Performance Bounds for Bidirectional Coded Cooperation Protocols

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>http://dx.doi.org/10.1109/TIT.2008.929913</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:2710476</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Let $K = \mathbb{Q}(\zeta)$. For construction A, let the prime $q = 17$ and let L denote the unique subfield of $\mathbb{Q}(\zeta^{(r)})$ of degree 8 over \mathbb{Q}. Then by Theorem 4, the compositum LK gives us the desired extension of K. Now $\text{Gal}(L/K) \cong C_8 \times C_2$—note that unlike in other examples this Galois group is not cyclic. Then our codewords have the form

$$(\tau_1 A | \tau_2 A | \tau_3 A | \tau_4 A)$$

where A is an 8×8 matrix in the image of representation of the algebra $A = (LK/K, \text{Gal}(LK/K), \zeta)$ and τ_i are elements of $\text{Gal}(L/K, \zeta)$. However, because we want the product of determinants to lie in $\mathbb{Q}(\zeta)$, we change the field F to $Q(\zeta)$.

Note that $\text{Gal}(L/Q(\zeta)) \cong C_8$, let τ denote its generator. Then our codewords have the form $(A | \tau A)$, where A is an 8×8 matrix in the image of representation of the algebra $A = (LK/K, \text{Gal}(LK/K), \zeta)$. Existing industry standard already include cases of four transmit antenna MIMO systems. Therefore, eight antenna systems will likely be considered soon, and this last example could become relevant in the not too distant future.

ACKNOWLEDGMENT

The authors are indebted to the anonymous referees for their remarks that considerably improved the quality of this correspondence.

REFERENCES

that it wishes to send to node j. Each node i has channel input alphabet $X_i^* = X_i \cup \{\emptyset\}$ and channel output alphabet $Y_i^* = Y_i \cup \{\emptyset\}$, where \emptyset is a special symbol distinct of those in X_i and Y_i, and which denotes either no input or no output. In this correspondence, we assume that a node may not simultaneously transmit and receive at the same time. In particular, if node i selects $X_i = \emptyset$, then it receives $Y_i \in Y_i^*$ and if $X_i \in X_i$, then necessarily $Y_i = \emptyset$, i.e., $X_i = \emptyset$ if $Y_i \neq \emptyset$. Otherwise, the effect of one node remaining silent on the received variable at another node may be arbitrary at this point. The channel is assumed discrete memoryless. In Section IV, we will be interested in the case $X_i^* = Y_i^* = \mathcal{C} \cup \{\emptyset\}, \forall i \in \mathcal{M}$.

The objective of this correspondence is to determine achievable data rates and outer bounds on these for some particular cases. We use $R_{i,j}$ for the transmitted data rate of node i to node j, i.e., $W_{i,j} \in \{0, \ldots, \lceil 2^n R_{i,j} \rceil - 1\} := S_{i,j}$.

For a given protocol \mathcal{P}, we denote by $\Delta_{\ell} \geq 0$ the relative time duration of the ℓ^{th} phase. Clearly, $\sum_{\ell=1}^{\ell} \Delta_{\ell} = 1$. It is also convenient to denote the transmission at time k, $1 \leq k \leq n$ at node i by X_i^k, where the total duration of the protocol is n and X_i^k denotes the random variable with alphabet X_i^* and input distribution $p_i(I_{i,k})$ during phase ℓ. Also, X_i^k corresponds to a transmission in the first phase if $k \leq \Delta_{1,n}$, etc.

We also define $X_i^k := \{X_i^k, i \in \mathcal{S}\}$, the set of transmissions by all nodes in the set \mathcal{S} at time k and similarly $X_i^{(0)} := \{X_i^{(0)}, i \in \mathcal{S}\}$, a set of random variables with channel input distribution $p_i(I_{i,k})$ for phase ℓ, where $x_s := \{x_i^k, i \in \mathcal{S}\}$. Lower case letters x_i denote instances of the upper case X_i, which lie in the calligraphic alphabets \mathcal{X}.

Boldface \mathbf{x} represents a vector indexed by time at node i. Finally, it is convenient to denote by $x_s := \{x_i^k, i \in \mathcal{S}\}$, a set of vectors indexed by time.

Encoders are then given by functions $X_i^k(W_{i,1}, \ldots, W_{i,m}, Y_i^{(0)}), \ldots, Y_i^{(k-1)})$, for $k = 1, \ldots, n$ and decoders by $W_{i,j}(X_i^{(0)}, \ldots, Y_i^{(k-1)}, W_{i,1}, \ldots, W_{i,m})$. Given a block size n, a set of encoders and decoders has associated error events $E_{i,j} := \{W_{i,j} \neq W_{i,j}^i\}$, for decoding the message $W_{i,j}$ at node j at the end of the block, and the corresponding encoders/decoders result in relative phase durations $\{\Delta_{i,s}\}$, where the subscript n indicates that the phase duration depends on the choice of block size (as they must be multiples of $1/n$).

A set of rates $\{R_{i,j}\}$ is said to be achievable for a protocol \mathcal{P} with phase durations $\{\Delta_{\ell}\}$, if there exist encoders/decoders of block length $n = 1, 2, \ldots$ with $P[E_{i,j}] = 0$ and $\Delta_{1,n} \rightarrow \Delta_\ell$ as $n \rightarrow \infty$. An achievable rate region (resp. capacity region) is the closure of a set of (resp. all) achievable rate tuples for fixed $\{\Delta_{\ell}\}$.

B. Basic Results

In Section III, we will use a variation of the cut-set bound. We assume that all messages from different sources are independent, i.e., $\forall i \neq j$, $W_{i,j}$ and $W_{j,i}$ are independent $\forall k, l \in \mathcal{M}$. In contrast to [2], we relax the independent assumption from one source to different nodes, i.e., in our case $W_{i,j}$ and $W_{j,k}$ may not be independent. Given subsets $S, T \subseteq \mathcal{M}$, we define $W_{S,T} := \{W_{i,j}, i \in S, j \in T\}$ and $R_{S,T} := \lim_{n \rightarrow \infty} \alpha(n) H(W_{S,T})$.

Lemma 1: If in some network the information rates $\{R_{i,j}\}$ are achievable for a protocol \mathcal{P} with relative durations $\{\Delta_{\ell}\}$, then for every $\epsilon > 0$ and all $S \subset \{1, 2, \ldots, m\} = \mathcal{M}$

$$R_{S,sc} \leq \sum_{\ell=1}^{\ell} \Delta_{\ell} \left(X_i^{(0)} | Y_i^{(0)} \left| X_i^{(0)} , Q \right. \right) + \epsilon$$

(1)

for a family of conditional distributions $p_i^{(0)}(x_i | x_2, \ldots, x_m)$ and a discrete time-sharing random variable Q with distribution $p(q)$. Furthermore, each $p_i^{(0)}(x_i | x_2, \ldots, x_m)$ must satisfy the constraints of phase ℓ of protocol \mathcal{P}.

II. PRELIMINARIES

A. Notation and Definitions

We first start with a somewhat more general formulation of the problem. We consider an m node set, denoted as $\mathcal{M} := \{1, 2, \ldots, m\}$ (where \vdots means defined as) for now, where node i has message $W_{i,j}$

1Similar results were independently derived in [6].

2Thus, FDM cannot be allowed as it violates the half-duplex constraint.
Proof: Replacing $W^{(T)}$ by $W_{S,SC}$ and $W^{(T')}$ by $W_{SC,AM}$ in [2, eqs. (15.323)–(15.332)], then all the steps in [2] still hold and we have

$$H(W_{S,SC}) = H(W_{S,SC}|W_{SC,AM}) \leq \sum_{k=1}^{n} I\left(\frac{X_{S}^{k}}{Y_{S}^{k}};\frac{X_{SC}^{k}}{X_{SC}^{k}}\right) + n \epsilon_{n}$$

where $\epsilon_{n} \to 0$ since $\sum_{k \in S \in S \subseteq S} P[E_{i,j}] \to 0$ and the distributions $p_{i}(x_{i}, \ldots, x_{i}^{k}, y_{i}^{k}, \ldots, y_{i}^{m})$ are those induced by encoders for which $P[E_{i,j}] \to 0$ as $n \to \infty$.

Defining Q_{1}, Q_{2}, \ldots to be discrete random variables uniform over $\{1, \ldots, n \cdot \Delta_{1,n}\}$, $\{n \cdot \Delta_{1,n} + 1, \ldots, n \cdot \Delta_{1,n} + \Delta_{1,n} + n \cdot \Delta_{2,n}\}$, respectively, we thus have

$$H(W_{S,SC}) \leq n \cdot \Delta_{1,n} I\left(\frac{X_{S}^{Q_{1}}; Y_{S}^{Q_{1}}}{X_{SC}^{Q_{1}}, Q_{1}}\right) + n \epsilon_{n}$$

Defining the discrete random variable $Q := (Q_{1}, Q_{2}, \ldots)$, then

$$\frac{1}{n} H(W_{S,SC}) \leq \Delta_{1,n} I\left(\frac{X_{S}^{Q_{1}}; Y_{S}^{Q_{1}}}{X_{SC}^{Q_{1}}, Q_{1}}\right) + \epsilon_{n}$$

where $X_{S}^{Q_{1}} := X_{S}^{Q_{1}}$. Finally, since the distributions $p_{i}(x_{i}, x_{2}, \ldots, x_{m}|y|q)$ are those induced by encoders for which $P[E_{i,j}] \to 0$, if there is a constraint on the encoders (such as a power constraint), this constraint is also satisfied by the distributions $p_{i}(x_{i}, x_{2}, \ldots, x_{m}|y|q)$.

C. Protocols

In bidirectional cooperation, two terminal nodes denoted a and b exchange their messages. The messages to be transmitted are $W_{a} := W_{a,b}$, $W_{b} := W_{b,a}$ and the corresponding rates are $R_{a} := R_{a,b}$ and $R_{b} := R_{b,a}$. The two distinct messages W_{a} and W_{b} are taken to be independent and uniformly distributed in the set of $\{0, 1, \ldots, 2^{mR_{a}} - 1\} := S_{a}$ and $\{0, 1, \ldots, 2^{mR_{b}} - 1\} := S_{b}$, respectively. Then W_{a} and W_{b} are both members of the additive group Z_{2}, where $L = \max(2^{mR_{a}}, 2^{mR_{b}})$. The simplest protocol for the bidirectional channel is that of Direct Transmission (DT) (Fig. 2). Here, the channel is memoryless and $\epsilon > 0$ is arbitrary, the capacity region from Lemma 1 is

$$R_{a} \leq \sup_{p(x_{1})} \Delta_{1} I\left(X_{a}^{(1)}; Y_{b}^{(1)} X_{b}^{(1)} = \emptyset\right)$$

$$R_{b} \leq \sup_{p(x_{2})} \Delta_{2} I\left(X_{b}^{(2)}; Y_{b}^{(2)} X_{b}^{(2)} = \emptyset\right)$$

where the distributions are over the alphabets λ_{a} and λ_{b}, respectively.

With a relay node r, we suggest three different decode-and-forward protocols, which we denote as multiple access broadcast (MABC) protocol, time division broadcast (TDB), and hybrid broadcast (HBC). Then, the message from a (resp., b) to r is $W_{a,r} = W_{a}$ (resp., $W_{b,r} = W_{b}$) and the corresponding rate is $R_{a,r} = R_{a}$ (resp., $R_{b,r} = R_{b}$). Also, in our protocols, all phases are contiguous, i.e., they are performed consecutively and are not interleaved or reordered.

In the MABC protocol (Fig. 2), terminal nodes a and b transmit information simultaneously during phase 1 and the relay r transmits some function of the received signals during phase 2. With this scheme, we only divide the total time period into two regimes and neither node a nor node b is able to receive any meaningful side-information during the first phase due to the half-duplex constraint.

In the TDB protocol (Fig. 2), only node a transmits during the first phase and only node b transmits during the second phase. In phase 3, if we relax the contiguous assumption, the achievable region could increase by cooperation between interleaving phases.

Fig. 2. Proposed protocol diagrams. Shaded areas denote transmission by the respective nodes. It is assumed that all nodes listen when not transmitting.

III. PERFORMANCE BOUNDS

A. MABC Protocol

Theorem 2: The capacity region of the half-duplex bidirectional relay channel with the MABC protocol is the closure of the set of all points (R_{a}, R_{b}) satisfying

$$R_{a} \leq \min \left\{ \Delta_{1} I\left(X_{a}^{(1)}; Y_{b}^{(1)} X_{b}^{(1)} = \emptyset, Q\right) \right\}$$

$$R_{b} \leq \min \left\{ \Delta_{2} I\left(X_{b}^{(2)}; Y_{b}^{(2)} X_{b}^{(2)} = \emptyset, Q\right) \right\}$$

over all joint distributions $p_{i}(x|y)^{(1)}(x_{a}|y)p_{i}(x_{b}|y)^{(2)}(x_{b}|y)$ with $|Q| \leq 5$ over the alphabet $\lambda_{a} \times \lambda_{b} \times \lambda_{r}$.

Remark: If the relay is not required to decode both messages, then the region above is still achievable, and removing the constraint on the sum-rate $R_{a} + R_{b}$ yields an outer bound.

Proof: Achievability: Random code generation: For simplicity of exposition only, we take $|Q| = 1$ and therefore consider distributions $p_{i}^{(1)}(x_{a}), p_{i}^{(1)}(x_{b})$ and $p_{i}^{(2)}(x_{r})$. First we generate random $(n \cdot \Delta_{1,n})$-length sequences $x_{a}^{(1)}(w_{a})$ with $w_{a} \in S_{a}$ and $x_{b}^{(1)}(w_{b})$ with $w_{b} \in S_{b}$, and $(n \cdot \Delta_{2,n})$-length sequences $x_{b}^{(2)}(w_{r})$ with $w_{r} \in Z_{2}$ where $L = \max(2^{mR_{a}}) 2^{mR_{b}}$, according to $p_{i}^{(1)}(x_{a}), p_{i}^{(1)}(x_{b})$ and $p_{i}^{(2)}(x_{r})$, respectively.

Encoding: During phase 1, encoders of node a and b send the codewords $x_{a}^{(1)}(w_{a})$ and $x_{b}^{(1)}(w_{b})$, respectively. Relay r estimates \hat{w}_{a} and \hat{w}_{b} after phase 1 using jointly typical decoding, then constructs $w_{a} = \hat{w}_{a} \oplus \hat{w}_{b}$ in Z_{2} and sends $x_{b}^{(2)}(w_{r})$ during phase 2.

Decoding: a and b estimate \hat{w}_{a} and \hat{w}_{b} after phase 2 using jointly typical decoding. Since $w_{a} = w_{a} \oplus w_{b}$ and a knows w_{b}, node a can reduce the number of possible w_{r} to $2^{mR_{b}}$ and likewise at node b, the cardinality is $2^{mR_{a}}$.\[\blacksquare\]
Error Analysis: For convenience of analysis, first define $E^{(i)}_{\mathcal{S}_T}$ as the error event at node j that node j attempts to decode w_i at the end of phase t using jointly typical decoding. Let $A^{(i)}_{\mathcal{S}_T}$ represents the set of ϵ-weakly typical $(\mathbf{x}^{(i)}_S, \mathbf{y}^{(i)}_T)$ sequences of length $n \cdot \Delta_{\epsilon,n}$ according to the input distributions employed in phase t. Also define the set of codewords $\mathcal{X}^{(i)}_S(w_i) = \{ \mathbf{x}^{(i)}_S(w_i) | i \in S \}$ and the events

$$D^{(i)}_{\mathcal{S}_T}(w_i) = \{ (\mathbf{x}^{(i)}_S(w_i), \mathbf{y}^{(i)}_T) \in A^{(i)}_{\mathcal{S}_T} \}$$

where S and T are disjoint subsets of nodes.

Then

$$P[E_{a,b}] \leq P \left[\bigcup_{i \in \mathcal{A}} D^{(i)}_{\mathcal{S}_T} \right] \leq \sum_{i \in \mathcal{A}} P[D^{(i)}_{\mathcal{S}_T} | \mathcal{E}_{a,b}] \leq \sum_{i \in \mathcal{A}} P[D^{(i)}_{\mathcal{S}_T} | \mathcal{E}_{a,b}] + P[E_{a,b} \cap \mathcal{E}_{a,b}]$$

Following the well-known MAC error analysis from [2, eq. (15.72)]:

$$P[D^{(i)}_{\mathcal{S}_T}] \leq P[D^{(i)}_{\mathcal{S}_T}] + g_{n_a} \sum_{i \in \mathcal{S}_T} \left(\mathbf{x}^{(i)}_S, \mathbf{y}^{(i)}_T \right) + g_{n_b} \sum_{i \in \mathcal{T}} \left(\mathbf{x}^{(i)}_S, \mathbf{y}^{(i)}_T \right) + g_{n_a n_b} \sum_{i \in \mathcal{S}_T \cap \mathcal{T}} \left(\mathbf{x}^{(i)}_S, \mathbf{y}^{(i)}_T \right).$$

Also

$$P[E_{a,b} \cap \mathcal{E}_{a,b}] \leq P[D^{(i)}_{\mathcal{S}_T}] \leq \sum_{i \in \mathcal{A}} P[D^{(i)}_{\mathcal{S}_T} | \mathcal{E}_{a,b}] \leq \sum_{i \in \mathcal{A}} P[D^{(i)}_{\mathcal{S}_T} | \mathcal{E}_{a,b}] + P[E_{a,b} \cap \mathcal{E}_{a,b}]$$

Since $\epsilon > 0$ is arbitrary, together, (9), (11)–(15) and the fact that the half-duplex nature of the channel constrains $X^{(i)}_b$ to be conditionally independent of $X^{(i)}_b$ given Q yields the converse. By Fenchel-Bunt’s theorem in [3], it is sufficient to restrict $|Q| \leq 5$.

B. TDBC Protocol

Theorem 3: An achievable region of the half-duplex bidirectional relay channel with the TDBC protocol is the closure of the set of all points (R_a, R_b) satisfying

$$R_a \leq \min \left\{ \Delta_1 I(X^{(1)}_a; Y^{(1)}_b | X^{(1)}_b = Y^{(1)}_b = \Xi, Q) \right\},$$

$$R_b \leq \min \left\{ \Delta_2 I(X^{(2)}_b; Y^{(2)}_a | X^{(2)}_a = Y^{(2)}_a = \Xi, Q) \right\}$$

over all joint distributions $p(q)^{(1)}(x_a | y_a) p^{(2)}(x_b | q) p^{(3)}(x_b | q)$ with $|Q| \leq 4$ over the alphabet $\mathcal{X}_a \times \mathcal{X}_b \times \mathcal{X}_r$.

Proof: Random code generation: First, we generate a partition of \mathcal{S}_a randomly by independently assigning every $w_a \in \mathcal{S}_a$ to a set $\mathcal{S}_{a,i}$, with a uniform distribution over the indices $i \in \{0, \ldots, 2^{n \cdot \log_2 |S_a|} - 1\}$. We denote by $s_{a_i}(w_a)$ the index i of $\mathcal{S}_{a,i}$ to which w_a belongs and likewise, a partition for w_b in \mathcal{S}_b is similarly constructed. For simplicity of exposition, we take $|Q| = 1$. For any $\epsilon > 0$ and distributions $p^{(1)}(x_a, p^{(2)}(x_b)\text{ and } p^{(3)}(x_r)$, we generate random $(n \cdot \Delta_{\epsilon,n})$-length sequences $X_a^{(w_a)}$ with $w_a \in \mathcal{S}_a$, $(n \cdot \Delta_{\epsilon,n})$-length sequences $X_b^{(w_b)}$ with $w_b \in \mathcal{S}_b$ and $(n \cdot \Delta_{\epsilon,n})$-length sequences $X_r^{(w_r)}$ with $w_r \in \mathcal{Z}_r$.

Encoding: During phase 1 (resp., phase 2), the encoder at node a (resp., node b) sends the codeword $X_a^{(w_a)}$ (resp., $X_b^{(w_b)}$). Relay r estimates \hat{w}_r and \hat{w}_b after phases 1 and 2, respectively. The relay then constructs $\hat{w}_r = s_{a_i}(\hat{w}_a) \oplus s_{b_i}(\hat{w}_b)$ in \mathcal{Z}_r, and sends $X_r^{(\hat{w}_r)}$ during phase 3.

Decoding: Terminal nodes a and b estimate the indices $s_{a_i}(\hat{w}_a)$ and $s_{b_i}(\hat{w}_b)$ after phase 3 from $X_r^{(\hat{w}_r)}$ and then decode w_a and w_b if there exists a unique $w_a \in \mathcal{S}_a$ and $w_b \in \mathcal{S}_b$.

Error Analysis: Define $E^{(i)}_{\mathcal{S}_T}$ as the error events from node i to node j assuming node j attempts to decode w_i, at the end of phase t using jointly typical decoding and s_i or s_i if available. Also we use the same definitions of $A^{(i)}_{\mathcal{S}_T}$ and $D^{(i)}_{\mathcal{S}_T}(w_i)$ as in the proof of Theorem 2. Then

$$P[E_{a,b}] \leq P \left[\bigcup_{i \in \mathcal{A}} D^{(i)}_{\mathcal{S}_T} \right] \leq \sum_{i \in \mathcal{A}} P[D^{(i)}_{\mathcal{S}_T} | \mathcal{E}_{a,b}] + P[E_{a,b} \cap \mathcal{E}_{a,b}]$$

Also

$$P[E_{a,b}] \leq P \left[\bigcup_{i \in \mathcal{A}} D^{(i)}_{\mathcal{S}_T} \right] \leq \sum_{i \in \mathcal{A}} P[D^{(i)}_{\mathcal{S}_T} | \mathcal{E}_{a,b}] + P[E_{a,b} \cap \mathcal{E}_{a,b}]$$
Since $\epsilon > 0$ is arbitrary, with the proper choice of R_0, the conditions of Theorem 3 and the AEP property, we can make the right-hand sides of (18)--(21) vanish as $n \to \infty$. Similarly, $P[E_{b,a}] \to 0$ as $n \to \infty$. By Fenchel-Bunt’s theorem in [3], it is sufficient to restrict $|Q| \leq 4$. □

Theorem 4: The capacity region of the bidirectional relay channel with the TDBC protocol is outer bounded by the union of

$$R_a \leq \min \left\{ \Delta_1 I \left(X_a^{(1)}; Y_a^{(1)} | X_b^{(2)} \right) : X_a^{(1)} = X_b^{(2)} = \emptyset, Q \right\},$$

$$R_b \leq \min \left\{ \Delta_2 I \left(X_b^{(2)}; Y_b^{(2)} | X_a^{(1)} \right) : X_a^{(1)} = X_b^{(2)} = \emptyset, Q \right\}$$

over all joint distributions $p(q)p^{(1)}(x_a|q)p^{(2)}(x_b|q)$ with $|Q| \leq 5$ over the alphabet $\lambda_a \times \lambda_b \times \lambda_r$. □

Remark: If the relay is not required to decode both messages, removing the constraint on the sum-rate $R_a + R_b$ yields an outer bound.

Proof Outline: The proof of Theorem 4 follows the same argument as in the proof of the converse part of Theorem 2. □

C. HBC Protocol

Theorem 5: An achievable region of the half-duplex bidirectional relay channel with the HBC protocol is the closure of the set of all points (R_a, R_b) satisfying

$$R_a \leq \min \left\{ \Delta_1 I \left(X_a^{(1)}; Y_a^{(1)} | X_b^{(2)} \right) : X_a^{(1)} = X_b^{(2)} = \emptyset, Q \right\},$$

$$R_b \leq \min \left\{ \Delta_2 I \left(X_b^{(2)}; Y_b^{(2)} | X_a^{(1)} \right) : X_a^{(1)} = X_b^{(2)} = \emptyset, Q \right\}$$

over all joint distributions $p(q)p^{(1)}(x_a|q)p^{(2)}(x_b|q)$ with $|Q| \leq 5$ over the alphabet $\lambda_a \times \lambda_b \times \lambda_r$. □

Remark: If the relay is not required to decode both messages, removing the constraint on the sum-rate $R_a + R_b$ in the region above yields an outer bound.

Proof Outline: The proof of Theorem 5 follows the same argument as the proof of the converse part of Theorem 2. □

IV. THE GAUSSIAN CASE

In the following section, we apply the performance bounds derived in the previous section to the AWGN channel with pass loss. Definitions of codes, rate, and achievability in the memoryless Gaussian channels are analogous to those of the discrete memoryless channels. If $X_a[k] \neq \emptyset, X_b[k] \neq \emptyset, X_r[k] = \emptyset$, then the mathematical channel model is $Y_r[k] = y_{aw} X_a[k] + y_{bw} X_b[k] + Z_r[k]$, where y_{aw} and y_{bw} are given by similar expression in terms of y_{aw} and y_{bw}, if only...
the function transmit power optimization constraints for the TDBC protocol are:

For example, applying Theorem 3 to the fading AWGN channel, the optimal transmission strategy in terms of sum-rate in a given channel. book and the noise is of unit power, additive, white Gaussian, complex and circularly symmetric. For convenience of analysis, we also define the function $C(x) = \log_2(1 + x)$.

For a fading AWGN channel, we can optimize the Δ_i’s for given channel mutual informations in order to maximize the achievable sum rate ($R_a + R_b$). First, we optimize the time periods in each protocol and compare the achievable sum rates obtained to determine an optimal transmission strategy in terms of sum-rate in a given channel. For example, applying Theorem 3 to the fading AWGN channel, the optimization constraints for the TDBC protocol are:

$$R_a < \min \left\{ \Delta_1 C(\log_2(1 + P G_{ab})), \Delta_2 C(\log_2(1 + P G_{bf})), \Delta_3 C(\log_2(1 + P G_{br})), \right\} \quad (22)$$

$$R_b < \min \left\{ \Delta_2 C(\log_2(1 + P G_{bf})), \Delta_3 C(\log_2(1 + P G_{br})), \Delta_2 C(\log_2(1 + P G_{ab})), \right\} \quad (23)$$

We have taken $|Q| = 1$ in the derivation of (22) and (23), since a Gaussian distribution simultaneously maximizes each mutual information term individually as each node is assumed to transmit with at most power P during each phase. Linear programming may then be used to find optimal time durations. The optimal sum rate corresponding to the inner bounds of the protocols is plotted in Fig. 3. As expected, the optimal sum rate of the HBC protocol is always greater than or equal to those of the other protocols since the MABC and TDBC protocols are special cases of the HBC protocol. Notably, the sum rate of the HBC protocol is strictly greater than the other cases in some regimes. This implies that the HBC protocol does not reduce to either of the MABC or TDBC protocols in general.

In the MABC protocol, the performance region is known. However, in the other cases, there exists a gap between the expressions. An achievable region of the 4 protocols and an outer bound for the TDBC protocol is plotted in Fig. 4 (in the low and the high SNR regime). As expected, in the low SNR regime, the MABC protocol dominates the TDBC protocol, while the latter is better in the high SNR regime. It is difficult to compute the outer bound of the HBC protocol numerically since, as opposed to the TDBC case, it is not clear that jointly Gaussian distributions are optimal due to the joint distribution $p(x_a, x_b, r)$ as well as the conditional mutual information terms in Theorem 6. For this reason, we do not numerically evaluate the outer bound. Notably, some achievable HBC rate pairs are outside the outer bounds of the MABC and TDBC protocols.

REFERENCES

The Poset Metrics That Allow Binary Codes of Codimension \(m \) to be \(m-\), \((m-1)\)-, or \((m-2)\)-Perfect

Hyun Kwang Kim and Denis S. Krotov

Abstract—A binary poset code of codimension \(m \) (of cardinality \(2^{n-m} \)), where \(n \) is the code length) can correct maximum \(m \) errors. All possible poset metrics that allow codes of codimension \(m \) to be \(m-\), \((m-1)\)-, or \((m-2)\)-perfect are described. Some general conditions on a poset which guarantee the nonexistence of perfect poset codes are derived; as examples, we prove the nonexistence of \(r \)-perfect poset codes for some \(r \) in the case of the crown poset and in the case of the union of disjoint chains.

Index Terms—Perfect codes, poset codes.

I. INTRODUCTION

We study the problem of existence of perfect codes in poset metric spaces, which are a generalization of the Hamming metric space, see [2]. There are several papers [1], [3], [4] on the existence of \(1 \)-, \(2 \)-, or \(3 \)-error-correcting poset codes. The approach of the present work is opposite; we start to classify posets that admit the existence of perfect codes correcting as many as possible errors with respect to the code length and dimension, i.e., when the number of errors is close to the code dimension.

As stated by Lemma 2.5 below, the codimension \(m \) of an \(r \)-error-correcting \((n, 2^{m-r}) \) code cannot be less than \(r \). And the posets that allow binary poset-codes of codimension \(m \) to be \(m \)-perfect have a simple characterization (Theorem 2.6).

The main results of this work, stated by Theorem 4.4 and Theorem 6.1, are criteria for the existence of \((m-1)\)- and \((m-2)\)-perfect \((n, 2^{m-r})\) \(P \)-codes. The intermediate results formulated as lemmas may also be useful for the description of other poset structures admitting perfect poset codes.

Let \(P = ([n], \leq) \) be a poset, where \([n] = \{1, \ldots, n\} \). A subset \(I \) of \([n] \) is called an ideal, or downset (an upset, or filter) iff for each \(a \in I \) the relation \(b \leq a \) (respectively, \(b \geq a \)) means \(b \in I \). For \(a_1, \ldots, a_n \in P \) denote by \(\langle a_1, \ldots, a_n \rangle \) or \(\{a_1, \ldots, a_n\} \) the principal ideal of \(\{a_1, \ldots, a_n\} \), i.e., the minimal ideal that contains \(a_1, \ldots, a_n \), and by \(\langle a_1, \ldots, a_n \rangle \) or \(\{a_1, \ldots, a_n\} \), the minimal upset that contains \(a_1, \ldots, a_n \).

Denote by \(I_P \subset 2^{|n|} \) the set of all \(r \)-ideals (i.e., ideals of cardinality \(r \)) of \(P \), where \(r \in \{0, 1, \ldots, n\} \).

If \(S \) is an arbitrary set (poset), then the set of all subsets of \(S \) is denoted by \(2^S \). The set \(2^{|n|} \) will also be denoted as \(F^n \), and we will not distinguish subsets of \([n] \) from their characteristic vectors; for example, \(2^{|\{2, 4, 5\}|} = (010111) \in F^5 \).

If \(\vec{x} \in 2^{|n|} \), then the \(P \)-weight \(w_P(\vec{x}) \) of \(\vec{x} \) is the cardinality of \(\langle \vec{x} \rangle \). Now, for two elements \(\vec{x}, \vec{y} \in F^n \) we define the \(P \)-distance \(d_P(\vec{x}, \vec{y}) = w_P(\vec{x} \oplus \vec{y}), \) where \(\oplus \) means the symmetrical difference in terms of subsets of \([n] \) and the mod-2-addition in terms of their characteristic functions.

For \(r \in \{0, \ldots, n\} \) we denote by \(B^r_P = \{ \vec{x} \in F^n \mid w_P(\vec{x}) \leq r \} \) the ball of radius \(r \) with center in the all-zero vector \(\vec{0} \). A subset \(C \subset F^n \) is called an \(r \)-error-correcting \(P \)-code (or \(r \)-perfect \(P \)-code) iff each element \(\vec{x} \) of \(F^n \) has at most one (respectively, exactly one) representation in the form \(\vec{x} = \vec{x}_P + \vec{e}, \) where \(\vec{e} \in C \) and \(\vec{x}_P \in B^r_P \). In other words, the balls of radius \(r \) centered in the codewords of an \(r \)-error-correcting \(P \)-code \(C \) are mutually disjoint (the ball-packing condition) and, if \(C \) is \(r \)-perfect, cover all the space \(F^n \). As a consequence

\[|C| \leq |F^n|/|B^r_P| \]

(the ball-packing bound), where equality is equivalent to the \(r \)-perfectness of \(C \).

For the rest of the correspondence we will use the following notations. Let \(C \subset F^n \) be a \(P \)-code and \(\vec{0} \in C \); denote

- \(m = |n| - \log_2 |C| \);
- \(P^r = \bigcup_{\vec{x} \in B^r_P} I \subseteq [n] \);
- \(u = |\bigcap_{\vec{x} \in B^r_P} I| \);
- \(\vec{P}^r = P^r \setminus \bigcup_{\vec{x} \in B^r_P} I \) (studying \(r \)-perfect codes, we can call \(\vec{P}^r \) the “essential part” of \(P \); indeed, the ball \(B^r_P \) is the Cartesian product of \(B^{r-m} \) and \(2^{\langle P^r \rangle} \);
- \(\lambda = |P^r| - r \);
- \(\max(R) \) denotes the set of maximal elements of a poset \(R \);
- \(\min(R) \) denotes the set of minimal elements of a poset \(R \);
- \(k = \max(R) \).

Note that \(u, \lambda, \) and \(k \) depend on \(P \) and \(r \) though the notations do not reflect this dependence explicitly.