenotype including serum biomarkers, circulating tumor cells and medical 

imaging [16–18]. These non-invasive methods provide alternatives to the more invasive process 

of obtaining tissue directly from the tumor. Quantitative imaging seeks to be one of these non-

invasive methods that can predict tumor behavior. In this study I explore the association between 

quantitative imaging and clinical outcomes.  

1.2 Tumor response imaging 

1.2.1 Imaging for conventional treatment delivery 

Tumor imaging is a standard component of clinical staging algorithms for the treatment 

of NSCLC. CT and PET imaging are typically used to determine the size of the primary tumor, 

extent of nodal involvement, and metastatic spread. After staging, imaging is used to monitor 

tumor response during therapy. Such imaging essentially acts as a non-invasive surrogate for 

histopathology since pathologic response is only available at the time of surgery or biopsy. The 

imaging modalities typically used for tumor response assessment are either CT or PET imaging. 

There are multiple methods for evaluating tumor response but the most commonly used criteria 

(including for clinical trials) is Response Evaluation Criteria in Solid Tumors (RECIST). 

RECIST is a standardized framework for measuring solid tumor size and determining response 

[19,20]. These criteria are based on the sum of the diameters of lesions but do not provide 

guidance for the use of advanced imaging features. RECIST response groups patients into 

complete response (CR), partial response (PR), stable disease (SD) or progressive disease (PD). 

A partial response is a reduction in tumor diameter between 30-100%, with 100% reduction 

being a complete response. However, few studies have demonstrated an association between 

RECIST response and survival since the initial guidelines were published [19–21], and there are 
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few guidelines as to the utility of RECIST partial response in clinical decision-making for 

NSCLC.  

Prior imaging studies of NSCLC have described pre-treatment tumor volume as a 

prognostic factor [22,23] or evaluated more advanced imaging features including FDG uptake, 

volume reduction, and texture as predictors for response to therapy [24–28]. Despite the 

prognostic significant of volume or FDG uptake, it is unclear if a response on imaging truly 

correlates to tumor response on pathology. William et al have previously noted a high rate of 

discordance between RECIST response and pathologic response [29]. Further assessment of 

radiopathologic correlation is difficult given the lack of studies examining this relationship. 

However, it is becoming more apparent that there is value to understanding pathological 

outcome. Multiple studies have demonstrated a correlation between pathologic response and 

survival [30–34] suggesting that prediction of pathologic response can act as a surrogate 

endpoint for survival.   

1.2.2 Imaging for Stereotactic body radiation therapy 

Stereotactic body radiation therapy (SBRT) is a growing treatment option for the delivery 

of radiation therapy to a wide variety of tumors including lung cancer [35]. SBRT involves the 

delivery of higher doses of radiation over a smaller number of doses (fractions). This has been 

enabled by the development of highly conformal radiation delivery that reduce toxicity to 

surrounding tissue. For lung cancer patients, SBRT is typically used for early stage disease as an 

alternative to surgical resection [36–38]. Given the recent application of this form of 

fractionation, it remains an active area of interest for the development of prognostic indictors for 

response to radiation therapy.  

Current prognostic indictors for use in SBRT typically are typically composed of clinical 

factors such as number of lesions, gender and performance status [39]. There has additionally 

been development of biomarkers such as cell free DNA [40]. Of particular interest, would be to 

use to predict response during treatment, as a means of adjusting the dose delivered during each 

treatment or the area to be treated. This is particularly challenging given the short duration of 

treatment for which it may be more difficult to obtain clinically valuable information. 

The use of imaging for prognostic purposes in SBRT for NSCLC has been limited. 

Matsuo et al demonstrated that tumor diameter was associated with overall survival [41]. 
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Existing literature suggests that the use of cone beam CT can offer texture based analysis that is 

robust but highly dependent on imaging protocol and motion [42]. 

1.3 Radiomics 

1.3.1 Overview of Radiomics 

Radiomics is an emerging field that assigns quantitative values to features extracted from 

medical imaging. These features capture imaging traits unable to be appreciated by the human 

eye including intensity level, spatial relationships between areas of differential intensity, shape 

and texture. Radiomics complements work describing qualitative or semi-quantitative forms of 

image analysis such as pleural attachment or spiculations [43]. The process of obtaining 

radiomics data from medical imaging occurs in the following steps 1) image acquisition 2) tumor 

identification and anatomic delineation (segmentation) manually or automated [44] 3) feature 

extraction 4) data analysis [45].   

Radiomic features can be grouped into first order statistics, shape and size based features, 

and textural features. First order statistics describe voxel distribution within the tumor such as 

the mean or median voxel intensity. Features such as skewness or kurtosis similarly describe the 

histogram of voxel intensities. Shape and size based features include diameter, volume, surface 

area and sphericity [46,47]. Additional manipulations of the data include the application of filters 

such as Laplacian of Gaussian (LoG) and wavelet that have been previously described in other 

applications of non-medical image analysis [48,49]. The wavelet filter decomposes the 

information within the image such that only low or high intensity information is analyzed. The 

LoG filter is sensitive to edge detection and can also eliminate noise within the image. 

Radiomics has repurposed these imaging tools for use in a clinical context.  

1.3.2 Clinical applications of Radiomics 

In terms of clinical utility, radiomics platforms have already been developed for multiple 

imaging modalities including CT, PET and MRI. [50,51].  These platforms have been utilized to 

describe a variety of malignancies including head and neck, lung [46], glioblastoma [52], 

sarcoma [53] and prostate cancer [54]. There are multiple potential applications of radiomics. 

Textural features can be used to determine if a suspicious imaging finding represent malignancy. 

Andersen et al demonstrated that texture features can distinguish between benign and malignant 

lymph node involvement in lung cancer patients [55]. Similarly, in prostate cancer, texture 
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features have been shown to be able to distinguish malignancy from normal tissue [56] and thus 

aid in prostate cancer detection [57].  

Another application is in the use as a prognostic biomarker. Lubner et al previously 

demonstrated the correlation between textural features and overall survival in hepatic metastatic 

colorectal cancer [58]. Cunliffe et al demonstrated association between radiomics features and 

toxicity resulting in radiation pneumonitis [59]. Coroller et al found that textural features of 

primary NSCLC tumors are associated with prediction of distant metastases [60].  

Finally, an intriguing application of quantitative imaging is treatment monitoring and 

response prediction. The utility of radiomics may not only be limited to risk stratification, but 

may also be used for longitudinal treatment monitoring and surveillance along with 

PET/CT/MRI imaging modalities. For example, Cook et al describe the use of PET texture 

correlated with RECIST response in NSCLC patients treated with erlotinib [61].  

1.4 Rationale 

As outlined above, genetic and clinical information offer significant benefit to the 

understanding of tumor phenotype. However, there is increasing evidence that tumor architecture 

as dissected by quantitative imaging can offer additional, complementary information to 

routinely obtain clinical or genetic data. In this work, I sought to apply the principles of 

quantitative imaging to NSCLC lung cancer patients. These patients offer many benefits that 

make them suitable for studies in quantitative imaging. Unlike prostate, ovarian, or colon cancer, 

there are currently no serum markers that are clinically used for assessing tumor burden, severity 

or response to therapy for patients with NSCLC. These patients thus undergo regular surveillance 

imaging. Additionally, given that radiation therapy can be a primary treatment modality for both 

early and late stage NSCLC, patients routinely undergo high quality CT scans during treatment 

planning. Finally, these patients have a high event rate of local recurrence, distant metastases and 

death that facilitates the study of clinical endpoints. On the other hand, lung cancer patients often 

have poor image quality due to artifact and motion from breathing that limits the information that 

can be gathered. I hypothesize that applying quantitative data mining techniques to images 

obtained clinically can describe the tumor phenotype for NSCLC and will be predictive for 

pathological and clinical outcomes.  
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2. Materials and Methods 
2.1 Patient Identification 

The study was conducted under an IRB approved protocol.  Retrospective analysis 

identified 127 patients who underwent chemoradiation followed by surgical resection between 

2001-2013 at Brigham and Women’s Hospital/Dana Farber Cancer Institute. 101 of these 

patients had CT imaging available for analysis at both the initiation and completion of 

radiotherapy prior to surgical resection. For analysis of CBCT images, an additional 99 patients 

who underwent SBRT between 2009-2013 were identified.  

Pathology reports at the time of surgical resection provided pathologic restaging. At our 

institution, residual tumor is indicated as either gross residual disease (GRD) or microscopoic 

residual disease (MRD). Complete tumor eradication was considered a pathologic complete 

response (pCR).  

  Exclusion criteria included delayed surgery greater than 120 days after the completion of 

radiotherapy, presence of distant metastases (Stage IV) at diagnosis or prior to planned resection, 

and CT imaging with slice thickness greater than 5.0 mm. Patients without gross tumor volume 

(GTV) or clinical target volume (CTV) contours from the treating radiation oncologist were 

excluded from this study.  

2.2 CT Acquisition  

Planning CTs were acquired according to scanning protocol at our institution using GE 

“Lightspeed” CT scanner (GE Medical System, Milwaukee, WI, USA).  

2.3 Tumor Segmentation 

Tumors were segmented on CT scans obtained both before (pre-treatment) and after 

radiation therapy (post-treatment). Original planning CT scans and tumor contours were 

retrieved from Eclipse Treatment Planning System (Varian, Palo Alto, CA). Post-treatment 

volumes were contoured on diagnostic CT scans obtained clinically for re-staging prior to 

surgery. Pre-treatment volumes were registered to post-treatment CT images using deformable 

registration via MIM Maestro (MIM Software Inc., Cleveland, OH) to guide post-treatment 

contouring. Where clinically involved nodal stations were clearly demarcated from the primary 

tumor, a separate contour was created for primary tumor measurements.   

For patients undergoing SBRT, cone-beam CT scans (CBCTs) were obtained at the first 

and last radiotherapy treatment date. A third CBCT scan was obtained at the mid-point of 
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treatment regardless of the number of radiation fractions prescribed. Original planning tumor 

contours were reviewed for tumor identification and segmentation guidance. Tumors were 

segmented on CBCT images using Eclipse Treatment Planning System (Varian, Palo Alto, CA).  

All contours were modified to exclude air, blood vessels, and normal tissue, and 

subsequently reviewed by an attending radiation oncologist. 

2.4 Radiomic feature extraction 

A set of 1605 radiomic features describing the tumor phenotype was extracted using an 

in-house Matlab 2013 (The Mathworks Inc., Natick, MA, USA) toolbox and 3D Slicer 4.4.0 

software [62]. All CT voxels were resampled to 3 x 3 x 3 mm3 prior to feature extraction to 

standardize the voxel spacing across the cohort. (Figure 1) A standard bin width of 25 

Hounsfield units (HU) was used for textural features. These features were organized into discrete 

categories including shape, statistics and textural features (Figure 2, Table 1) [46]. Laplacian of 

Gausiann (LoG) and wavelet filter were subsequently applied to extracted features to obtain 

additional features corresponding to discrete intensity bands.  

After extraction of radiomic features, principal component analysis (PCA) was applied to 

the feature set using the FactoMineR package for R software. PCA reduction of the feature set 

allowed for independent selection of a limited number of features to then test prognostic value. 

Imaging features were thus selected for the maximal representation of the feature set without 

consideration of study endpoints. Features retaining 95% of the variability and 99% of the 

correlation to PCA scores were selected for further analysis.  

2.5 Tumor Size Calculations 

Volume and diameter measurements were performed by MIM Maestro and Eclipse 

treatment planning system. Relative changes in tumor volume or diameter were calculated as 

%(Tumorpost-treatment – Tumorpre-treatment)/Tumorpre-treatment as previously described [63].For CBCT 

volumes, relative changes were calculated using combinations of two out of three treatment 

volumes extracted. Rate of change was calculated using the slope of decrease between any two 

imaging time points. Volume measurements are reported in cubic centimeters for the sum total 

tumor volume including the primary tumor and all clinically involved lymph nodes.  

Uni-dimensional diameters were measured according to RECIST 1.1 guidelines [20]. 

Diameters are reported in centimeters for the sum total tumor diameter. A maximum of 5 total 
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lesions were included in diameter calculations. Primary tumors less than 1.0 cm in the long axis 

and lymph nodes less than 1.5 cm in the short axis were excluded per RECIST 1.1 guidelines.  

2.6 Outcomes 

Survival outcomes were locoregional recurrence (LRR), distant metastasis (DM), and 

overall survival (OS). Locoregional recurrence was defined as recurrence at the resection site, 

hilar nodes, mediastinal nodes, or supraclavicular nodes. All other sites were defined as distant 

metastasis. LRR and DM were defined as the time interval from the date of surgery until the first 

radiographically evident locoregional recurrence or distant metastasis respectively, and censored 

at the date of last negative re-staging scans in patients without recurrence. OS was defined as the 

time from the date of surgery until death from any cause, and censored at the last date of follow-

up.   

2.7 Statistical Analysis 

All statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC) 

and R software version 3.2.2 using the survcomp package version 1.16 from Bioconductor.   

Univariate and multivariate logistic regression with stepwise selection were used to 

identify clinical or imaging features associated with pathologic complete response. Log-rank test 

and Kaplan-Meier analyses were utilized to analyze time-dependent variables including LRR, 

DM, and OS. Multivariate survival analysis was performed using the Cox proportional hazards 

model with stepwise selection. Receiver operating characteristic (ROC) curves were calculated 

to identify the performance of continuous imaging variables [63].Comparison of ROC areas 

under the curve (AUC) was performed as described by DeLong et al [64]. Optimal cutoff for 

sensitivity and specificity was derived from the ROC curve using the Youden index (J) [65].  

The prognostic performance of the imaging features was evaluated by calculating the 

concordance index (CI). The CI is a generalization of the time dependent area under the receiver 

operating characteristic curve (AUC). The CI is a measure of the probability that between two 

randomly drawn samples, the sample with the higher value (e.g. of an imaging feature) will have 

a higher likelihood of the event. A CI greater than 0.5 indicates direct proportionality between 

the feature value and clinical outcome whereas a CI less than 0.5 indicates inverse 

proportionality to the event. A CI of 0.5 indicates no association between the feature and the 

outcome. The Noether test was used to compute the p-value to determine the significance of the 
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CI from random (CI = 0.5). Statistical significance from random CIs was calculated using the 

“survcomp” package. P-values less than 0.05 were considered significant. 

 

3. Results 
3.1 Size-based metrics for locally advanced NSCLC 

 Clinical trials and treatment plans typically use tumor diameter for assessing response or 

progression. Since diameter is a conventional metric of response, I sought to more clearly 

elucidate the relationship of imaging measurements of tumor size with pathological response, 

given that pathological response is a direct measure of the tumor response to therapy. A decrease 

in tumor diameter of 30% or more is considered a response to therapy based on standard 

RECIST criteria. Tumors are considered stable or progressing if they do not shrink at this cut-

off. However, there are surprisingly few studies that have validated additional quantitative size-

based metrics with regard pathologic response or clinical outcomes.  

3.1.1 Patient characteristics and outcomes 

In order to evaluate the effect of sized based changes, I retrospectively analyzed 101 

patients with NSCLC who underwent neoadjuvant chemoradiation prior to surgical resection. 

The median age of patients was 60 years (range 32-77) at the time of diagnosis. Patient and 

treatment characteristics are shown in Table 2. The majority of patients presented with 

adenocarcinoma (57.4%) or squamous cell carcinoma (26.7%) histology. The median 

preoperative radiation dose was 54 Gy, and 98% of patients received concurrent chemotherapy. 

The median time from the completion of chemoradiation to the first post-treatment scan was 18 

days (Range 0-92), and the median time from chemoradiation to surgery was 44 days (Range 21-

119). 81 patients (80.1%) had residual disease and 20 patients (19.8%) had a pCR at the time of 

surgery.  

Patient outcomes are shown in Table 3. Median follow up was 36 months, (range 0.4-113 

months). Median overall survival was 60.1 months. The 3-year estimates of locoregional 

recurrence, distant metastases and OS were 25%, 37%, and 64% respectively 

 

3.1.2 CT Volume and Diameter Changes in Patients with pCR 

The median relative change in CT measured tumor diameter was -26.6% (Range -100 to 

+49.3%). The median relative change in tumor volume was -50.5% (Range -90.9 to +185.2%). 
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Figure 3 summarizes tumor response utilizing a waterfall plot for each patient based on the 

percent change in tumor diameter (3a) and volume (3c) grouped by pathologic response. For 

patients with pCR and residual disease, the median change in volume was -60.3% (Range -81.9 

to -35.8%) and -41.9% (Range -90.9, +185.2%) respectively. The median change in diameter 

was -41.1% (Range -100.0 to +3.7%) and -24.4% (Range -63.1 to +49.4%) for pCR and residual 

disease respectively (Figure 3b, 3d). The decrease in tumor volume and diameter (p=0.02) was 

significantly higher in patients with pCR compared to residual disease (p<0.001, Wilcoxon rank 

sum test). 

3.1.3 Univariate and Multivariate Analysis  

Univariate logistic regression further demonstrated association between pCR and change 

in tumor volume (OR 1.06, 95% CI [1.02-1.09], p=0.002) as well as tumor diameter per 

percentage point (OR 1.04, 95% CI [1.01-1.06], p=0.006). Notably, there was no association 

between pCR and absolute tumor size. This was true for tumor size both prior to and after 

chemoradiation. Examining clinical variables, N0 status, squamous cell histology, and number of 

positive lymph node stations (PLNS) at diagnosis were significantly associated with pCR (Table 

4). Age, performance status, race, gender, Stage and radiation dose did not have a significant 

association.  

All factors significant for pathologic complete response on univariate analysis were 

entered into a multivariate logistic model. Tumor volume decrease remained an independent 

predictor of pathologic response in the multivariate analysis (OR:1.08, 95%CI:[1.03-1.13], 

p=0.002) in addition to N2/N3 Stage (OR:0.18, 95%CI:[0.05-0.62] p= 0.001) and histology sub-

type.  

3.1.4 RECIST Response does not predict pCR 

Given the association between volume/diameter changes and pCR, existing imaging 

response criteria (RECIST) were compared with pathologic response. Using RECIST response 

threshold of 30% decrease in tumor size, there were 43 (42.6%) patients with a RECIST 

complete or partial response (CR/PR) and 58 (57.4%) patients with stable or progressive disease 

(SD/PD) (Table 3).  

RECIST CR/PR versus SD/PD had no association with pCR on unviariate logistic 

regression (p= 0.21). The sensitivity and specificity of RECIST response for predicting pCR was 

55% and 60% respectively.  



! 18!

3.1.5 Receiver Operating Characteristics  

To further quantify the efficacy of the discovery model using imaging size with 

pathologic response, I generated ROC curves for univariate CT imaging models predicting pCR. 

Relative change in volume had an AUC of 0.76 compared to AUC of 0.67 for relative change in 

tumor diameter (Figure 4). Both volume and diameter models were significant from random 

(p<0.05). The optimized volumetric cutoff was 54.6% decrease in volume resulting in 85% 

sensitivity and 64.2% specificity. 

 The optimal point for predicting pCR using change in diameter was 47.6% decrease, 

resulting in 40% sensitivity and 87.7% specificity. Changes in primary tumor volume and change 

in primary tumor diameter were analyzed separately and were also significantly associated with 

pCR. No other imaging characteristics reached significance. 

3.1.6 Timing of Imaging does not Affect Univariate Predictions 

 The median duration between pre-treatment and post-treatment CT imaging was 70 days 

(range 35-159). To account for variability in early tumor response, I performed subgroup 

analysis of patients with early (<70 days) and late CT imaging (>70 days). Pathologic response 

was correlated to tumor volume decrease per percentage point in both patients with earlier scans 

(p=0.01) and late scans (p=0.04). Furthermore, the average percent changes per day in volume 

and diameter was also associated with pCR. The median tumor volume change per day was -

0.73% (Range -1.61 to +2.64%) and the median diameter change per day was -0.39% (Range -

1.27 to +0.71%). Both percent decrease of tumor volume change per day (OR 9.14, 95% CI 

[1.53-54.81] p=0.02) and diameter (OR 5.76, 95% CI [1.20-27.6] p=0.03) remained significantly 

associated with complete pathologic response.  

3.1.7 Survival Outcomes Analyses 

 Given the association between volume/diameter changes and pathologic response, I also 

tested the association between survival and imaging response. Volume change, diameter change, 

and RECIST response were not associated with LRR, DM, or OS. However, patients with less 

advanced stage IIA-IIIA disease had greater LRR than IIIB disease (3 year freedom from LRR 

78.8% [67.0- 86.8%] vs 47.9% [17.5-73.2%], p=0.04).  

3.1.8 Stage IIIA Subgroup Analysis 

 Since trimodality therapy and questions regarding optimal therapies for local control are 

particularly controversial for stage IIIA patients, I performed a subgroup analysis of only stage 
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IIIA patients (n=77). The median change in volume for this subgroup was -48.3% (Range -83.6 

to 185.2%). The median change in diameter was -27.9% (-100 to 49.4%). Similar to the results 

obtained from analysis of the entire cohort, there was an association between percent tumor 

volume decrease (p=0.002) and percent tumor diameter (p=0.001) decrease with pCR in stage 

IIIA patients.  

 I then examined survival outcomes. There was no association between imaging changes 

and OS or DM. However, in the subgroup analysis of stage IIIA patients, total change in volume 

was associated with locoregional-recurrence (p=0.0367). Using the median volume change of  

– 48.3% as a cutoff, patients with greater volumetric decrease had decreased LRR compared to 

patients with smaller volumetric decreases (Figure 5a). In contrast, there was no association 

between RECIST response and LRR (Figure 5b). 

 

3.2 Shape and Texture based features predict pathologic response 

Since volumetric changes were able to predict pathologic response and local recurrence 

with greater efficacy than conventional 2-dimensional diameter measurements, I reasoned that 

higher order features could similarly predict pathologic and survival outcomes. In order to better 

identify textural features associated with clinical outcomes, I applied radiomics analysis to CT 

images obtained prior to therapy. The goal of such an analysis would be to predict patients at 

higher risk of poor response prior to the initiation of therapy. Such analyses could then logically 

extend to imaging obtained during therapy or after the completion of therapy. 

3.2.1 Patient characteristics and outcomes 

127 patients with NSCLC were included in this study. The median age was 60.5 years old 

(range 32.7 to 77.6). Tumor histology was predominantly adenocarcinoma (56.6%) and AJCC 

stage IIIA (75.6%). The median follow-up was 41.8 months. Pathologic response was 27 

(21.3%) complete response, 33 (26.0%) microscopic disease and 67 (52.7%) gross residual 

disease (Table 5). The median time for OS, DM, and LRR was respectively 41.8, 24.8, and 28.1 

months. (Table 6). 

3.2.2 Radiomics predicts pathologic response but not survival 

Using in-house feature extraction, my collaborators and I extracted 1605 radiomics 

features. This feature set was then reduced using principal component analysis (PCA). This step 

allowed for the reduction of the feature set independent of clinical outcomes, but still selected 
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features that contained the majority of the variance within the feature set. By doing so, this 

reduced the likelihood of overfitting the feature set to clinical outcomes, as greater than 1600 

features would be represented by fewer than 30 independently selected features.  

After PCA feature selection, we obtained fifteen radiomic features (Table 7). These 

features were then entered into univariate models to predict clinical outcomes. Based on the 

successful prediction of pathological response using volume, we believed advanced imaging 

features would also likely be correlated with pathologic response. To test this hypothesis, we 

analyzed pre-treatment CT images of locally advanced NSCLC. We first determined if radiomic 

features could identify tumors with gross residual disease (GRD) at the time of surgery. The 

fifteen selected advanced imaging features had an AUC of 0.53 to 0.66 for GRD. Seven features 

were significantly predictive (range AUC 0.61 to 0.66, p-value <0.05) for GRD. Two of the 

seven features were risk proportionate and five were inversely proportional (Figure 6a). We then 

investigated the predictive power for identifying pathologic complete response (pCR). The best 

performing radiomic feature, Wavelet HLL mean, was significantly predictive (AUC = 0.63, p-

value = 0.01).  

 Since radiomics was able to identify both gross residual disease and pathologic complete 

response, I reasoned that these features would likely be significant for survival outcomes. We 

thus tested these features for prognostic value. However, no features were correlated to OS, 

LRR, or DM (Figure 7).  

 

3.3 Quantitative lymph node assessment 

Given that volume, shape and textural features of primary tumors were predictive of 

histopathologic and clinical outcomes, I hypothesized that similar analyses of lymph nodes may 

add new or complementary prognostic value. I was particularly interested in understanding the 

pathological response not of the primary tumor, but of the lymph nodes themselves.  

3.3.1 Patient selection 

 I identified 87 patients with distinct nodal disease. Of these, 78 patients also had CT 

imaging performed after the completion of chemoradiation. The average age was 60 (Range 32-

75) and was predominantly Caucasian (90.4%) and female (69.9%). There was a majority of IIIA 

patients (83.6%) with adenocarcinoma as the predominant histology. Patient characteristics are 
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shown in Table 8. Patient outcomes are shown in Table 9. Median overall survival was 78 

months and median LRR was not reached. 

3.3.2 Quantitative imaging is unable to predict nodal downstaging 

Based on my earlier work exploring the relationship between primary tumor texture and 

pathologic response, I was interested to determine whether lymph node volume and texture were 

also correlated with pathologic response.  To assess this, I chose the endpoints of nodal 

downstaging and nodal clearance as opposed to pathologic response. Nodal downstaging occurs 

when patients with N2 or N3 disease at the time of staging have N1 or N0 (ypN1 or ypN0) 

disease at the time of surgery. Nodal clearance occurs when patients achieve N0 nodal status at 

the time of surgery (ypN0). These endpoints are independent of the primary tumor which is the 

endpoint tested by pathologic response. Nodal clearance alone however, is an important 

prognostic indicator for survival in patients undergoing trimodality therapy [67]. 

Of the patients with CT imaging available, 73 patients had N2 or N3 nodal disease. 66 

patients had N2 disease at the time of presentation and 7 patients had N3 disease. All patients 

received concurrent chemotherapy with the majority receiving cisplatin/etoposide. 47 patients 

(64%) were downstaged to either ypN1 or ypN0 by pathologic staging at the time of surgery. 40 

patients (54.8%) achieved nodal clearance to ypN0. Multiple imaging parameters were analyzed 

for correlation with nodal downstaging or clearance. Analyzing primary tumor and all involved 

nodal stations, the median tumor volume prior to chemoradiation was 39.1 cm3 (Interquartile 

range 20.6-80.7 cm3). The median tumor volume following chemoradiation was 19.1 cm3 

(Interquartile range 11.6-37.8 cm3) and the mean relative change in tumor volume was -45.8% 

(Interquartile range -65.3 to 31.0%). There was no association with pre-treatment volume 

(p=0.74), post-treatment volume (p=0.42), or change in total tumor volume (p=0.47).   

Analyzing only N2 mediastinal nodal volumes, the median N2 lymph node volume prior 

to chemoradiation was 6.7 cm3 (Interquartile range 3.1-14.6 cm3). The median N2 lymph node 

volume following chemoradiation was 3.8 cm3 (Interquartile range 1.8-7.0 cm3) and the median 

relative change in volume was -44.4% (Interquartile range -61.7 to -27.8%). Using logistic 

regression, there was no significant association between pre-treatment N2 volume (p=0.62), post-

treatment N2 volume (p= 0.84), or change in volume (p= 0.50) and nodal downstaging. 

Additionally there was no significant association between pre-treatment N2 volume, post-

treatment N2 volume, or change in volume and nodal clearance. 
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Principal component analysis of texture features identified 16 pre-treatment and 16 post-

treatment images features from 1605 original features (Table 10). Of these, two features Wavelet 

LLH stats std and Wavelet LLL glcm inverseVar were identified in common between pre-

treatment and post-treatment lymph node features. No features demonstrated association with 

either nodal clearance or nodal downstaging.  

Finally, analyzing clinical features, there was no association between age, race, gender, 

performance status, number of positive lymph node stations, radiation dose, or clinical stage and 

nodal downstaging 

3.3.3 Lymph node volume predicts local recurrence and overall survival 

Survival outcomes of local recurrence, progression free survival and overall survival 

were investigated using the concordance index (c-index) and Kaplan-Meier analysis. Using the 

c-index, we found significant correlation between mediastinal lymph node volume and 

locoregional recurrence as well as overall survival (Figure 8). Both pre-treatment and post-

treatment mediastinal lymph node volume had high c-index scores for locoregional recurrence 

(0.66 and 0.67 respectively) and overall survival (0.62 and 0.60 respectively). Including hilar 

nodal volumes in the total lymph node volume improved the c-index scores for both LRR (0.71 

and 0.72 respectively) and OS (0.67 and 0.65 respectively). Notably, total tumor volume 

including the primary tumor at either imaging time point was not significantly associated with 

either local recurrence or overall survival.   

Given the high c-index for lymph node volume and LRR, Kaplan Meier analysis was 

used to stratify patients into high-risk and low-risk groups. Patients were separated into quartile 

groups based on lymph node volume. Patients with mediastinal lymph node volumes greater than 

14.6 cm3, representing the upper quartile of patients, were found to have increased LRR 

compared to patients with lymph node volumes less than 14.6 cm3 (p=0.01) (Figure 9a). 

Similarly these patients were found to have decreased OS compared to patients with lymph node 

volumes less than 14.6 cm3 (p=0.001) (Figure 9b).  

Additionally patients with mediastinal lymph node volume greater than 7.0 cm3 after the 

completion of preoperative chemoradiation, representing the upper quartile of post-treatment 

volumes, were found to have increased LRR (p<0.001) and decreased OS  (p=0.04) compared to 

patients with lymph node volume less than 7.0 cm3 volume (Figure 9c, 9d).  

3.3.4 Lymph node texture predicts LRR, DM and OS 
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 Due to the high predictive value for volume and survival outcomes, I reasoned that other 

radiomic features could also be prognostic. I then tested pre-treatment and post-treatment lymph 

node features for association with survival outcomes. I used the 16 pre-treatment and 16 post-

treatment images features identified through PCA for this analysis. Notably, post-treatment 

lymph nodes had a much greater number of radiomics features associated with survival 

outcomes. 

Analyzing pre-treatment lymph nodes, there were three quantitative features associated 

with LRR in addition to volume (Figure 10a).  There were zero features associated with DM 

(Figure 10b), and one feature associated with OS (Figure 10c). The features associated with 

LRR included Shape spherDisprop (CI 0.72), Stats kurtosis (CI 0.63) and LoG sigma 5 mm 3D 

glcm invDiffnorm (CI 0.62). The feature associated with OS was spherDisprop (CI 0.64). The 

shape feature spherical disproportionality reflects the difference between the tumor shape and a 

sphere of equal volume. The stats kurtosis feature reflects the shape of the voxel intensity 

histogram. The feature LoG sigma 5 mm 3D glcm invDiffnorm describes the inverse difference 

moment (normalized) which is a measure of homogeneity within the tumor. 

Post-treatment lymph node analysis revealed numerous radiomic features associated with 

LRR. Of the 16 features independently selected to represent the feature space, 4 features were 

significantly associated with local recurrence (Figure 11a). C-indices had a range of 0.62-0.72 

for features proportional with LRR. These included a mixture of both statistics and textural based 

features but no shape features. The largest C-index of these features was for the LoG sigma 4mm 

3D rlgl shortRunHighGrayLevEmphasis with a c-index of 0.72. This feature is sensitive to 

connecting voxels of high intensity. For DM, two features were significant from random (Figure 

11b). These were Wavelet HHL stats var (CI 0.60), a measure of the variance of voxels, and 

Wavelet HLL glcm contrast (CI 0.59), correlated to textural heterogeneity. Similarly, the feature 

Wavelet LLH glcm sumVar with a C-index of 0.61 was associated with OS (Figure 11c).  

Based on the correlation between both pre-treatment and post-treatment imaging and 

clinical outcomes, I sought to determine if textural changes were associated with survival. I 

developed a model for the change, or delta, or radiomics features, quantified as the ratio of post-

treatment features to pre-treatment features. After determining the ratio, PCA analysis was 

performed as previously described to select independent features. The results again demonstrated 

a correlation between the new delta based features and clinical outcomes. C-indices had a range 
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of 0.62-0.66 for features associated with LRR.  The feature LoG sigma 5 mm 3D stats entropy 

had the greatest CI of the four features associated with LRR (CI 0.66). There were no features 

associated with DM. The feature LoG sigma 5 mm 3D stats mean was associated with OS (CI 

0.62). 

Overall these results demonstrated significant association with both volumetric, 

statistical, shape and textural features and the survival endpoints tested in this study. 

 

3.4 Quantitative assessment of SBRT  

 Given that radiomics had significant prognostic value for patients undergoing 

conventional chemoradiation, I was interested in the quantitative dynamics of SBRT. This form 

of hypofractionated therapy is delivered over a short period of time and thus there is less time for 

information regarding tumor response to be obtained. Understanding the dynamics of volume 

change as they relate to patient outcome could thus provide a very early time point for adaptive 

treatment planning. 

3.4.1 Patient selection   

 99 patients undergoing SBRT were retrospectively analyzed for quantitative tumor 

changes. The median age was 74 (range 46-93) with the majority of patients presenting with 

adenocarcinoma (46.5%) and Stage IA disease (78.8%). The median time to local recurrence was 

39.2 months and the median overall survival was 28.5 months. The median endpoint of distant 

recurrence was not reached. Patient and treatment characteristics can be found in Table 11 and 

Table 12. 

Tumor volumes were extracted at three time points: 1) at the initiation of SBRT 2) mid 

point of SBRT therapy and 3) the completion of SBRT. Furthermore, I calculated the early rate 

of tumor shrinkage, the rate of late tumor change, as well as max and average rate changes.  This 

resulted in a total of 10 quantitative features for analysis.  

3.4.2 Volumetric changes predict survival 

The median tumor size at the start of therapy was 7.26 cm3 (range 0.59-75.41) and the 

median tumor at the end of therapy was 6.60 cm3 (Range 0.27-51.65). The median relative 

change in tumor size -12.4% (range -54.2% to +29.2%). Analyzing all features I was unable to 

find any features that were correlated with LRR (Figure 13). However 7 out of the 10 features 

were significantly prognostic for any recurrence (CI 0.58-0.64). The feature, maximum rate was 



! 25!

the feature with the highest C-index at 0.64 (Figure 14). This feature describes the maximal rate 

of volume change at any point during therapy including both early and later time points. 

Additionally one feature was inversely proportional to OS (Figure 15). Early volume change, 

describing the relative change in volume between the start and middle of therapy, had a c-index 

of 0.41 for OS. 
 

4. Discussion 
4.1 Conclusions 

 Quantitative imaging has the potential, along with genomic and clinical factors, to be a 

key component of driving personalized medicine. The goal of radiomics is to provide additional 

data points beyond the capabilities of the human eye. This data is particularly relevant for the 

treatment of cancer patients for which treatment decisions are routinely guided by imaging [68]. 

Radiomics can potentially offer a non-invasive method to assess changes within a malignancy 

that are manifest by changes in textural heterogeneity, shape or density. The aim of this project 

was to demonstrate a correlation between quantitative data and clinical outcomes. I tested and 

validated the hypothesis that data derived from clinically obtained imaging is associated with 

clinical outcomes and can offer additional data that complements existing clinical information.  

The results of this study show several applications of quantitative imaging features. I first 

demonstrated that the change in tumor volume is significantly associated with pathologic 

correlation as well as prediction of local recurrence. This metric performed better in our patient 

cohort than conventional 2-dimensional cutoffs (RECIST) used in clinical practice. I extended 

these findings to patients with nodal disease and demonstrated that lymph node volume alone 

further able to stratify advanced NSCLC patients into groups with decreased rates of survival.  

Second, analyzing lymph nodes alone, I show that contrary to the results obtained from 

analyzing primary tumors, the change in lymph node volume does not predict pathological 

response, nor does it predict local recurrence and overall survival. I further analyzed higher order 

quantitative features describing tumor texture and shape. This analysis demonstrated that pre-

treatment primary tumor texture predicts pathological response and that lymph node texture 

predicts LRR and OS. I finally attempted to apply some of these techniques to the lower quality 
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images obtained from cone-beam CT scans. I demonstrated that volume change using CBCT of 

SBRT predicts both recurrence and overall survival. 

These results have potentially implications for clinical practice. For example, locally 

advanced NSCLC is composed of a heterogeneous tumor population but typically contains tumor 

that has extended to the mediastinal lymph nodes. Multiple studies have shown that mediastinal 

nodal clearance is a strong predictor of overall survival, suggesting that nodal tumor burden, in 

addition to anatomic involvement, is an important prognostic marker of survival [67,69]. These 

studies suggest a clear link between local disease control and overall survival. However there is 

controversy as to the preferred method of local therapies (radiation therapy and/or surgery). Pless 

et al demonstrated no significant differences in survival between chemotherapy followed by 

surgery versus sequential chemotherapy and RT followed by surgery [70]. Albain et al 

demonstrated no survival difference between concurrent chemotherapy and RT compared to 

concurrent chemotherapy and radiation followed by surgery [71]. Finally, Van Meerbeeck et al 

demonstrated that chemotherapy followed by radiotherapy has equivalent outcomes to 

chemotherapy followed by surgery [72]. However, such data also do not account for the 

variability of responses to chemoradiation, which could influence decisions regarding 

intensification of local therapy for select patients. Patients with a significant likelihood of 

achieving pCR following chemoradiation may be less likely to benefit from the addition of a 

second form of local therapy such as surgical resection but patients with a suboptimal response 

may benefit from radiation dose escalation, consolidation chemotherapy, and/or surgical 

resection. The results of this thesis identify volumetric and textural features that are directly 

correlated to tumor pathology including in the subset of stage IIIA patients. Furthermore, despite 

the lack of prediction for nodal clearance in our study, we establish novel cutoffs for lymph node 

volume that can be used to risk stratify patients with mediastinal nodal disease. 

To our knowledge this is the first study identifying prognostic quantitative imaging 

features in neoadjuvant chemoradiation. Prior work in quantitative imaging has primarily been 

limited to non-surgical cases and predominately analyzing one imaging time point [22,23]. These 

studies describe an association with tumor volume and survival that we did not find in our study. 

Koo et al further investigated changes in tumor volume but did not find an association between 

tumor volume change and survival [63]. Our results contrast those findings, in that volumetric 

changes was associated with LRR when limited to locally advanced stage IIIA patients. We 
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further describe the size and texture relationship for pathologic response that more accurately 

describe radiopathologic correlation. Texture features were unable to predict survival, similar to 

a previous study from Ravanelli et al. [27].  

A few results have contradictory findings compared to prior literature. We report that 

both pre-treatment and post-treatment lymph node volume during neoadjuvant therapy were 

significantly associated with survival. However Dehing-Oberije et al and Basaki et al previously 

reported no association between nodal volume and survival [25,74]. Such differences may be 

partially explained by heterogeneity in treatment modalities, tumor volume thresholds and 

segmentation used in these studies.  

The novel lymph node features are the multiple texture features correlated to local 

recurrence, distant metastasis and overall survival. To our knowledge, no lymph node features 

have been identified in a cohort as large as ours. Although we were unable to develop a 

multivariate textural signature, we were able to generate multiple features that were associated 

with clinical endpoints in both pre-treatment and post-treatment lymph nodes.  Additionally, this 

study demonstrated the use of delta radiomics, as a means of providing information about the 

response to therapy. These results could be extrapolated to additional time points to be used for 

more accurate and frequent non-invasive monitoring of tumor response. Although the CI of these 

was below 0.80 for all features investigated, these features provide a foundation for further 

investigation before use as imaging biomarkers.  

Overall these results agree with prior radiomics findings that find association between 

clinical outcomes and quantitative imaging [46,60,68]  

4.2 Limitations of the study 

 There are many challenges and limitation that are concerning for the field of quantitative 

imaging and radiomics. With respect to this study, the retrospective nature of these analyses at 

our single institution limit the generalizability of this data. The small sample size and low 

incidence of pCR in this study resulted in insufficient power to build multivariate models and 

will require further validation in larger cohorts. I also recognize that patients in this study are 

composed of heterogeneous stages which may further affect the generalizability of the study. 

However, we also find that our results hold true for all patients with operable locally advanced 

patients as well as only the stage IIIA patients in subgroup analysis.  
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With respect to the limitation of the field, these can be generally grouped into 1) acquisition 

and reproducibility of data and 2) the clinical utility of the data obtained. Image acquisition 

remains a challenge for radiomics analysis due to the variability in image acquisition across 

instruments and institutions [75]. Image acquisition is often not standardized with respect to 

image slice thickness, reconstruction algorithms, and image resolution. Such imaging variability 

affects the development of imaging databases [47]. Such features are more difficult to reproduce 

in PET or MRI images. PET and MRI are particularly challenging due to variations in 

institutional protocols including dose uptake, metabolic volume reconstruction, and motion 

susceptibility. Despite these challenges, there is evidence demonstrating the robustness of 

radiomics features. Radiomics features are stable with respect to sequential CT images obtained 

15 minutes apart [76,77] and repeated PET imaging [78].  At the very least, these studies 

demonstrate radiomic stability at the institutional level which provides support for the data in our 

study. Additional studies of variability remain challenging, such as noise introduced as a result 

respiratory motion [79]. Another problem with radiomics acquisition is the variability of 

segmentation. Automated segmentation may help address some of these issues as features 

derived from automated contours yield more reproducible results than manual contours [80]. 

Furthermore, based on the hypothesis that the central component of the tumor is most consistent 

across segmentation, radiomics features remain robust within the central core of the tumor. This 

then avoids the limitations of segmentation due to noise from differential contours [81].  

It is unclear whether the tumor phenotype obtained from radiomics corresponds to an 

underlying biological genotype. The textural features in this study indicated that patients with 

increased heterogeneity of texture are more likely to have more aggressive disease. Yet it 

remains to be determined what the actual biological significance of textural or statistical features 

is. However, there is some evidence that indicates a the correlation between biological phenotype 

and imaging phenotype. Xenograft models in mice have demonstrated that radiomics features 

change significantly during expression of the inducible GADD34 [82]. Furthermore, radiomics 

features have been correlated to ALK and ROS1 [83], triple negative breast cancer on MRI 

[84,85], as well as histopathology [58,86]. Work from our laboratory (unpublished) has also 

identified radiomics features that are correlated with EGFR and KRAS mutation status, further 

adding support to the idea that radiomics features reflect biological features.  
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4.3 Future directions 

4.3.1 Delta radiomics 

 In many prior quantitative imaging studies  radiomic features are limited to features 

extracted at a single single time point imaging. However, based on the predictive capability of 

changes in volume, I believe there is a significant amount of information that can likely be 

gained be observed changes in radiomic features as well. Currently my collaborators and I are 

working to build models of radiomics that can incorporate the delta of radiomics data including 

those presented in this study. The data presented in this work regarding the change in texture 

over the course of two CT imaging time points is particularly exciting as there have yet to be any 

studies regarding serial changes in texture over the course of chemoradiation. Furthermore, as 

more patients receive novel therapies, the applications of quantitative imaging will also grow. 

Imaging for surveillance could not only assess response, but could be used in active surveillance 

to determine the development of resistance before it is clinically apparent.  

4.3.2 CBCT radiomics and adaptive treatment planning 

 CBCTs are a lower quality CT image obtained at the time of SBRT treatment for 

ensuring radiation is delivered to the same area during each fraction. The initial data presented in 

this study demonstrated that volume changes on CBCT are correlated with clinical outcomes. 

Although it is known that volume changes occur during SBRT therapy [87], it is unclear how 

much information regarding tumor response can be gained from volume alone. Despite the 

limitations of time, I was able to demonstrate that volumetric changes during SBRT treatment 

can be correlated with survival. Based on the data presented in this work, it is very likely that 

higher order features will offer additional information [42]. This is based on the hypothesis that 

texture features will change more rapidly than volume. 

As a result of building models that incorporated CBCT texture, we hope to be able to 

develop protocols for adaptive treatment planning. Although challenges to this have already been 

described above, a major goal of quantitative imaging is to be able to assess the efficacy of 

treatments in progress and modify them accordingly. Such modifications could include 

modifying tumor segmentation, dose escalation and/or decisions regarding surgical resection. 

 

4.4 Summary  
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In this work, I sought to apply the principles of quantitative imaging to NSCLC lung 

cancer patients. This study demonstrated application of all aspects of radiomics including 

volume, shape, statistics and texture to NSCLC patients. These quantitative imaging features 

were applied to novel clinical scenarios including patients undergoing neoadjuvant therapy, 

lymph node analysis, and the low-resolution CBCT images. I not only demonstrated the novel 

correlation with pathologic response, but found several features prognostic for overall survival, 

progression-free survival, and locoregional recurrence-free survival. These examples highlight 

the potential within the rapidly growing field of quantitative imaging to more robustly describe 

tumor phenotype than conventional imaging criteria. These results provide novel evidence to the 

growing radiomics literature that there is significant association between imaging, pathology and 

clinical outcomes. Further exploration will allow for more complete models describing tumor 

imaging phenotype with clinical outcomes. 
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Tables'and'Figures'
'
Figure'1:!Radiomics!methods!overview.!CT!images!are!segmented!manually!in!treatment!
planning!software!such!as!MIM!or!Eclipse!(A).!Images!are!then!exported!to!3D@slicer!
software!where!the!region!of!interest!is!isolated!and!resampled!in!3!mm!x!3mm!x!3mm!
voxels!(B).!Images!are!then!analyzed!for!shape,!statistics!and!texture!features.!Wavelet!or!
Laplacian!of!Gaussian!(LoG)!filters!are!applied!resulting!in!a!set!of!1605!unique!features!
(C).!The!radiomics!data!is!subsequently!analyzed!for!association!with!clinical!outcomes.!!
Abbreviations:!RLGL=!run!length!gray!level,!GLCM=gray!level!co@occurrence!matrix,!
GLSZM=gray!level!size!zone!matrix,!LoG=Laplacian!of!Gaussian!
Adapted!from!Aerts!et!al,!2014,!and!Coroller!et!al,!2015.!!
!
!

!
!
!
!
!
!
!
'
'
'
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'
'
Figure'2:'Computation!of!textural!features!performed!using!gray!level!co@occurrence!
matrices!(GLCM).!GLCM!matrices!describes!the!relationship!between!intensity!levels!
occurring!in!two!pixels!within!the!image.!In!the!GLCM!matrix!P(i,j,δ,α),!the!(i,j!)th!element!
represents!the!number!of!times!the!combination!of!intensity!levels!i&and&j!occur!in!two!
pixels!in!the!image!I.!δ!represents!the!number!of!pixels!separating!i&and&j!in!the!direction!α.!
For!example,!a!two@dimensional!image!I&with!5!discrete!gray!levels!can!be!resampled!into!
discrete!pixels!(A).!Within!image!I,!the!gray!levels!1!and!2!are!separated!by!one!pixel!in!the!
horizontal!direction!three!times!(B).!The!GLCM!matrix!P,!in!which!δ=1&and!α!represents!the!
horizontal!0!degrees!(C).!In!this!matrix!(i,j!)=(1,2)!takes!the!value!of!3.!This!process!is!then!
applied!throughout!the!3@dimensional!tumor!(D).!Additional!texture!matrices!Run@Length!
Gray@Level!(RLGL)!and!Gray!Level!Size!Zone!(GLSZM)!are!not!shown!here.!GLSZM!and!RLGL!
matrices!are!similar!to!GLCM!matrices!but!represent!the!number!of!occurrences!of!pixels!of!
the!same!intensity!connected!in!sequence.!
Adapted!from!Aerts!et!al,!2014.!!
'

'
'
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'
Table'1:'Descriptions!of!selected!radiomics!features!
Abbreviations:!GLCM!=!Gray@level!Co@occurrence!Matrix,!GLSZM!=!Gray@Level!Size!Zone!
Matrix,!LoG=Laplacian!of!Gaussian,!RLGL!=!Run!Length!Gray@Level,!L=Low,!H=High.!
Adapted!from!Aerts!et!al!2014,!Coroller!et!al!2015!
!
!

Selected'Radiomic'
feature'

Radiomic'
group'

Filter'
associated' Description!

Sphere!Disproportionality! Shape! none!
Ratio!between!tumor!surface!area!and!a!
sphere!with!the!same!volume!as!the!
tumor!

Mean! Stats! Wavelet!! The!mean!voxel!intensity!!

Median! Stats! Wavelet!! The!median!voxel!intensity!!

Skewness! Stats! none! Description!of!the!shape!of!the!voxel!
intensity!histogram!

Kurtosis! Stats! none! Description!of!the!shape!of!the!voxel!
intensity!histogram!

Cluster!Shade! GLCM! LoG! Measure!of!GLCM!matrix!skewness!

Corr! GLCM! Wavelet!,!LoG! Correlation!of!the!GLCM!matrix!

Entropy! GLCM! LoG!
Describes!the!complexity!of!the!GLCM!
matrix!based!on!the!number!of!unique!
voxel!patterns!in!the!tumor!

Dissimilarity! GLCM! none! Describes!the!variation!of!grey!level!
pairs!in!an!image.!

Gray!Level!Non!
Uniformity!(GLN)! GLCM! Wavelet!!

Measures!the!similarity!of!gray!level!
values!throughout!the!image.!Smaller!
values!are!expected!if!gray!levels!are!
more!homogenous.!!

Large!Area!Emphasis!
(LRE)! GLSZM! LoG!! Describes!areas!of!connecting!voxels!

with!same!value!

Low!Intensity!Emphasis!! GLSZM! Wavelet!! Returns!values!correlated!to!zones!with!
low!intensity!voxel!!

High!intensity!emphasis! GLSZM! Wavelet! Returns!values!correlated!to!zones!with!
high!intensity!voxels!

Long/Short!Run!
Emphasis!(LRE/SRE)! RLGL! LoG!

Returns!values!based!on!the!
occurrences!of!long!or!short!runs!!
(greater!or!fewer!voxels!of!similar!
intensity!in!sequence)!

!
!
!
!
!
!
!
!
!
!
!



! 42!

!
Table 2: Patient and treatment characteristics of patients of locally advanced NSCLC patients 
with pre- and post-treatment imaging reported as number of patients (% of total patients). 
 

Patient Characteristics n (%) 

Age (yr)  
Median (Range) 60 (32-77) 

Q1-Q3 55-66 

Gender  
Male 58 (57.4) 

Female 43 (42.6) 

Race  
White 91 (90.1) 

Other (African American, Hispanic, Asian) 10 (9.9) 

ECOG Performance Status  
0 42 (41.6) 

1 52 (51.5) 

2 5 (5.0) 

3 2 (2.0) 

AJCC Stage  
IIA 2 (2.0) 

IIB 7 (6.9) 

IIIA 77 (76.2) 

IIIB 15 (14.9) 

T Stage  
T1 19 (18.8) 

T2 33  (32.7) 

T3 30 (29.7) 

T4 19 (18.8) 
N Stage  

N0 15 (14.9) 

N1 8 (7.9) 

N2 70 (69.3) 

N3 8 (7.9) 

NSCLC  Histology  
Adenocarcinoma 58 (57.4) 

Squamous cell carcinoma 27 (26.7) 

Other* 16 (15.8) 

Treatment Characteristics  
 Chemotherapy 
 Sequential 1 (1.0) 
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Induction + concurrent 13 (12.9) 

Concurrent 50 (49.5) 

Concurrent + Adjuvant 36(35.6) 

RT only 1 (1.0) 

Concurrent Chemotherapy 
 Weekly carboplatin + taxol 25 (24.8) 

Cisplatin + etoposide (EP 50/50) 68 (67.3) 

Other 6 (5.9) 

Surgery 
 Lobectomy/Bilobectomy 74 (73.3) 

Pneumonectomy 12 (11.9) 

Wedge resection or sublobar resection 15 (14.9) 

Radiation Technique 
 3DCRT 87 (86.1) 

IMRT 14 (13.9) 

RT Dose 
 Median (Range) 54 (46-70) 

46-53 Gy 3 (3.0) 

54 Gy 63 (62.4) 

55-60 Gy 10 (9.9) 

≥ 66 Gy 25 (24.8) 
* NSCLC NOS (10), NSCLC with neuroendocrine morphology (2), 
Adenosquamous (1), Mixed NSCLC and SCLC (1), Adenoid cystic 
carcinoma (1), Sarcomatoid (1) 
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Table 3: Treatment outcomes reported following surgical resection of locally advanced NSCLC 
patients with pre- and post-treatment imaging. RECIST response reported at the time of imaging 
prior to surgical resection. 
 

Treatment Outcomes Median (months)  
Follow up 36.1 
Overall survival 60.1 

Distant metastsis 68.5 

Locoregional recurrence Not reached 

  RECIST response n (%) 
Complete response (CR) 1 (1.0) 
Partial response (PR) 42 (41.6) 
Stable Disease (SD) 56 (55.4) 

Progressive Disease (PD) 2 (2.0) 
 
 
'
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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Figure'3:!Tumor response waterfall plot indicating percent change in total tumor diameter (a) 

and volume (c) for each patient in the study.  Dashed line indicates 30% reduction in tumor 

diameter corresponding to RECIST partial response (a) and 50% median reduction in tumor 

volume (c). Comparison of relative changes in total tumor diameter (b) and volume (d). Diamond 

indicates mean change. Pathologic response is represented by red (pCR) or blue (residual 

disease) bars on the waterfall plots. 

Abbreviations: pCR= pathologic complete response, * = p<0.05, *** = p<0.001 

!
!
!

'
'
'
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'
'
'
 

Table 4: Univariate and multivariate analysis of clinical and CT imaging variables associated 
with pathologic complete response (pCR). All variables are categorical except where labeled as 
continuous.  

  
Univariate 

 
Multivariate 

  n OR (95% CI) p   OR (95% CI) p 

Age  
      

≤ 60 54 1.000 
    

> 60 47 1.528 (0.571-4.087) 0.399 
   

Gender 
      

Female 43 1.000 
    

Male  58 1.872 (0.697-5.022) 0.213 
   

Performance Status 
      

0 42 1.000 
    

1-3 59 1.867 (0.652-5.345) 0.245 
   

Race 
      

White 91 1.000 
    

Asian, African-American or Hispanic 10 1.014 (0.198-5.191) 0.987 
   

AJCC Stage 
      

IIA-IIIA 86 1.000 
    

IIIB 15 0.581 (0.120-2.813) 0.500 
   

T Stage 
      

T1-T2 52 1.000 
    

T3-T4 49 2.321 (0.839-6.425) 0.105 
   

N Stage 
      

N0-N1 23 1.000 
  

1.000 
 

N2-N3 78 0.191 (0.066-0.551) 0.002 
 

0.180 (0.052 0.621) 0.001 

Histology  
      

Adenocarcinoma 58 1.000 
  

1.000 0.009 

Other 16 4.817 (1.189-19.521) 0.290 
 

6.077 1.230 30.034 
 

Squamous cell carcinoma 27 6.234 (1.869-20.789) 0.051 
 

6.771 1.691 27.116 
 

Radiation dose  
      

≤ 54 Gy 66 1.000 
    

> 54 Gy 35 1.333 (0.487-3.649) 0.575 
   

RECIST response 
      

SD/PD 58 1.000 
    

CR/PR 43 1.872 (0.697-5.022) 0.213 
   

Clinical lymph node stations involved  
      



! 47!

0-1 36 1.000 
    

2 27 0.196 (0.050-0.777) 0.374 
   

≥3 38 0.135 (0.035-0.523) 0.087 
   

       
Imaging characteristics 

      
Pre-treatment total tumor volume (continuous per cm3) 

 
0.998 (0.993-1.004) 0.573 

   
Post-treatment total tumor volume (continuous per cm3) 

 
0.986 (0.966-1.006) 0.157 

   
Absolute decrease total tumor volume (continuous per cm3)  1.001 (0.993 1.009) 0.805    

% Decrease total tumor volume (continuous per percentage point) 
 

1.056 (1.021-1.093) 0.002 
 

1.066 (1.022 1.111) 0.004 

       

< 50% decrease total volume* 49 1.000     

> 50% decrease total volume  52 7.448 (2.022-27.430) 0.003 
   

       

< 65% decrease total volume † 73 1.000     

> 65% decrease total volume 28 4.601 (1.642-12.896) 0.004 
   

       
Pre-treatment primary tumor volume (continuous per cm3) 

 
0.999 (0.993-1.004) 0.654 

   
Post-treatment primary tumor volume (continuous per cm3) 

 
0.990 (0.974-1.007) 0.249 

   
% Decrease primary tumor volume (continuous per percentage point) 

 
1.042 1.012 1.073 0.005 

   

       
Pre-treatment tumor diameter total (continuous per cm) 

 
1.014 (0.856-1.200) 0.875 

   
Post-treatment tumor diameter total (continuous per cm) 

 
0.798 (0.613-1.040) 0.095 

   
% Decrease tumor diameter total (continuous per percentage point) 

 
1.035 (1.010-1.061) 0.006 

   

       
Pre-treatment primary diameter (continuous per cm) 

 
1.027 (0.843-1.250) 0.7925 

   
Post-treatment primary diameter (continuous per cm) 

 
0.884 (0.685-1.141) 0.344 

   
% Decrease primary tumor diameter (continuous per percentage point) 

 
1.050 (1.015-1.087) 0.005 

   
              

*Median decrease in tumor volume  
      

†Upper quartile decrease in tumor volume 
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Figure 4: AUC values of ROC curves modeled from logistic regression of imaging 

characteristics and pathologic response. Significance is indicated from random (AUC=0.5).  

Abbreviations: TV=tumor volume, TD=tumor diameter, * = p<0.05, *** = p<0.001 

'
'
'
'
'
'

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
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Figure 5. Kaplan Meier curves for Stage IIIA locoregional recurrence-free survival grouped by 

change in tumor volume (a) or RECIST response (b). Patients shown are only stage IIIa. + marks 

represent censored results. P-values listed using log-rank test. 

Abbreviations: RECIST CR: complete response, PR: partial response, SD: stable disease, PD: 

progressive disease 

 

 
'
'
'
'
'
'
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'
Table'5.!Patient and treatment characteristics of patients of locally advanced NSCLC patients 
with pre-treatment imaging reported as number of patients (% of total patients).!
'
'

Patient Characteristics! n!(%)!
Age! !

Median!(Range)! 60.5!(32.7@77.6)!
Gender! !

Female! 68!(53.5)!
Male! 59!(46.5)!

Race! !
American!African! 5!(3.9)!
Asian! 2!(1.6)!
White! 117!(92.1)!
Hispanic! 3!(2.4)!

Histology! !
Adenocarcinoma! 72!(56.7)!
Adenosquamous!carcinoma! 1!(0.8)!
Squamous!cell!Carcinoma! 32!(25.2)!
Large!cell!Carcinoma! 17!(13.4)!
Large!cell!neuroendocrine!carcinoma! 2!(1.6)!
Mixed!NSCLC!and!SCLC! 1(0.8)!
Adenoid!cystic!carcinoma! 1(0.8)!
Other! 1(0.8)!

AJCC!Stage! !
IIA! 2!(1.6)!
IIB! 8!(6.3)!
IIIA! 96!(75.6)!
IIIB! 21!(16.5)!

Treatment Characteristics! n!(%)!
Treatment!sequence! !

Concurrent! 60!(47.2)!
Concurrent!+!adjuvant! 45!(35.4)!
Concurrent!+!adjuvant!RT! 2!(1.6)!
Concurrent!+!neoadjuvant! 4!(3.2)!
Induction!+!concurrent! 13!(10.2)!
Induction!+!concurrent!+!adjuvant!
ChemoRT!

1!(0.8)!

RT!only! 1!(0.8)!
Sequential! 1!(0.8)!

Pathologic!response! !
Complete!response! 27!(21.3)!
Microscopic!residual!disease! 33!(26.0)!
Visibly!residual!disease' 67!(52.8)!

'
'
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Table'6:!Treatment outcomes reported following surgical resection of locally advanced NSCLC 
patients with pre-treatment imaging. !
'
'
'
'

Treatment Outcomes Median (months)  
Follow up 41.8 
Overall survival 41.7 

Distant metastasisl 24.8 

Locoregional recurrence 28.1 
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
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'
Table'7:'PCA!selection!of!primary!tumor!features!
!
!

Pre?treatment'primary'tumor'features'
LoG!sigma!3!mm!3D!glcm!clusProm!
LoG!sigma!4!mm!2D!glcm!homogeneity2!
LoG!sigma!4!mm!3D!stats!skewness!
LoG!sigma!5!mm!3D!glcm!entrop2!
LoG!sigma!5!mm!3D!glszm!
highIntensityLarteAreaEmp!
LoG!sigma!5!mm!3D!glszm!
largeAreaEmphasis!
LoG!sigma!5!mm!3D!stats!kurtosis!
Shape!spherDisprop!
Wavelet!HLL!stats!mean!
Wavelet!HLL!stats!rms!
Wavelet!LHH!glcm!correl1!
Wavelet!LHH!glszm!
lowIntensityLargeAreaEmp!
Wavelet!LHH!stats!energy!
Wavelet!LHH!stats!range!
Wavelet!LLH!stats!range!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
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!
!
!
Figure'6:!Comparison!of!univariate!AUC!values!for!pre@treatment!radiomics!features!
against!pathologic!response!outcomes!of!gross!residual!disease!and!pathologic!complete!
response.!Significance!is!indicated!by!(*)!for!p<0.05.'
Figure!created!by!Thibaud!Coroller!and!used!with!permission.!
!
!

!
!
!
!
!
!
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!
!
!
!
!
!
!
!
Figure'7:!Comparison!of!concordance!indices!(CI)!for!pre@treatment!radiomics!features!
against!outcomes!of!OS,!DM,!LRR.!Significance!is!indicated!by!(*)!for!p<0.05.!!
Figure!created!by!Thibaud!Coroller!and!used!with!permission.!
!

!
!
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!
!
!
!
!
!
Table'8.!Patient and treatment characteristics of patients of locally advanced NSCLC patients 
with pre- and post-treatment imaging reported as number of patients (% of total patients). Only 
patients with lymph node segmentation were included in this table. !
!
!

Patient Characteristics n (%) 

Age (yr)  
Median (Range) 60 (32-75) 

Q1-Q3 53-65 

Gender  
Male 22 (30.1) 

Female 51 (69.9) 

Race  
White 66 (90.4) 

Other (African American, Hispanic, Asian) 7 (9.6) 

ECOG Performance Status  
0 30 (41.1) 

1 39 (53.4) 

2 4 (5.5) 

AJCC Stage  
IIIA 61 (83.6) 

IIIB 12 (16.4) 

T Stage  
T1 18 (24.7) 

T2 32 (43.8) 

T3 17 (23.3) 

T4 6 (8.2) 
N Stage  

N2 66 (90.4) 

N3 7 (9.6) 

NSCLC  Histology  
Adenocarcinoma 48 (65.8) 

Squamous cell carcinoma 16 (21.9) 

Other* 9 (12.3) 

Treatment Characteristics  
 Chemotherapy 
 Induction + concurrent 9 (12.3) 
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Concurrent 37 (50.7) 

Concurrent + Adjuvant 27 (37.0) 

Concurrent Chemotherapy 
 Weekly carboplatin + taxol 17 (23.3) 

Cisplatin + etoposide (EP 50/50) 51 (69.9) 

Other 5 (6.8) 

Surgery 
 Lobectomy/Bilobectomy 57 (78.1) 

Pneumonectomy 6 (8.2) 

Wedge resection or sublobar resection 10 (13.7) 

Radiation Technique 
 3DCRT 63 (86.3) 

IMRT 10 (13.7) 

RT Dose 
 54 Gy 49 (67.1) 

55-60 Gy 8 (11.0) 

≥ 66 Gy 16 (21.9) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



! 57!

 
 
 
 
 
 
 
 
 
Table 9: Treatment outcomes reported following surgical resection of locally advanced NSCLC 
patients with pre- and post-treatment imaging. Only patients with lymph node segmentation were 
included in this table. 
!

Treatment Outcomes Median (months)  1 year 3 year 

Follow up 36 
  Overall survival 78 85% 68% 

Distant recurrence 68.6 23% 38% 

Locoregional recurrence Not reached 12% 28% 
 
 
Treatment Outcomes 
Median (months)  
1 year 
3 year 
 
 
!
Follow up 
36 
 
 
 
 
!
Overall survival 
78 
85% 
68% 
 
 
!
Distant recurrence 
68.6 
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!

Locoregional recurrence 

NR* 

12% 

28% 
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Figure'8:!Comparison!of!concordance!indices!(CI)!for!total!tumor!volume,!total!lymph!node!
volume!and!mediastinal!lymph!node!volume!against!outcomes!of!distant!metastasis!(DM),!
locoregional!recurrence!(LRR),!and!overall!survival!(OS).!Significance!from!random!is!
indicated!by!(*)!for!p<0.05.!!
!
!

!
!
'
'
'
'
'
'
'



! 59!

'
'
'
'
'
'
'
`Figure'9:'Kaplan Meier curves for patients with N2 nodal disease. Locoregional recurrence 
grouped by pre-treatment N2 nodal volume (a) or post-treatment nodal volume (c).  Overall 
survival grouped by pre-treatment N2 nodal volume (b) or post-treatment nodal volume (d).  + 
marks represent censored results. P-values listed using log-rank test.'
!
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Table'10:'PCA!selection!of!lymph!node!features''
!
Pre?treatment'lymph'node'features' Post?treatment'lymph'node'features'

Unique'features'
GLCM!clusProm! LoG!sigma!4!mm!3D!rlgl!shortRunHighGrayLevEmpha!
GLCM!inverseVar!! LoG!sigma!5!mm!2D!glcm!clusShade!
LoG!sigma!5!mm!3D!glcm!invDiffnorm!! LoG!sigma!5!mm!2D!rlgl!longRunEmphasis!
LoG!sigma!4!mm!2D!glcm!correl1! LoG!sigma!5!mm!3D!glcm!infoCorr2!
LoG!sigma!5!mm!2D!glszm!highIntensityLargeAreaEmp!! LoG!sigma!5!mm!2D!glszm!zonePercentage!
LoG!sigma!5!mm!3D!glszm!intensityVariability!! LoG!sigma!5!mm!3D!glszm!intensityVariability!
LoG!sigma!5!mm!2D!glszm!smallAreaEmphasis!! LoG!sigma!5!mm!3D!glszm!highIntensityLarteAreaEmp!
LoG!sigma!5!mm!3D!glszm!lowIntensityEmphasis!! Wavelet!LLH!glcm!sumVar!
Shape!spherDisprop! Wavelet!HLL!glcm!contrast!
Stats!kurtosis! Wavelet!LLL!glcm!clusShade!
Wavelet!LLL!glcm!dissimilar!! Wavelet!HHL!stats!MeanIntensity!
Wavelet!LHL!stats!md! Wavelet!HHL!stats!var!
Wavelet!HLH!glszm!largeAreaEmphasis! Wavelet!HHH!stats!uniformity!
Wavelet!LLL!glcm!infoCorr2! Wavelet!LLL!stats!kurtosis!
! !

Common'Features'
Wavelet!LLH!stats!std!! Wavelet!HLH!stats!std!
Wavelet!LLL!glcm!inverseVar!! Wavelet!LLL!glcm!inverseVar!
!
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Figure'10:!Comparison!of!pre@treatment!lymph!node!radiomics!features!c@indices!for!
locoregional!recurrence,!distant!recurrence,!and!overall!survival.!(*)!indicates!p@values!
<0.05.!
!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!



! 62!

!
!
!
!
!
!
!
!
!
!
!
Figure'11:!Comparison!of!post@treatment!lymph!node!radiomics!features!c@indices!for!
locoregional!recurrence,!distant!recurrence,!and!overall!survival.!(*)!indicates!p@values!
<0.05.!
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Figure'12:!Comparison!of!delta!lymph!node!radiomics!features!c@indices!for!locoregional!
recurrence,!distant!recurrence,!and!overall!survival.!(*)!indicates!p@values!<0.05.!
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Table 11: SBRT patient and treatment characteristics reported as number of patients (% of total 
patients). 

Patient Characteristics n (%) 

Age (yr)  
Median (Range) 74 (46-93) 

Gender  
Male 46 (46.5) 

Female 53 (53.5) 

Race  
White 91 (91.9) 

Other (African American, Hispanic, Asian) 8 (8.1) 

ECOG Performance Status  
0 17 (17.2) 

1 46 (46.5) 

2 28 (28.3) 

3-4 8 (8.1) 

AJCC Stage  
IA 78 (78.8) 

IB 16 (16.2) 

II-IV 5 (5.1) 

T Stage  
T1a 51 (51.5) 

T1b 29 (29.3) 

T2 18 (18.2) 

T3 1 (0.1) 
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N Stage  
N0 99 (100) 

Histology  
Adenocarcinoma 46 (46.5) 

Squamous cell carcinoma 23 (23.2) 

NSCLC NOS 14 (14.1) 

No pathology specimen 15 (15.2) 

Treatment Characteristics  
 SBRT fractions 
 3 62 (62.6) 

4 2 (0.2) 

5 35 (35.4) 

RT Dose per fraction 
 Median (Range) 18 (10-18) 

11 12 

12 19 

18 62 

Other 6 

Total RT dose   

Median (Range) 54 (48-60) 
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Table 12: SBRT patient treatment outcomes 
!
 
 
!
 
 
!
 
 
!
 
 
!
 
 
!
 
 
!

!
Treatment Outcomes Median (months)  1 year 3 year 

Follow up 20.1 (1.25-51.4) 

  Overall survival 28.5 89.2% 35.2% 

Locoregional recurrence 39.2 22.5% 37.9% 

Distant recurrence NR 19.9% 33.9% 
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Figure'13:!Comparison!of!CBCT!volumetric!feature!c@indices!for!LRR.!(*)!indicates!p@values!
<0.05.!!
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Figure'14:!Comparison!of!CBCT!volumetric!feature!c@indices!for!any!recurrence.!(*)!
indicates!p@values!<!0.05.!!
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Figure'15:!Comparison!of!CBCT!volumetric!feature!c@indices!for!OS.!(*)!indicates!p@values!
<0.05.!
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