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Abstract

This paper considers the geometric optimization problem of �nding the Largest

area axis-parallel Rectangle (LR) in an n-vertex general polygon. We characterize

the LR for general polygons by considering di�erent cases based on the types of con-

tacts between the rectangle and the polygon. A general framework is presented for

solving a key subproblem of the LR problem which dominates the running time for

a variety of polygon types. This framework permits us to transform an algorithm

for orthogonal polygons into an algorithm for nonorthogonal polygons. Using this

framework, we obtain the following LR time results: �(n) for xy-monotone polygons,

O(n�(n)) for orthogonally convex polygons, (where �(n) is the slowly growing inverse

of Ackermann's function), O(n�(n) logn) for horizontally (vertically) convex polygons,

O(n logn) for a special type of horizontally convex polygon (whose boundary consists of

two y-monotone chains on opposite sides of a vertical line), and O(n log

2

n) for general

polygons (allowing holes). For all these types of non-orthogonal polygons, we match

the running time of the best known algorithms for their orthogonal counterparts.

A lower bound of time in 
(n logn) is established for �nding the LR in both self-

intersecting polygons and general polygons with holes. The latter result gives us both

a lower bound of 
(n logn) and an upper bound of O(n log

2

n) for general polygons.
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1 Introduction

The problem of �nding the Largest area axis-parallel Rectangle (LR) inside a general polygon

1

of n vertices is a geometric optimization problem in the class of polygon inclusion problems

[8]. De�ne Inc(P;Q; �): Given P 2 P, �nd the �-largest Q 2 Q inside P , where P and Q

are families of polygons, and � is a real function on polygons such that:

8Q; Q

0

2 Q; Q

0

� Q ) �(Q

0

) � �(Q):

Our problem is an inclusion problem where Q is the set of axis-parallel rectangles, P is the

set of general polygons, and � gives the area of a rectangle.

This rectangle problem arises naturally in applications where a quick internal approxi-

mation to a polygon is useful. It is needed, for example, in the industrial problem of laying

out apparel pattern pieces on clothing \markers" with minimal cloth waste [23, 24] (see

Section 7).

1.1 Related Work

Despite its practical importance, work on �nding the LR has been restricted to orthogonal

polygons

2

[5, 21, 31] and, recently, convex polygons [6] (see Figure 1). Amenta [6] has shown

that the LR in a convex polygon can be found in linear time by phrasing it as a convex

programming problem. For a constrained type of orthogonal polygon, Aggarwal and Wein

[5] give a �(n) time algorithm for �nding the LR using the monotonicity of an area matrix

associated with the polygon.

McKenna et al. [21] use a divide-and-conquer approach to �nd the LR in an orthogonal

polygon in O(n log

5

n) time. For the merge step at the �rst level of divide-and-conquer, they

obtain an orthogonal, vertically separated, horizontally convex, polygon

3

. At the second

level, their merge step produces an orthogonal, orthogonally convex polygon

4

, for which

they solve the LR problem in O(n log

3

n) time. They also establish a lower bound of time

1

A general polygon is a polygonal region in the plane with an arbitrary number of components and holes.

A rectangle is inside if it is a subset. The rectangle can share part of its boundary with the polygon's.

2

We use O'Rourke's de�nition: \An orthogonal polygon is one whose edges are all aligned with a pair of

orthogonal coordinate axes, which we take to be horizontal and vertical without loss of generality" [26]. In

the context of this paper, this might be called an axis-parallel polygon.

3

The boundary of a vertically separated polygon consists of two chains which extend from the highest

point of the polygon to the lowest point and which are on opposite sides of some vertical line. A horizontally

convex polygon contains every horizontal line segment whose endpoints lie inside the polygon. For a vertically

separated, horizontally convex polygon, the two chains are y-monotone.

4

An orthogonally convex polygon is both horizontally and vertically convex. This class contains the class

of convex polygons.

2



Convex

     Amenta 93
(convex programming)

Constrained Staircase

 Aggarwal and Wein  88
(fast matrix searching)

OrthogonalOrthogonal, Orthogonally Convex

O (n log   n)3

McKenna, O’Rourke, Suri 85

O (n log   n)5

McKenna, O’Rourke, Suri 85

Largest Empty Rectangle Problem

O (n log   n)2

O (n log   n)3

Chazelle, Drysdale, Lee 86

O (n log   n)2

 (using Klawe  and Kleitman 90)

(n)Θ (n)Θ

O (n     (n))α

 (fast matrix searching)

Aggarwal and Suri 87
         (fast matrix searching)

(using Aggarwal and Suri 87)
              (fast matrix searching)

Figure 1: Related Work

in 
(n log n) for �nding the LR in orthogonal polygons with degenerate holes, which implies

the same lower bound for general polygons with degenerate holes.

McKenna et al. note, without giving details, that the LR in an orthogonal polygon can

also be found using the more complicated O(n log

3

n) time divide-and-conquer algorithm of

Chazelle et al.[10] for the largest empty rectangle (LER) problem. The LER problem is stated

as follows: given a rectangle containing a set S of n points, �nd the largest area rectangular

subset, with sides parallel to those of the original rectangle, whose interior contains no points

from S ([10, 25, 3]). Chazelle et al. observe that the running time of the merge step of their

algorithm is dominated by the largest empty corner rectangle (LECR) problem: given two

subsets S

left

and S

right

of S, �nd the largest rectangle containing no point of S which has

lower-left corner in S

left

and upper-right corner in S

right

. The fastest solution to LECR is

Aggarwal and Suri's O(n log n) time algorithm, which they present as part of an O(n log

2

n)

time solution to the LER problem [3]. Their LECR algorithm relies on fast searching of area

matrices.

We observe that a speed-up in the LECR algorithm automatically improves the running

time for �nding the LR in an orthogonal polygon. This speed-up occurs because a fast LECR

algorithm implies a fast algorithm for the Largest Corner Rectangle (LCR) in an orthogonal,

vertically separated, horizontally convex polygon

5

. Computing the LCR, in turn, dominates

the running time of the LR problem for orthogonal, vertically separated, horizontally convex

polygons. Finally, as we have previously stated, this special case is required for the merge

step of a divide-and-conquer algorithm for general orthogonal polygons. Thus the O(n log n)

time algorithm for LECR yields an O(n log

2

n) time algorithm for �nding the LR in an

orthogonal polygon.

The O(n log

3

n) time algorithm of [21] for orthogonal, orthogonally convex polygons can

5

The LCR of an orthogonal polygon is the largest area rectangle with diagonally opposite corners on the

boundary of the polygon. Our de�nition of LCR for non-orthogonal polygons is somewhat more speci�c (see

Section 3).

3



also be improved by applying recent results in fast matrix searching. Aggarwal and Suri [3]

note that, for the LECR problem which can be associated with the vertices of this type of

polygon, there is a corresponding area matrix whose maximum can be found in O(n log n)

time by decomposing it into a set of simpler area matrices. They note in [4] that Klawe and

Kleitman's results [18] for this simpler type of matrix imply O(n�(n)) search time for the

more complex matrix, where �(n) is the slowly growing inverse of Ackermann's function. It

is easy to see that this yields O(n�(n)) time for �nding the LR in an orthogonal, orthogonally

convex polygon.

Melissaratos and Souvaine [22] use the visibility techniques of [15] to solve several ge-

ometric optimization problems. In particular, they �nd the largest triangle contained in a

polygon in O(n

4

) time by considering the types of contacts between the polygon and the

triangle. A similar approach can be applied to the LR problem by using the concept of

rectangular visibility

6

[28], but this leads to an O(n

5

) algorithm, which is much slower than

the O(n log

2

n) one we propose in this paper.

Another possible approach to the LR problem involves Voronoi diagrams, but it is unlikely

to produce an algorithm faster than O(n log

2

n). Chew and Drysdale [11] discuss using a

Voronoi diagram of a point set, based on a convex distance function, to �nd the associated

largest empty convex shape. Chazelle et al. [10], in their work on the largest empty rectangle

problem, cite the use of a Voronoi diagram in the L

1

or L

1

metric [20, 16] to �nd the largest

empty axis-parallel square for a point set. Aurenhammer [7] notes that a transition from

squares to rectangles is complicated because the distance function depends on the aspect

ratio of the rectangle, which is unknown. Chazelle et al. [10] use a Voronoi-like diagram to

solve the LECR problem. However, this approach is slower than Aggarwal and Suri's LECR

algorithm [3], which is based on fast matrix searching. In order to use Voronoi diagrams to

solve the problem treated in this paper, one would need a generalized Voronoi diagram, often

called the medial axis [27, 19] of a polygon. Since the fastest algorithm for the largest empty

rectangle problem (for point sets) is not based on Voronoi diagrams, we doubt that using

such a generalized Voronoi diagram would yield an algorithm faster than the O(n log

2

n) one

we present in this paper.

No published algorithm is known for �nding the LR in a general non-orthogonal polygon

with (non-degenerate) holes, nor has a lower bound tighter than 
(n) been established.

6

Overmars and Wood [28] de�ne rectangular visibility as follows: \Given a set of points S in the plane,

a point p is said to be rectangularly visible from a point q with respect to S if and only if there exists an

orthogonal rectangle R that contains both p and q, but no other point of S." We use a slightly less restrictive

version of rectangular visibility (see Section 3.2).

4



1.2 Overview

We present the �rst algorithmic results for general polygons with holes: an O(n log

2

n) time

algorithm. We also prove a lower bound for this type of polygon of time in 
(n log n).

The divide-and-conquer approach used for �nding LRs in orthogonal polygons is applicable

to non-orthogonal polygons, but it is a challenge to deal with the special cases of the LR

problem that arise during the merge step. As is the case for orthogonal polygons, the running

time is dominated by the LCR (largest corner rectangle) problem for vertically separated,

horizontally convex polygons. Unfortunately, for non-orthogonal polygons, it is not so easy

to reduce the LCR problem to a LECR problem. For this reason, we present a general

framework which we use to transform LCR problems for several types of non-orthogonal

polygons into LCR problems for \partially orthogonal" polygons. The framework shows

how to modify a LECR algorithm to solve these special LCR problems. This framework

allows us to achieve the same LR time bounds for each non-orthogonal case as has already

been achieved for the corresponding orthogonal case.

Our paper is organized as follows. In Section 2 we characterize the LR for general

polygons by considering di�erent cases based on the types of contacts between the rectangle

and the polygon. In Section 3 we present a general framework for solving the 2-contact case

of the LR problem, which dominates the running time for a variety of polygon types

7

. The

framework involves transforming the polygon, via vertex projection and inner orthogonal

approximations, into a \partially orthogonal" polygon for which we can solve the associated

LCR problem by solving a modi�ed LECR problem. The LECR problem is solved e�ciently

using fast matrix searching techniques from the literature.

general

O (n  log    n)2

vertically separated,
horizontally convex

O (n  log n)

orthogonally convex horizontally convexxy-monotone

(n)Θ O (n    (n))α O (n    (n) log n)α

Figure 2: Algorithmic Results for a Variety of Polygon Types

Section 4 presents an O(n log

2

n) time divide-and-conquer algorithm for �nding the LR

in a general polygon with holes. Our 2-contact framework is applied to solve the 2-contact

case for a vertically separated, horizontally convex polygon. This type of polygon arises in

the merge step, and �nding its LCR and LR dominates the running time of the divide-and-

conquer algorithm. We show that its LR can be found in O(n log n) time. This O(n log n)

7

The 2-contact case is equivalent to a constant number (eight) of LCR problems.

5



algorithm uses the results of Aggarwal and Suri [3, 4] for the LECR problem.

Section 5 gives algorithms for �nding the LR in several other types of polygons. We

show that the LR of an xy-monotone polygon

8

can be found in �(n) time. This algorithm is

based on using the 2-contact framework to solve the 2-contact case in �(n) time. We use the

framework to solve the 2-contact case in O(n�(n)) time for an orthogonally convex polygon.

This leads to an O(n�(n)) time algorithm for �nding the LR of an orthogonally convex poly-

gon. The orthogonally convex polygon result is used as the basis for an O(n�(n) log n) time

divide-and-conquer algorithm for horizontally (vertically) convex polygons. If used in the

divide-and-conquer algorithm of McKenna et al. [21], this immediately gives O(n�(n) log

2

n)

time for general polygons. However, this is not as fast as our O(n log

2

n) time algorithm based

on vertically separated, horizontally convex polygons. However, these LR algorithms (or the

2-contact framework) may be useful in the development of other fast geometric algorithms.

The running time results of Sections 4 and 5 are summarized in Figure 2.

In Section 6 we prove a lower bound of time in 
(n log n) for �nding the LR in both

self-intersecting polygons and general polygons with holes. The latter result gives us both a

lower bound of 
(n log n) and an upper bound of O(n log

2

n) for general polygons with holes.

It uses symbolic perturbation to extend the 
(n log n) lower bound of McKenna et al. for

orthogonal polygons with degenerate holes. The proof for self-intersecting polygons involves

a reduction from MAX-GAP. This 
(n log n) lower bound clearly demonstrates that the LR

inclusion problem is harder than the corresponding smallest rectangle enclosure problem,

which has a trivial linear time algorithm.

Section 7 discusses LR applications.

2 Characterizing the LR

In this section we characterize the LR contained in a general polygon P by considering

di�erent cases based on the types of contacts between the LR and the boundary of P . We

outline a naive algorithm for �nding the LR based on this characterization. Others have

used contact classi�cation for algorithmic development (see, for example, [22, 21, 13]).

2.1 Types of Contacts

Intuitively, if an axis-parallel rectangle is inside P , it has four degrees of freedom (parameters)

and can \grow" until each of its four sides is stopped by contact with the boundary of P .

8

A simple polygon consisting of two xy-monotone chains is an xy-monotone polygon. A chain is xy-

monotone if it is monotone with respect to both the x and y axes. A chain is monotone with respect to a

line l if a line orthogonal to l intersects the chain in exactly one point [29].

6



Contacts between the rectangle and P are of two types: 1) a side of the rectangle with a

vertex of P , and 2) a corner of the rectangle with an edge of P . In order to discuss the �rst

type, we require the notion of a reex extreme vertex, introduced in [30].

De�nition 2.1 A vertex v of P is a vertical reex extreme vertex if exterior(P ) has

a local vertical line of support at v: for some epsilon > 0, the vertical line segment of

length � and with midpoint v is a subset of P (boundary plus interior). A horizontal reex

extreme vertex is de�ned similarly.

For type 1 contacts, a reex extreme vertex of P touches a side of the rectangle and stops

growth in one direction; we call this a reex contact . Each reex contact can remove one

degree of freedom. Two reex contacts with adjacent sides of the rectangle �x a corner of

the rectangle. For type 2 contacts, a corner of the rectangle touches an edge of P forming

an edge contact .

2.2 A Determining Set of Contacts

De�nition 2.2 A set of contacts C is a determining set of contacts if the LR R satis-

fying C has �nite area and if the LR R

0

satisfying any proper subset C

0

� C has greater or

in�nite area.

For example, a set of four reex contacts, one on each side of the rectangle, is a deter-

mining set.

Note: A determining set determines the area of the LR, but it does not necessarily

determine a unique rectangle or LR.

(b) Independent
    sliding contact

(a) Fixed contact (c) Two dependent
    sliding contacts

Figure 3: Edge Contact Types for a Determining Set

Within a determining set, we distinguish between two di�erent subtypes of edge contacts.

An edge contact is �xed if the set of constraints uniquely determines the point of contact

with the rectangle. Otherwise, it is a sliding contact. Note that we are considering here

the set of all rectangles which satisfy the determining set of contacts, and we are not just

considering rectangles of maximal area.

7



A �xed contact can arise when there is no freedom to slide along an edge because a reex

contact �xes a coordinate. For example, in Figure 3(a), the reex contact of the determining

set �xes the x-coordinate of the edge contact, which completely determines the location of

the edge contact. If an edge contact has an adjacent side which has either a reex or �xed

contact, then the edge contact must also be a �xed contact.

Two sliding edge contacts are dependent if the position of one determines the position

of the other; otherwise they are independent. An independent sliding contact requires that

the two adjacent sides of the rectangle do not have any contact with P (see Figure 3(b)). A

sliding contact adjacent to another sliding contact is dependent, because the two contacts

must share a coordinate (see Figure 3(c)).

2.3 Maximization Problems

Here we examinemaximization problems associated with certain determining sets of contacts.

Finding the LR associated with a determining set of contacts requires solving a maximization

problem if the set contains a sliding contact. For a given set of contacts, the number of degrees

of freedom is the number of undetermined parameters of the rectangle. Degrees of freedom

within a determining set can arise only from sliding contacts because any other degree of

freedom would result in a rectangle of in�nite area, and therefore the contacts would not

form a determining set. It follows that if a determining set consists of only reex or �xed

edge contacts, no maximization is required. For each independent sliding contact in the set,

we can parameterize the associated edge. The maximization problems can then be classi�ed

based on the number of parameters.

2.3.1 1-Parameter Problems

The set of 1-parameter maximization problems can be further subdivided according to the

number of dependent sliding contacts.

The Basic 1-Parameter Problem: The simplest 1-parameter problem involves no de-

pendent sliding contacts, just a single independent one. This is the basic 1-parameter prob-

lem, and it arises when one corner of the LR has a sliding contact and the diagonally opposite

corner is �xed. The basic 1-parameter problem can be solved by parameterizing the edge

associated with the sliding contact and maximizing a quadratic in one variable. This can be

solved in O(1) time.

An alternate constant-time solution to the 1-parameter problem is based on the following

lemma, which demonstrates that the slope of the LR diagonal depends only on the slope of

the polygon edge. We assume here that the edge is neither vertical nor horizontal.

8



Lemma 2.1 (Slope Lemma) Given a point p and a line L with slope s, the LR with one

corner at p and diagonally opposite corner at point q on L has diagonal pq, where the slope

of pq = �s.

In other words, for a basic 1-parameter problem, if one corner of a LR is incident on L,

the slope of the LR's diagonal is the negative of L's slope.

increasing area

p

L:  ax + by = d     

s = -a/b     

 area of MAAPR:
         

xy = c
(x  , y   )c c = q

Figure 4: Slope Lemma

Proof: Assume p is at the origin, and that the line L is given by ax+by = d (see Figure 4).

W.l.o.g. assume L intersects the +x and +y axes. (Note: we ignore the degenerate cases of

horizontal and vertical lines, for which the LR is unde�ned.) The family of hyperbolas given

by xy = r represents curves corresponding to rectangles of constant area. Moving away from

the origin into the �rst quadrant, the hyperbola branch which is tangent to L provides the

area c of the LR associated with L. Let (x

c

; y

c

) be the coordinates of the point at which L

is tangent to the hyperbola xy = c.

Now, the tangent to xy = c at (x

c

; y

c

) is equal to L, so the normal to xy = c at (x

c

; y

c

)

is equal to the normal to L at (x

c

; y

c

). The normal to xy = c is (F

x

; F

y

) = (y; x); evaluated

at (x

c

; y

c

) it is (y

c

; x

c

). The normal to L at (x

c

; y

c

) is (a; b). Therefore,

slope(pq) =

y

c

x

c

=

a

b

= �slope(L):

Note that, as a consequence of this lemma, if p moves downward, q moves downward

along its edge.

Two Dependent Sliding Contacts: If there are exactly two dependent sliding contacts

in a determining set, then these contacts are at the endpoints of one edge of the rectangle,

and there is a reex contact with the opposite edge of the rectangle. W.l.o.g. these are the

top and bottom edges with y-coordinates y and y

0

, as shown in Figure 5(a). To �nd the LR,

we parameterize edge p

2

p

1

by t, yielding a quadratic in t to maximize (see Appendix A.1 for

details).

9



(b) Triple of Constrained Sliding Contacts(a)  Pair of Constrained Sliding Contacts

(x,y) (x’,y)

y’

t p
2

p
1 p

3

p
4

(x,y) (x’,y)

(x, y’ )

p
1

p
2t

p
4

p
3p

5

p
6

Figure 5: 1-Parameter Problems with Two and Three Dependent Sliding Contacts

Three Dependent Sliding Contacts: The case of three dependent sliding contacts is

depicted in Figure 5(b). It is dealt with in a manner similar to the case of two dependent

sliding contacts. See Appendix A.2 for details.

2.3.2 The 2-Parameter Problem

There is only one type of 2-parameter problem. It has two independent sliding contacts.

The following lemma allows us to reduce a 2-parameter problem to a set of 1-parameter

problems.

Lemma 2.2 Let e

1

and e

2

be non-intersecting line segments. Consider the set of empty axis-

parallel rectangles which have diagonally opposite corners on e

1

and e

2

. There is a largest

area rectangle in this set with at least one corner at an endpoint of e

1

or e

2

.

Proof: One way to prove the claim is to parameterize the positions of the corners of

the rectangle on e

1

and e

2

. The area of the rectangle is a quadratic function of the two

parameters. It is easily shown that the graph of the quadratic over the patch [0; 1]� [0; 1] is

a saddle surface, and therefore the maximum is achieved along the boundary of the patch.

The boundary corresponds to the subset of rectangles which have at least one corner at an

endpoint of either e

1

or e

2

.

A geometric argument is more intuitive, however. Let c

1

on e

1

and c

2

on e

2

be opposite

corners of a rectangle, and let r be the diagonal connecting c

1

and c

2

. Now replace e

1

and e

2

by the lines l

1

and l

2

containing them. Consider the set S of all line segments that connect l

1

and l

2

and are parallel to r. The length of these line segments as a function of their distance

from r is monotone. If l

1

and l

2

are parallel, the length is constant. Otherwise the length

increases moving away from r in one direction, and decreases in the opposite direction. Move

away from r in the direction of increasing length (either direction if l

1

is parallel to l

2

) until

either c

1

or c

2

is at an endpoint of e

1

or e

2

, and let r

0

be the new diagonal. Since jr

0

j � jrj,

the area of the rectangle whose diagonal is r

0

is at least as large as the area of the rectangle

10



whose diagonal is r. Therefore, given any rectangle with opposite corners on e

1

and e

2

, there

is one with at least as large an area and with a corner at an endpoint of e

1

and e

2

. Thus

there is always an LR with a corner at an endpoint.

Having established that there exists a LR with a corner at a vertex in this case, we can

�nd it by considering, in turn, each of the four endpoints of e

1

and e

2

, solving the associated

1-parameter problems, and then comparing the four resulting 1-parameter LR areas.

2.4 Characterization Theorem

To characterize the LR, we examine the possible determining sets of contacts. By enumer-

ating the reex contacts between the LR and P , we derive the set of �ve cases shown in

Figure 6.

RC    = Reflex Contact

FC    =  Fixed Contact

ISC   =  Independent Sliding Contact

DSC =  Dependent Sliding Contact

4

# RC

0 4 FC3 DSC2 ISC

1 2 DSC
1 FC

1 ISC
3 FC 3 FC

3 1 FC

2 1 ISC2 FC 2 FC 2 FC 2 FC

Figure 6: The Determining Sets of Contacts for the LR

Theorem 2.3 The determining set of the LR of a general polygon P conforms (up to sym-

metry) to one of the �ve cases in Figure 6.

Proof: The proof is a straightforward examination of cases. See Appendix B for details.

Corollary 2.4 Given a determining set C for a LR of a general polygon, it follows that

2 � jCj � 4.
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2.5 A Naive Algorithm

Based on the above characterization, we can �nd the LR in a general polygon by �nding the

LR under the constraints of each of the �ve cases and selecting the largest one.

Theorem 2.5 For each determining set of contacts in Figure 6, the LR can be found in

constant time.

Proof: A reex contact yields, in constant time, one of the four parameters of the rectangle,

as does a �xed contact. In all cases we can process these contacts �rst. The remaining

situations are all either 1-parameter problems or 2-parameter problems, which can be solved

in constant time because they only require maximizing a constant number of quadratic forms.

A naive LR algorithm can use Theorem 2.5 and supply it, in each case, all possible

determining sets for P . These can be identi�ed using an algorithm with up to four nested

loops, one for each element of the determining set. For each LR candidate, we can check if

it is empty (i.e. contains no point from the boundary of P in its interior) in O(n) time. We

conclude:

Theorem 2.6 The LR of an n-vertex general polygon can be found in O(n

5

) time.

In the remainder of the paper we show how to use the LR characterization combined

with fast matrix searching to develop a more sophisticated approach to this problem which

yields an O(n log

2

n) time algorithm.

3 A General Framework for the 2-Contact Case

We compute the LR for a general polygon with holes using divide-and-conquer. The divide-

and-conquer algorithm must �nd the LR in a polygon P , which is a subset of the general

polygon, and which is of the following type: the boundary of P consists of two y-monotone

chains V and E on opposite sides of a vertical line. Recall from Section 1.1 that we call

this a vertically separated, horizontally convex polygon (see Figure 2). By Corollary 2.4, the

algorithm must consider the 2, 3, and 4-contact cases in order to �nd the LR in P . Of these,

the 2-contact case dominates the running time. This section gives a framework for creating

algorithms for the 2-contact case for classes of polygons with y-monotone chains (including

the class of vertically separated, horizontally convex polygons). We call this the 2-contact

framework. Section 4 applies the 2-contact framework to create a 2-contact LR algorithm

for vertically separated, horizontally convex polygons and then gives the divide-and-conquer

12



LR algorithm for general polygons. Section 5 applies the 2-contact framework to create

2-contact LR algorithms for other types of polygons and then gives LR algorithms for these

types. For all of these polygon types, the 2-contact framework yields an algorithm which

has the same order running time as the fastest LR algorithm for the orthogonal version of

that type.

The 2-contact case for polygons with y-monotone chains V and E involves �nding the

largest rectangle which is inside P and which has one corner on V and the diagonally opposite

corner on E. By Lemma 2.2, one of the corners of the largest 2-contact rectangle is at a

vertex of either V or E. Furthermore, there are four choices for which corner of the rectangle

has this corner-vertex contact. We refer to each of eight possibilities as a Largest Corner

Rectangle (LCR) problem. In what follows, we treat only the LCR problem for which the

lower-left corner of the rectangle is a a vertex of V and the upper-right corner is on an edge

of E. We call such a rectangle a vertex-edge rectangle for V and E. This de�nition of LCR

is analogous to Chazelle's de�nition of the LECR.

In Section 1.1, we mentioned that Chazelle et al. use a divide-and-conquer strategy to

solve the LER (Largest Empty Rectangle) problem for a set of points. For their algorithm,

the most di�cult subcase is the LECR (Largest Empty Corner Rectangle) problem: given a

set S of points and given two subsets S

left

and S

right

of S, �nd the largest rectangle containing

no point of S in its interior which has lower-left corner in S

left

and upper-right corner in S

right

.

Ideally, we would like to solve the LCR problem for P , V and E in the following manner.

Set S = vertices(P ), S

left

= vertices(V ), and S

right

= vertices(E). Then �nd the LECR of

S, S

left

, and S

right

. Unfortunately, there are two ways in which the LECR can fail to be the

LCR. First, some edge of P might intersect the interior of the LECR. Second, the actual

LCR might have its upper-right corner in the middle of an edge of E, not at a vertex.

Fortunately, for a variety of polygon types, it is possible to reduce the problem of com-

puting the LCR to that of computing the LECR. The reduction involves several steps, and

these steps constitute our 2-contact framework for solving 2-contact LR problems. Section 3.1

gives a high level description of the 2-contact framework, and Sections 3.2 through 3.4 give

speci�c details.

3.1 High Level Description of the 2-Contact Framework

This section gives a high level description of the 2-contact framework. The \user" of the

framework must provide a linear-time transformation of P , V , and E into P

0

, V

0

, and E

0

which satis�es certain properties. The framework speci�es the properties (which amount to

the notion of creating \partially orthogonal" P

0

, V

0

, and E

0

). The \user" must also provide

a LECR algorithm with certain properties that the framework also speci�es. The framework

13



shows how to create an algorithm for the LCR R

0

of P

0

, V

0

, and E

0

. Because of the properties,

R

0

is at least as large as the LCR of P , V , and E, and R

0

� P .

Notice that the framework does not necessarily create an algorithm for the LCR of P ,

V , and E. The rectangle R

0

is an LCR of P

0

, V

0

, and E

0

, but it might be a 3-contact or

4-contact rectangle inside P . Nevertheless, an algorithm for R

0

is su�cient. Recall that the

overall goal is to compute the LR of P . When the LR algorithm \checks" the 2-contact case,

it is acceptable for the LCR algorithm to �nd a rectangle inside P that is larger than the

largest 2-contact rectangle.

Thus, the framework takes a transformation and a LECR algorithm as \input" and cre-

ates a LCR algorithm as \output." To do this, the framework de�nes a second transformation

that consists of adding a new vertex at the midpoint of every edge of E

0

. This transforms

P

0

into P

00

and E

0

into E

00

. The framework also de�nes a measure � for the size of cor-

ner rectangles which have diagonally opposite corners in vertices(V

0

) and vertices(E

00

). The

framework modi�es the user-supplied LECR algorithm by substituting a call to � whenever

the LECR algorithm computes the area of a corner rectangle.

Here, in broad detail, is the LCR algorithm that the framework creates. The algorithm

�rst transforms P , V , and E, into polygon P

0

and chains V

0

and E

0

of P

0

using the trans-

formation provided by the \user". Next, it applies the second transformation, yielding P

00

and E

00

. It calls the modi�ed LECR algorithm to compute the rectangle R

00

which maxi-

mizes � over all rectangles with one corner in vertices(V

0

), the diagonally opposite corner

in vertices(E

00

), and which contains no element of vertices(P

00

) in its interior. It applies a

constant-time transformation to convert R

00

into R

0

, the LCR of P

0

, V

0

, and E

0

.

The framework deals with both of the ways in which the output R

00

of the LECR algorithm

could fail to solve the LCR problem: it might not be inside P and it might not have the

largest area. First, the properties which the user-supplied transformation of P to P

0

must

satisfy guarantee that R

00

is inside P

0

and P . Second, R

00

might not have the correct area,

but �(R

00

) is equal to the area of the LCR R

0

of P

0

, V

0

, and E

0

, and R

00

can be transformed

into R

0

.

Section 3.2 de�nes the three properties that P

0

, V

0

, and E

0

must have in order to apply

the 2-contact framework. It de�nes �, and proves that the LECR R

00

for the vertices of

P

00

, V

0

, E

00

, and the measure � can be transformed into the LCR R

0

of P

0

, V

0

, and E

0

which, in turn, is inside P and is at least as large as the LCR of P , V , and E. Section 3.3

considers the question of transforming a LECR algorithm into a LECR algorithm for measure

� by substituting the � function for the area function in the implementation of the LECR

algorithm. This section de�nes a property called total monotonicity and proves that, if

both V and E are y-monotone, then both the area function and the � function are totally

monotone. It then observes that if the proof of correctness of the LECR algorithm only
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depends on the total monotonicity of the area function, then the proof will still work if �

is substituted for area. This \meta-theory" is a general scheme for transforming algorithms

and proofs. However, the only way to be really sure that the proof \only depends" on

total monotonicity is to substitute � for area and recheck the proof. Section 3.4 observes

that if the number of vertices of P

0

, V

0

, and E

0

are linear in the number of vertices in P ,

then the algorithm for the LCR of P

0

, V

0

, and E

0

has the same order running time as the

corresponding LECR algorithm.

3.2 Properties and the LR Measure

This section de�nes three properties of P

0

, V

0

, and E

0

with respect to P , V , and E. It also

de�nes a size measure � for rectangles with opposite corners at vertices of V

0

, and E

00

. Recall

that E

00

has vertices at the midpoints of edges of E

0

. We call these added vertices special

vertices. For a rectangle whose corner is at a vertex of E

0

, � is the area function, but for

a rectangle whose corner is at a special vertex, � has a di�erent value de�ned below. We

prove that the LECR R

00

for the vertices of P

0

, V

0

, and E

00

has the property that �(R

00

) is

greater than or equal to the area of the LCR of P , V , and E. We also show how to generate

a rectangle R

0

inside P with this area.

The following are the three properties that P

0

, V

0

, and E

0

must satisfy with respect to

P , V , and E.

Property I: Polygonal regions P and P

0

satisfy P

0

� P and each vertex-edge rectangle

for P , V , and E is a vertex-edge rectangle for P

0

, V

0

, and E

0

. (Even if the upper-right corner

of the rectangle is at a vertex of E, we still consider it to be a vertex-edge rectangle.)

Property II: For every vertex v 2 V

0

and every edge e 2 E

0

: if any point q in the

interior of e is rectangularly visible

9

from v inside P

0

, then the entire edge e is rectangularly

visible from v.

Property III: If vertex v 2 V

0

and a point q 2 E

0

are rectangularly visible with respect

to vertices(P

0

), then v and q are rectangularly visible with respect to P

0

.

Adding a \special" vertex at the midpoint of every edge of E

0

does not alter the satisfac-

tion of Properties I-III. Therefore P

0

, V

0

, and E

00

also satisfy Properties I-III. We introduce

a new measure � on corner rectangles of V

0

, and E

00

. For rectangles which have a corner at

a special vertex, this measure di�ers from the area function.

De�nition 3.1 (LR Measure) The LR measure � of rectangle rect(vw), for vertices

v 2 V

0

and w 2 E

00

, is de�ned as follows. If w is not a special vertex, it is area(rect(vw)).

9

Two points p and q are rectangularly visible [28] inside polygonal region P if rect(pq) � P , where rect(pq)

is de�ned to be the axis-parallel rectangle with diagonal pq.
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If w is a special vertex, �(rect(vw)) is the area of the LR for vertex v and the edge e 2 E

0

containing w.

For a given v and e, the LR can clearly be computed in constant time (see Lemma 2.1).

Lemma 3.1 Let polygon P

0

and y-monotone chains V

0

and E

0

satisfy Property I with respect

to P , V , and E. Then the LCR for P

0

, V

0

, and E

0

lies inside P , and it is at least as large

as the LCR for P , V , and E.

Proof: Let R be the LCR for P , V , and E, and let R

0

be the LCR for P

0

, V

0

, and E

0

. By

Property I, every vertex-edge rectangle for P , V , and E is a vertex-edge rectangle for P

0

,

V

0

, and E

0

. Therefore area(R

0

) � area(R). Since P

0

� P , R

0

� P .

Lemma 3.2 Let polygon P

0

and y-monotone chains V

0

and E

0

satisfy Properties II and III.

Let E

00

and � be as de�ned above. Then the LECR for vertices(P

0

), vertices(V

0

), vertices(E

00

),

and measure � can be transformed in constant time into a LCR for P

0

, V

0

, and E

0

.

Proof: Let R

0

be a LCR for P

0

, V

0

, and E

0

, and let R

00

be the LECR for vertices(P

0

),

vertices(V

0

), vertices(E

00

), and measure �.

We �rst prove the following claim: �(R

00

) = area(R

0

).

�(R

00

) � area(R

0

): Let vq be the diagonal of R

0

, where q lies on edge e of E

0

. If q is an

endpoint of e, then area(R

0

) = �(R

0

) by the de�nition of �. Also, �(R

00

) � �(R

0

) because R

00

is the LECR under the measure �. Thus, �(R

00

) � area(R

0

). If q is not an endpoint of e, let

w be the special vertex of e. By Property II, since v can see q, v can see w. Since �(rect(vw))

is equal to the area of the largest vertex-edge rectangle for v and e, �(rect(vw)) � area(R

0

).

Again, since R

00

is the LECR, �(R

00

) � �(rect(vw)), and thus �(R

00

) � area(R

0

).

area(R

0

) � �(R

00

): It su�ces to show that, given R

00

, we can construct rect(vq), where

area(rect(vq)) = �(R

00

), where v is a vertex of V

0

, and where q lies on an edge of E

0

. Let

vw be the diagonal of R

00

. If w is not special, then let q = w. If w is special, then, by

Property II, since v can see w, v can see all of edge e containing w, and thus v can see q

where vq is the diagonal of the LR for v and e. Thus, area(rect(vq)) = �(R

00

). Finally, we

observe that area(R

0

) � area(rect(vq)) since R

0

is the LCR and thus is at least as large as any

other vertex-edge rectangle. By transitivity, area(R

0

) � �(R

00

). Putting this together with

the inequality from the previous paragraph shows that area(R

0

) = �(R

00

), which establishes

the claim.

The last paragraph of the proof of the claim implies that we can construct a vertex-

edge rectangle rect(vq) in constant time such that area(rect(vq)) = �(R

00

). The claim itself

establishes �(R

00

) = area(R

0

), and therefore area(rect(vq)) = area(R

0

). This means that

rect(vq) is either the LCR of P

0

, V

0

, and E

0

or at least an LCR. Thus, we can construct R

0

from R

00

in constant time.
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3.3 Total Monotonicity of the LR Measure

Lemmas 3.1 and 3.2 reduce the LCR problem to a LECR problem with the notion of \size"

given in De�nition 3.1. A LECR algorithm clearly depends on the notion of \size": the

algorithm of Aggarwal and Suri for largest perimeter is very di�erent from their algorithm

for largest area [3, 4]. Furthermore, our notion of size does not possess the property required

for the class of inclusion problems de�ned in Section 1:

8Q; Q

0

2 Q; Q

0

� Q ) �(Q

0

) � �(Q):

Here we assume Q is the set of all corner rectangles with lower-left corner in S

left

=

vertices(V

0

) and upper-right corner in S

right

= vertices(E

00

). However, � does possess this

property if Q is the set of all empty corner rectangles with respect to S = vertices(P

0

).

Fortunately, for polygons with y-monotone chains which we consider, almost any known

algorithm for the LECR can be used to compute the LECR by merely substituting size for

area in the algorithm.

Suppose we number the vertices of V

0

by decreasing y-coordinate. Similarly, we number

the vertices of E

00

. It is standard to de�ne an area matrix

10

M whose entry m

ij

contains the

size of the rectangle with lower-left corner at vertex v

i

2 vertices(V

0

) and upper-right corner

at vertex w

j

2 vertices(E

00

). The LECR algorithms we use only require that M satis�es a

certain monotonicity property. Of course, some entries in the area matrix are invalid because

v

i

and w

j

are not rectangularly visible. However, the only property which the algorithms

really depend on is the total monotonicity property for legal

11

2 � 2 minors of the matrix.

We de�ne this property and show that M de�ned using the LR measure of De�nition 3.1

satis�es it.

De�nition 3.2 ([2]) M is totally monotone

12

if, for every i < i

0

and j < j

0

corresponding

to a legal 2 � 2 minor, m

i

0

j

0

> m

i

0

j

implies m

ij

0

> m

ij

.

Lemma 3.3 If an increasing index in M corresponds to decreasing y-coordinates of the

associated vertices, then M de�ned by the LR measure is totally monotone.

Proof: It su�ces to assume that w

j

2 vertices(E

00

) and w

j

0

2 vertices(E

00

) are special

vertices, since we can consider an ordinary vertex to represent an edge of zero length with a

10

Size matrix would be the more general term.

11

A legal 2� 2 minor contains only entries corresponding to empty rectangles.

12

In the literature, the term totally monotone refers to a matrix which has the total monotonicity

property and no illegal entries. Matrices which have the property but have some illegal entries are sometimes

referred to as monotone (e.g. monotone-single-staircase, monotone-double-staircase). This is confusing,

since monotonicity is also presented in the literature as a weaker condition than total monotonicity: a

matrix for which the column of the row maximum moves to the right as i increases is monotone, and it is

totally monotone only if all 2�2 minors also possess this property. Our terminology removes this confusion.
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special vertex equal to the ordinary vertex. Let e

j

and e

j

0

be the edges containing w

j

and

w

j

0

, respectively. Let the LR vertices for the pairs (v

i

; e

j

), (v

i

0

; e

j

), (v

i

; e

j

0

) and (v

i

0

; e

j

0

) be p

1

,

p

2

, p

3

, and p

4

, respectively. Let A, B, C, D, E, and F be the areas of rect(v

i

p

1

), rect(v

i

p

3

),

rect(v

i

0
p

2

), rect(v

i

0
p

4

), rect(v

i

p

2

), and rect(v

i

0
p

3

), respectively. To show monotonicity, it

su�ces to show that: B > A ) D > C. To show this we need the intermediate result:

B > E ) F > C.

B > E

(p

3x

� v

ix

)(p

3y

� v

iy

) > (p

2x

� v

ix

)(p

2y

� v

iy

)

p

3x

p

3y

+ v

ix

(p

2y

� p

3y

) > p

2x

p

2y

+ v

iy

(p

3x

� p

2x

)

For the next step we need the following: v

iy

� v

i

0

y

, p

2y

� p

3y

, v

i

0

x

� v

ix

, and p

3x

� p

2x

.

The y-coordinate inequalities are direct consequences of the y-monotonicity of vertex and

edge chains. By assumption, we are dealing with a valid 2�2 minor of the matrix. Therefore,

there are four distinct empty rectangles which have a lower-left corner in the set fv

i

; v

i

0

g and

an upper-right corner in the set fw

j

; w

j

0

g. By Properties II and III, there are twelve empty

rectangles which have a lower-left corner in the set fv

i

; v

i

0

g and an upper-right corner in the

set fp

1

; w

j

; p

2

; p

3

; w

j

0

; p

4

g (although they are not necessarily distinct since p

1

could equal w

j

,

for instance). The two x-coordinate inequalities must hold in order that rectangles rect(v

i

p

3

)

and rect(v

i

0

p

2

) be empty.

p

3x

p

3y

+ v

i

0

x

(p

2y

� p

3y

) > p

2x

p

2y

+ v

i

0

y

(p

3x

� p

2x

)

(p

3x

� v

i

0

x

)(p

3y

� v

i

0

y

) > (p

2x

� v

i

0

x

)(p

2y

� v

i

0

y

)

F > C

The de�nition of a LR implies that: A � E and D � F . B > A and A � E ) B > E )

F > C. D � F and F > C ) D > C. Therefore B > A) D > C.

Corollary 3.4 If V

0

and E

0

are y-monotone, then M de�ned by the LR measure is totally

monotone.

Proof: P

0

satis�es the condition of Lemma 3.3.

3.4 LCR Running Time

Based on Lemmas 3.1 and 3.2 and Corollary 3.4, we make the following claim, which is used

in Section 4 and Section 5 to establish running times for solving the 2-contact case in a

variety of types of polygons.
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Claim 3.5 For an n-vertex polygon P with y-monotone chains V and E, if the following

two conditions hold, then the LCR can be found in the same asymptotic running time as the

LECR algorithm.

� An O(n) vertex polygon P

0

and with y-monotone chains V

0

and E

0

satisfying Proper-

ties I-III can be produced from P , V , and E in O(n) time.

� The LECR algorithm for S = vertices(P

0

), S

left

= vertices(V

0

), and S

right

= vertices(E

00

)

depends only on the total monotonicity of the matrix associated with the size measure.

As stated previously, E

00

is E

0

with a special vertex added at the midpoint of each edge of E

0

.

In general, we produce P

0

, V

0

, and E

0

from P , V , and E by projecting vertices of P and

replacing some edges of P by inner orthogonal approximations. For this, we assume O(n)

preprocessing time to construct horizontal and vertical visibility maps for P . Projection and

orthogonalization can be done in O(n) time and add only a linear number of vertices to P .

The LECR algorithms we use depend only on the total monotonicity of the area matrix.

To obtain the desired running time in each case for �nding the LCR, it therefore su�ces to

construct P

0

, V

0

, and E

0

, show that they satisfy Properties I-III, and establish the running

time of the appropriate LECR algorithm.

Implementation Note: We can avoid the use of special vertices if we accept a more

complicated de�nition of the LR measure. For entry m

ij

, let e be the edge whose upper

endpoint is w

j

. If all of e is rectangularly visible to v

i

, �(rect(v

i

w

j

)) is the area of the LR

whose lower-left corner is at v

i

and upper-right corner is on e. Otherwise, �(rect(v

i

w

j

)) =

area(rect(v

i

w

j

)).

4 LR Algorithm for General Polygons

This section develops an O(n log

2

n) time divide-and-conquer algorithm for �nding the LR

in a general polygon with holes. First, the 2-contact framework is applied in Section 4.1 to

solve the 2-contact case for a vertically separated, horizontally convex polygon. This type

of polygon arises in the merge step of the divide-and-conquer algorithm. Next, we show in

Section 4.2 that the LR of a vertically separated, horizontally convex polygon (see Page 2 for

the de�nition) can be found in O(n log n) time. This O(n log n) algorithm uses the results of

Aggarwal and Suri [3, 4] for the LECR problem. Finally, Section 4.3 gives the full algorithm

for general polygons with holes.
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4.1 LCR of a Vertically Separated, Horizontally Convex Polygon

In this section, we apply the 2-contact framework to solve the 2-contact case for a vertically

separated, horizontally convex polygon. Suppose V is the left chain and E is the right chain.

Recall that V and E are y-monotone. Section 4.1.1 gives the transformation from P , V ,

and E to P

0

, V

0

, and E

0

that is required by the framework (Section 3.2), and Section 4.1.2

provides the required LECR algorithm. By Claim 3.5, the transformation and the LECR

algorithm are all we need to create a LCR algorithm for vertically separated, horizontally

convex polygons.

4.1.1 Construction of P

0

, V

0

, and E

0

new vertex

V

(a) upward projection (b) rightward projection (c) upward projection (d) orthogonalization

E

Figure 7: P

0

Construction for Two Chains of a Vertically Separated, Horizontally Convex

Polygon

We produce P

0

, V

0

, and E

0

using the following set of projections followed by orthogonalization

(see Figure 7). From each vertex in V , project a vertical ray upwards, adding vertices where

the rays hit V , as shown in Figure 7(a). For each vertex in V (including new ones) project

a horizontal ray rightward, as in Figure 7(b). Add vertices to E where these rays hit. For

each vertex of E (including new ones) project up, adding new vertices, as in Figure 7(c).

Now, replace each edge of modi�ed V and E which has positive slope by its inner orthogonal

approximation to produce P

0

, V

0

, and E

0

. This process adds a linear number of new vertices.

The �nal result is illustrated in Figure 7(d).

Proof of Property I: Edges of P which have negative slope are not orthogonalized, so

a vertex-edge rectangle of P is also a vertex-edge rectangle of P

0

. We need only show that

if it is empty in P it is empty in P

0

. Suppose vertex-edge rectangle rect(vq) is empty in P ,

but not empty in P

0

. Then rect(vq) must contain a vertex c of the orthogonalized upper-left
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(w.l.o.g.) boundary of P

0

, but it does not intersect edge ab of P , where acb is the inner

orthogonal approximation of ab. Therefore a

x

< v

x

< c

x

. But this cannot be because v was

projected upwards, so there should be a vertex between a and b with x-coordinate v

x

.

Proof of Property II: Let v be a vertex of V

0

and let q and q

0

be two vertices on the

same edge e of E

0

. We need to show that if rect(vq) is empty, then rect(vq

0

) is also. We

consider �rst the case in which q is below q

0

. Assume rect(vq) is empty but rect(vq

0

) contains

a vertex c of the upper-left chain. As we shift q towards q

0

, the top edge of rect(vq) moves

upwards and must hit c before q reaches q

0

. But c

y

= a

y

, where acb is the inner orthogonal

approximation of ab, and a was projected rightwards onto the edge chain. Therefore q hits

a projected vertex before it reaches q

0

, contradicting the assumption that they were on the

same edge. Now consider the case in which q is above or at the same height as q

0

. Assume

rect(vq) is empty but rect(vq

0

) contains a vertex c of the lower-right chain. As we shift q

towards q

0

, the right edge of rect(vq) moves rightwards and must hit c before q reaches q

0

.

But c

x

= b

x

, where acb is the inner orthogonal approximation of ab, and b was projected

upward to E

0

. Therefore q hits a projected vertex before it reaches q

0

, contradicting the

assumption that they were on the same edge.

Proof of Property III: The proof of Property I guarantees that rectangle rect(vw)

does not intersect the inner orthogonal approximation of any positive slope subedge of P . It

remains to show that no edge with negative slope can cut across rect(vw). A negative slope

edge cannot cross the vertical line separating L and R, so it must cross either the upper-right

or lower-left corner, contradicting the y-monotonicity of one of the chains.

4.1.2 LECR Algorithm

Aggarwal and Suri have an O(n log

2

n) algorithm for the LER (Largest Empty Rectangle)

problem for points[3, 4]. They use a divide-and-conquer approach which partitions the set

S of points into two subsets S

left

and S

right

about a vertical line, and recursively �nds the

LER in S

left

and S

right

. The merge step requires �nding the LECR (Largest Empty Corner

Rectangle) whose lower-left corner is in S

left

and upper-right corner is in S

right

. They solve

the LECR problem in O(n log n) time by forming an area matrix whose legal 2 � 2 minors

are monotone and by applying fast searching techniques to this matrix. Their proof of this

LECR algorithm relies only on the monotonicity property. We reimplement this LECR

algorithm by substituting our LR measure � (see De�nition 3.1) instead of the area measure.

We run this modi�ed algorithm on inputs S

left

= vertices(V

0

) and S

right

= vertices(E

00

).

By Claim 3.5, the transformation of the previous section and the modi�ed LECR al-

gorithm yield an O(n log n) time algorithm for �nding the LCR in a vertically separated,

horizontally convex polygon.
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4.2 LR of a Vertically Separated, Horizontally Convex Polygon

Theorem 4.1 The LR in an n-vertex vertically separated, horizontally convex polygon (or

horizontally separated, vertically convex polygon) can be found in O(n log n) time.

Q
L

Figure 8: Orthogonally Convex Polygon at Merge Step

Proof: We treat the vertically separated, horizontally convex polygon P , w.l.o.g. The 2-

contact case consists of eight LCR subcases. The results of Section 4.1 show that each LCR

problem can be solved in O(n log n) time. The remaining cases involve either 3 or 4 contacts.

We claim these cases can be solved by an O(n log n) time divide-and-conquer algorithm

13

.

Lemma 4.2 The 3 and 4-contact LRs for an n-vertex vertically separated, horizontally con-

vex polygon P can be found in O(n log n) time.

Proof: We use a divide-and-conquer algorithm which, at each step, partitions the vertex

set using a horizontal line L into two sets, each of size at most bn=2c+4. We determine the

endpoints of L in linear time by examining all the edges of the polygon. We construct the

polygon above L and the polygon below L in linear time by walking around the boundary of

P . Then we recursively �nd the 3 and 4-contact LRs above L and the 3 and 4-contact LRs

below L. The merge step requires that we �nd the 3 and 4-contact LRs intersecting L. Let

R

L

denote the larger of the two 3 and 4-contact LRs intersecting L. Let Q be the largest

polygon inside P and containing L that is monotone with respect to L (see Figure 8).

Lemma 4.3 R

L

� Q. Furthermore, Q is orthogonally convex, can be constructed in �(n)

time, and has O(n) vertices.

Proof of Lemma: Any axis-parallel rectangle R intersecting L must be such that each

point p 2 R is vertically visible to L; hence R

L

2 Q. To construct Q we �rst supplement

13

Note that it is also possible to solve the 3 and 4-contact case in O(n) time using a sweep-line algorithm,

but that does not improve the overall running time.
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the vertices of P with the extra points obtained from the precomputed vertical visibility

map. We then claim that two simple traversals of P su�ce to construct Q. Let l be the left

endpoint of L, and r the right endpoint. The �rst traversal is counterclockwise from l to r to

construct the bottom portion of Q; the second is clockwise from l to r to build the top part.

We begin the counterclockwise traversal by following the downward projection of l until it

hits the boundary of P . Then we follow the boundary of P unless we encounter either 1) a

reex extreme vertex that is supported from the right by a vertical line, 2) a vertex which is

the bottom endpoint of a vertical visibility line emanating from a reex extreme vertex that

is supported from the left by a vertical line, or 3) the x value of r. In case (1), we follow

the visibility line downwards to the boundary of P . In case (2) we follow it upwards to the

associated reex extreme vertex. In case (3), we proceed to r, and terminate the traversal.

Constructing the top part of Q is similar.

The visibility map introduces at most one new vertex for each vertex of P , so Q has O(n)

vertices. We visit each vertex at most once during each sweep, so the algorithm requires

�(n) time. To show Q is orthogonally convex, let b and t be the lowest and highest points

(respectively) on P that are visible to L. The counterclockwise sweep builds an xy-monotone

path from l to b and from b to r. Similarly, the clockwise sweep builds an xy-monotone path

from l to t and from t to r. Since the result is a polygon consisting of four xy-monotone

chains, such that l

x

� b

x

� r

x

and l

x

� t

x

� r

x

, it is orthogonally convex.

This completes the proof of Lemma 4.3.

The 3 and 4-contact LRs in the orthogonally convex polygon Q can be found in �(n)

time using a sweep-line algorithm. The algorithm is essentially the same as that used by

McKenna et al.[21] to obtain the same time bound for orthogonal, orthogonally convex

polygons. Details appear in Appendix C.

Now we argue that if the LR in P intersects L and is a 3 or 4-contact LR, it is also a 3

or 4-contact LR in Q. This is because, if a rectangle r has at least three contacts with P , it

has at least three contacts in Q.

The running time of the algorithm therefore satis�es the recurrence T (n) � 2T (bn=2c +

4) + �(n), which gives an O(n log n) algorithm for �nding the 3 and 4-contact LRs.

This completes the proof of the Lemma 4.2.

This completes the proof of Theorem 4.1.

4.3 LR of a General Polygons with Holes

Theorem 4.4 The LR in an n-vertex general polygon can be found in O(n log

2

n) time.
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Before giving the proof, we discuss a di�culty which arises in constructing a partitioning

line for a divide-and-conquer algorithm for �nding the LR in a general polygon. If the polygon

did not have holes, we could apply a corollary of Chazelle's polygon-cutting theorem [9] to

�nd a single vertical line segment within P which partitions the boundary of P into two

pieces, each containing less than 2n=3 vertices. Because we allow holes, we cannot subdivide

the boundary of P into two pieces using a single vertical line segment; we must partition it

using multiple line segments. Let L be a vertical line which partitions the vertices of P into

two sets, each of size roughly n=2, and suppose L is partitioned into k pieces L

1

; L

2

; : : : ; L

k

by the interior of the polygon. We want to split P into left and right subpolygons P

left

and

P

right

, recursively �nd the LR in each subpolygon, and then perform a merge step in which

we �nd the LR intersecting L

i

, for 1 � i � k. However, in such an approach, the fact that

the endpoints of L

i

are not vertices of P means we add 2k vertices each time we recurse.

McKenna et al. [21] observed that, if P is an orthogonal polygon with holes, one need

not add 2k new vertices if the following technique is used. Before the start of the divide-and-

conquer algorithm, preprocess P so that all vertical projections (internal to P ) of vertices of

P are vertices. At each step of the divide-and-conquer algorithm, construct a trapezoid Q

i

corresponding to each L

i

as follows. L

i

intersects two edges of P ; these edges are vertically

visible from each other. Because of the preprocessing, the left endpoints of these edges can

be joined by a vertical line segment l

i

, and their right endpoints can be joined by a vertical

line segment r

i

14

. Segments l

i

and r

i

contain only points which are internal to or on the

boundary of P . Let Q

i

be the (empty) trapezoid bounded on the left by l

i

and on the right by

r

i

(see Figure 9), and let Q = [Q

i

. McKenna et al. observe that, if the LR does not intersect

L

i

, then it does not contain any point in the interior of Q

i

. This allows them to rede�ne

P

left

and P

right

to be completely disjoint by removing Q from consideration. Unfortunately,

their observation about Q

i

does not hold in the non-orthogonal case. We overcome this in

the proof below by considering rectangles which cross either l

i

or r

i

and �nding the LR in

Q

i

.

Proof: We preprocess P to construct horizontal and vertical visibility maps and to add

the internal vertical projections of vertices. Our divide-and-conquer algorithm partitions

the vertices of P (both original and vertical projections) at each step using a vertical line

L into two sets, each of size at most dn=2e. Suppose that L is partitioned into k pieces

L

1

; L

2

; : : : ; L

k

by the interior of the polygon. For 1 � i � k, we de�ne l

i

, r

i

, and Q

i

as

above. As before, let Q = [Q

i

, and construct subpolygons P

left

and P

right

of P nQ to the left

14

In a degenerate case when vertices of P lie on L

i

, one can treat this as if L

i

= l

i

, and arbitrarily choose

Q

i

to be the trapezoid to the right of the partitioning line segment L

i

. It is easy to show that this implies

that no more than 1=2 the vertices of P on L end up on the boundary of P

left

. Therefore, jP

left

j � 3n=4.
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l i
ri

projected vertex

Qi
Li

Figure 9: Construction of Trapezoid Q

i

and right of L such that they do not share any vertices and each has no more than dn=2e

vertices. We recursively �nd the LR in P

left

and P

right

. In the merge step, for 1 � i � k, we

�nd the LR in Q

i

, the LR of P which intersects l

i

, and the LR of P which intersects r

i

.

To show that this algorithm �nds the LR of P , we argue as follows. If the LR does not

intersect the interior of Q, then it lies either in P

left

or P

right

, so, at the divide step, we can

recursively �nd the LR in P

left

and P

right

. If the LR intersects the interior of Q, we can �nd

it during the merge step as follows. If the LR lies entirely within Q, we can �nd it by �nding

the LR in each Q

i

. If the LR is not entirely within Q, it must cross some l

i

or r

i

.

We now show that the algorithm requires O(n log

2

n) time. First, we note that an

O(n log n) sweep algorithm su�ces for constructing the visibility maps and projecting the

vertices. This need only be done once before the start of the divide-and-conquer algorithm,

and the maps can be updated in linear time at each step. We can determine the endpoints of

L

i

, 1 � i � k, in linear time by examining all the edges of the polygon and using the vertical

visibility map. Because we have the visibility maps, P

left

and P

right

can be constructed in

O(n) time. P

left

and P

right

each have size � dn=2e. Since Q

i

is a trapezoid, the LR in Q

i

can

be found in O(1) time, so the LR in Q can be found in O(n) time. We describe below how

to �nd the LR intersecting l

i

, 1 � i � k, in a total of O(n log n) time. The technique for r

i

is the same.

Lemma 4.5 For an n-vertex polygon P , the LR which intersects l

i

, for 1 � i � k, can be

found in a total of O(n log n) time.

Proof of Lemma: Let H

i

be the largest polygon in P which is horizontally visible from

l

i

. Let H

i

have n

i

vertices.

Claim 4.6 The LR which intersects l

i

is a subset of H

i

. Furthermore, H

i

is a vertically

separated, horizontally convex polygon, and can be constructed in O(n

i

) time.

Proof of Claim: The proof is similar to the proof of Lemma 4.3. We use the horizontal

visibility map and two traversals to construct H

i

. H

i

is a vertically separated, horizontally
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convex polygon because each traversal builds a chain that is monotone with respect to the

vertical line l

i

.

This establishes Claim 4.6.

Claim 4.7

P

k

i=1

n

i

2 O(n).

Proof of Claim: The horizontal visibility map on P partitions the interior of P into a set

of trapezoids T . Let T

i

� T be the set of trapezoids that contains a point in the interior

of l

i

; hence O(n

i

) 2 O(jT

i

j). Consider i, j such that i 6= j and l

j

is to the right of l

i

(w.l.o.g.). The only points which the interior of l

i

sees to its right (and to the left of L)

are points in Q

i

. Since the interior of Q

i

is empty, this means that no point in the interior

of l

j

is horizontally visible from a point in the interior of l

i

. Therefore, l

i

and l

j

cannot

share a trapezoid. Thus, each trapezoid in T is associated with at most one i, and therefore

P

k

i=1

O(jT

i

j) 2 O(jT j) 2 O(n).

This establishes Claim 4.7.

By Theorem 4.1, we can �nd the LR in H

i

in O(n

i

log n

i

) time. Combining this result

with Claim 4.7 implies that we can �nd the LR which intersects l

i

, for 1 � i � k, in a total

of O(n log n) time, which establishes Lemma 4.5.

Lemma 4.5 implies that the merge step can be performed in O(n log n) time. This yields

the following recurrence: T (n) � 2T (dn=2e) + O(n log n), which gives O(n log

2

n) time for

the combined algorithm.

This completes the proof of Theorem 4.4.

Note: In a degenerate case when vertices of P lie on L

i

(see footnote on Page 24), the

recurrence becomes T (n) � T (n

1

) + T (n

2

) + O(n log n), where n

1

+ n

2

= n and n

1

; n

2

�

d3n=4e, which still has the solution O(n log

2

n).

This completes the presentation of the LR algorithm for general non-orthogonal polygons

with holes. The following section presents LR algorithm for other types of polygons. Readers

not interested in these should skip to Section 6, which gives the lower bounds on running

time for the LR problem for general polygons.

5 LR Algorithms for Other Types of Polygons

In this section we derive e�cient algorithms for computing the LR in di�erent classes of

n-vertex polygons. We obtain the following running times (see also Figure 2 on Page 5).

� XY-monotone polygon: �(n).
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� Orthogonally convex polygon: O(n�(n)).

� Horizontally convex polygon (or vertically convex): O(n�(n) log n).

For each type we use the characterization results of Section 2 to identify the relevant

determining sets of contacts. For the 2-contact case, we use the 2-contact framework of

Section 3 to reduce the problem to a LECR problem. Then we apply fast matrix searching

techniques from the literature to solve the LECR problem. Finally, we show how to deal with

cases of three or more contacts. These results demonstrate the generality of our 2-contact

framework.

5.1 XY-Monotone Polygon

The �rst polygon we consider is xy-monotone and has, w.l.o.g., two decreasing xy-monotone

chains. V is the lower chain and E is the upper chain. The LR in an xy-monotone polygon

must be a LCR. Sections 5.1.1 and 5.1.2 apply our 2-contact framework to show that the

LCR can be found in �(n) time.

5.1.1 Construction of P

0

, V

0

, and E

0

Given an xy-monotone polygon P with chains V , and E, we transform them into P

0

, V

0

,

and E

0

as follows (see Figure 10). From each vertex in V , project a horizontal ray rightward

and a vertical ray upward. Add vertices to E where these two rays hit it. Clearly this adds

at most 2n new vertices. (For this transformation, V

0

= V .)

new vertex

V

E

Figure 10: P

0

Construction for Two XY-Monotone Chains

Proof of Property I (see Section 3.2): Property I is easily veri�ed for P and P

0

since

we have merely subdivided the edges of E.

Proof of Property II: Property II is also easily proven. Let v be a vertex on V

0

and

let q and q

0

be two points on the same edge e on E

0

. We need to show that q is visible

if and only if q

0

is. Suppose q is visible and q

0

is not. Imagine moving q towards q

0

. At
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some point rect(vw) must degenerate into either a horizontal or vertical line segment. By

the construction of P

0

, there must be a vertex at this point of e. Therefore q and q

0

do not

lie on the same edge, producing a contradiction.

Proof of Property III: Property III follows from the xy-monotonicity of the chains.

If v is any vertex on the lower chain and w is any vertex on the upper chain such that v is

below and to the left of w, then the rectangle they form is necessarily empty of both vertices

and edges.

5.1.2 LECR Algorithm

Finally, we describe an algorithm for �nding the LECR with vertex v on V

0

and a vertex

w on E

00

(which is E

0

with a special vertex added at the midpoint of each edge). It is well-

known that if all points v

i

lie below-left of all points w

j

, then the area matrix with entries

m

ij

= area(rect(v

i

w

j

)) is not only totally monotone, but, in addition, every 2 � 2 minor is

legal [2]. If any v

i

lies either above-left or below-right of any w

j

(v

i

w

j

has negative slope),

then we give the area the same magnitude but negative sign.

Note that some entries of the resulting area matrix correspond to illegal rectangles (v

above w), but these entries are all negative. An algorithm for �nding the maximum entry

will return a positive entry, which will correspond to a legal rectangle. Because the chains

are xy-monotone, the matrix is still totally monotone even though some entries are illegal

and negative.

We have thus reduced the problem to that of �nding the maximum entry in an n

1

� n

2

totally monotone matrix where n

1

and n

2

are the lengths of the two chains. We discuss

below how this can be done in O(n

1

+ n

2

) time, yielding a �(n) time algorithm for �nding

the LCR for an xy-monotone polygon.

Implementation Note: The set of illegal entries in the matrix is bounded by falling

staircases. Aggarwal and Klawe [1] show that such a monotone matrix can be completed

so that its maximum can be found in linear time. Using negative entries is our practical

alternative to using completion here. In fact, for this particular problem one can drop any

notion of visibility and simply use the vertices of P . The projection step is unnecessary. The

use of signs to represent illegality makes this more natural technique work correctly.

Here we discuss an e�cient way from the literature to compute the maximal elements in

totally monotone matrices (see De�nition 3.2). Naively, we can examine all O(n

2

) matrix

entries to �nd the maximal element. However, Aggarwal et al. showed that, if a matrix is

totally monotone and has no illegal entries, the maximum can be found in linear time:

Lemma 5.1 ([2]) If any entry of a totally monotone matrix of size n�m can be computed

in constant time, then the row-maximum problem for this matrix can be solved in �(m) time
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if m � n and �(m(1 + log(n=m))) time if n > m.

Note that this result assumes the existence of an oracle which takes as input (i; j) and

returns the value m

ij

in constant time.

Corollary 5.2 If any entry of a totally monotone matrix M of size n�m can be computed

in constant time, then the row-maximum problem for this matrix can be solved in O(m+ n)

time.

Proof: From Lemma 5.1, when m � n the problem can be solved in O(m) time. When

n > m, the fact that O(m(1 + log(n=m))) 2 O(n) immediately yields O(n) time, which

establishes the corollary. However, we present the following alternative proof for the n > m

case which is based on an algorithm that is easy to implement.

We can complete M using �1 by modifying the oracle. If j � m, it returns m

ij

, but

if j > m, the oracle returns �1. The oracle still operates in constant time. The total

monotonicity of the matrix is preserved because every 2�2 minor is monotone. To establish

this, consider the minor given by: m

ij

, m

i

0

j

, m

ij

0

, m

i

0

j

0

, for i

0

> i and j

0

> j. If the minor

contains no �1 entries, it is monotone because M is totally monotone. If it has all �1

entries, then because m

ij

= m

ij

0

and m

i

0

j

= m

i

0

j

0

we cannot have the forbidden condition

m

i

0

j

� m

i

0

j

0

when m

ij

0

> m

ij

. In the remaining case the forbidden condition cannot occur

because m

ij

> m

ij

0

and m

i

0

j

> m

i

0

j

0

. The completed matrix has dimension n� n, so we can

�nd its maximum in �(n) time by Lemma 5.1. Combining the two cases yields O(n+m).

Theorem 5.3 The LR in an n-vertex xy-monotone polygon can be found in �(n) time.

Proof: The LR in an xy-monotone polygon must be a 2-contact LR. From the results of

Section 5.1.1 and Corollary 5.2 of Section 5.1.2, we can �nd the 2-contact LR in �(n) time.

5.2 Orthogonally Convex Polygon

An orthogonally convex polygon P is bounded by four xy-monotone chains. Let V be the

lower-left chain and E be the upper-right chain. We show below how to construct P

0

, V

0

,

and E

0

which satisfy the Properties I-III of the 2-contact framework (Section 3.2).

To create the polygon P

0

, do the following for each vertex v in V : project rightwards and

upwards, creating two new vertices (see Figure 11(a)). For each vertex u on the upper-left

chain (including the newly created ones) do the following: if the rightward projection of u

hits E, project u rightwards and create a new vertex on E. Similarly, for each vertex u on

the lower-right chain, project it upwards if it lies below E.
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new vertex

V

E

(a) projection (b) orthogonalization

Figure 11: P

0

construction for an orthogonally convex polygon

Replace every edge ab (a to the left of b) of the upper-left chain by a horizontal edge

ac followed by a vertical edge cb. (This must be done after the projection step.) In other

words, replace the upper-left chain by an inner orthogonal approximation. Similarly, replace

the lower-right chain by an inner orthogonal approximation. The �nal result is P

0

, V

0

, and

E

0

as depicted in Figure 11(b). Note that for this particular transformation, V

0

= V .

Proof of Property I: We do not change the shape of V and E, although we do add a

linear number of new vertices to E. Therefore, a vertex-edge rectangle of P is also a vertex-

edge rectangle of P

0

. We only have to verify that if it is empty in P , then it is empty in

P

0

. This argument is identical to that in the proof of Property I for the vertically separated,

horizontally convex case which appears in Section 4.1.1.

Proof of Property II: Let v be a vertex of V

0

and let q and q

0

be two vertices on the

same edge e of E

0

. We know from the proof of Property II for xy-monotone polygons that

vq has positive slope if and only if vq

0

does. We need to show that if rect(vq) is empty,

then rect(vq

0

) is also. Because the construction of P

0

is symmetric with respect to x and y,

we consider w.l.o.g. q below q

0

. This case is dealt with in the proof of Property II for the

vertically separated, horizontally convex polygon, and is omitted here.

Proof of Property III: Suppose rect(vw) contains no vertices of P

0

where v is a vertex

V

0

lying lower-left from w, a vertex of E

0

. Rectangle rect(vw) clearly does not intersect the

monotonically decreasing chains V

0

and E

0

. Since the upper-left and lower-right chains of

P

0

are xy-monotone and orthogonal, it does not intersect them either.

5.2.1 LECR Algorithm

If no entries were illegal, we would use the same algorithm as described for the xy-monotone

chains in Section 5.1. However, we prove that the two additional xy-monotone chains in
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the current case introduce two sets of illegal entries into the area matrix. We show that the

boundaries of these sets are rising staircases, so that the matrix is a double staircase matrix

(see de�nition below). We again represent entries whose rectangle diagonals have negative

slope by assigning them negative area.

legal 
entry

illegal 
entry

S1

S2

Figure 12: Totally Monotone Rising Double Staircase Matrix

De�nition 5.1 ([3]) A matrix M is totally monotone double staircase if it is totally

monotone and if there exist two sets of illegal entries S

1

and S

2

such that the boundary of

each set forms an xy-monotone staircase inside M and S

1

and S

2

lie in diagonally opposite

corners of M .

Figure 12 shows a totally monotone rising double staircase matrix (S

1

and S

2

are in the

upper left and lower right corners, respectively). Note that the two staircases may intersect,

although they do not in the �gure.

Before giving the LECR algorithm, we prove that the area matrix for this case is a totally

monotone rising double staircase matrix.

Lemma 5.4 M is a totally monotone rising double staircase matrix.

Proof: Let rect(v

i

w

j

) be a rectangle which does not intersect the upper-left chain and let

q be the upper-left corner of that rectangle. Every rectangle rect(v

0

i

w

0

j

) for i

0

� i and j

0

� j

lies in the lower right quadrant of q and therefore does not intersect the upper-left chain.

Thus if any entry in the area matrix is legal with respect to the upper-left chain, then every

entry to its lower-right in the matrix is also legal. Therefore the set of entries which are

illegal with respect to the upper-left chain form the set S

1

bounded by a rising staircase.

It is straightforward to show that the lower-right chain produces the set S

2

.

The LECR algorithm in this case must �nd the staircase boundaries of M in linear time

and then �nd the maximum entry in M . We show below how to �nd the maximum value

in a totally monotone rising double staircase matrix in O(n�(n)) time. We can construct

the left staircase (w.l.o.g.) in linear time by traversing the upper-left chain as follows. For

row i, we obtain v

i

on V

0

and project up and to the right to obtain w

j

on E

0

. (The upward
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projection might hit E

0

, directly yielding w

j

. It is also possible that the rightward projection

hits the lower-right chain; in this case the entire row is illegal.) Entry i; j is the �rst legal

entry in row i with respect to the upper-left chain.

For the case of two chains of an orthogonally convex polygon, with which we associ-

ated totally monotone rising double staircase matrices (see De�nition 5.1), we also seek a

subquadratic time search algorithm. E�ciently searching a totally monotone rising double

staircase matrix involves transforming it into a set of rising single staircase matrices, de�ned

below and illustrated in Figure 13. In the �gure, upper and lower refer to the position of

the set of illegal entries

15

.

(a) Upper (b) Lower

legal 
entry

illegal 
entry

S

S

Figure 13: Totally Monotone Rising Single Staircase Matrices

De�nition 5.2 ([3]) A matrix M is totally monotone single staircase if there exists

one special set of entries S such that any 2 � 2 minor that does not contain entries from S

is totally monotone; the boundary of S forms an xy-monotone staircase inside M .

Lemma 5.5 ([18]) If any entry of a totally monotone single staircase matrix of size n�m

can be computed in constant time, then the row-maximum problem for this matrix can be

solved in O(n�(m) +m) time.

Implementation Note: Aggarwal and Suri note that the constants are large here.

They recommend in practice a theoretically slower algorithm. One such algorithm is the

O((m+ n) log log n) algorithm of Aggarwal and Klawe [1].

Lemma 5.6 ([4]) Given a totally monotone rising double staircase matrix M for which the

staircase boundaries are known, the row-maximum problem forM can be solved in O(n�(m)+

m) time.

The proof of this is based on the following claim and Lemma 5.5. Appendix D provides

an alternate way of partitioning.

15

Aggarwal and Klawe [1] distinguish between rising (which we call upper) and reverse rising (lower)

staircase matrices.
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Claim 5.7 ([3]) An n�m totally monotone rising double staircase matrix can be partitioned

in O(n + m) time using an xy-monotone chain into a set of at most 2k single staircase

matrices, each of dimension n

i

�m

i

, such that

P

2k�1

i=0

(n

i

) � 2n and

P

2k�1

i=0

(m

i

) � 2m.

Thus, we obtain, by Claim 3.5, an O(n�(n)) time algorithm for �nding the LCR for two

chains of an orthogonally convex polygon.

5.2.2 LR Algorithm

The boundary of an orthogonally convex polygon can be partitioned, in linear time, into four

xy-monotone polygonal chains. We establish the following result for this type of polygon:

Theorem 5.8 The LR in an n-vertex orthogonally convex polygon can be found in O(n�(n))

time.

Proof: An orthogonally convex polygon has no reex extreme vertices, so there are only

three possible con�gurations for LR determining sets of contacts (see Figure 14).

Figure 14: Determining Sets of Contacts for an Orthogonally Convex Polygon

Lemma C.1 of Appendix C shows that the 3 and 4-contact cases can be solved in linear

time.

Lemma 5.9 The 2-contact LR of an n-vertex orthogonally convex polygon can be found in

O(n�(n)) time.

Proof of Lemma: The results of Section 5.2 show that for the 2-contact case we can

reduce the LR problem for each pair of diagonally opposite xy-monotone chains in linear

time to the problem of �nding the maximum in a totally monotone rising double staircase

matrix. By Lemma 5.6 we can �nd the maximum in this matrix in O(n�(n)) time.

This completes the proof of Lemma 5.9.

This completes the proof of Theorem 5.8.
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5.3 Horizontally and Vertically Convex Polygons

Theorem 5.10 The LR in an n-vertex horizontally (or vertically) convex polygon can be

found in O(n�(n) log n) time.

Proof: We treat the horizontally convex case, w.l.o.g.. We use a divide-and-conquer algo-

rithm which, at each step, partitions the vertex set using a horizontal line L into two sets,

each of size at most bn=2c+4. We determine the endpoints of L in linear time by examining

all the edges of the polygon. We construct the polygon above L and the polygon below

L in linear time by walking around the boundary of P . Then we recursively �nd the LR

above L and the LR below L. The merge step requires that we �nd the largest rectangle R

L

intersecting L. Let Q be the largest polygon inside P and containing L that is monotone

with respect to L.

Lemma 5.11 R

L

� Q. Furthermore, Q is orthogonally convex, can be constructed in �(n)

time, and has O(n) vertices.

Proof of Lemma: Any axis-parallel rectangle R intersecting L must be such that each

point p 2 R is vertically visible to L; hence R

L

2 Q. The proof that Q is orthogonally

convex, can be constructed in �(n) time, and has O(n) vertices is identical to the argument

in the proof of Lemma 4.3, and is omitted here.

Now we �nd the LR in Q, which, by Theorem 5.8, can be done in O(n�(n)) time.

The running time of the algorithm therefore satis�es the recurrence,

T (n) � 2T (bn=2c + 4) + O(n�(n));

which gives an O(n�(n) log n) algorithm for �nding the LR.

This completes the proof of Theorem 5.10.

6 Lower Bounds

Here we establish lower bounds of time in 
(n log n) for �nding the LR in both self-

intersecting polygons and general polygons with holes. The latter result gives us both a

lower bound of 
(n log n) and an upper bound of O(n log

2

n) for general polygons with

holes.

These lower bounds contrast with the �(n) time result achievable for the corresponding

enclosure problems

16

.

16

It is interesting to note that the dual problems of largest empty circle and smallest enclosing circle for

a set of points also have di�erent lower bounds. The largest empty circle can be constructed in �(n logn)

time, and the smallest enclosing circle can be found in �(n) time [29].
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6.1 Self-Intersecting Polygons

We prove a lower bound of time in 
(n log n) for �nding the LR in a self-intersecting polygon.

5       10      15      20      25       30

Figure 15: Orthogonal self-intersecting polygon constructed for input = 10, 5, 30, 25

Theorem 6.1 Finding the LR in an n-vertex self-intersecting polygon requires time in


(n log n) in both the linear and algebraic decision tree models.

Proof: We reduce the MAX-GAP problem

17

[5] to the LR problem for self-intersecting

orthogonal polygons. Consider an instance of MAX-GAP: given a set of n real numbers

x

1

; x

2

; :::; x

n

, we must �nd the maximum di�erence between two consecutive numbers in

the sorted list. We construct from this set, in linear time, a self-intersecting orthogo-

nal polygon of unit height as follows: each x

i

in the sequence corresponds to a rectangle

r

i

= [(x

1

; 0); (x

1

; 1); (x

i

; 1); (x

i

; 0)]. We start the construction from (x

1

; 0), complete the de-

generate rectangle r

1

, then construct r

2

; : : : ; r

n

(as shown in Figure 15). This construction

results in a self-intersecting polygon, with the property that the area of the LR included in

it is the solution to the corresponding MAX-GAP problem, thus proving the theorem.

6.2 General Polygons with Holes

McKenna et al. [21] have given a lower bound of time in 
(n log n) for �nding the LR

in a general polygon with degenerate (zero area) holes. Aggarwal and Suri [3] have given

the same lower bound for LER. Using symbolic perturbation [14, 32], both of these can

be extended to lower bounds on the computation of the LR in a general polygon. For the

degenerate case, McKenna et al. use a reduction from the even distribution problem: given

a set of n real numbers x

1

; x

2

; x

3

; : : : ; x

n

(not sorted), determine if there exist adjacent x

i

and x

j

in the sorted list such that x

j

� x

i

> 1. Their reduction involves the construction of

a long horizontal rectangle with vertical \slits" at each x

i

. These slits can be thought of as

degenerate rectangular holes. Given a slit (x

i

; y

b

)(x

i

; y

t

) we can \expand" it to a rectangle

with diagonal (x

i

; y

b

)(x

i

+�; y

t

) where � > 0. Of course, if we choose � greater than the value of

the minimum gap between points (possibly another 
(n log n) problem), then neighboring

17

In both the linear and algebraic decision tree models (if not enhanced to include oor and ceiling

functions), MAX-GAP has a lower bound of 
(n logn).
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slits will overlap and the polygon will be self-intersecting; in e�ect, we have to know the

minimum gap in order to compute the maximum gap.

Symbolic perturbation rescues us from this chicken and egg problem by allowing � to

remain unevaluated until after we have run the LR algorithm. Given an algorithm for

computing the LR of a polygon with non-degenerate holes, we modify the way the algorithm

evaluates and tests the sign of arithmetic expressions. Since some of the inputs involve �,

the arithmetic expressions of the modi�ed algorithm are polynomials in �. For these, the

modi�ed algorithm computes the sign by taking the sign of the �rst (lowest degree in �),

non-zero coe�cient. We observe that:

� there exists a value of � such that the signs computed by the modi�ed algorithm equal

the signs computed by the unmodi�ed algorithm on this value of � (this is the basic

theory of symbolic perturbation);

� the running time of the modi�ed algorithm is a constant times the running time of the

unmodi�ed algorithm on that value of �.

Hence, any algorithm for the LR in a general polygon can be used to test even distribution

via a linear time reduction. Hence the construction of the LR in a general polygon has an


(n log n) lower bound. We could have also reduced the LER problem to the LR problem

by replacing every point in the LER instance by a square of size �.

7 Applications

When a polygon is nearly rectangular, the LR provides a good inner approximation (see

Figure 16).

Figure 16: Inner Approximation

Many LR applications have surfaced in our automatic marker-making project for the

apparel industry. We briey describe two of them in this section. The goal of our project is

to automate the task of laying out polygonal apparel pattern pieces on a rectangular sheet

of cloth of �xed width and minimal length [23, 24]. In the apparel industry, this layout is

called a marker.
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Pants markers consist of large panel pieces and smaller trim pieces. We have a heuristic

method that does a good job placing the larger panel pieces [24]. We use LRs during the

trim placement stage. Figure 17 shows a rectangular marker with the large panels already

placed. The smaller trim pieces to the left of the marker rectangle must be placed in the gaps

of unused material between adjacent panels. We compute the LR of each trim piece and use

that inner approximation as part of our algorithm that decomposes the gaps into smaller,

more manageable regions [12]. The decomposition algorithm is part of software which we

have licensed to a CAD �rm in the apparel industry. We have also considered computing

the LR of each gap region and then packing the nearly rectangular trim pieces into the LRs

using techniques from the rectangle packing domain. We do not currently use this strategy

in our trim placement heuristic.

Figure 17: Pants Marker with Placed Panels and Unplaced Trim

8 Conclusion

We have presented the �rst algorithmic result for �nding the LR in non-orthogonal general

polygons with holes: an O(n log

2

n) time algorithm. We have also established a lower bound

of time in 
(n log n) for this type of polygon.

For a variety of non-orthogonal polygons, we have shown that the LR can be found in the

same asymptotic running time as the best algorithms for their orthogonal counterparts. Our

running time for xy-monotone polygons is optimal, but for orthogonally convex polygons,

horizontally convex polygons, and vertically separated, horizontally convex polygons, no

non-trivial lower bound has been established.

Pursuing more e�cient algorithms for �nding the exact LR is certainly one direction for

future work. Another direction of practical importance is to �nd a fast approximate LR

algorithm. Such an algorithm would be very helpful in our applications.

This paper has described a general mechanism for developing LR algorithms for non-

orthogonal polygons. The mechanism has three key components: 1) the idea of \determining

sets" of contacts, used to characterize the LR for a general polygon with holes, 2) identifying

the determining set of contacts corresponding to the one subproblem which dominates the

running time for �nding LRs in a variety of types of polygons, and 3) a general framework
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for solving the dominant subproblem using a new notion of rectangle size. The framework

involves creating a partially orthogonal polygon to which we apply a known algorithm for

solving the LECR problem. To develop each LR algorithm, we solve the key subproblem

using our framework and then solve the remaining subproblems. There may be other classes

of polygons, in addition to the �ve we examined, that are amenable to this general method.

It is interesting that in order to solve the LR problem we need a notion of rectangle size

which does not possess the following important property held by both area and perimeter

for rectangles: 8Q;Q

0

2 Q; Q

0

� Q ) �(Q

0

) � �(Q). We think it might be useful in other

instances to consider such nonstandard size measures.
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A The Basic 1-Parameter Problem

A.1 Two Dependent Sliding Contacts

This section supplies details for �nding the LR under the assumption that it has two depen-

dent sliding contacts with the polygon. Refer to Figure 5(a). To �nd the LR, we parameterize

edge p

2

p

1

by t, yielding the following quadratic in t to maximize:

F(t) = (x

0

� x)(y � y

0

)

= (A+Bt)(C +Dt) (1)

where:

A =

y

2

� b

m

� x

2

B =

y

1

� y

2

m

+ (x

2

� x

1

)

C = y

2

� y

0

D = y

1

� y

2

m =

(y

4

� y

3

)

(x

4

� x

3

)

b = y

4

�mx

4

Note that x

0

is obtained by solving the line equation associated with edge p

4

p

3

.

A.2 Three Dependent Sliding Contacts

For the case of three dependent sliding contacts, (see Figure 5(b)), we again parameterize

edge p

2

p

1

and express x

0

in terms of y for edge p

4

p

3

. Similarly, we express y

0

in terms of x

for edge p

5

p

6

. We again obtain a quadratic in t to maximize. The di�erence between this

and the previous case is in the values of C and D:

C = y

2

�m

0

x

2

� b

0

D = y

1

� y

2

+m

0

(x

2

� x

1

)

m

0

=

(y

6

� y

5

)

(x

6

� x

5

)

b

0

= y

5

�m

0

x

5

B Proof of the Characterization Theorem

This section present the proof of Theorem 2.3 of Section 2.4: The determining set of the LR

of a general polygon P conforms (up to symmetry) to one of the �ve cases in Figure 6.

Proof: A determining set has, by de�nition, at most one reex contact with each side of

the LR. For each of the possible numbers of reex contacts, we show that the determining

set of a LR of that type conforms (up to symmetry) to one of the con�gurations shown in

Figure 6. In each case, we must eliminate degrees of freedom beyond those of sliding contacts.
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We observe that a determining set cannot contain both two adjacent reex contacts and the

�xed contact between them; this would be redundant.

Case 4: In this case there is one reex contact with each side of the LR. Since each reex contact

removes one degree of freedom from the rectangle, this set of contacts is su�cient to

determine the LR. Removing any one reex contact allows the rectangle to grow, so

all four contacts are necessary.

Case 3: Three reex contacts are not su�cient to determine the LR, since the fourth side can

move outward. We must add an edge contact which is �xed because it is adjacent to

a reex contact. There is only one choice of position for this contact, up to symmetry.

It �xes the remaining side of the rectangle.

Case 2: Two reex contacts can touch either two adjacent sides or two opposite sides of the

rectangle. In both cases, edge contacts are needed to determine the LR. Since two

degrees of freedom remain, the determining set contains at most two edge contacts.

In the adjacent case, we examine the possibility of edge contacts at the corners of the

rectangle, excluding the corner between the two reex contacts. There are two ways

that two edge contacts can appear. In both cases both contacts must be �xed, so they

�x the remaining sides of the rectangle. If only one edge contact appears, it must

be a sliding contact; otherwise a degree of freedom remains. The sliding contact is

diagonally opposite to the corner �xed by the reex contacts. This contact is su�cient

because it represents a basic 1-parameter problem.

In the opposite case, any edge contact is �xed; hence there must be two of them.

There are two possible ways they can be con�gured. In both cases, all four sides of the

rectangle are �xed.

Case 1: One reex contact is not su�cient to determine the LR. We can choose to place edge

contacts at any three of the four corners of the rectangle (four would be redundant).

If there are three edge contacts, they are all �xed and they completely determine

the LR. There are two ways to con�gure three such contacts. If there are two edge

contacts, they can be adjacent or diagonally opposite. If they are adjacent, they must

both be opposite the reex contact; otherwise a degree of freedom remains. These

adjacent contacts are dependent sliding contacts, and they determine the LR because

they represent a 1-parameter problem. If they are diagonally opposite, one is �xed,

and the other is a sliding contact; this is also a 1-parameter problem. One edge contact

is not su�cient, together with the one reex contact, to determine the LR.
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Case 0: In this case there are no reex contacts. One sliding contact is not su�cient to deter-

mine the LR. If there are two sliding contacts, they must be opposite if they are to

determine the LR. This is a 2-parameter problem. If there are three edge contacts, they

are all dependent sliding contacts. They are su�cient to determine the LR because

they represent a 1-parameter problem. If there are four edge contacts, they yield four

equations in four unknowns, for which the LR is completely determined. This therefore

forms a set of �xed contacts.

C Finding the 3 and 4-Contact LRs in an Orthogo-

nally Convex Polygon

We show that the 3 and 4-contact cases for the LR in orthogonally convex polygons can

be solved in linear time. McKenna et al.[21] obtain the same time bound for orthogonal,

orthogonally convex polygons.

Lemma C.1 The 3-contact and 4-contact LRs of an n-vertex orthogonally convex poly-

gon can be found in �(n) time.

visibility line

e

c

1

1
c
2

e2

Figure 18: Bottom-Up Sweep for 3 and 4-Contact Cases

Proof of Lemma: The 3 and 4-contact LRs have either both bottom corners on the bot-

tom chains of P or both top corners on the top chains. A bottom-up sweep solves the bottom

corners case, where events are vertices of the bottom chains. Each event determines a y-span

along two edges e

1

and e

2

. Let the top chain pieces corresponding to e

1

and e

2

be c

1

and

c

2

, respectively (see Figure 18). The natural y-ordering of vertices along c

1

and c

2

yields
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a set of secondary events on the upper chains for this (e

1

; e

2

) pair. If an edge e

3

for an

upper event on c

1

has a corresponding edge e

4

on c

2

, then we solve the 4-contact problem

for fe

1

; e

2

; e

3

; e

4

g. Otherwise, we solve the 3-contact problem for fe

1

; e

2

; e

3

g if e

3

is below

c

2

. (If e

3

is above c

2

the 3-contact LR is guaranteed to intersect c

2

; if it is below it will not

intersect.) Note that as the bottom sweep-line moves up, the top sweep-line moves down.

The top-down sweep is similar.

No sorting is required for the sweeps because the xy-monotone chains are naturally

ordered in x and y. Because the visibility maps can be precomputed in linear time, c

1

and

c

2

are found in constant time. For the bottom-up sweep, the total number of upper events

is linear because each edge fragment is visited once for each sweep. A constant amount of

work is done at each upper event, since the visibility map is precomputed and solving each

3 or 4-contact problem requires only constant time by Theorem 2.5. Thus, the LR is found

in �(n) time.

This completes the proof of Lemma C.1.

D Fast Searching of Totally Monotone Matrices

Aggarwal and Klawe provide an alternate partitioning of a totally monotone rising double

staircase matrix[1] to that of Aggarwal and Suri (see Lemma 5.6). Their partitioning holds for

the more general totally monotone partial matrix , which contains two sets of illegal entries

whose boundaries are unimodal sequences. Klawe [17] extends the de�nition of a totally

monotone partial matrix to any matrix whose set of legal entries is orthogonally convex

(each row and column contains at most one contiguous group of legal entries). Without giving

the details, she notes that the algorithm leading to Lemma 5.5 can be trivially extended to

handle this type of matrix. We observe that this type can be accommodated via partitioning,

without extending the algorithm, as follows:

Lemma D.1 An n�m totally monotone partial matrix M whose staircase boundaries are

known can be partitioned in O(n + m) time into a set of �ve matrices. One is a totally

monotone double staircase matrix and the other four are totally monotone single staircase

matrices.

Proof: Let t, b, l and r be the top, bottom, leftmost and rightmost legal entries of M . Let

p be the downward projection of t, and q be the upward projection of b. We can �nd p and

q in O(n +m) time. The matrix determined by tqbp is a totally monotone double staircase

matrix M

0

. M

0

partitions M , leaving triangular submatrices on the left and right. If q is on

tr, then the triangular submatrix qrb is partitioned into two totally monotone single staircase

matrices by the horizontal line through r and the triangular submatrix tlp is partitioned
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into two totally monotone single staircase matrices by the horizontal line through l. If q is

on tl, we partition qlb and trp into totally monotone single staircase matrices. Partitioning

the triangular regions takes O(n+m) time.

With this partitioning, one can �nd the maximum in a totally monotone partial matrix

in O(n�(m)+m) time by simply using Lemma 5.5 and Lemma 5.6, instead of extending the

algorithm associated with Lemma 5.5.

Whenever possible, Section 5.1 and Section 5.2 used \legal" negative entries in the area

matrix in place of illegal entries. In the case of orthogonally convex polygons in Section 5.2,

the matrix was double staircase. If we had used illegal entries in all cases, then the matrix

would have been partial. With that approach, we still could have solved the problem using

time in O(n�(n)) by applying Lemma 5.6. We do not present the argument here, but we

could have also solved the xy-monotone polygon problem of Section 5.1 if we had used illegal

entries in all cases. The matrix would have been a falling double staircase matrix whose

maximum can be found in O(n) time using a fairly straightforward completion technique.

The use of negative entries made the algorithms simpler but was not essential to the running

times.
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