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Abstract

Quantitative imaging is a rapidly growing area of interest within the field of
bioinformatics and biomarker discovery. Due to the routine nature of medical imaging, there is
an abundance of high-quality imaging linked to clinical and genetic data. This data is particularly
relevant for cancer patients who receive routine CT imaging for staging and treatment purposes.
However, current analysis of tumor imaging is generally limited to two-dimensional diameter
measurements and assessment of anatomic disease spread. This conventional tumor-node-
metastasis (TNM) staging system stratifies patients to treatment protocols including decisions
regarding adjuvant therapy. Recently there have been several studies suggesting that these
images contain additional unique information regarding tumor phenotype that can further aid
clinical decision-making.

In this study I aimed to develop the predictive capability of medical imaging. I employed
the principles of quantitative imaging and applied them to patients with non-small cell lung
cancer (NSCLC). Quantitative imaging, also termed radiomics, seeks to extract thousands of
imaging data points related to tumor shape, size and texture. These data points can potentially be
consolidated to develop a tumor signature in the same way that a tumor might contain a genetic
signature corresponding to mutational burden. To accomplish this I applied radiomics analyses to
patients with early and late stage NSCLC and tested these for correlation with both
histopathological data as well as clinical outcomes.

Patients with both early and late stage NSCLC were assessed. For locally advanced
NSCLC (LA-NSCLC), I analyzed patients treated with preoperative chemoradiation followed by
surgical resection. To assess early stage NSCLC, I analyzed patients treated with stereotactic
body radiation therapy (SBRT). Quantitative imaging features were extracted from CT imaging
obtained prior to chemoradiation and post-chemoradiation prior to surgical resection. For
patients who underwent SBRT, quantitative features were extracted from cone-beam CTs
(CBCT) at multiple time points during therapy. Univariate and multivariate logistic regression
were used to determine association with pathologic response. Concordance-index and Kaplan-
Meier analyses were applied to time dependent endpoints of overall survival, locoregional
recurrence-free and distant metastasis.

In this study, 127 LA-NSCLC patients were identified and treated with preoperative

chemoradiation and surgical resection. 99 SBRT patients were identified in a separate aim of this



study. Reduction of CT-defined tumor volume (OR 1.06 [1.02-1.09], p=0.002) as continuous
variables per percentage point was associated with pathologic complete response (pCR) and
locoregional recurrence (LRR). Conventional response assessment determined by diameter
(p=0.213) was not associated with pCR or any survival endpoints. Seven texture features on pre-
treatment tumor imaging were associated with worse pathologic outcome (AUC 0.61-0.66).
Quantitative assessment of lymph node burden demonstrated that pre-treatment and post-
treatment volumes are significantly associated with both OS and LRR (CI 0.62-0.72). Textural
analyses of these lymph nodes further identified 3 unique pre-treatment and 7 unique post-
treatment features significantly associated with either LRR, DM or OS. Finally early volume
change showed associated with overall survival in CBCT scans of early NSCLC.

Quantitative assessment of NSCLC is thus strongly associated with pathologic response
and survival endpoints. In contrast, conventional imaging response assessment was not
predictive of pathologic response or survival endpoints. This study demonstrates the novel
application of radiomics to lymph node texture, CBCT volume and patients undergoing
neoadjuvant therapy for NSCLC. These examples highlight the potential within the rapidly
growing field of quantitative imaging to better describe tumor phenotype. These results provide
evidence to the growing radioimics literature that there is significant association between
imaging, pathology and clinical outcomes. Further exploration will allow for more complete

models describing tumor imaging phoentype with clinical outcomes.



Glossary

AUC: Area under the curve

CBCT: cone beam CT

CT: computed tomography

DM/DR: distant metastasis/recurrence
GLCM: gray level co-occurrence matrix
GLSZM: gray level size zone matrix
GRD: Gross residual disease

LoG: Laplacian of Gaussian

LRR: locoregional recurrence

MRD: Microscopic residual disease
MRI: Magnetic resonance imaging
NSCLC: Non-Small Cell Lung Cancer
OS: overall survival

PCA: principal component analysis
pCR: pathologic complete response
PET: positron emission tomography
PLNS: positive lymph node stations
RECIST: Response Evaluation Criteria in Solid Tumors
RLGL: run length gray level

ROC: Receiver operating characteristic
SBRT: Stereotactic body radiation therapy
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1. Introduction

1.1 Background

Lung cancer is the cause of the greatest number of cancer related deaths worldwide. In
2010, lung cancer represented 19% of all cancer deaths [1] with a 5-year survival of only 15.9%
[2]. Despite efforts to limit risk factors such as tobacco, the global burden of lung cancer is
expected to increase in the near future. [3]. The predominant histological subtype of lung cancer
is non-small cell lung cancer (NSCLC), which comprises ~80% of lung cancer cases. Within
NSCLC, approximately 50% have adenocarcinoma histology and 40% have squamous cell
carcinoma [4]. The greatest risk factors for NSCLC is smoking or exposure to tobacco although
genetic susceptibility is thought to play a large role in certain populations such as Asian, female,
nonsmokers [3,5].

Current standard of care for patients with NSCLC involves the combination of a platinum
based chemotherapeutic agent, external beam radiation therapy, and/or surgery [6]. Treatment
protocols can vary dramatically based on tumor stage, lymph node involvement and presence of
metastases. For example, surgery can be the only treatment modality required for stage I
NSCLC. The development of such treatment protocols including those tailored to tumor
histology, have resulted in increases in incremental improvements survival compared to
historical rates[7]. More recently, there have been numerous advances in targeted and immune-
based therapies [8,9].

Targeted therapies are directed towards specific mutations within oncogenic proteins.
Mutations within the genes KRAS, EGFR, ALK, and BRAF are the most commonly identified in
NSCLC, with KRAS and EGFR making up approximately 30% of adenocarcinoma mutations.
The EGFR inhibitors erlotinib and gefitinib are examples of therapies that have successfully
targeted an oncogenic mutation [10]. However, not all mutations show benefit to targeted
inhibition. For example, KRAS mutations are found in approximately 20% of NSCLC patients
and are mutually exclusive of EGFR mutations. KRAS mutations are associated with a poor
prognosis [11] however attempts to inhibit KRAS have not shown significant benefit to date
[12]. Similarly, while p53 mutations are associated with worse prognosis [13], these mutations

have not emerged as targets for therapy. Additionally, since patients who respond to targeted



therapies for EGFR and ALK inevitably acquire resistance [14,15], there is need for improved
methods of tumor surveillance even for patients who have known genetic mutations.

Thus, despite advances in the genomic characterization of tumors, improving survival
continues to remain challenging for a significant proportion of NSCLC patients. Although the
development of novel therapeutics will remain an important priority and cornerstone of cancer
treatment, there is a concomitant need for better prognostic tools to assess therapeutic response,
monitor tumor progression, and predict clinical outcomes. Such tools could better stratify
patients to optimal treatment protocols based on risk and eventually lead to more individualized
treatment regimens. This goal has led to the aim of improving non-invasive methods of
describing tumor phenotype including serum biomarkers, circulating tumor cells and medical
imaging [16—18]. These non-invasive methods provide alternatives to the more invasive process
of obtaining tissue directly from the tumor. Quantitative imaging seeks to be one of these non-
invasive methods that can predict tumor behavior. In this study I explore the association between
quantitative imaging and clinical outcomes.

1.2 Tumor response imaging
1.2.1 Imaging for conventional treatment delivery

Tumor imaging is a standard component of clinical staging algorithms for the treatment
of NSCLC. CT and PET imaging are typically used to determine the size of the primary tumor,
extent of nodal involvement, and metastatic spread. After staging, imaging is used to monitor
tumor response during therapy. Such imaging essentially acts as a non-invasive surrogate for
histopathology since pathologic response is only available at the time of surgery or biopsy. The
imaging modalities typically used for tumor response assessment are either CT or PET imaging.
There are multiple methods for evaluating tumor response but the most commonly used criteria
(including for clinical trials) is Response Evaluation Criteria in Solid Tumors (RECIST).
RECIST is a standardized framework for measuring solid tumor size and determining response
[19,20]. These criteria are based on the sum of the diameters of lesions but do not provide
guidance for the use of advanced imaging features. RECIST response groups patients into
complete response (CR), partial response (PR), stable disease (SD) or progressive disease (PD).
A partial response is a reduction in tumor diameter between 30-100%, with 100% reduction
being a complete response. However, few studies have demonstrated an association between

RECIST response and survival since the initial guidelines were published [19-21], and there are



few guidelines as to the utility of RECIST partial response in clinical decision-making for
NSCLC.

Prior imaging studies of NSCLC have described pre-treatment tumor volume as a
prognostic factor [22,23] or evaluated more advanced imaging features including FDG uptake,
volume reduction, and texture as predictors for response to therapy [24-28]. Despite the
prognostic significant of volume or FDG uptake, it is unclear if a response on imaging truly
correlates to tumor response on pathology. William et al have previously noted a high rate of
discordance between RECIST response and pathologic response [29]. Further assessment of
radiopathologic correlation is difficult given the lack of studies examining this relationship.
However, it is becoming more apparent that there is value to understanding pathological
outcome. Multiple studies have demonstrated a correlation between pathologic response and
survival [30-34] suggesting that prediction of pathologic response can act as a surrogate
endpoint for survival.

1.2.2 Imaging for Stereotactic body radiation therapy

Stereotactic body radiation therapy (SBRT) is a growing treatment option for the delivery
of radiation therapy to a wide variety of tumors including lung cancer [35]. SBRT involves the
delivery of higher doses of radiation over a smaller number of doses (fractions). This has been
enabled by the development of highly conformal radiation delivery that reduce toxicity to
surrounding tissue. For lung cancer patients, SBRT is typically used for early stage disease as an
alternative to surgical resection [36—38]. Given the recent application of this form of
fractionation, it remains an active area of interest for the development of prognostic indictors for
response to radiation therapy.

Current prognostic indictors for use in SBRT typically are typically composed of clinical
factors such as number of lesions, gender and performance status [39]. There has additionally
been development of biomarkers such as cell free DNA [40]. Of particular interest, would be to
use to predict response during treatment, as a means of adjusting the dose delivered during each
treatment or the area to be treated. This is particularly challenging given the short duration of
treatment for which it may be more difficult to obtain clinically valuable information.

The use of imaging for prognostic purposes in SBRT for NSCLC has been limited.

Matsuo et al demonstrated that tumor diameter was associated with overall survival [41].
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Existing literature suggests that the use of cone beam CT can offer texture based analysis that is
robust but highly dependent on imaging protocol and motion [42].

1.3 Radiomics

1.3.1 Overview of Radiomics

Radiomics is an emerging field that assigns quantitative values to features extracted from
medical imaging. These features capture imaging traits unable to be appreciated by the human
eye including intensity level, spatial relationships between areas of differential intensity, shape
and texture. Radiomics complements work describing qualitative or semi-quantitative forms of
image analysis such as pleural attachment or spiculations [43]. The process of obtaining
radiomics data from medical imaging occurs in the following steps 1) image acquisition 2) tumor
identification and anatomic delineation (segmentation) manually or automated [44] 3) feature
extraction 4) data analysis [45].

Radiomic features can be grouped into first order statistics, shape and size based features,
and textural features. First order statistics describe voxel distribution within the tumor such as
the mean or median voxel intensity. Features such as skewness or kurtosis similarly describe the
histogram of voxel intensities. Shape and size based features include diameter, volume, surface
area and sphericity [46,47]. Additional manipulations of the data include the application of filters
such as Laplacian of Gaussian (LoG) and wavelet that have been previously described in other
applications of non-medical image analysis [48,49]. The wavelet filter decomposes the
information within the image such that only low or high intensity information is analyzed. The
LoG filter is sensitive to edge detection and can also eliminate noise within the image.
Radiomics has repurposed these imaging tools for use in a clinical context.

1.3.2 Clinical applications of Radiomics

In terms of clinical utility, radiomics platforms have already been developed for multiple
imaging modalities including CT, PET and MRI. [50,51]. These platforms have been utilized to
describe a variety of malignancies including head and neck, lung [46], glioblastoma [52],
sarcoma [53] and prostate cancer [54]. There are multiple potential applications of radiomics.
Textural features can be used to determine if a suspicious imaging finding represent malignancy.
Andersen et al demonstrated that texture features can distinguish between benign and malignant

lymph node involvement in lung cancer patients [55]. Similarly, in prostate cancer, texture
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features have been shown to be able to distinguish malignancy from normal tissue [56] and thus
aid in prostate cancer detection [57].

Another application is in the use as a prognostic biomarker. Lubner et al previously
demonstrated the correlation between textural features and overall survival in hepatic metastatic
colorectal cancer [58]. Cunliffe et al demonstrated association between radiomics features and
toxicity resulting in radiation pneumonitis [59]. Coroller et al found that textural features of
primary NSCLC tumors are associated with prediction of distant metastases [60].

Finally, an intriguing application of quantitative imaging is treatment monitoring and
response prediction. The utility of radiomics may not only be limited to risk stratification, but
may also be used for longitudinal treatment monitoring and surveillance along with
PET/CT/MRI imaging modalities. For example, Cook et al describe the use of PET texture
correlated with RECIST response in NSCLC patients treated with erlotinib [61].

1.4 Rationale

As outlined above, genetic and clinical information offer significant benefit to the
understanding of tumor phenotype. However, there is increasing evidence that tumor architecture
as dissected by quantitative imaging can offer additional, complementary information to
routinely obtain clinical or genetic data. In this work, I sought to apply the principles of
quantitative imaging to NSCLC lung cancer patients. These patients offer many benefits that
make them suitable for studies in quantitative imaging. Unlike prostate, ovarian, or colon cancer,
there are currently no serum markers that are clinically used for assessing tumor burden, severity
or response to therapy for patients with NSCLC. These patients thus undergo regular surveillance
imaging. Additionally, given that radiation therapy can be a primary treatment modality for both
early and late stage NSCLC, patients routinely undergo high quality CT scans during treatment
planning. Finally, these patients have a high event rate of local recurrence, distant metastases and
death that facilitates the study of clinical endpoints. On the other hand, lung cancer patients often
have poor image quality due to artifact and motion from breathing that limits the information that
can be gathered. I hypothesize that applying quantitative data mining techniques to images
obtained clinically can describe the tumor phenotype for NSCLC and will be predictive for

pathological and clinical outcomes.
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2. Materials and Methods

2.1 Patient Identification

The study was conducted under an IRB approved protocol. Retrospective analysis
identified 127 patients who underwent chemoradiation followed by surgical resection between
2001-2013 at Brigham and Women’s Hospital/Dana Farber Cancer Institute. 101 of these
patients had CT imaging available for analysis at both the initiation and completion of
radiotherapy prior to surgical resection. For analysis of CBCT images, an additional 99 patients
who underwent SBRT between 2009-2013 were identified.

Pathology reports at the time of surgical resection provided pathologic restaging. At our
institution, residual tumor is indicated as either gross residual disease (GRD) or microscopoic
residual disease (MRD). Complete tumor eradication was considered a pathologic complete
response (pCR).

Exclusion criteria included delayed surgery greater than 120 days after the completion of
radiotherapy, presence of distant metastases (Stage IV) at diagnosis or prior to planned resection,
and CT imaging with slice thickness greater than 5.0 mm. Patients without gross tumor volume
(GTV) or clinical target volume (CTV) contours from the treating radiation oncologist were
excluded from this study.

2.2 CT Acquisition

Planning CTs were acquired according to scanning protocol at our institution using GE
“Lightspeed” CT scanner (GE Medical System, Milwaukee, WI, USA).

2.3 Tumor Segmentation

Tumors were segmented on CT scans obtained both before (pre-treatment) and after
radiation therapy (post-treatment). Original planning CT scans and tumor contours were
retrieved from Eclipse Treatment Planning System (Varian, Palo Alto, CA). Post-treatment
volumes were contoured on diagnostic CT scans obtained clinically for re-staging prior to
surgery. Pre-treatment volumes were registered to post-treatment CT images using deformable
registration via MIM Maestro (MIM Software Inc., Cleveland, OH) to guide post-treatment
contouring. Where clinically involved nodal stations were clearly demarcated from the primary
tumor, a separate contour was created for primary tumor measurements.

For patients undergoing SBRT, cone-beam CT scans (CBCTs) were obtained at the first
and last radiotherapy treatment date. A third CBCT scan was obtained at the mid-point of
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treatment regardless of the number of radiation fractions prescribed. Original planning tumor
contours were reviewed for tumor identification and segmentation guidance. Tumors were
segmented on CBCT images using Eclipse Treatment Planning System (Varian, Palo Alto, CA).

All contours were modified to exclude air, blood vessels, and normal tissue, and
subsequently reviewed by an attending radiation oncologist.

2.4 Radiomic feature extraction

A set of 1605 radiomic features describing the tumor phenotype was extracted using an
in-house Matlab 2013 (The Mathworks Inc., Natick, MA, USA) toolbox and 3D Slicer 4.4.0
software [62]. All CT voxels were resampled to 3 x 3 x 3 mm3 prior to feature extraction to
standardize the voxel spacing across the cohort. (Figure 1) A standard bin width of 25
Hounsfield units (HU) was used for textural features. These features were organized into discrete
categories including shape, statistics and textural features (Figure 2, Table 1) [46]. Laplacian of
Gausiann (LoG) and wavelet filter were subsequently applied to extracted features to obtain
additional features corresponding to discrete intensity bands.

After extraction of radiomic features, principal component analysis (PCA) was applied to
the feature set using the FactoMineR package for R software. PCA reduction of the feature set
allowed for independent selection of a limited number of features to then test prognostic value.
Imaging features were thus selected for the maximal representation of the feature set without
consideration of study endpoints. Features retaining 95% of the variability and 99% of the
correlation to PCA scores were selected for further analysis.

2.5 Tumor Size Calculations

Volume and diameter measurements were performed by MIM Maestro and Eclipse
treatment planning system. Relative changes in tumor volume or diameter were calculated as
%(Tumoryost-treatment — T UMOTpretreatment)/ TUMOTpre-treatment @S previously described [63].For CBCT
volumes, relative changes were calculated using combinations of two out of three treatment
volumes extracted. Rate of change was calculated using the slope of decrease between any two
imaging time points. Volume measurements are reported in cubic centimeters for the sum total
tumor volume including the primary tumor and all clinically involved lymph nodes.

Uni-dimensional diameters were measured according to RECIST 1.1 guidelines [20].

Diameters are reported in centimeters for the sum total tumor diameter. A maximum of 5 total
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lesions were included in diameter calculations. Primary tumors less than 1.0 cm in the long axis
and lymph nodes less than 1.5 cm in the short axis were excluded per RECIST 1.1 guidelines.
2.6 Outcomes

Survival outcomes were locoregional recurrence (LRR), distant metastasis (DM), and
overall survival (OS). Locoregional recurrence was defined as recurrence at the resection site,
hilar nodes, mediastinal nodes, or supraclavicular nodes. All other sites were defined as distant
metastasis. LRR and DM were defined as the time interval from the date of surgery until the first
radiographically evident locoregional recurrence or distant metastasis respectively, and censored
at the date of last negative re-staging scans in patients without recurrence. OS was defined as the
time from the date of surgery until death from any cause, and censored at the last date of follow-
up.
2.7 Statistical Analysis

All statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC)
and R software version 3.2.2 using the survcomp package version 1.16 from Bioconductor.

Univariate and multivariate logistic regression with stepwise selection were used to
identify clinical or imaging features associated with pathologic complete response. Log-rank test
and Kaplan-Meier analyses were utilized to analyze time-dependent variables including LRR,
DM, and OS. Multivariate survival analysis was performed using the Cox proportional hazards
model with stepwise selection. Receiver operating characteristic (ROC) curves were calculated
to identify the performance of continuous imaging variables [63].Comparison of ROC areas
under the curve (AUC) was performed as described by DeLong et al [64]. Optimal cutoff for
sensitivity and specificity was derived from the ROC curve using the Youden index (J) [65].

The prognostic performance of the imaging features was evaluated by calculating the
concordance index (CI). The CI is a generalization of the time dependent area under the receiver
operating characteristic curve (AUC). The CI is a measure of the probability that between two
randomly drawn samples, the sample with the higher value (e.g. of an imaging feature) will have
a higher likelihood of the event. A CI greater than 0.5 indicates direct proportionality between
the feature value and clinical outcome whereas a CI less than 0.5 indicates inverse
proportionality to the event. A CI of 0.5 indicates no association between the feature and the

outcome. The Noether test was used to compute the p-value to determine the significance of the
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CI from random (CI = 0.5). Statistical significance from random ClIs was calculated using the

“survcomp” package. P-values less than 0.05 were considered significant.

3. Results

3.1 Size-based metrics for locally advanced NSCLC

Clinical trials and treatment plans typically use tumor diameter for assessing response or
progression. Since diameter is a conventional metric of response, I sought to more clearly
elucidate the relationship of imaging measurements of tumor size with pathological response,
given that pathological response is a direct measure of the tumor response to therapy. A decrease
in tumor diameter of 30% or more is considered a response to therapy based on standard
RECIST criteria. Tumors are considered stable or progressing if they do not shrink at this cut-
off. However, there are surprisingly few studies that have validated additional quantitative size-
based metrics with regard pathologic response or clinical outcomes.
3.1.1 Patient characteristics and outcomes

In order to evaluate the effect of sized based changes, I retrospectively analyzed 101
patients with NSCLC who underwent neoadjuvant chemoradiation prior to surgical resection.
The median age of patients was 60 years (range 32-77) at the time of diagnosis. Patient and
treatment characteristics are shown in Table 2. The majority of patients presented with
adenocarcinoma (57.4%) or squamous cell carcinoma (26.7%) histology. The median
preoperative radiation dose was 54 Gy, and 98% of patients received concurrent chemotherapy.
The median time from the completion of chemoradiation to the first post-treatment scan was 18
days (Range 0-92), and the median time from chemoradiation to surgery was 44 days (Range 21-
119). 81 patients (80.1%) had residual disease and 20 patients (19.8%) had a pCR at the time of
surgery.

Patient outcomes are shown in Table 3. Median follow up was 36 months, (range 0.4-113
months). Median overall survival was 60.1 months. The 3-year estimates of locoregional

recurrence, distant metastases and OS were 25%, 37%, and 64% respectively
3.1.2 CT Volume and Diameter Changes in Patients with pCR
The median relative change in CT measured tumor diameter was -26.6% (Range -100 to

+49.3%). The median relative change in tumor volume was -50.5% (Range -90.9 to +185.2%).
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Figure 3 summarizes tumor response utilizing a waterfall plot for each patient based on the
percent change in tumor diameter (3a) and volume (3¢) grouped by pathologic response. For
patients with pCR and residual disease, the median change in volume was -60.3% (Range -81.9
to -35.8%) and -41.9% (Range -90.9, +185.2%) respectively. The median change in diameter
was -41.1% (Range -100.0 to +3.7%) and -24.4% (Range -63.1 to +49.4%) for pCR and residual
disease respectively (Figure 3b, 3d). The decrease in tumor volume and diameter (p=0.02) was
significantly higher in patients with pCR compared to residual disease (p<0.001, Wilcoxon rank
sum test).

3.1.3 Univariate and Multivariate Analysis

Univariate logistic regression further demonstrated association between pCR and change
in tumor volume (OR 1.06, 95% CI [1.02-1.09], p=0.002) as well as tumor diameter per
percentage point (OR 1.04, 95% CI [1.01-1.06], p=0.006). Notably, there was no association
between pCR and absolute tumor size. This was true for tumor size both prior to and after
chemoradiation. Examining clinical variables, NO status, squamous cell histology, and number of
positive lymph node stations (PLNS) at diagnosis were significantly associated with pCR (Table
4). Age, performance status, race, gender, Stage and radiation dose did not have a significant
association.

All factors significant for pathologic complete response on univariate analysis were
entered into a multivariate logistic model. Tumor volume decrease remained an independent
predictor of pathologic response in the multivariate analysis (OR:1.08, 95%CI:[1.03-1.13],
p=0.002) in addition to N2/N3 Stage (OR:0.18, 95%CI:[0.05-0.62] p= 0.001) and histology sub-
type.

3.1.4 RECIST Response does not predict pCR

Given the association between volume/diameter changes and pCR, existing imaging
response criteria (RECIST) were compared with pathologic response. Using RECIST response
threshold of 30% decrease in tumor size, there were 43 (42.6%) patients with a RECIST
complete or partial response (CR/PR) and 58 (57.4%) patients with stable or progressive disease
(SD/PD) (Table 3).

RECIST CR/PR versus SD/PD had no association with pCR on unviariate logistic
regression (p= 0.21). The sensitivity and specificity of RECIST response for predicting pCR was
55% and 60% respectively.
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3.1.5 Receiver Operating Characteristics

To further quantify the efficacy of the discovery model using imaging size with
pathologic response, I generated ROC curves for univariate CT imaging models predicting pCR.
Relative change in volume had an AUC of 0.76 compared to AUC of 0.67 for relative change in
tumor diameter (Figure 4). Both volume and diameter models were significant from random
(p<0.05). The optimized volumetric cutoff was 54.6% decrease in volume resulting in 85%
sensitivity and 64.2% specificity.

The optimal point for predicting pCR using change in diameter was 47.6% decrease,
resulting in 40% sensitivity and 87.7% specificity. Changes in primary tumor volume and change
in primary tumor diameter were analyzed separately and were also significantly associated with
pCR. No other imaging characteristics reached significance.

3.1.6 Timing of Imaging does not Affect Univariate Predictions

The median duration between pre-treatment and post-treatment CT imaging was 70 days
(range 35-159). To account for variability in early tumor response, I performed subgroup
analysis of patients with early (<70 days) and late CT imaging (>70 days). Pathologic response
was correlated to tumor volume decrease per percentage point in both patients with earlier scans
(p=0.01) and late scans (p=0.04). Furthermore, the average percent changes per day in volume
and diameter was also associated with pCR. The median tumor volume change per day was -
0.73% (Range -1.61 to +2.64%) and the median diameter change per day was -0.39% (Range -
1.27 to +0.71%). Both percent decrease of tumor volume change per day (OR 9.14, 95% CI
[1.53-54.81] p=0.02) and diameter (OR 5.76, 95% CI [1.20-27.6] p=0.03) remained significantly
associated with complete pathologic response.
3.1.7 Survival Outcomes Analyses

Given the association between volume/diameter changes and pathologic response, I also
tested the association between survival and imaging response. Volume change, diameter change,
and RECIST response were not associated with LRR, DM, or OS. However, patients with less
advanced stage IIA-IIIA disease had greater LRR than IIIB disease (3 year freedom from LRR
78.8% [67.0- 86.8%] vs 47.9% [17.5-73.2%], p=0.04).
3.1.8 Stage I11A Subgroup Analysis

Since trimodality therapy and questions regarding optimal therapies for local control are

particularly controversial for stage IIIA patients, I performed a subgroup analysis of only stage
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ITTA patients (n=77). The median change in volume for this subgroup was -48.3% (Range -83.6
to 185.2%). The median change in diameter was -27.9% (-100 to 49.4%). Similar to the results
obtained from analysis of the entire cohort, there was an association between percent tumor
volume decrease (p=0.002) and percent tumor diameter (p=0.001) decrease with pCR in stage
IITA patients.

I then examined survival outcomes. There was no association between imaging changes
and OS or DM. However, in the subgroup analysis of stage IIIA patients, total change in volume
was associated with locoregional-recurrence (p=0.0367). Using the median volume change of
—48.3% as a cutoff, patients with greater volumetric decrease had decreased LRR compared to
patients with smaller volumetric decreases (Figure 5a). In contrast, there was no association

between RECIST response and LRR (Figure 5b).

3.2 Shape and Texture based features predict pathologic response

Since volumetric changes were able to predict pathologic response and local recurrence
with greater efficacy than conventional 2-dimensional diameter measurements, I reasoned that
higher order features could similarly predict pathologic and survival outcomes. In order to better
identify textural features associated with clinical outcomes, I applied radiomics analysis to CT
images obtained prior to therapy. The goal of such an analysis would be to predict patients at
higher risk of poor response prior to the initiation of therapy. Such analyses could then logically
extend to imaging obtained during therapy or after the completion of therapy.
3.2.1 Patient characteristics and outcomes

127 patients with NSCLC were included in this study. The median age was 60.5 years old
(range 32.7 to 77.6). Tumor histology was predominantly adenocarcinoma (56.6%) and AJCC
stage IIIA (75.6%). The median follow-up was 41.8 months. Pathologic response was 27
(21.3%) complete response, 33 (26.0%) microscopic disease and 67 (52.7%) gross residual
disease (Table 5). The median time for OS, DM, and LRR was respectively 41.8, 24.8, and 28.1
months. (Table 6).
3.2.2 Radiomics predicts pathologic response but not survival

Using in-house feature extraction, my collaborators and I extracted 1605 radiomics
features. This feature set was then reduced using principal component analysis (PCA). This step

allowed for the reduction of the feature set independent of clinical outcomes, but still selected
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features that contained the majority of the variance within the feature set. By doing so, this
reduced the likelihood of overfitting the feature set to clinical outcomes, as greater than 1600
features would be represented by fewer than 30 independently selected features.

After PCA feature selection, we obtained fifteen radiomic features (Table 7). These
features were then entered into univariate models to predict clinical outcomes. Based on the
successful prediction of pathological response using volume, we believed advanced imaging
features would also likely be correlated with pathologic response. To test this hypothesis, we
analyzed pre-treatment CT images of locally advanced NSCLC. We first determined if radiomic
features could identify tumors with gross residual disease (GRD) at the time of surgery. The
fifteen selected advanced imaging features had an AUC of 0.53 to 0.66 for GRD. Seven features
were significantly predictive (range AUC 0.61 to 0.66, p-value <0.05) for GRD. Two of the
seven features were risk proportionate and five were inversely proportional (Figure 6a). We then
investigated the predictive power for identifying pathologic complete response (pCR). The best
performing radiomic feature, Wavelet HLL mean, was significantly predictive (AUC = 0.63, p-
value = 0.01).

Since radiomics was able to identify both gross residual disease and pathologic complete
response, | reasoned that these features would likely be significant for survival outcomes. We
thus tested these features for prognostic value. However, no features were correlated to OS,

LRR, or DM (Figure 7).

3.3 Quantitative lymph node assessment

Given that volume, shape and textural features of primary tumors were predictive of
histopathologic and clinical outcomes, I hypothesized that similar analyses of lymph nodes may
add new or complementary prognostic value. I was particularly interested in understanding the
pathological response not of the primary tumor, but of the lymph nodes themselves.
3.3.1 Patient selection

I identified 87 patients with distinct nodal disease. Of these, 78 patients also had CT
imaging performed after the completion of chemoradiation. The average age was 60 (Range 32-
75) and was predominantly Caucasian (90.4%) and female (69.9%). There was a majority of IIIA

patients (83.6%) with adenocarcinoma as the predominant histology. Patient characteristics are
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shown in Table 8. Patient outcomes are shown in Table 9. Median overall survival was 78
months and median LRR was not reached.
3.3.2 Quantitative imaging is unable to predict nodal downstaging

Based on my earlier work exploring the relationship between primary tumor texture and
pathologic response, [ was interested to determine whether lymph node volume and texture were
also correlated with pathologic response. To assess this, I chose the endpoints of nodal
downstaging and nodal clearance as opposed to pathologic response. Nodal downstaging occurs
when patients with N2 or N3 disease at the time of staging have N1 or NO (ypN1 or ypNO)
disease at the time of surgery. Nodal clearance occurs when patients achieve NO nodal status at
the time of surgery (ypNO). These endpoints are independent of the primary tumor which is the
endpoint tested by pathologic response. Nodal clearance alone however, is an important
prognostic indicator for survival in patients undergoing trimodality therapy [67].

Of the patients with CT imaging available, 73 patients had N2 or N3 nodal disease. 66
patients had N2 disease at the time of presentation and 7 patients had N3 disease. All patients
received concurrent chemotherapy with the majority receiving cisplatin/etoposide. 47 patients
(64%) were downstaged to either ypN1 or ypNO by pathologic staging at the time of surgery. 40
patients (54.8%) achieved nodal clearance to ypNO. Multiple imaging parameters were analyzed
for correlation with nodal downstaging or clearance. Analyzing primary tumor and all involved
nodal stations, the median tumor volume prior to chemoradiation was 39.1 cm’ (Interquartile
range 20.6-80.7 cm’). The median tumor volume following chemoradiation was 19.1 cm’
(Interquartile range 11.6-37.8 cm’) and the mean relative change in tumor volume was -45.8%
(Interquartile range -65.3 to 31.0%). There was no association with pre-treatment volume
(p=0.74), post-treatment volume (p=0.42), or change in total tumor volume (p=0.47).

Analyzing only N2 mediastinal nodal volumes, the median N2 lymph node volume prior
to chemoradiation was 6.7 cm® (Interquartile range 3.1-14.6 cm®). The median N2 lymph node
volume following chemoradiation was 3.8 cm’ (Interquartile range 1.8-7.0 cm’) and the median
relative change in volume was -44.4% (Interquartile range -61.7 to -27.8%). Using logistic
regression, there was no significant association between pre-treatment N2 volume (p=0.62), post-
treatment N2 volume (p= 0.84), or change in volume (p= 0.50) and nodal downstaging.
Additionally there was no significant association between pre-treatment N2 volume, post-

treatment N2 volume, or change in volume and nodal clearance.
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Principal component analysis of texture features identified 16 pre-treatment and 16 post-
treatment images features from 1605 original features (Table 10). Of these, two features Wavelet
LLH stats std and Wavelet LLL glcm inverseVar were identified in common between pre-
treatment and post-treatment lymph node features. No features demonstrated association with
either nodal clearance or nodal downstaging.

Finally, analyzing clinical features, there was no association between age, race, gender,
performance status, number of positive lymph node stations, radiation dose, or clinical stage and
nodal downstaging
3.3.3 Lymph node volume predicts local recurrence and overall survival

Survival outcomes of local recurrence, progression free survival and overall survival
were investigated using the concordance index (c-index) and Kaplan-Meier analysis. Using the
c-index, we found significant correlation between mediastinal lymph node volume and
locoregional recurrence as well as overall survival (Figure 8). Both pre-treatment and post-
treatment mediastinal lymph node volume had high c-index scores for locoregional recurrence
(0.66 and 0.67 respectively) and overall survival (0.62 and 0.60 respectively). Including hilar
nodal volumes in the total lymph node volume improved the c-index scores for both LRR (0.71
and 0.72 respectively) and OS (0.67 and 0.65 respectively). Notably, total tumor volume
including the primary tumor at either imaging time point was not significantly associated with
either local recurrence or overall survival.

Given the high c-index for lymph node volume and LRR, Kaplan Meier analysis was
used to stratify patients into high-risk and low-risk groups. Patients were separated into quartile
groups based on lymph node volume. Patients with mediastinal lymph node volumes greater than
14.6 cm’, representing the upper quartile of patients, were found to have increased LRR
compared to patients with lymph node volumes less than 14.6 cm® (p=0.01) (Figure 9a).
Similarly these patients were found to have decreased OS compared to patients with lymph node
volumes less than 14.6 cm® (p=0.001) (Figure 9b).

Additionally patients with mediastinal lymph node volume greater than 7.0 cm’ after the
completion of preoperative chemoradiation, representing the upper quartile of post-treatment
volumes, were found to have increased LRR (p<0.001) and decreased OS (p=0.04) compared to
patients with lymph node volume less than 7.0 cm3 volume (Figure 9c¢, 9d).

3.3.4 Lymph node texture predicts LRR, DM and OS
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Due to the high predictive value for volume and survival outcomes, I reasoned that other
radiomic features could also be prognostic. I then tested pre-treatment and post-treatment lymph
node features for association with survival outcomes. I used the 16 pre-treatment and 16 post-
treatment images features identified through PCA for this analysis. Notably, post-treatment
lymph nodes had a much greater number of radiomics features associated with survival
outcomes.

Analyzing pre-treatment lymph nodes, there were three quantitative features associated
with LRR in addition to volume (Figure 10a). There were zero features associated with DM
(Figure 10b), and one feature associated with OS (Figure 10c). The features associated with
LRR included Shape spherDisprop (C1 0.72), Stats kurtosis (CI 0.63) and LoG sigma 5 mm 3D
glem invDiffnorm (CI 0.62). The feature associated with OS was spherDisprop (CI 0.64). The
shape feature spherical disproportionality reflects the difference between the tumor shape and a
sphere of equal volume. The stats kurtosis feature reflects the shape of the voxel intensity
histogram. The feature LoG sigma 5 mm 3D glcm invDiffnorm describes the inverse difference
moment (normalized) which is a measure of homogeneity within the tumor.

Post-treatment lymph node analysis revealed numerous radiomic features associated with
LRR. Of the 16 features independently selected to represent the feature space, 4 features were
significantly associated with local recurrence (Figure 11a). C-indices had a range of 0.62-0.72
for features proportional with LRR. These included a mixture of both statistics and textural based
features but no shape features. The largest C-index of these features was for the LoG sigma 4mm
3D rlgl shortRunHighGrayLevEmphasis with a c-index of 0.72. This feature is sensitive to
connecting voxels of high intensity. For DM, two features were significant from random (Figure
11b). These were Wavelet HHL stats var (CI 0.60), a measure of the variance of voxels, and
Wavelet HLL glcm contrast (CI 0.59), correlated to textural heterogeneity. Similarly, the feature
Wavelet LLH glcm sumVar with a C-index of 0.61 was associated with OS (Figure 11c¢).

Based on the correlation between both pre-treatment and post-treatment imaging and
clinical outcomes, I sought to determine if textural changes were associated with survival. I
developed a model for the change, or delta, or radiomics features, quantified as the ratio of post-
treatment features to pre-treatment features. After determining the ratio, PCA analysis was
performed as previously described to select independent features. The results again demonstrated

a correlation between the new delta based features and clinical outcomes. C-indices had a range
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0f 0.62-0.66 for features associated with LRR. The feature LoG sigma 5 mm 3D stats entropy
had the greatest CI of the four features associated with LRR (CI 0.66). There were no features
associated with DM. The feature LoG sigma 5 mm 3D stats mean was associated with OS (CI
0.62).

Overall these results demonstrated significant association with both volumetric,

statistical, shape and textural features and the survival endpoints tested in this study.

3.4 Quantitative assessment of SBRT

Given that radiomics had significant prognostic value for patients undergoing
conventional chemoradiation, I was interested in the quantitative dynamics of SBRT. This form
of hypofractionated therapy is delivered over a short period of time and thus there is less time for
information regarding tumor response to be obtained. Understanding the dynamics of volume
change as they relate to patient outcome could thus provide a very early time point for adaptive
treatment planning.

3.4.1 Patient selection

99 patients undergoing SBRT were retrospectively analyzed for quantitative tumor
changes. The median age was 74 (range 46-93) with the majority of patients presenting with
adenocarcinoma (46.5%) and Stage IA disease (78.8%). The median time to local recurrence was
39.2 months and the median overall survival was 28.5 months. The median endpoint of distant
recurrence was not reached. Patient and treatment characteristics can be found in Table 11 and
Table 12.

Tumor volumes were extracted at three time points: 1) at the initiation of SBRT 2) mid
point of SBRT therapy and 3) the completion of SBRT. Furthermore, I calculated the early rate
of tumor shrinkage, the rate of late tumor change, as well as max and average rate changes. This
resulted in a total of 10 quantitative features for analysis.

3.4.2 Volumetric changes predict survival

The median tumor size at the start of therapy was 7.26 cm’ (range 0.59-75.41) and the
median tumor at the end of therapy was 6.60 cm’ (Range 0.27-51.65). The median relative
change in tumor size -12.4% (range -54.2% to +29.2%). Analyzing all features I was unable to
find any features that were correlated with LRR (Figure 13). However 7 out of the 10 features

were significantly prognostic for any recurrence (CI 0.58-0.64). The feature, maximum rate was
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the feature with the highest C-index at 0.64 (Figure 14). This feature describes the maximal rate
of volume change at any point during therapy including both early and later time points.
Additionally one feature was inversely proportional to OS (Figure 15). Early volume change,
describing the relative change in volume between the start and middle of therapy, had a c-index

of 0.41 for OS.

4. Discussion

4.1 Conclusions

Quantitative imaging has the potential, along with genomic and clinical factors, to be a
key component of driving personalized medicine. The goal of radiomics is to provide additional
data points beyond the capabilities of the human eye. This data is particularly relevant for the
treatment of cancer patients for which treatment decisions are routinely guided by imaging [68].
Radiomics can potentially offer a non-invasive method to assess changes within a malignancy
that are manifest by changes in textural heterogeneity, shape or density. The aim of this project
was to demonstrate a correlation between quantitative data and clinical outcomes. I tested and
validated the hypothesis that data derived from clinically obtained imaging is associated with
clinical outcomes and can offer additional data that complements existing clinical information.

The results of this study show several applications of quantitative imaging features. I first
demonstrated that the change in tumor volume is significantly associated with pathologic
correlation as well as prediction of local recurrence. This metric performed better in our patient
cohort than conventional 2-dimensional cutoffs (RECIST) used in clinical practice. I extended
these findings to patients with nodal disease and demonstrated that lymph node volume alone
further able to stratify advanced NSCLC patients into groups with decreased rates of survival.
Second, analyzing lymph nodes alone, I show that contrary to the results obtained from
analyzing primary tumors, the change in lymph node volume does not predict pathological
response, nor does it predict local recurrence and overall survival. I further analyzed higher order
quantitative features describing tumor texture and shape. This analysis demonstrated that pre-
treatment primary tumor texture predicts pathological response and that lymph node texture

predicts LRR and OS. I finally attempted to apply some of these techniques to the lower quality
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images obtained from cone-beam CT scans. I demonstrated that volume change using CBCT of
SBRT predicts both recurrence and overall survival.

These results have potentially implications for clinical practice. For example, locally
advanced NSCLC is composed of a heterogeneous tumor population but typically contains tumor
that has extended to the mediastinal lymph nodes. Multiple studies have shown that mediastinal
nodal clearance is a strong predictor of overall survival, suggesting that nodal tumor burden, in
addition to anatomic involvement, is an important prognostic marker of survival [67,69]. These
studies suggest a clear link between local disease control and overall survival. However there is
controversy as to the preferred method of local therapies (radiation therapy and/or surgery). Pless
et al demonstrated no significant differences in survival between chemotherapy followed by
surgery versus sequential chemotherapy and RT followed by surgery [70]. Albain et al
demonstrated no survival difference between concurrent chemotherapy and RT compared to
concurrent chemotherapy and radiation followed by surgery [71]. Finally, Van Meerbeeck et al
demonstrated that chemotherapy followed by radiotherapy has equivalent outcomes to
chemotherapy followed by surgery [72]. However, such data also do not account for the
variability of responses to chemoradiation, which could influence decisions regarding
intensification of local therapy for select patients. Patients with a significant likelihood of
achieving pCR following chemoradiation may be less likely to benefit from the addition of a
second form of local therapy such as surgical resection but patients with a suboptimal response
may benefit from radiation dose escalation, consolidation chemotherapy, and/or surgical
resection. The results of this thesis identify volumetric and textural features that are directly
correlated to tumor pathology including in the subset of stage IIIA patients. Furthermore, despite
the lack of prediction for nodal clearance in our study, we establish novel cutoffs for lymph node
volume that can be used to risk stratify patients with mediastinal nodal disease.

To our knowledge this is the first study identifying prognostic quantitative imaging
features in neoadjuvant chemoradiation. Prior work in quantitative imaging has primarily been
limited to non-surgical cases and predominately analyzing one imaging time point [22,23]. These
studies describe an association with tumor volume and survival that we did not find in our study.
Koo et al further investigated changes in tumor volume but did not find an association between
tumor volume change and survival [63]. Our results contrast those findings, in that volumetric

changes was associated with LRR when limited to locally advanced stage IIIA patients. We
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further describe the size and texture relationship for pathologic response that more accurately
describe radiopathologic correlation. Texture features were unable to predict survival, similar to
a previous study from Ravanelli et al. [27].

A few results have contradictory findings compared to prior literature. We report that
both pre-treatment and post-treatment lymph node volume during neoadjuvant therapy were
significantly associated with survival. However Dehing-Oberije et al and Basaki et al previously
reported no association between nodal volume and survival [25,74]. Such differences may be
partially explained by heterogeneity in treatment modalities, tumor volume thresholds and
segmentation used in these studies.

The novel lymph node features are the multiple texture features correlated to local
recurrence, distant metastasis and overall survival. To our knowledge, no lymph node features
have been identified in a cohort as large as ours. Although we were unable to develop a
multivariate textural signature, we were able to generate multiple features that were associated
with clinical endpoints in both pre-treatment and post-treatment lymph nodes. Additionally, this
study demonstrated the use of delta radiomics, as a means of providing information about the
response to therapy. These results could be extrapolated to additional time points to be used for
more accurate and frequent non-invasive monitoring of tumor response. Although the CI of these
was below 0.80 for all features investigated, these features provide a foundation for further
investigation before use as imaging biomarkers.

Overall these results agree with prior radiomics findings that find association between
clinical outcomes and quantitative imaging [46,60,68]

4.2 Limitations of the study

There are many challenges and limitation that are concerning for the field of quantitative
imaging and radiomics. With respect to this study, the retrospective nature of these analyses at
our single institution limit the generalizability of this data. The small sample size and low
incidence of pCR in this study resulted in insufficient power to build multivariate models and
will require further validation in larger cohorts. I also recognize that patients in this study are
composed of heterogeneous stages which may further affect the generalizability of the study.
However, we also find that our results hold true for all patients with operable locally advanced

patients as well as only the stage IIIA patients in subgroup analysis.
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With respect to the limitation of the field, these can be generally grouped into 1) acquisition
and reproducibility of data and 2) the clinical utility of the data obtained. Image acquisition
remains a challenge for radiomics analysis due to the variability in image acquisition across
instruments and institutions [75]. Image acquisition is often not standardized with respect to
image slice thickness, reconstruction algorithms, and image resolution. Such imaging variability
affects the development of imaging databases [47]. Such features are more difficult to reproduce
in PET or MRI images. PET and MRI are particularly challenging due to variations in
institutional protocols including dose uptake, metabolic volume reconstruction, and motion
susceptibility. Despite these challenges, there is evidence demonstrating the robustness of
radiomics features. Radiomics features are stable with respect to sequential CT images obtained
15 minutes apart [76,77] and repeated PET imaging [78]. At the very least, these studies
demonstrate radiomic stability at the institutional level which provides support for the data in our
study. Additional studies of variability remain challenging, such as noise introduced as a result
respiratory motion [79]. Another problem with radiomics acquisition is the variability of
segmentation. Automated segmentation may help address some of these issues as features
derived from automated contours yield more reproducible results than manual contours [80].
Furthermore, based on the hypothesis that the central component of the tumor is most consistent
across segmentation, radiomics features remain robust within the central core of the tumor. This
then avoids the limitations of segmentation due to noise from differential contours [81].

It is unclear whether the tumor phenotype obtained from radiomics corresponds to an
underlying biological genotype. The textural features in this study indicated that patients with
increased heterogeneity of texture are more likely to have more aggressive disease. Yet it
remains to be determined what the actual biological significance of textural or statistical features
is. However, there is some evidence that indicates a the correlation between biological phenotype
and imaging phenotype. Xenograft models in mice have demonstrated that radiomics features
change significantly during expression of the inducible GADD34 [82]. Furthermore, radiomics
features have been correlated to ALK and ROS1 [83], triple negative breast cancer on MRI
[84,85], as well as histopathology [58,86]. Work from our laboratory (unpublished) has also
identified radiomics features that are correlated with EGFR and KRAS mutation status, further

adding support to the idea that radiomics features reflect biological features.
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4.3 Future directions
4.3.1 Delta radiomics

In many prior quantitative imaging studies radiomic features are limited to features
extracted at a single single time point imaging. However, based on the predictive capability of
changes in volume, I believe there is a significant amount of information that can likely be
gained be observed changes in radiomic features as well. Currently my collaborators and I are
working to build models of radiomics that can incorporate the delta of radiomics data including
those presented in this study. The data presented in this work regarding the change in texture
over the course of two CT imaging time points is particularly exciting as there have yet to be any
studies regarding serial changes in texture over the course of chemoradiation. Furthermore, as
more patients receive novel therapies, the applications of quantitative imaging will also grow.
Imaging for surveillance could not only assess response, but could be used in active surveillance
to determine the development of resistance before it is clinically apparent.

4.3.2 CBCT radiomics and adaptive treatment planning

CBCTs are a lower quality CT image obtained at the time of SBRT treatment for
ensuring radiation is delivered to the same area during each fraction. The initial data presented in
this study demonstrated that volume changes on CBCT are correlated with clinical outcomes.
Although it is known that volume changes occur during SBRT therapy [87], it is unclear how
much information regarding tumor response can be gained from volume alone. Despite the
limitations of time, I was able to demonstrate that volumetric changes during SBRT treatment
can be correlated with survival. Based on the data presented in this work, it is very likely that
higher order features will offer additional information [42]. This is based on the hypothesis that
texture features will change more rapidly than volume.

As a result of building models that incorporated CBCT texture, we hope to be able to
develop protocols for adaptive treatment planning. Although challenges to this have already been
described above, a major goal of quantitative imaging is to be able to assess the efficacy of
treatments in progress and modify them accordingly. Such modifications could include

modifying tumor segmentation, dose escalation and/or decisions regarding surgical resection.

4.4 Summary
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In this work, I sought to apply the principles of quantitative imaging to NSCLC lung
cancer patients. This study demonstrated application of all aspects of radiomics including
volume, shape, statistics and texture to NSCLC patients. These quantitative imaging features
were applied to novel clinical scenarios including patients undergoing neoadjuvant therapy,
lymph node analysis, and the low-resolution CBCT images. I not only demonstrated the novel
correlation with pathologic response, but found several features prognostic for overall survival,
progression-free survival, and locoregional recurrence-free survival. These examples highlight
the potential within the rapidly growing field of quantitative imaging to more robustly describe
tumor phenotype than conventional imaging criteria. These results provide novel evidence to the
growing radiomics literature that there is significant association between imaging, pathology and
clinical outcomes. Further exploration will allow for more complete models describing tumor

imaging phenotype with clinical outcomes.
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Tables and Figures

Figure 1: Radiomics methods overview. CT images are segmented manually in treatment
planning software such as MIM or Eclipse (A). Images are then exported to 3D-slicer
software where the region of interest is isolated and resampled in 3 mm x 3mm x 3mm
voxels (B). Images are then analyzed for shape, statistics and texture features. Wavelet or
Laplacian of Gaussian (LoG) filters are applied resulting in a set of 1605 unique features
(C). The radiomics data is subsequently analyzed for association with clinical outcomes.
Abbreviations: RLGL= run length gray level, GLCM=gray level co-occurrence matrix,
GLSZM-=gray level size zone matrix, LoG=Laplacian of Gaussian

Adapted from Aerts et al, 2014, and Coroller et al, 2015.
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Figure 2: Computation of textural features performed using gray level co-occurrence
matrices (GLCM). GLCM matrices describes the relationship between intensity levels
occurring in two pixels within the image. In the GLCM matrix P(i,j,6,a), the (ij )th element
represents the number of times the combination of intensity levels i and j occur in two
pixels in the image I. 6 represents the number of pixels separating i and j in the direction a.
For example, a two-dimensional image [ with 5 discrete gray levels can be resampled into
discrete pixels (A). Within image [, the gray levels 1 and 2 are separated by one pixel in the
horizontal direction three times (B). The GLCM matrix P, in which §=1 and a represents the
horizontal 0 degrees (C). In this matrix (ij )=(1,2) takes the value of 3. This process is then
applied throughout the 3-dimensional tumor (D). Additional texture matrices Run-Length
Gray-Level (RLGL) and Gray Level Size Zone (GLSZM) are not shown here. GLSZM and RLGL
matrices are similar to GLCM matrices but represent the number of occurrences of pixels of
the same intensity connected in sequence.

Adapted from Aerts et al, 2014.

A
C . D
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1 2 3 4 5

1 3 3 2 0 0

2 1 0 1 1 1

i 3 1 1 0 0 2

4 0 0 1 0 0

5 0 2 0 0 1
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Table 1: Descriptions of selected radiomics features

Abbreviations: GLCM = Gray-level Co-occurrence Matrix, GLSZM = Gray-Level Size Zone
Matrix, LoG=Laplacian of Gaussian, RLGL = Run Length Gray-Level, L=Low, H=High.
Adapted from Aerts et al 2014, Coroller et al 2015

Emphasis (LRE/SRE)

Selected Radiomic Radiomic Filter -
. Description
feature group associated
Ratio between tumor surface area and a
Sphere Disproportionality Shape none sphere with the same volume as the
tumor
Mean Stats Wavelet The mean voxel intensity
Median Stats Wavelet The median voxel intensity
Skewness Stats hone Pescrlptlop of the shape of the voxel
intensity histogram
Kurtosis Stats hone Pescrlptlop of the shape of the voxel
intensity histogram
Cluster Shade GLCM LoG Measure of GLCM matrix skewness
Corr GLCM Wavelet, LoG | Correlation of the GLCM matrix
Describes the complexity of the GLCM
Entropy GLCM LoG matrix based on the number of unique
voxel patterns in the tumor
Dissimilarity GLCM hone De.scr.lbes the variation of grey level
pairs in an image.
Measures the similarity of gray level
Gray Level Non values throughout the image. Smaller
Uniformity (GLN) GLCM Wavelet values are expected if gray levels are
more homogenous.
Large Area Emphasis GLSZM LoG Dgscrlbes areas of connecting voxels
(LRE) with same value
Low Intensity Emphasis GLSZM Wavelet Retu.rns va_lues correlated to zones with
low intensity voxel
High intensity emphasis GLSZM Wavelet R_etul_“ns val.ues correlated to zones with
high intensity voxels
Returns values based on the
Long/Short Run RLGL LoG occurrences of long or short runs

(greater or fewer voxels of similar
intensity in sequence)
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Table 2: Patient and treatment characteristics of patients of locally advanced NSCLC patients
with pre- and post-treatment imaging reported as number of patients (% of total patients).

Patient Characteristics n (%)
Age (yr)

Median (Range) 60 (32-77)

Q1-Q3 55-66
Gender

Male 58 (57.4)

Female 43 (42.6)
Race

White 91 (90.1)

Other (African American, Hispanic, Asian) 10 (9.9)
ECOG Performance Status

0 42 (41.6)

1 52 (51.5)

2 5(5.0)

3 2 (2.0)
AJCC Stage

IIA 2 (2.0)

11B 7(6.9)

1A 77 (76.2)

111B 15 (14.9)
T Stage

T1 19 (18.8)

T2 33 (32.7)

T3 30(29.7)

T4 19 (18.8)
N Stage

NO 15 (14.9)

N1 8(7.9)

N2 70 (69.3)

N3 8(7.9)
NSCLC Histology

Adenocarcinoma 58 (57.4)

Squamous cell carcinoma 27 (26.7)

Other* 16 (15.8)
Treatment Characteristics
Chemotherapy

Sequential 1(1.0)
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Induction + concurrent 13 (12.9)
Concurrent 50 (49.5)
Concurrent + Adjuvant 36(35.6)
RT only 1(1.0)
Concurrent Chemotherapy
Weekly carboplatin + taxol 25 (24.8)
Cisplatin + etoposide (EP 50/50) 68 (67.3)
Other 6(5.9)
Surgery
Lobectomy/Bilobectomy 74 (73.3)
Pneumonectomy 12 (11.9)
Wedge resection or sublobar resection 15 (14.9)
Radiation Technique
3DCRT 87 (86.1)
IMRT 14 (13.9)
RT Dose
Median (Range) 54 (46-70)
46-53 Gy 3(3.0
54 Gy 63 (62.4)
55-60 Gy 10 (9.9)
> 66 Gy 25 (24.8)

* NSCLC NOS (10), NSCLC with neuroendocrine morphology (2),
Adenosquamous (1), Mixed NSCLC and SCLC (1), Adenoid cystic

carcinoma (1), Sarcomatoid (1)
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Table 3: Treatment outcomes reported following surgical resection of locally advanced NSCLC
patients with pre- and post-treatment imaging. RECIST response reported at the time of imaging
prior to surgical resection.

Treatment Outcomes Median (months)
Follow up 36.1
Overall survival 60.1
Distant metastsis 68.5
Locoregional recurrence Not reached
RECIST response n (%)
Complete response (CR) 1(1.0)
Partial response (PR) 42 (41.6)
Stable Disease (SD) 56 (55.4)
Progressive Disease (PD) 2 (2.0)
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Figure 3: Tumor response waterfall plot indicating percent change in total tumor diameter (a)
and volume (c) for each patient in the study. Dashed line indicates 30% reduction in tumor
diameter corresponding to RECIST partial response (a) and 50% median reduction in tumor
volume (c¢). Comparison of relative changes in total tumor diameter (b) and volume (d). Diamond
indicates mean change. Pathologic response is represented by red (pCR) or blue (residual
disease) bars on the waterfall plots.

Abbreviations: pCR= pathologic complete response, * = p<0.05, *** = p<0.001
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Table 4: Univariate and multivariate analysis of clinical and CT imaging variables associated
with pathologic complete response (pCR). All variables are categorical except where labeled as

continuous.
Univariate Multivariate
n OR (95% CI) p OR (95% CI) p
Age
<60 54 1.000
> 60 47 1.528 (0.571-4.087) 0.399
Gender
Female 43 1.000
Male 58 1.872 (0.697-5.022) 0.213
Performance Status
0 42 1.000
1-3 59 1.867 (0.652-5.345) 0.245
Race
White 91 1.000
Asian, African-American or Hispanic 10 1.014 (0.198-5.191) 0.987
AJCC Stage
ITA-IITA 86 1.000
1B 15 0.581 (0.120-2.813) 0.500
T Stage
T1-T2 52 1.000
T3-T4 49 2.321 (0.839-6.425) 0.105
N Stage
NO-N1 23 1.000 1.000
N2-N3 78 0.191 (0.066-0.551) 0.002 0.180 (0.052 0.621) 0.001
Histology
Adenocarcinoma 58 1.000 1.000 0.009
Other 16 4.817 (1.189-19.521) 0.290 6.077 1.230 30.034
Squamous cell carcinoma 27 6.234 (1.869-20.789) 0.051 6.771 1.691 27.116
Radiation dose
<54 Gy 66 1.000
> 54 Gy 35 1.333 (0.487-3.649) 0.575
RECIST response
SD/PD 58 1.000
CR/PR 43 1.872 (0.697-5.022) 0.213

Clinical lymph node stations involved
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0-1 36 1.000

2 27 0.196 (0.050-0.777) 0.374

>3 38 0.135 (0.035-0.523) 0.087
Imaging characteristics
Pre-treatment total tumor volume (continuous per cm®) 0.998 (0.993-1.004) 0.573
Post-treatment total tumor volume (continuous per cm®) 0.986 (0.966-1.006) 0.157
Absolute decrease total tumor volume (continuous per cm’) 1.001 (0.993 1.009) 0.805
% Decrease total tumor volume (continuous per percentage point) 1.056 (1.021-1.093) 0.002 1.066 (1.022 1.111) 0.004
< 50% decrease total volume* 49 1.000
> 50% decrease total volume 52 7.448 (2.022-27.430) 0.003
< 65% decrease total volume 73 1.000
> 65% decrease total volume 28 4.601 (1.642-12.896) 0.004
Pre-treatment primary tumor volume (continuous per cm’) 0.999 (0.993-1.004) 0.654
Post-treatment primary tumor volume (continuous per cm®) 0.990 (0.974-1.007) 0.249
% Decrease primary tumor volume (continuous per percentage point) 1.042 1.012 1.073 0.005
Pre-treatment tumor diameter total (continuous per cm) 1.014 (0.856-1.200) 0.875
Post-treatment tumor diameter total (continuous per cm) 0.798 (0.613-1.040) 0.095
% Decrease tumor diameter total (continuous per percentage point) 1.035 (1.010-1.061) 0.006
Pre-treatment primary diameter (continuous per cm) 1.027 (0.843-1.250) 0.7925
Post-treatment primary diameter (continuous per cm) 0.884 (0.685-1.141) 0.344
% Decrease primary tumor diameter (continuous per percentage point) 1.050 (1.015-1.087) 0.005

*Median decrease in tumor volume

+Upper quartile decrease in tumor volume
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Figure 4: AUC values of ROC curves modeled from logistic regression of imaging
characteristics and pathologic response. Significance is indicated from random (AUC=0.5).

Abbreviations: TV=tumor volume, TD=tumor diameter, * = p<0.05, *** = p<(0.001
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Figure 5. Kaplan Meier curves for Stage IIIA locoregional recurrence-free survival grouped by
change in tumor volume (a) or RECIST response (b). Patients shown are only stage IIla. + marks
represent censored results. P-values listed using log-rank test.

Abbreviations: RECIST CR: complete response, PR: partial response, SD: stable disease, PD:

progressive disease
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Table 5. Patient and treatment characteristics of patients of locally advanced NSCLC patients
with pre-treatment imaging reported as number of patients (% of total patients).

Patient Characteristics n (%)
Age
Median (Range) 60.5 (32.7-77.6)
Gender
Female 68 (53.5)
Male 59 (46.5)
Race
American African 5(3.9)
Asian 2 (1.6)
White 117 (92.1)
Hispanic 3(24)
Histology
Adenocarcinoma 72 (56.7)
Adenosquamous carcinoma 1(0.8)
Squamous cell Carcinoma 32 (25.2)
Large cell Carcinoma 17 (13.4)
Large cell neuroendocrine carcinoma 2 (1.6)
Mixed NSCLC and SCLC 1(0.8)
Adenoid cystic carcinoma 1(0.8)
Other 1(0.8)
AJCC Stage
1A 2 (1.6)
I1B 8 (6.3)
IIIA 96 (75.6)
I1IB 21 (16.5)
Treatment Characteristics n (%)
Treatment sequence
Concurrent 60 (47.2)
Concurrent + adjuvant 45 (35.4)
Concurrent + adjuvant RT 2 (1.6)
Concurrent + neoadjuvant 4 (3.2)
Induction + concurrent 13 (10.2)
Induction + concurrent + adjuvant 1(0.8)
ChemoRT
RT only 1(0.8)
Sequential 1(0.8)
Pathologic response
Complete response 27 (21.3)
Microscopic residual disease 33 (26.0)
Visibly residual disease 67 (52.8)
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Table 6: Treatment outcomes reported following surgical resection of locally advanced NSCLC
patients with pre-treatment imaging.

Treatment Outcomes Median (months)
Follow up 41.8
Overall survival 41.7
Distant metastasisl 24.8
Locoregional recurrence 28.1
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Table 7: PCA selection of primary tumor features

Pre-treatment primary tumor features
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Figure 6: Comparison of univariate AUC values for pre-treatment radiomics features
against pathologic response outcomes of gross residual disease and pathologic complete
response. Significance is indicated by (*) for p<0.05.

Figure created by Thibaud Coroller and used with permission.
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Figure 7: Comparison of concordance indices (CI) for pre-treatment radiomics features
against outcomes of OS, DM, LRR. Significance is indicated by (*) for p<0.05.

Figure created by Thibaud Coroller and used with permission.
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Table 8. Patient and treatment characteristics of patients of locally advanced NSCLC patients
with pre- and post-treatment imaging reported as number of patients (% of total patients). Only
patients with lymph node segmentation were included in this table.

Patient Characteristics n (%)
Age (yr)
Median (Range) 60 (32-75)
Q1-Q3 53-65
Gender
Male 22 (30.1)
Female 51(69.9)
Race
White 66 (90.4)
Other (African American, Hispanic, Asian) 7(9.6)

ECOG Performance Status

0 30 (41.1)

1 39 (53.4)

2 4(5.5)
AJCC Stage

1A 61 (83.6)

1B 12 (16.4)
T Stage

T1 18 (24.7)

T2 32 (43.8)

T3 17 (23.3)

T4 6(8.2)
N Stage

N2 66 (90.4)

N3 7 (9.6)
NSCLC Histology

Adenocarcinoma 48 (65.8)

Squamous cell carcinoma 16 (21.9)

Other* 9(12.3)
Treatment Characteristics
Chemotherapy

Induction + concurrent 9(12.3)
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Concurrent 37 (50.7)

Concurrent + Adjuvant 27 (37.0)
Concurrent Chemotherapy

Weekly carboplatin + taxol 17 (23.3)

Cisplatin + etoposide (EP 50/50) 51(69.9)

Other 5(6.8)
Surgery

Lobectomy/Bilobectomy 57 (78.1)

Pneumonectomy 6(8.2)

Wedge resection or sublobar resection 10 (13.7)
Radiation Technique

3DCRT 63 (86.3)

IMRT 10 (13.7)
RT Dose

54 Gy 49 (67.1)

55-60 Gy 8 (11.0)

> 66 Gy 16 (21.9)
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Table 9: Treatment outcomes reported following surgical resection of locally advanced NSCLC
patients with pre- and post-treatment imaging. Only patients with lymph node segmentation were
included in this table.

Treatment Qutcomes Median (months) 1 year 3 year
Follow up 36

Overall survival 78 85% 68%
Distant recurrence 68.6 23% 38%
Locoregional recurrence Not reached 12% 28%

Treatment Outcomes
Median (months)

1 year

3 year

Follow up
36

Overall survival
78

85%

68%

Distant recurrence
68.6
23%
38%

Locoregional recurrence

NR*
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Figure 8: Comparison of concordance indices (CI) for total tumor volume, total lymph node
volume and mediastinal lymph node volume against outcomes of distant metastasis (DM),
locoregional recurrence (LRR), and overall survival (0S). Significance from random is

indicated by (*) for p<0.05.
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"Figure 9: Kaplan Meier curves for patients with N2 nodal disease. Locoregional recurrence
grouped by pre-treatment N2 nodal volume (a) or post-treatment nodal volume (c). Overall
survival grouped by pre-treatment N2 nodal volume (b) or post-treatment nodal volume (d). +
marks represent censored results. P-values listed using log-rank test.
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Table 10: PCA selection of lymph node features

Pre-treatment lymph node features

Post-treatment lymph node features

Unique features
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Figure 10: Comparison of pre-treatment lymph node radiomics features c-indices for
locoregional recurrence, distant recurrence, and overall survival. (*) indicates p-values
<0.05.
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Figure 11: Comparison of post-treatment lymph node radiomics features c-indices for
locoregional recurrence, distant recurrence, and overall survival. (*) indicates p-values
<0.05.
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Figure 12: Comparison of delta lymph node radiomics features c-indices for locoregional
recurrence, distant recurrence, and overall survival. (*) indicates p-values <0.05.

A) Locoregional Recurrence B) Distant Recurrence C) Overall Survival
(events=20/76) (events=33/76) (events=35/76)
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Table 11: SBRT patient and treatment characteristics reported as number of patients (% of total
patients).

Patient Characteristics n (%)
Age (yr)

Median (Range) 74 (46-93)
Gender

Male 46 (46.5)

Female 53 (53.5)
Race

White 91 (91.9)

Other (African American, Hispanic, Asian) 8(8.1)

ECOG Performance Status

0 17 (17.2)
1 46 (46.5)
2 28 (28.3)
3-4 8(8.1)
AJCC Stage
1A 78 (78.8)
IB 16 (16.2)
-1v 5(5.1)
T Stage
Tla 51(51.5)
T1b 29 (29.3)
T2 18 (18.2)
T3 1(0.1)
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N Stage

NO 99 (100)
Histology

Adenocarcinoma 46 (46.5)

Squamous cell carcinoma 23 (23.2)

NSCLC NOS 14 (14.1)

No pathology specimen 15 (15.2)
Treatment Characteristics
SBRT fractions

3 62 (62.6)

4 2(0.2)

5 35(354)
RT Dose per fraction

Median (Range) 18 (10-18)

11 12

12 19

18 62

Other 6
Total RT dose

Median (Range) 54 (48-60)
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Table 12: SBRT patient treatment outcomes

Treatment Outcomes Median (months) 1 year 3 year
Follow up 20.1 (1.25-51.4)

Overall survival 28.5 89.2% 35.2%
Locoregional recurrence 39.2 22.5% 37.9%
Distant recurrence NR 19.9% 33.9%
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Figure 13: Comparison of CBCT volumetric feature c-indices for LRR. (*) indicates p-values
<0.05.
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Figure 14: Comparison of CBCT volumetric feature c-indices for any recurrence. (*)
indicates p-values < 0.05.
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Figure 15: Comparison of CBCT volumetric feature c-indices for OS. (*) indicates p-values
<0.05.
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