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ABSTRACT 
 

  
Metals such as arsenic, lead and manganese are naturally occurring elements readily 

found in the earth’s crust. Numerous studies have shown that these metals can be neurotoxic 

though the exact mechanism remains unknown.  

In our neurobehavioral study, we found a significant association between prenatal lead 

concentrations and the scores of Adaptive Skills domain of the BASC-2, β(SE) = -5.99 (2.68), p-

value 0.025. Positive cognitive home environment was consistently associated with better 

neurobehavioral outcomes. In our investigation, we found that arsenic was significantly 

associated with increased postpartum depression in mothers in the Tar Creek cohort. β (SE) = 

0.97 (0.44). The association was statistically significant (p =0.027). We also found a significant 

interaction between lead and arsenic (β = 1.49 (0.62), p=0.017). Results of an epigenetic study 

suggest that mothers of children with neural tube defects may have different maternal plasma 

histone levels than unaffected children.  We found a significant association, β (SE) = 0.041 

(0.014), p =0.006, between H3K27me3 levels and NTD case status.  Among mothers with low 

folate, H3 was negatively associated, β (SE) = -10.5 (4.05), p =0.016 with maternal arsenic 

exposure. 
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INTRODUCTION 

Heavy Metals 

Metals such as arsenic, lead and manganese are globally ubiquitous.  Exposure primarily 

occurs through contamination of drinking water, direct exposure to soil, and inhalation of dust. 

Anthropogenic processes such as mining and other industrial processes often serve as a means of 

contaminating local soil and water supplies. While occupational studies have focused on high-

level exposure, numerous studies have shown that these metals are neurotoxic even at low levels. 

Increasingly, investigations are focusing on neuropsychological outcomes. It is important to note 

that while metals such as lead and arsenic have no nutritional benefits, manganese is an essential 

nutrient. 

Lead 

Lead exists naturally in the Earth’s crust at low levels. However, human activity has 

resulted in high levels of environmental lead. Sources of lead include mining, lead-based paint 

and solder, waste incineration and coal combustion Lead exists in 2+ and 4+ oxidation states 

with the majority as 2+. The presence of lead minerals correlates with zinc, copper and iron 

sulfides (Reeder et al, 2006).  

Environmental estimation of lead exposure is primarily obtained through water and soil 

sampling. Use of water samples offers direct comparison to a long body of research on the health 

effects of lead exposure. EPA guidelines for lead are based on water sampling, which lends itself 

to the immediate application to regulatory controls. 

 Biomarkers of lead exposure include bone, blood and urine. Lead metabolism and 

excretion offers advantages to utilizing various methods of estimating exposure. Most of the lead 

absorbed by the body ends up in mineralized tissue (e.g. bone and teeth). The half-life (t 1/2) of 
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lead in bone is approximately 27 years (Reeder, 2006) and therefore serves as an ideal biomarker 

of chronic exposure. However, the complexity of obtaining bone and teeth makes their 

availability as biomarkers limited.  However, the t 1/2 of lead in the blood is approximately 30 

days. This duration certainly allows for the observation of acute exposure but may also represent 

chronic exposures, assuming steady state.  Lead is also excreted through urine and feces 

(ATSDR, 2007). 

There are multiple mechanisms of lead neurotoxicity. Inorganic lead often forms 

complexes with a variety of ligands, such as proteins in the cell nucleus, cytosol and red blood 

cells. One major mechanism is through the disruption of calcium function. Calcium, an important 

cofactor, is involved in cellular processes including cell-signaling pathways e.g. protein kinase C 

(PKC) pathway. This pathway is involved in the synthesis of neurotransmitters, operation of ion 

channels and dendritic branching. Lead also changes the activity of an important calcium 

receptor called calmodulin. In addition to calcium, lead also interferes with another important 

cofactor, zinc. Lead can sometimes substitute zinc in enzyme and zinc-finger proteins. The 

resulting substitution can lead to abnormal expression of these proteins and well as the gene 

transcription regulated by these proteins. (ATSDR 2007, Bouton et al. 2000, Bressler et al. 

1999). Finally, lead can alter the glutamatergic, dopaminergic and cholinergic systems of the 

brain (Cory-Slechta, 1995). 

The effects of lead toxicity have been documented for centuries. However, scientists in 

the past few decades have found that even low-level lead exposure can have detrimental health 

effects from early life through late life. In Chapter 2, I will focus my investigation on early life 

(including prenatal) exposures to lead in children and neurodevelopment. In Chapter 3, I will 

focus on exposures in mothers and mental health. 
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Arsenic 

The average concentration of arsenic in the Earth’s crust is approximately 2 ppm 

(Wedepohl, 1995). Common sources of environmental arsenic include pesticides, herbicides, 

waste from mining and industrial smelting activities and animal waste from additives in poultry 

feed (Reeder, 2006).  These sources of arsenic often find their way into groundwater and soil.  

Inorganic arsenic (iAs) exists in five oxidative states: 3-, 1-, 0, 3+ and 5+. The most 

common environmental states are arsenite (3+) and arsenate (5+).  Arsenic metabolism occurs 

primarily in the liver. The metabolic pathway of arsenic is thought to occur through oxidative 

methylation and glutathione conjugation (Watanabe et al, 2013). During oxidative methylation, 

arsenic is monomethylated (MMA) or dimethylated (DMA) by arsenite methyltransferases using 

S-adenosylmethionine (SAM) as a methyl donor (Abernathy, 1999). Inorganic arsenic is more 

toxic than organic arsenic - in order of decreasing toxicity: arsenite > arsenate >MMA > DMA. 

Methylation is, in a sense, a mechanism of arsenic detoxification. Arsenic speciation provides 

important insight into the sources and mechanisms of toxicity.  

Estimates of arsenic exposure are typically obtained through environmental water 

sampling and/or through biomarkers. Typical matrices for biomarkers of exposure include blood, 

hair, urine and nail. Again, metabolism and excretion of arsenics offers advantages to utilizing 

certain biomarkers. Elimination of arsenic from the body is primarily through urine.  Arsenic 

tends to accumulate in protein rich tissue such as hair and nails over time (Mandal et al, 2003, 

Rabal et al 2005). This allows for the observation of continuous exposure making them ideal 

biomarkers for chronic arsenic exposure. However, environmental contamination of hair and 

nails requires stringent cleansing before analytical analysis. Use of urine and blood as 
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biomarkers avoids the problem of pervasive environmental contamination, but only allows for 

analysis of acute arsenic exposure.  

The two primary proposed mechanisms of action for arsenic toxicity are the formation of 

reactive oxygen species (ROS) and oxidative stress. ROS are ions or molecules produced by the 

partial reduction of oxygen. ROS, which alter protein structure and function, are important to 

many cellular processes such as gene expression and signal transduction. The mitochondria 

produce endogenous ROS. An imbalance of ROS can result in macromolecular damage and 

contribute to disease pathology (Ray et al, 2012). Arsenic-induced ROS include hydrogen 

peroxides (H2O2), superoxides (O2
●-), hydroxyl radicals (●OH) and singlet oxygen (1O2) (Flora, 

2011).  

Oxidative stress refers to the damage that arises from redox imbalances. This imbalance 

is the result of the generation of excessive free radicals and/or the dysfunction of the antioxidant 

system (Kandola et al, 2015 and Kim et al, 2015). While there are many types of free radicals, 

ROS are the most relevant. Though oxidative stress primarily occurs through ROS-induced 

pathways, it is not necessarily the case. 

Scientists believe that arsenic induces oxidative stress by several mechanisms. First, the 

generation of an arsinine intermediate that can produce free radicals. Second, methylated arsenic 

can cause the release of iron from ferritin leading to the production of ROS. Finally, oxidative 

methylation of arsenic (reduction of As(V) to As(III)) can also generate ROS. ROS also causes 

damage directly to DNA (Flora, 2011). Flora also asserts that the generation of ROS remains the 

key event in arsenic-induced disruption in cell signaling pathways. An exploding area of interest 

is the investigation of the role of epigenetic mechanisms in arsenic toxicity. I will explore these 

mechanisms in Chapter 4 of my dissertation.  
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Manganese 

Manganese is the 12th most abundant element and makes up approximately 0.1 % of the 

earth’s crust. Manganese has several oxidation states and can exist in both organic and inorganic 

forms. While manganese appears as Mn(III) in several enzymes (Leach et al, 1978 and Utter 

1976), the primary forms of environmental manganese are Mn(II) or Mn(IV). This suggests that 

inorganic manganese undergoes changes in oxidation states within the body (Gibbons et al, 

1976). Elemental Mn does not naturally exist but rather is found as a complex. Primary 

environmental sources of manganese are food, soil, air and water (ATSDR, 2012). 

Unlike arsenic and lead, manganese is an essential nutrient necessary for human health. 

Manganese is involved in various enzymatic reactions. It necessary for many processes such as 

immune function, bone growth and blood coagulation, cellular energy and protection against 

oxidative stress (Horning et al, 2015).  Manganese deficiencies in humans are rare.  However, 

excess exposure to Mn is neurotoxic.  

While manganese is essential for protection against oxidative stress, ironically, Mn 

neurotoxicity may also occur through redox mechanisms. It can alter transport mechanisms, 

receptor function and enzyme activity (Horning et al, 2015). The primary target of manganese 

toxicity is the central nervous system where it accumulates in the basal ganglia of the brain. 

While the exact mechanism of Mn neurotoxicity is unknown, studies suggest manganese 

neurotoxicity may lead to damage by increasing levels of extracellular glutamate. It may also 

affect dopamine metabolism leading to behavioral changes (Fitsanakis et al, 2006). Though 

manganese is rapidly excreted in bile through feces, the primary biomarkers of manganese 

exposure are blood and urine. Both matrices are considered to represent recent exposures 

(ATSDR, 2012).  
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Neurological Health 

Neuropsychology of Children 

 Neurobehavioral development disorders affect 10-15% of births in the United States 

(Bloom et al, 2010). Genetic factors account for only 30-40% of cases. Thus, environmental 

factors and their interactions with genetic predisposition are important in the causation of 

neurobehavioral disorders (National Research Council, 2000).  

Studying neurodevelopment as an endpoint is particularly complex. Social environment 

is generally regarded as cofounders when investigating the association between environmental 

toxicants and neurodevelopment. However, early toxic exposures can alter the way a child 

interacts with their social environment, which in turn affects their neurodevelopment (Bellinger, 

2009). Thus a complex dynamic exists that must be considered when investigating the 

association between a child’s environment and neurodevelopment. Our understanding of the 

impact of the environment on neurodevelopment is crucial in diagnosing and treating the needs 

of the growing child. 

Children are an extremely susceptible population. The developing human brain is 

particularly vulnerable to environmental insults. Critical windows of exposure include in utero 

and infancy. Thus, these exposures often set the stage for poorer health later in life.   

The placenta does not protect against many chemical exposures (Needham et al, 2011).  

A study headed by the Environmental Working Group (EWG) found an average of 200 

exogenous chemicals in the umbilical cord of 10 babies (EWG, 2005). Additionally, chemicals 

can be transferred from mother to child through breast milk. During infancy, the blood-brain 

barrier provides little protection from these neurotoxic chemicals (Zheng et al, 2003). 
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Environmental toxicants, even at low dose, can cause permanent brain damage. For 

example, methylmercury has detrimental effects on the developing brain at doses that would not 

be harmful to the adult brain (Oken et al, 2008). Recent studies found that increased levels of 

serum dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyltrichloroethylene (DDE) are 

associated with decreased neurodevelopmental function (Torres-Sanchez et al, 2013; Boucher et 

al, 2013).   

  There are multiple instruments available to assess the neurological health of children. A 

common method of assessing neurocognitive function is intelligence tests. A widely used test of 

intelligence is the Wechsler Preschool and Primary Scale of Intelligence – Third Edition 

(WPPSI-III). In addition to assessing neurocognitive function, there are also instruments to study 

neurobehavioral outcomes. The Behavior Assessment Scale for Children (BASC-2) is a general 

measure of behavior (Kamphaus and Reynolds, 1999). The BASC-2 measures emotional and 

social function of children from preschool to high school. The Behavior Rating Inventory of 

Executive Function-Preschool (BRIEF) evaluates executive function in children. While various  

definitions of executive function exist, general consensus it that executive function is the control 

and self-regulatory functions that allow the organization and direction of behavior, emotional 

response and cognitive activity (Gioia et al, 2004). A detailed description of the BASC-2 and 

BRIEF scales can be found in Chapter 2. 

Postpartum Depression 

 Depression is the fourth leading cause of disability in the world (Stranieri et al, 2013). 

Based on NHANES data, 1 out of 20 people in the United States, over the age of 12 reported 

having depression between the years 2005-2006 (Pratt et al, 2008). 6.7% of females reported 

having depression compared to 4% of men. This difference was statistically significant. In 
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Chapter 3 of my dissertation, I will focus on postpartum depression in mothers from the Tar 

Creek Cohort.  

 Postpartum depression (PPD) is a non-psychotic depressive episode that affects 10 to 

15% of new mothers worldwide (Elisei et al, 2013 and Patel et al, 2012). The Diagnostic and 

Statistical Manual of Mental Disorders, fourth edition (DSM-IV) defines PPD as a sub-category 

of major depressive disorder. PPD begins within 4 weeks post-delivery and can extend into the 

first postnatal year.  

While the exact cause of PPD is unknown, most studies attribute the cause to major 

hormonal changes during pregnancy. Levels of estrogen, progesterone and cortisol begin to 

change rapidly within the first 48 hours of delivery. Risk factors for PDD include stress, lack of 

social support and family history of mood disorders. However, history of depression (pregnancy 

related or not) is the single biggest predictor for postpartum depression (Patel et al, 2012). 

 The Edinburgh Postnatal Depression Scale (EPDS) is one of the most widely used 

screening tools for PDD. The 10-item questionnaire is efficient and easy to administer. An EPDS 

score of ≥ 10 (maximum score of 30) is often considered the initial cut-off to recommend new 

mothers for follow-up mental health screening (Wisner et al, 2002). I will further detail the topic 

of postnatal depression and the EPDS in Chapter 3 of my dissertation. 

Neural Tube Defects and Epigenetics 

 Neural tube defects (NTD) affect around 1 in 1000 pregnancies and are the number one 

cause of perinatal mortality and morbidity. The neural tube, the precursor of the brain and spinal 

cord, begins to form during the 4th week of gestation (Denny et al, 2013). Specialized cells form 

a neural plate. The plate then forms a tube in two stages: primary neurulation and secondary 

neurulation. Neural tube defect form when there is some failure in the neurulation process. There 
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are two classifications of NTDs- open and closed. Types of NTDs include anencephaly, spina 

bifida and myelomeningocele. The severity and prognosis of the different types of NTD vary.  

Genetic, epigenetic and environmental factors play an important role in development of 

NTDs. Epigenetic mechanisms are critical in embryonic development. The epigenetic 

mechanisms of DNA methylation, micro RNA and post-translational histone modifications 

(PTHM) are important in gene regulation. The modifications due to these mechanisms, unlike 

genetic code, may be reversible. Therefore, a better understanding of these mechanisms may 

provide hope for therapeutic targets. Much of what we know come from animal studies. 

Increasingly, epidemiological studies have sought to understand the role of epigenetic 

mechanism in NTD etiology (Barber et al, 2000). In Chapter 4, I will discuss PTHMs in more 

detail. 

Research Objective 

My dissertation seeks to contribute to current literature that investigates the association 

between metals exposure and neurological health. Much of the information known regarding the 

effects of metals on neurological health rely on animal studies. Studies in human populations are 

often conducted in populations with high metals exposure outside of the US. This presents gaps 

in the current literature pertaining to chronic low-dose exposure of human populations in the US.  

Specific Aim 1: 

Investigate the association between neurobehavioral outcomes and biomarkers of arsenic, lead 

and manganese exposure in children age 5-7 in the Tar Creek Study Cohort. 

Specific Aim 2: 

Investigate the association between postnatal depression and biomarkers of arsenic, lead and 

manganese exposure in mothers from the Tar Creek Study Cohort. 
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Specific Aim 3: 

Investigate the association between extracellular histones level and biomarkers of arsenic 

exposure in a pilot case-control study of Neural Tube Defects in Bangladesh.  

Overview of Dissertation 
My dissertation begins with a review of literature regarding the health effects of lead, 

arsenic and manganese. I will then provide a brief introduction to the neurological outcomes of 

interest- neurobehavior in children, depression and histones. My first study will focus on the 

association between prenatal biomarkers of arsenic, lead and manganese exposure and 

neurobehavior in children at 5-7 in the Tar creek cohort. My second study focuses on the 

association between these same metals and postpartum depression in mothers at birth. Finally, 

my third study on will investigate arsenic toxicity and histone modifications in the context of a 

case control pilot study investigating neural tube defects.  Finally, I will summarize my finding 

and discuss suggestions for future study. 
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ABSTRACT 

Background: Arsenic, lead and manganese are known to impact neurological health.  Prenatal 

exposure to these metals can have lasting impact on neurodevelopment – both neurocognitive 

and neurobehavioral function. 

Objective: Our objective was to investigate the association between prenatal arsenic, lead and 

manganese exposure and neurobehavioral outcomes in school-age children. 

Design: We conducted a prospective analysis of the Tar Creek Superfund Cohort Study. The 

concentrations of metals in cord blood provided estimates of children’s prenatal metal levels. At 

follow-up, around 5 -7 years of age, 122 children were given neurodevelopmental assessments. 

We will focus on neurobehavioral function as assessed by two parent-completed questionnaires, 

the Behavior Rating Inventory of Executive Function-Preschool and the Behavior Assessment 

Scale for Children – Second Edition. 

Results: We found a significant association between prenatal lead concentrations and the scores 

of Adaptive Skills domain of the BASC-2 (β = -5.99, p-value 0.025).  Cognitive HOME (CHS) 

scores were generally found to have significant negative associations, except with Adaptive 

Skills in which the associations were positive. Maternal IQ and child age was found to be 

significantly associated with the BSI and Adaptive Skills for all metals. In our lead models, we 

found that boys had significantly higher ISCI scores (β = 5.31, p-value 0.005) and externalizing 

problems (β = 8.40, p-value 0.021) than girls. The same association was found in our arsenic and 

lead models. 

Conclusion: This paper is a follow-up to studies on the neurodevelopment of children in the Tar 

Creek Cohort. Increased blood lead levels at birth were significantly associated with worse 
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adaptive skills assessed by the BASC-2 using our multivariable model. We found no significant 

associations between other blood metal concentrations and BRIEF or BASC-2 scores. 

INTRODUCTION 

Arsenic, lead and manganese are metals found globally in the earth’s crust. While 

manganese is a micronutrient, lead and arsenic have no known benefit while exhibiting various 

toxicological effects. Numerous studies have investigated the neurological effects of these 

metals.  

Neurodevelopment: Cognitive and Behavioral Function 

It is critical to understand how dosage and timing of exposure affect their outcomes. 

Childhood is a critical window to investigate due to the vulnerability during neurodevelopment. 

Lead is perhaps the most well characterized metal with known neurotoxicologial effects in 

children. However, more studies are exploring the effects of other metals such as manganese and 

arsenic on neurodevelopment.  

A cross-sectional study by Calderón et al (2001) investigated the effects of long-term 

exposure to lead and arsenic on intelligence in Mexican children. The study found a significant 

decrease in verbal IQ with increasing urinary arsenic (UAs) measures. Higher arsenic exposure 

was also associated with poorer performance on tests of memory and language.  Wasserman et al 

(2004) investigated the impact of arsenic on the intelligence of 10-year-old children in 

Bangladesh. The study found that children in the third and fourth quartiles had significantly 

lower Full-Scale and Performance IQ (raw scores) compared to children in the first quartile with 

p-values of <0.05 and <0.01 respectively. Another study by Wasserman et al (2007) found 

similar trends in 6 -year old Bangladeshi with children. A study by Rosado et al (2007) of 

Mexican schoolchildren investigated cognitive performance. The study found that children with 
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UAs of >50 µg/L performed significantly lower (p<0.05) on math tests, visual tests and WISC-

RM Digit Span subscale tests compared to children with UAs concentrations <50 µg/L. Using 

the WISC, a study by von Ehrestein et al (2007) found that increasing UAs concentrations were 

associated with decreased performance on vocabulary, object assembly test and picture 

completion tests among West Bengal children ages 5-15. A 2011 study by Hamadan et al showed 

that increasing UAs was significantly associated with decreased verbal and full-scale IQ in 

Bangladeshi girls. However, the same association was not present in boys. Another study by Roy 

et al, 2009 also investigated the association between metals and behavior in Indian children. 

Investigators found that blood lead was associated with higher anxiety (p=0.01), social problems 

(p=0.02), global executive function (p<0.001) and attention deficit (p=0.05).  

This paper builds upon the results of a cross-sectional pilot study by Wright, et al in 

2006, which explored the association between metals exposure and cognitive function and 

behavior in thirty-two children age 11-13.  Hair arsenic, manganese and cadmium were the 

exposure metrics. The outcome instruments used in this study included the Wechsler 

Abbreviated Intelligence Scale (WASI), Wide Range Assessment of Memory and Learning 

(WRAML), Wide Range Assessment of Visual Motor Abilities (WRAVMA), Behavior Rating 

Inventory of Executive Function-Preschool (BRIEF), Behavior Assessment Scale for Children 

(BASC), and the Conners' ADHD DSM-IV Scales (CADS-IV). Arsenic exposure was found to 

be significantly associated with lower scores on the full-scale IQ (β = -0.44, p= 0.01) and verbal 

IQ (β= -0.51, p= 0.003) tests. Additionally, significant interactions were found between As and 

Mn on some memory tests.  

A neurocognitive study by Claus-Henn (2010) from the Tar Creek Cohort demonstrated 

the importance of considering metals mixtures. The study showed a significant interaction 
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between manganese and lead. The study found a negative association between Bayley mental 

and psychomotor development scores in children and lead-manganese exposure (β = -1.27 and -

0.92 respectively).  

The current study provides a follow-up to the Claus-Henn study, which assessed 

neurodevelopment in children 1-2 years of age. In our current study, we primarily focus on the 

neurobehavioral outcomes of children age 5 to 7. We assess general measures of behavior using 

the BASC-2 and BRIEF in order to characterize the neuropsychological effects of metal 

exposures further in this population. 

METHODS 

Study Population 

 The study population has been previously described (Ettinger, 2009). Briefly, the Tar 

Creek Metals Assessment Targeting Community Health (MATCH) study is located at the Tar 

Creek Superfund site. It is a former mining site located in northeast Oklahoma. In 1983, the EPA 

added the site to the National Priority List due to extensive metal contamination of water and 

soil. Approximately 30,000 people live in the area with some residents being of Native American 

descent (Ettinger, 2009). According to the U.S. Geological Survey in 2007, 25% of the drinking 

water samples contained levels of arsenic that were above the EPA concentration limit of 10 

µg/L. 

The Tar Creek MATCH study is a prospective birth cohort to study biological markers of 

early life exposure to environmental toxicants. Data collected includes metals exposure, stress 

indicators and infant growth. Subjects recruited were pregnant women giving birth at Integris 

Hospital in Miami, Oklahoma who planned to live in the area for the next two years. Subjects 

also had to illustrate English language proficiency and did not have another child already 
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enrolled in the study. Information on sociodemographic characteristics, potential sources of 

exposures and psychosocial stress was collected using interviewer-administered questionnaires. 

Hospital staff collected anthropometric information such as height and weight at birth. Maternal 

blood samples and cord blood samples were collected within a 12-hour window of delivery birth. 

Data for 713 children at birth is available for analysis. Follow-up visits included the ongoing 

collection of this data (Zota, 2009 and Ettinger, 2009). Follow-up collected some covariate 

measures at 3-month intervals. Neurodevelopment indicators were measured at ages 1, 2 and 5 to 

6 years of age. Mental health indicators were measured every six months from baseline to two 

years. 

Exposure Assessment 

Maternal samples collected at delivery include whole blood, hair and urine. Child 

samples collected at delivery include cord blood and hair samples. Additional samples of hair, 

nails and urine were collected from mothers at six months intervals up to 24 months, and hair 

and nails for children. The HSPH Trace Metals Laboratory analyzed arsenic levels using 

inductively coupled plasma mass spectrometry (ICP-MS). The limit of detection (LOD) for 

whole blood arsenic using this technique is 0.2 µg/L while the LOD for hair is 0.2 ng/g (Ettinger, 

2009). Quality control measures include external calibration with standard reference materials, 

use of an indium internal standard and analysis of replicates.  

Instruments for Child Neurobehavioral Function  

Behavior Rating Inventory of Executive Function-Preschool (BRIEF) 

 The BRIEF measures executive function in children 2 to 18 years of age. Executive 

function refers to the behavior, emotional and cognitive functions that are involved in problem 

solving. (Papazoglou et al, 2013). We utilized two forms to cover the age ranges: 1) 2 years to 5 
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years, 11 months 2) 5 to 18 years of age. The form utilized in the Tar Creek cohort is the 2 years 

to 5 years, 11 months (Preschool Version). The BRIEF is an 86-item questionnaire administered 

to parents and teachers (Isaacs and Oates, 2008) and asks questions regarding child behavior and 

personality. The questionnaire takes ten to fifteen minutes to complete.  Sub-domains of the tests 

are Inhibit, Shift, Emotional Control (EC), Working Memory (WM) and Plan/Organize PO). The 

Inhibitory Self-Control Index (ISCI) combines the Inhibit and EC raw scores (Gioia and Isquith, 

2004). The Flexibility Index (FI) combines the Shift and EC raw scores. The Emergent 

Metacognition Index (EMI) combines the WM and PO raw scores. The Global Executive 

Composite combines the raw scores of all five sub-domains. For all scales, a higher score 

suggests greater difficulties in executive function. BRIEF assessment has high internal 

consistency with alphas of 0.80 to 0.98. The test-retest reliability coefficient for parents was 0.82 

(Gioia, 2000). 

Behavior Assessment Scale for Children – Second Edition (BASC-2) 

 The BASC-2 measures emotional and social function of children from preschool to high 

school. Composite scores are Internalizing Problems, Externalizing Problems, Behavior 

Symptoms Index and Adaptive Skills. The instrument used for our study was the preschool 

version form answered by parents. The parent form has 134 items on a 4-point scale from 0-4 

indicating never to almost always. For the Parent Rating Scale, internal consistency for 

Internalizing and Externalizing Problems was 0.87 and 0.90 respectively for children age 4 to 5. 

Test-retest reliability on the parent form for Internalizing and Externalizing Problems was 0.86 

and 0.81 respectively (Reynolds, 2004). Higher BASC-2 scores indicate worse emotional and 

social function with the exception of the adaptive domain in which higher scores indicate better 

adaptive skills. 
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Additional Neurodevelopment Tests 

Wechsler Preschool and Primary Scale of Intelligence-Third Edition (WPPSI-III) 

 The WPPSI-III is an intelligence test administered to children from 2 years, 6 months to 7 

years, 3 months. Two forms cover the age range: 1) 2 years, 6 months - 3 years, 11 months 2) 4 

years, zero months – 7 years, 3 months. The form used in the Tar Creek cohort is the 4 years, 

zero months – 7 years, 3 months (notated 4:0-7:3). The test takes 45 minutes to administer to the 

child. The test has subtests that measure verbal IQ (VIQ), performance IQ (PIQ), full-scale IQ 

(FSIQ), general language composite (GLC) and processing speed quotient (PSQ). Wechsler tests 

are the most widely used tests of intelligence, which allows for direct comparison among studies 

(Isaacs and Oates, 2008).  

Covariates 

Maternal IQ and home quality scores using the Home Observation for Measurement of 

the Environment inventory (HOME) are explored and potential confounders or covariates based 

on previous studies (Belfort, 2016) . HOME evaluates the ability of the home environment to 

meet the cognitive and emotional needs of a child (Frankenburg, 1986). HOME scores were 

divided into cognitive (CHS) and emotional subscales (EHS) with higher scores indicating home 

environments that support neurodevelopment. HOME scores were assessed on the same visit as 

the BRIEF and BASC-2 assessments.  

Statistical Analysis 

We used SAS 9.3 statistical software for data analysis. The primary analysis seeks to 

investigate the association between prenatal metals exposure (arsenic, lead and manganese) with 

BRIEF and BASC-2 scores. We modeled all metal concentrations and outcomes scores as 
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continuous variables.  Each metal and subdomain was modeled separately, along with covariates. 

Metal values were mean-centered and log-transformed in the models.   

Only 52 subjects reported HOME scores, therefore we used multiple imputations to 

generate reasonable values for the missing HOME scores. We conducted sequential monotone 

imputation. The first model included all continuous variables. We then added categorical 

variables one at a time from least to most missingness. We included all metal concentrations, and 

covariates as well as additional variables to help predict missing HOME scores. We imputed 10 

datasets then conducted our analysis among the 10 full datasets using PROC MI ANALYZE. 

The imputation dataset was limited to children with complete outcome information.  

The final multivariate model includes covariates found to be significant as well as other 

covariates based on previous literature such including maternal education and smoking. At the 

time of assessment, some children were older than the 5 years and 11 months. Since the 

questionnaires are normalized for this age and younger, we analyzed and reported raw scores for 

the BASC-2 and BRIEF tests. We adjusted for age our models. 

RESULTS 

 Table 1.1 shows the study population characteristics. The mean (SD) age of the children 

at the time of assessment was 78.7 (6.45) months or 6.6 years of age. 48.8% of the children 

tested were girls. Mean (SD) cognitive and emotional HOME scores were 7.06 (1.08) and 5.61 

(1.43) respectively. 

Mean (SD) maternal age at the time of birth was 25.0 (6.29). Mean (SD) maternal IQ was 

102.7 (17.0). The majority of mothers (56.7%) reported living with a partner. 60.6% of mothers 

were employed. 19.3% of mothers reported an annual household income of less than $10,000. 

17.5% of mothers reported an annual household income between $10,000 and $20,000. 36.8% of 
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mothers reported an annual household income between $20,000 and $40,000. 26.3% of mothers 

reported an annual household income over $40,000.  25% of mothers had less than a high school 

education. 43.3% had at least a high school diploma or vocational training. 31.7% of mothers 

had some college education or beyond. 

Table 1.1 Characteristics of Child Neurobehavioral Study Population at Tar Creek  

 

Variable Sample size 
(n)  Mean (SD) or proportion (%) 

Child age (months) 122 78.7 (6.45) 
Child gender = female 121 48.8 
Cognitive HOME Score 50 7.06 (1.08) 
Emotional HOME Score 51 5.61 (1.43) 
Mothers age at birth 105 25.0 (6.29) 
Maternal IQ 98 102.7 (17.02) 
Married or living with a partner  104 56.7 
Employed 104 60.6 
Household income 57 

 Less than $10,000  19.3 
$10,000 to $20,000  17.5 
$20,000 to $40,000  36.8 
Greater than $40,000  26.3 
Maternal education 104 

 Less than high school education  25 
High school diploma or vocational  43.3 
Some college and/or beyond  31.7 
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As mentioned previously, blood metal concentrations were fairly low (Table 1.2). The 

mean (SD) cord blood lead was 0.529 (0.386) µg/dL. The mean (SD) arsenic and manganese 

concentrations were 0.274 (0.115) µg/dL and 3.86 (1.32) µg/dL respectively. The distribution of 

metals revealed a skewed distribution. Median lead, arsenic and manganese concentrations were 

0.457 µg/dL, 0.24 µg/dL and 4.00 µg/dL respectively. The range of cord blood concentrations 

for lead, arsenic and manganese were 0.01-3.14 µg/dL, 0.04-0.54 µg/dL and 0.901-8.02 µg/dL 

respectively. 

 

Table 1.2. Distribution of Metals Concentrations in Cord blood in Tar Creek Cohort 

Metal N Mean (SD) P25  Median P90 Min Max 

Lead 122 0.529 (0.386) 0.307 0.457 0.949 0.01 3.14 

Arsenic 118 0.274 (0.115) 0.20 0.24 0.43 0.04 0.54 

Manganese 122 3.86 (1.32) 2.82 4.00 5.38 0.901 8.02 

Units are µg/dL 

 

Metals concentrations differed by gender (Table 1.3). Girls had higher cord blood lead 

with a mean of 0.545 (0.491) µg/dL while the mean level for boys was 0.514 (0.245) µg/dL. The 

difference between blood levels for girls and boys was statistically significant with a p-value of 

0.009. For cord blood manganese, boys had significantly higher levels with a mean of 4.02 (1.37) 

µg/dL. The mean level for girls was 3.69 (1.25) µg/dL. The difference was statistically 

significant with a p-value <0.0001. No significant sex difference was found for cord-blood 

arsenic levels. 
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Table 1.3 Distribution of Metals Exposure in Cord-blood at Stratified by Gender 

 

Lead 
  Girls Boys P-value 

N 60 62  
Mean 
(SD) 

0.545 (0.491) 0.514 (0.245) 0.009 

Median 0.452 0.48  
Min 0.01 0.027  
Max 3.14 1.16  

 

 

Arsenic 
 Girls Boys P-value 

N 58 60  
Mean 
(SD) 

0.274 (0.127) 0.274 (0.103) 0.614 

Median 0.275 0.255  
Min 0.04 0.06  
Max 0.54 0.53  

 

Manganese 
  Girls Boys P-value 

N 60 62  
Mean (SD) 3.69 (1.25) 4.02 (1.37) <0.0001 

Median 3.69 4.2  
Min 0.901 1.29  
Max 7.59 8.02  
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BRIEF 

Table 1.4 shows the distribution of BRIEF raw scores. The mean (SD) BRIEF raw 

general composite scores (GEC) was 94 (26). The mean (SD) raw scores for the sub-domains 

were 39 (12.0) for Inhibitory Self-Control Index (ISCI), 28 (8.24) for Flexibility Index (FI) and 

the 41 (11.6) for the Emergent Metacognition Index (EMI). The median GEC, ISCI, FI and EMI 

raw scores were 87, 36, 25 and 38 respectively. The range of GEC, ISCI, FI and EMI raw scores 

were 63-168, 26-73, 20-55 and 27-76 respectively. 

 

Table 1.4 Neurobehavioral Outcomes – BRIEF Raw Scores 

BRIEF (N=121) Mean (SD) Median Min Max 

Inhibitory Self-Control Index 39 (12) 36 26 73 

Flexibility Index 28 (8.24) 25 20 55 

Emergent Metacognition Index 41 (11.6) 38 27 76 

General Composite Score 94 (26) 87 63 168 
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We did not find a significant association between raw BRIEF scores and lead in our 

multivariable models (Table 1.5). The β (SE) for lead in the ISCI model was 0.283 (1.40) with a 

p-value of 0.839. The β (SE) for lead in the FI model was 0.009 (1.05) with a p-value of 0.993. 

The β (SE) for lead in the EMI model was 0.679 (1.04) with a p-value of 0.512. Finally, the β 

(SE) for lead in the GEC model was 0.882 (2.69) with a p-value of 0.743. 

Maternal IQ was significantly associated with the Flexibility Index (FI) with β (SE) = -

0.086 (0.037), p = 0.019. Maternal IQ was not associated with ISCI, EMI or GEC scores with β 

(SE) = 0.061 (0.047), p = 0.192, β (SE) = -0.027 (0.054), p = 0.615 and β (SE) = -0.149 (0.112), 

p = 0.183 respectively. We also found a significant association between gender and ISCI score 

with β (SE) = 5.16 (1.92), p= 0.007, with boys having higher scores than girls. Gender was 

marginally significant for the FI subdomain and GEC with β (SE) = 2.64 (1.38), p = 0.056 and β 

(SE) = 7.53 (4.23), p = 0.075 respectively. Gender was not significantly associated with EMI 

with β (SE) = 1.16 (1.91), p = 0.544. Though child age was negatively associated with ISCI, FI, 

EMI and GEC raw scores, none of the associations were significant with p-values of 0.701, 

0.373, 0.136 and 0.310 respectively. 

Cognitive HOME score was negatively associated with Global Executive Composite 

scores with β (SE) = -6.12 (2.11), p-value 0.004. The same significant association was found 

with the ISCI and EMI domains with β (SE) = -2.63 (0.990), p= 0.008 and β (SE) = -3.29 

(0.977), p = 0.001 respectively. Cognitive HOME score was marginally associated with FI with 

β (SE) = -1.16 (0.643), p = 0.071. Though emotional HOME scores were also negatively 

associated with ISCI, FI, EMI and GEC raw scores, none of the associations were significant 

with p-values of 0.420, 0.257, 0.195 and 0.266 respectively.  
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Table 1.5 Association between Lead and BRIEF using Multivariable Regression 

Variable Inhibitory Self-
Control Index Flexibility Index 

Emergent 
Metacognition 

Index 

Global 
Executive 
Composite 

Lead     
β (SE) 0.283 (1.40) 0.009 (1.05) 0.679 (1.04) 0.882 (2.69) 
p-value 0.839 0.993 0.512 0.743 

Maternal IQ     
β (SE) -0.061 (0.047) -0.086 (0.037) -0.027 (0.054) -0.149 (0.112) 
p-value 0.192 0.019 0.615 0.183 

Child age (years)     
β (SE) -0.747 (1.94) -1.25 (1.41) -2.98 (2.00) -4.43 (4.36) 
p-value 0.701 0.373 0.136 0.310 

Gender      
β (SE) 5.16 (1.92) 2.64 (1.38) 1.16 (1.91) 7.53 (4.23) 
p-value 0.007 0.056 0.544 0.075 

Cognitive 
HOME score 

    

β (SE) -2.63 (0.990) -1.16 (0.643) -3.29 (0.977) -6.12 (2.11) 
p-value 0.008 0.071 0.001 0.004 

Emotional 
HOME score 

    

β (SE) -0.606 (0.753) -0.565 (0.499) -0.843 (0.650) -1.70 (1.53) 
p-value 0.420 0.257 0.195 0.266 
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We did not find a significant association between raw BRIEF scores and arsenic in our 

multivariable models (Table 1.6). The β (SE) for arsenic in the ISCI model was -2.86 (2.31) with 

a p-value of 0.216. The β (SE) for arsenic in the FI model was -0.774 (1.69) with a p-value of 

0.647. The β (SE) for arsenic in the EMI model was -3.44 (2.52) with a p-value of 0.174. Finally, 

the β (SE) for arsenic in the GEC model was -6.76 (5.51) with a p-value of 0.219. 

Maternal IQ was marginally associated with the Flexibility Index (FI) with β (SE) = -

0.071 (0.039), p = 0.064. Maternal IQ was not associated with ISCI, EMI or GEC scores with β 

(SE) = -0.024 (0.048), p = 0.613, β (SE) = 0.006 (0.054), p = 0.913 and β (SE) = -0.071 (0.112), 

p = 0.524 respectively. We also found a significant association between gender and ISCI, FI and 

GEC scores with β (SE) = 5.87 (1.93), p= 0.002, β (SE) = 2.95 (1.44), p = 0.040 and β (SE) = 

9.30 (4.28), p = 0.03 respectively. Again, boys had higher scores than girls. Gender was not 

significantly associated with EMI with β (SE) = 2.05 (1.91), p = 0.283. Though child age was 

negatively associated with ISCI, FI, EMI and GEC raw scores, none of the associations were 

significant with p-values of 0.704, 0.433, 0.190 and 0.373 respectively. 

Cognitive HOME score was negatively associated with Global Executive Composite 

scores with β (SE) = -7.35 (2.01), p-value 0.0003. The same significant association was found 

with the ISCI, FI and EMI subdomains with β (SE) = -3.27 (0.952), p= 0.001, β (SE) = -1.35 

(0.670), p = 0.044 and β (SE) = -3.82 (0.940), p <0.0001 respectively. Though emotional HOME 

scores were also negatively associated with ISCI, FI, EMI and GEC raw scores, none of the 

associations were significant with p-values of 0.514, 0.247, 0.268 and 0.331 respectively.  
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Table 1.6 Association between Arsenic and BRIEF using Multivariable Regression 

Variable Inhibitory Self-
Control Index 

Flexibility 
Index 

Emergent 
Metacognition 

Index 

Global 
Executive 
Composite 

Arsenic     
β (SE) -2.86 (2.31) -0.774 (1.69) -3.44 (2.52) -6.76 (5.51) 
p-value 0.216 0.647 0.174 0.219 

Maternal IQ     
β (SE) -0.024 (0.048) -0.071 (0.039) 0.006 (0.054) -0.071 (0.112) 
p-value 0.613 0.064 0.913 0.524 

Child age     
β (SE) -0.747 (1.96) -1.16 (1.48) -2.73 (2.08) -4.03 (4.52) 
p-value 0.704 0.433 0.190 0.373 

Gender     
β (SE) 5.87 (1.93) 2.95 (1.44) 2.05 (1.91) 9.30 (4.28) 
p-value 0.002 0.040 0.283 0.03 

Cognitive HOME score     
β (SE) -3.27 (0.952) -1.35 (0.670) -3.82 (0.940) -7.35 (2.01) 
p-value 0.001 0.044 <0.0001  0.0003 

Emotional HOME score     
β (SE) -0.52 (0.797) -0.606 (0.523) -0.781 (0.705) -1.59 (1.64) 
p-value 0.514 0.247 0.268 0.331 
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 We did not find a significant association between raw BRIEF scores and manganese in 

our multivariable models (Table 1.7). The β (SE) for manganese in the ISCI model was -1.07 

(2.43) with a p-value of 0.659. The β (SE) for manganese in the FI model was -1.79 (1.91) with a 

p-value of 0.348. The β (SE) for manganese in the EMI model was -1.27 (2.50) with a p-value of 

0.611. Finally, the β (SE) for manganese in the GEC model was -3.52 (5.44) with a p-value of 

0.517. 

Maternal IQ showed a significant, negative association with FI with β (SE) = -0.087 

(0.036), p = 0.016. Maternal IQ was not significantly associated with ISCI, EMI or GEC scores 

with β (SE) = -0.063 (0.047), p = 0.181, β (SE) = -0.031 (0.053), p = 0.557 and β (SE) = -0.155 

(0.111), p = 0.160 respectively. We also found a significant association between gender and 

ISCI, FI and GEC scores with β (SE) = 5.31 (1.89), p= 0.005, β (SE) = 2.81 (1.37), p = 0.040 and 

β (SE) = 8.01 (4.14), p = 0.053 respectively. Again, boys had higher scores than girls. Gender 

was not significantly associated with EMI with β (SE) = 1.38 (1.86), p = 0.467. Though child age 

was negatively associated with ISCI, EMI and GEC raw scores, none of the associations were 

significant with p-values of 0.724, 0.155 and 0.338 respectively.  

Cognitive HOME score was negatively associated with Global Executive Composite 

scores with β (SE) = -5.83 (2.09), p-value 0.005. The same significant association was found 

with the ISCI and EMI domains with β (SE) = -2.54 (0.978), p= 0.009 and β (SE) = -3.16 

(0.963), p = 0.001 respectively. Cognitive HOME score was not significantly associated with FI 

with β (SE) = -1.05 (0.655), p = 0.109. Though emotional HOME scores were also negatively 

associated with ISCI, FI, EMI and GEC raw scores, none of the associations were significant 

with p-values of 0.390, 0.175, 0.191 and 0.236 respectively. 
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Table 1.7 Association between Manganese and BRIEF using Multivariable Regression 

 

Variable Inhibitory Self-
Control Index 

Flexibility 
Index 

Emergent 
Metacognition 

Index 

Global Executive 
Composite 

Manganese     
β (SE) -1.07 (2.43) -1.79 (1.91) -1.27 (2.50) -3.52 (5.44) 
p-value 0.659 0.348 0.611 0.517 

Maternal IQ     
β (SE) -0.063 (0.047) -0.087 (0.036) -0.031 (0.053) -0.155 (0.111) 
p-value 0.181 0.016 0.557 0.160 

Child age     
β (SE) -0.695 (1.97) 0.406 -2.90 (2.04) -4.27 (4.45) 
p-value 0.724 0.330 0.155 0.338 

Gender     
β (SE) 5.31 (1.89) 2.81 (1.37) 1.38 (1.86) 8.01 (4.14) 
p-value 0.005 0.040 0.467 0.053 

Cognitive 
HOME score 

    

β (SE) -2.54 (0.978) -1.05 (0.655) -3.16 (0.963) -5.83 (2.09) 
p-value 0.009 0.109 0.001 0.005 

Emotional 
HOME score 

    

β (SE) -0.661 (0.769) -0.671 (0.495) -0.896 (0.685) -1.88 (1.59) 
p-value 0.390 0.175 0.191 0.236 
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BASC-2 Raw Scores 

 Table 1.8 shows the distribution of the BASC-2 raw scores for the following domains: 

Externalizing Problems (EP), Internalizing Problems (IP),  Behavioral Symptoms Index (BSI) 

and Adaptive Skills (AS). The mean (SD) raw composite scores from the BASC-2 assessment 

were 97.0 (22.1) for Externalizing Problems, 155 (24.2) for Internalizing Problems, 298 (56.2) 

for Behavioral Symptoms Index and 209 (33.5) for Adaptive Skills.  

The median EP, IP, BSI and AS raw scores were 92.5, 152, 289 and 212 respectively. 

The range of EP, IP, BSI and AS raw scores were 66 - 170, 115 - 222, 220 - 493 and 101 - 274 

respectively. 

 

Table 1.8 Neurobehavioral Outcomes - BASC-2 Raw Scores 

BASC-2 (N=122) Mean (SD) Median Min Max 

Externalizing Problems 97.0 (22.1) 92.5 66 170 

Internalizing Problems 155 (24.2) 152 115 222 

Behavioral Symptoms Index 298 (56.2) 289 220 493 

Adaptive Skills 209 (33.5) 212 101 274 
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We found a significant, negative association between lead and Adaptive Skills with β 

(SE)  = -5.99 (2.68), p = 0.025. Children with higher blood lead levels at birth showed worse 

Adaptive Skills. We did not find significant associations between lead and scores for 

Externalizing Problems, Internalizing Problems or the Behavior Symptoms Index. The β (SE) for 

lead in the EP model was 0.278 (2.36) with a p-value of 0.906. The β (SE) for lead in the IP 

model was 1.00 (2.80) with a p-value of 0.719. The β (SE) for lead in the BSI model was 2.73 

(5.83) with a p-value of 0.639. 

Maternal IQ was significantly associated with raw AS scores with β (SE) = 0.401 (0.122), 

p = 0.001. Maternal IQ was not associated with EP, IP or BSI scores with β (SE) = 0.0008 

(0.091), p = 0.993, β (SE) = 0.11 (0.116), p = 0.342 and β (SE) = -0.083(0.22), p = 0.705 

respectively. We also found a significant association between gender and EP scores with β (SE) 

= 8.40 (3.64), p= 0.021. Boys had higher scores than girls. Gender was marginally associated 

with AS scores with β (SE) = -8.72 (4.85), p = 0.072. Boys had lower AS scores. We did not find 

significant associations between gender and raw IP and BSI scores with β (SE) = -5.80 (4.21), p 

= 0.168 and β (SE) = 9.64 (8.89), p = 0.278 respectively. We found a significant association 

between Adaptive Skills and age. Older children had higher AS scores with β (SE) = 12.4 (5.0), 

p = 0.013. Child age was marginally associated with BSI scores with β (SE) = -17.0 (9.10), p = 

0.062. We did not find significant associations between age EP or IP with β (SE) = -4.28 (3.61), 

p = 0.236 and β (SE) = -4.34 (4.63), p = 0.348 respectively.  

Cognitive HOME score was negatively associated with EP, IP and BSI scores with β 

(SE) = -7.13 (2.07), p-value 0.001, β (SE) = -5.21 (2.05), p= 0.011 and β (SE) = -23.6 (4.65), p 

<0.0001 respectively. Cognitive HOME score was positively associated with AS with β (SE) = 

14.5 (2.21), p <0.0001. We did not find any significant associations between emotional HOME 
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scores and raw EP, IP, BSI or AS scores with p-values of 0.753, 0.681, 0.522 and 0.954 

respectively. 

 

Table 1.9 Association between Lead and BASC-2 using Multivariable Regression 

 

Variable Externalizing 
Problems 

Internalizing 
Problems 

Behavioral 
Symptoms 

Index 
Adaptive Skills 

Lead     
β (SE) 0.278 (2.36) 1.00 (2.80) 2.73 (5.83) -5.99 (2.68) 
p-value 0.906 0.719 0.639 0.025 

Maternal IQ     
β (SE) 0.0008 (0.091) 0.11 (0.116) -0.083(0.22) 0.401 (0.122) 
p-value 0.993 0.342 0.705 0.001 

Child age (years)     

β (SE) -4.28 (3.61) -4.34 (4.63) -17.0 (9.10) 12.4 (5.0) 

p-value 0.236 0.348 0.062 0.013 
Gender      

β (SE) 8.40 (3.64) -5.80 (4.21) 9.64 (8.89) -8.72 (4.85) 
p-value 0.021 0.168 0.278 0.072 

Cognitive HOME 
score 

    

β (SE) -7.13 (2.07) -5.21 (2.05) -23.6 (4.65) 14.5 (2.21) 
p-value 0.001 0.011 <0.0001 < 0.0001 

Emotional 
HOME score 

    

β (SE) 0.365 (1.16) -0.646 (1.57) -1.90 (2.97) -0.092 (1.60) 
p-value 0.753 0.681 0.522 0.954 
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Arsenic was marginally associated with lower Externalizing Problems with β (SE) = -

7.18 (4.21) and a p-value of 0.089 (Table 1.9). We did not find significant associations between 

arsenic and raw scores for Internalizing Problems, Behavior Symptoms Index or Adaptive Skills. 

The β (SE) for arsenic in the IP model was -1.37 (3.89) with a p-value of 0.725. The β (SE) for 

arsenic in the BSI model was -14.2 (9.67) with a p-value of 0.143. The β (SE) for arsenic in the 

AS model was 1.86 (4.43) with a p-value of  0.979. 

In our arsenic model, maternal IQ was significantly associated with raw AS scores with β 

(SE) = 0.387 (0.137), p = 0.005. Maternal IQ was not associated with EP, IP or BSI scores with β 

(SE) = 0.091 (0.090), p = 0.311, β (SE) = 0.132 (0.119), p = 0.266 and β (SE) = 0.064 (0.229), p 

= 0.781 respectively. We also found a significant association between gender and EP scores with 

β (SE) = 9.65 (3.60), p= 0.007. Boys had higher scores than girls. Gender was also significantly 

associated with AS scores with β (SE) = -10.6 (5.01), p = 0.034. Boys had lower AS scores. We 

did not find significant associations between gender and raw IP and BSI scores with β (SE) = -

5.19 (4.33), p = 0.231 and β (SE) = 11.5 (9.05), p = 0.203 respectively. We found a significant 

association between age and Adaptive Skills. Older children had higher AS scores with β (SE) = 

11.6 (5.42), p = 0.032. Older child also had significantly lower BSI scores with β (SE) = -17.8 

(9.15), p = 0.052. We did not find significant associations between age EP or IP with β (SE) = -

5.08 (3.34), p = 0.128 and β (SE) = -4.62 (4.89), p = 0.344 respectively.  

Cognitive HOME score was negatively associated with EP, IP and BSI scores with β 

(SE) = -8.52 (1.97), p < 0.0001, β (SE) = -5.49 (2.10), p= 0.009 and β (SE) = -25.8 (4.54), p 

<0.0001 respectively. Cognitive HOME score was positively associated with AS with β (SE) = 

15.0 (2.27), p <0.0001. We did not find any significant associations between emotional HOME 
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scores and raw EP, IP, BSI or AS scores with p-values of 0.626, 0.675, 0.641 and 0.894 

respectively. 

 

Table 1.10 Association between Arsenic and BASC-2 using Multivariable Regression 

 

Variable Externalizing 
Problems 

Internalizing 
Problems 

Behavioral 
Symptoms 

Index 

Adaptive 
Skills 

Arsenic     
β (SE) -7.18 (4.21) -1.37 (3.89) -14.2 (9.67) 1.86 (4.43) 
p-value 0.089 0.725 0.143 0.979 

Maternal IQ     
β (SE) 0.091 (0.090) 0.132 (0.119) 0.064 (0.229) 0.387 (0.137) 
p-value 0.311 0.266 0.781 0.005 

Child age     

β (SE) -5.08 (3.34) -4.62 (4.89) -17.8 (9.15) 11.6 (5.42) 

p-value 0.128 0.344 0.052 0.032 
Gender     

β (SE) 9.65 (3.60) -5.19 (4.33) 11.5 (9.05) -10.6 (5.01) 
p-value 0.007 0.231 0.203 0.034 

Cognitive HOME 
score 

    

β (SE) -8.52 (1.97) -5.49 (2.10) -25.8 (4.54) 15.0 (2.27) 
p-value <0.0001 0.009 <0.0001  < 0.0001 

Emotional HOME 
score 

    

β (SE) 0.540 (1.11) -0.665 (1.59) -1.36 (2.92) -0.220 (1.64) 
p-value 0.626 0.675 0.641 0.894 
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Manganese was marginally associated with lower with Adaptive Skills with β (SE) = -

9.88 (5.74) and a p-value of 0.085 (Table 1.10). We did not find significant associations between 

manganese and raw scores for Externalizing Problems, Internalizing Problems and Behavior 

Symptoms Index. The β (SE) for manganese in the EP model was 8.02 (5.26) with a p-value of 

0.128. The β (SE) for manganese in the IP model was 2.70 (5.42) with a p-value of 0.619. The β 

(SE) for manganese in the BSI model was 13.3 (12.1) with a p-value of 0.272. 

In our manganese model, maternal IQ was significantly associated with raw AS scores 

with β (SE) = 0.437 (0.132), p = 0.001. Maternal IQ was not associated with EP, IP or BSI scores 

with β (SE) = -0.010 (0.092), p = 0.910, β (SE) = 0.103 (0.117), p = 0.380 and β (SE) = -0.111 

(0.228), p = 0.627 respectively.  

We also found a significant association between gender and EP scores with β (SE) = 7.48 

(3.58), p= 0.037. Boys had higher scores than girls. Gender was marginally associated with 

lower AS scores with β (SE) = -8.25 (4.77), p = 0.084. We did not find significant associations 

between gender and raw IP and BSI scores with β (SE) = -6.00 (4.19), p = 0.152 and β (SE) = 

8.38 (8.89), p = 0.346 respectively. We found a significant association between age and Adaptive 

Skills. Older children had higher AS scores with β (SE) = 12.5 (4.82), p = 0.009. Older children 

also had significantly higher BSI scores with β (SE) = 17.4 (8.80), p = 0.048. We did not find 

significant associations between age EP or IP with β (SE) = -4.57 (3.45), p = 0.185 and β (SE) = 

-4.40 (4.51), p = 0.330 respectively.  

Cognitive HOME score was negatively associated with EP, IP and BSI scores with β 

(SE) = -7.85 (2.06), p = 0.0001, β (SE) = -5.45 (2.14), p= 0.011 and β (SE) = -24.8 (4.82), p 

<0.0001 respectively. Cognitive HOME score was positively associated with AS with β (SE) = 

15.4 (2.30), p <0.0001. We did not find any significant associations between emotional HOME 
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scores and raw EP, IP, BSI or AS scores with p-values of 0.440, 0.801, 0.763 and 0.524 

respectively. 

 

Table 1.11 Association between Manganese and BASC-2 using Multivariable Regression 

 
 
 

Variable Externalizing 
Problems 

Internalizing 
Problems 

Behavioral 
Symptoms 

Index 

Adaptive 
Skills 

Manganese     
β (SE) 8.02 (5.26) 2.70 (5.42) 13.3 (12.1) -9.88 (5.74) 
p-value 0.128 0.619 0.272 0.085 

Maternal IQ     
β (SE) -0.010 (0.092) 0.103 (0.117) -0.111 (0.228) 0.437 (0.132) 
p-value 0.910 0.380 0.627 0.001 

Child age     
β (SE) -4.57 (3.45) -4.40 (4.51) 17.4 (8.80) 12.5 (4.82) 
p-value 0.185 0.330 0.048 0.009 

Gender     
β (SE) 7.48 (3.58) -6.00 (4.19) 8.38 (8.89) -8.25 (4.77) 
p-value 0.037 0.152 0.346 0.084 

Cognitive 
HOME score 

    

β (SE) -7.85 (2.06) -5.45 (2.14) -24.8 (4.82) 15.4 (2.30) 
p-value 0.0001 0.011 <0.0001 < 0.0001 

Emotional 
HOME score 

    

β (SE) 0.877 (1.13) -0.422 (1.67) -0.921 (3.06) -1.04 (1.64) 
p-value 0.440 0.801 0.763 0.524 
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DISCUSSION 
 

We sought to provide further insight into the neurodevelopmental outcomes in the Tar 

Creek birth cohort MATCH study. Here, we focus on neurobehavioral outcomes assessed at 

follow-up in children 5-7 years of age. General measures of behavior including emotional, social 

and executive functioning were assessed using BRIEF and BASC-2 tests. 

In our BRIEF analysis, we generally found that higher blood lead was associated with 

poorer executive function though the associations were not significantly significant.  However, 

our analysis showed a negative association between executive function and concentrations of 

arsenic and manganese. This could be due to residual confounding. In addition, the levels of 

metals exposures are relatively low. Any effect of arsenic could be masked by the lead, which is 

known to be detrimental to neurodevelopment even at low levels. Though manganese showed the 

same relationship as arsenic, the fact that manganese is an essential nutrient further complicates 

the relationship. Other studies have found U –shaped relationship with manganese. Our analyses 

of covariates were consistent with expectations. We found that children exhibited better 

executive function with increasing cognitive HOME scores.  This association was significant. 

Although we observed the same trend with emotional HOME scores, there was no statistical 

significance. Additionally, boys consistently showed poorer executive function when adjusting 

for metals, age, maternal IQ and HOME scores. This association was significant in many of our 

analyses. 

During our analysis of emotional and social functioning using the BASC-2 domains, we 

found an association that increased blood lead levels at birth was associated with poorer adaptive 

skills in children 5 to 7 years of age.  Again, our analysis showed a negative association between 

BASC-2 sub-domains with the exception of adaptive skills. These observations are counter-
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intuitive, once again revealing that residual confounding and masked effects of lead may be at 

play. The relationship between manganese and the BASC-2 domains were consistent with lead; 

however, none of the associations were significant.  The discrepancy in directionality of the 

association between BRIEF and BASC-2 suggests a complex association between manganese 

and neurobehavioral outcomes that may need to be teased apart by further investigating 

behavioral sub-domains. 

Cognitive HOME scores were significantly associated with BASC-2 scores in all our sub-

domain models.  The direction of association was consistent with expectations. We found 

Externalizing Problems, Internalizing Problems and the Behavioral Symptoms Index composite 

scores were lower with increasing cognitive HOME scores. Cognitive HOME scores were 

positively associated with better adaptive skills. In addition, we consistently observed 

statistically significant higher Externalizing Problems in boys across all models.  

A major limitation of the study is the loss to follow-up (LTFU). While the baseline cohort 

contained 713 mother-infant pairs, only 122 BASC-2 and 121 BRIEF scores were available for 

our analysis. Loss to follow-up could be due to various factors. Multiple imputations dataset 

should accurately reflect missing data assuming the data is missing at random. LTFU severely 

limited our sample size, and did not allow us to take advantage of the repeated measures of 

exposure. 

Generalizability is limited due to the characteristics of the study population. The major of 

participants identify as Native American or white. For this reason, we did not include measures 

of race in our analysis, allowing us to preserve statistical power given our limited sample size. In 

addition, high economic and financial instability results in high population instability. Many of 

the residents became increasing aware of contamination issues surrounding the superfund site.   
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Another limitation of our study is that metals exposure was measured using cord blood at 

birth as a biomarker. We obtained, but did not utilize repeated measures of exposure from other 

biomarkers such as hair and nail due to low sample size. Unfortunately, we did not obtain 

repeated measures of blood metal levels for analysis. While levels of metals in cord blood 

provides insight into the role of prenatal exposure to later neurobehavioral outcomes, other 

biomarkers, particularly hair and nail, may provide better insight into continued metal exposure 

during the early years of life. While we did not observe metals interactions, again this may be 

due to the limited study size. 

We did not include child IQ in our models. Future investigations should explore child IQ 

as both a covariate and outcome. Additionally, measures of maternal depression are also 

available for this study population. Future analysis will investigate the association between 

depression in mothers and neurodevelopment in children. Future studies will also investigate the 

association between metals and other neurocognitive outcomes such memory, visual-motor skills 

and attention using the Wide Range Assessment of Memory and Learning (WRAML), Wide 

Range Assessment of Visual Motor Ability (WRAVMA) and Conners’ Kiddie Continuous 

Performance Test (K-CPT). 
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Figure 1.1 Effect Estimates of Arsenic, Lead and Manganese for BRIEF domains 
 

 
 

 
EMI = Adaptive Skills 
FI = Behavior Symptoms Index 
ISCI = Externalizing Behavior 
GEC = Internalizing Behavior 
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Figure 1.2 Effect Estimates of Arsenic, Lead and Manganese for BASC-2 domains 
 

 
 
 
 
AS = Adaptive Skills 
BSI = Behavior Symptoms Index 
EB = Externalizing Behavior 
IB = Internalizing Behavior 
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ABSTRACT 

Background: Postpartum depression affects 10-15% of new mothers. There is increasing 

evidence that exposure to metals may play a role in the development of depression. 

Objective: This study investigates the association between arsenic, lead and manganese and 

postpartum depression in the Tar Creek cohort. 

Design: We conducted a cross-sectional analysis of mothers in the Tar Creek Superfund Cohort 

Study. We measured maternal metal concentrations in blood at the time of delivery. Mothers 

were administered the Edinburgh Postnatal Depression Scale (EPDS) within hours after delivery. 

Results: Results of a median regression analysis indicate that mothers with increased arsenic 

concentration were more likely to suffer from PPD, β (SE) = 1.03 (0.45). The association was 

statistically significant (p =0.01) when adjusting for lead and manganese exposure, maternal age, 

maternal education, household income, smoking status, living with a partner and history of 

depression. We also found a significant interaction between lead and arsenic (β = 1.13, p=0.017). 

No other interactions between arsenic, lead and manganese were significant. 

Conclusion: Our study provides further evidence that heavy metals play an important role in 

depression etiology. Increased arsenic exposure is positively associated with postpartum 

depression in mothers from the Tar Creek cohort. In addition, we found a significant interaction 

between arsenic and lead. This further highlights the necessity of taking into account metal co-

exposures when investigating neurological health outcomes such as PPD. 

INTRODUCTION 

Postpartum Depression 

Mental health is a major public health concern. Recent events of violence such mass 

shooting and celebrity suicides have increased public outcry for better mental health resources. 
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In the United States alone, depression affects over 20 million people (NIMH) Postpartum 

depression (PDD) affects 10-15% of new mothers (O’Hara, 1996). Postpartum is an especially 

vulnerable time for new mothers and their infants.  

Rapid changes in estrogen, progesterone and cortisol hormones (within 48 hours of 

delivery) are believed to be the cause of PPD. However, the exact cause remains unknown. Risk 

factors for PPD include younger age, lack of social support, paternal history of depression, major 

life events and marital status (Patel, 2012). However, the most common risk factor for PPD is a 

history of depression. The onset of PPD is within 4 weeks of delivery and can last into the first 

postnatal year. 

The most common screening tool for postnatal depression is the Edinburgh Postnatal 

Depression Scale (EPDS) developed by Cox et al in 1987. Diagnosis of postnatal depression 

(considered a subcategory of major depressive disorder) utilizes the Diagnostic Statistical 

Manual of Mental Disorder, 4th edition (DSM-IV) criteria.  Mothers receive treatment for PDD 

through a variety of methods including psychotherapy and pharmacotherapy. Psychological 

counseling is often the first course of actions due to maternal concerns in the use of medication 

while breastfeeding.   

Metals and Mental Health 

Metals such as arsenic, lead and manganese are readily found in the earth’s crust.  

Exposure primarily occurs through contamination of drinking water, direct exposure to soil, and 

inhalation of house dust. While occupational studies have focused on high-level exposure, 

numerous studies have shown that these metals are neurotoxic even at low levels. Increasingly, 

investigations are focusing on the association between heavy metal exposures and 

neuropsychiatric outcomes. 
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Oxidative stress is believed to be one of the primary mechanisms of neurotoxicity for As 

and Mn. Metabolism of these metals produce reactive oxygen species (ROS) that can cause 

cellular damage, inflammation and interfere with normal cellular function (Flora, 2011 and 

Horning et al, 2015). Studies have also shown that both lead and manganese affect dopaminergic 

systems in the brain (Cory-Slechta, 1995 and Fitsanakis et al, 2006). Another important 

mechanism of lead neurotoxicity is the through the disruption of normal calcium function 

essential for many cellular processes including cell-signaling pathways (ATSDR, 2007).  

The neurotoxicity of lead is well documents. Many studies have sought to investigate the 

impact of lead on adults.  A longitudinal study of lead workers found that past exposure to lead is 

associated with cognitive decline in adults (Schwartz, 2001). However, in another study of 

NHANES data (Bouchard, 2009), investigators found that blood lead levels were associated with 

increased risk of mental health disorder in young adults (age 20-39). Blood lead quintiles were 

associated with increased major depressive disorder (p for trend = 0.05) and panic disorder (p for 

trend = 0.02). In addition, subjects in the highest quintile (were ≥ 2.11 μg/dL) had an increase in 

the adjusted odds ratio of 2.32 (95% CI: 1.13-4.75) for major depression and 4.94 (95% CI: 1.32-

18.48) for panic disorder. A study by Eum et al, 2012 found an association between bone lead 

levels and depression symptoms in premenopausal or postmenopausal women who took 

hormone replacement therapy (HRT). Using the Metal Health Index 5-item subscale (MHI-5), 

women in the highest tertile of Pb concentrations reported worse depressive symptoms than 

those in the lowest tertile (p-trend = 0.0001).  However, two studies (Liu et al, 2013 and Örün et 

al, 2011) specifically looking at PPD did not find an association between breast milk lead and 

EPDS depression scores. 
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Current knowledge of the effects of arsenic exposure on mental health in adults is limited 

but increasing.  In a Mongolian study using the General Health Questionnaire (GHQ) 

investigators found that subjects in an arsenic-exposed village were 2.5 times as likely (95% CI: 

1.1-6.0, p = 0.037) to experience distress as those in a arsenic-free village (Fujino et al, 2004). A 

cross-sectional study by Syed et al in 2012 found that arsenic-affected patients (>50 µg/L As in 

drinking water) in Bangladesh had significantly lower (p = 0.002 for males and p < 0.001 for 

females) overall quality of life (QOL) scores than non-patients. QOL scores were obtained using 

the World Health Organization Quality of Life – BREF assessment. The study also found that 

patients had significantly lower mental health status (p < 0.001 for males and females) than non-

patients when using a self-reported questionnaire. A US study by Zierold et al (2004) found that 

persons whose household water arsenic concentrations are between 2 µg/L and 10 µg/L are 2.74 

times as likely to report depression compared to the reference group (<2 µg/L). Mukherjee et al, 

2014 investigated the association between well water arsenic and depressive symptoms in West 

Bengal, India. Investigators assessed symptoms using the Beck Depression Inventory, Second 

Edition (BDI-II). Using a score cut-off of ≥ 14 for presence of depressive symptoms, arsenic-

exposed women (>10 µg/L As in drinking water) had a significantly higher prevalence of 

depressive symptoms (p<0.001) than controls.   

Chronic arsenic toxicity is referred to as arsenicosis. The symptoms of arsenicosis varies 

and its’ onset depends on the level and duration of exposure. A characteristic feature of 

arsenicosis is the presence of hyperpigmentation and keratosis skin lesions. Other common 

symptoms are weakness, cough, paresthesia, liver damage and Black foot disease (Mazumder, 

2008). Symptoms of arsenicosis such as keratosis and Black foot disease are extreme and 

outwardly noticeable. Victims experience social and economic instability, (Keya et al, 2008), 
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discrimination and ostracism (Brinkel et al, 2006). Extreme physical ailments and psychosocial 

factors further complicate the association between arsenic toxicity and mental health. 

Manganese is an essential nutrient that helps protect against oxidative stress.  Ironically, 

Mn neurotoxicity from excess manganese may also occur through redox mechanisms. High 

manganese exposure has been associated with Parkinsonism symptoms (Beuter, 1994) and other 

neurodegenerative conditions such as manganism. Manganism initially presents itself as a 

psychiatric condition with symptoms such as violent behavior, emotional instability, fatigue and 

insomnia and often resembles Parkinson’s disease. Manganism has been associated with high 

levels of manganese in the brain (Aschner, 2006). In a study using 2011-2012 NHANES data, 

investigators found that adults with depression had higher levels of urinary manganese with an 

adjusted OR of 1.47 (95% CI: 1.01-2.15). Information on depression was obtained using the self-

reported Patient Health Questionnaire, with a cut-off of ≥ 10 categorized as having depression 

(Shiue et al, 2015). Another study found that male psychiatric patients in Pakistan had 

significantly (p<0.001) higher levels of hair manganese than controls (Arain et al, 2015). A study 

of US welders found that blood manganese was significantly associated with depression 

(assessed using the BDI-II). One unit increase in blood manganese concentration was associated 

with 1.5 times the odds of having depression (95% CI: 1.0-2.2, p<0.05) among the study 

population. 

Knowledge Gap 

 The association between metals exposure and mental health is not well understood. 

Evidence exists that lead, arsenic and manganese are neurotoxic, but studies on their association 

with postpartum depression specifically are extremely scarce. The majority of PDD research 

focuses on the role of micronutrients such as iron, zinc selenium and calcium in the treatment 



56 

 

depression. Some studies have explored the deleterious effects of lithium treatment on 

neurodevelopment but the possible adverse effects other metals are primarily ignored. Our study 

seeks to contribute to our understanding of how arsenic, manganese and lead, even at low-level 

exposures, may play a role in the etiology of postpartum depression. 

METHODS 

Study Design and Population 

Study design and population have been described previously (Ettinger et al., 2009; 

Zota et al., 2009a). Briefly, the Tar Creek Superfund site is a former mining site located in 

northeast Oklahoma. In 1983, the EPA added the site to the National Priority List due to 

extensive metal contamination of water and soil. Approximately 30,000 people live in the area 

with some residents being of Native American descent. 

The Tar Creek study is a prospective birth cohort to study biological markers of early life 

exposure to environmental toxicants and health outcomes. Data collected includes metals 

exposure, stress indicators, infant growth and child development. Subjects recruited were 

pregnant women giving birth at Integris Hospital in Miami, Oklahoma who planned to live in the 

area for the next two years. Information on sociodemographic characteristics, potential sources 

of exposures and psychosocial stress is collected using interviewer-administered questionnaires. 

Maternal blood samples and cord blood samples were collected within a 12-hour window of 

delivery birth. The study collected data for 713 mother-infant pairs at birth.  Mental health 

indicators were measured every six months from baseline to two years. Study participants are 

predominantly white and Native American population. 

Exposure Assessment 
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Maternal whole blood samples were collected at delivery.  The HSPH Trace Metals 

Laboratory analyzed arsenic, lead and manganese levels using inductively coupled plasma mass 

spectrometry (ICP-MS). The limit of detection for whole blood arsenic, manganese and lead 

using this technique is 0.02 µg/dL.  Quality control measures include external calibration with 

standard reference materials, use of an indium internal standard and analysis of replicates. The 

measurements for 60 subjects we excluded from the analysis due to instrumental error. 

Screening Tools for Maternal Mental Health 

Edinburgh Postnatal Depression Scale (EPDS) 

The EPDS is a self-administered questionnaire, used as a screening tool for depression. 

The EPDS is a 10-question survey scored on a Likert scale. The questionnaire asked respondents 

to indicate how they have felt over the past 7 days. The maximum score is 30. Participants with 

scores ≥ 10 may possibly have depression. Respondents whose scores are ≥ 13 are likely to be 

suffering from depression (Wisner et al, 2002). Investigators administer an initial questionnaire 

at enrollment (within hours of delivery) Investigators administer follow-up surveys over the 

phone or in person at months 3, 6, 9, 12, 15, 18, 21 and 24.  

Statistical Analysis 

Arsenic, lead and manganese concentrations were log-transformed and modeled 

continuously. We also mean centered our metals concentrations. Depression scores are modeled 

continuously from 0 to 30. Due to the non-normal distribution of depression scores, the 

associations between depression and metal concentrations were analyzed using quantile 

regression (modeling based on the median rather than the mean). We modeled the association at 

several quantiles: 25th, 30th, 40th, 50th (median), 60th, 70th, 80th and 90th.  
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Preliminary analyses revealed household income is a significant covariate. However, only 

66% of subjects in the analytical data reported income data. Therefore, we performed multiple 

imputations in order to include income as a covariate in the multivariable model. We excluded 

mothers who were missing depression scores from the imputation dataset. We first imputed a 

dataset containing only continuous predictors. We then conducted sequential monotone logistic 

imputations in which we added categorical imputation variables one at a time from least to most 

missing. Covariates of interest are age, maternal and paternal education, alcohol use, smoking, 

income and employment.  We imputed ten dataset iterations. The final analytical dataset 

included 582 mothers. We used the non-imputed dataset for our univariate models. 

We fit a quantile regression model to investigate associations between predictor variables 

and depression. Some of the covariates used in the final model e.g. age, were chosen a priori will 

were selected based on the results of our univariate analyses. We analyzed our data using SAS 

9.4. 

RESULTS 

  Table 2.1 describes characteristics of the analytical study population (n = 582). Mean 

(SD) maternal age at birth was 24.6 (5.5) years. 35.7% of mothers reported being a current 

smoker. 22.8% of mothers reported drinking alcohol at least one day in a week over the last five 

years. 15.8 % of mothers had a maternal history of depression (reported previous prescription 

medication for depression). Most mothers (65.7%) were married or lived with a partner.  58.6% 

of mothers were unemployed. This includes mothers not looking for employment. 23.5% of 

mothers reported an annual household income of less than $10,000. 24.8% reported and annual 

household income between $10,000 and $20,000. 33.3% had household incomes between 

$20,000 and $40,000. 18.4% reported annual household incomes of over $40,000. 25.8 % of 
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mothers did not complete high school or vocational training. 42.7% of mothers had at least a 

high school diploma or vocational training. 31.5% had some college education or beyond. 

Respondents reported that 21.9% of fathers had less than high school education, 45.0% had at 

least a high school diploma or vocational training, 33.1% of fathers had at least some college 

education or beyond. 

 

Table 2.1 Maternal Characteristics in Tar Creek Cohort  

Variable Sample size 
(n) 

 Mean (SD) or 
proportion (%) 

Mothers age at birth 581 24.6 (5.5) 
Current smoker 582 35.7 
Drank 1 or more days in a week in the last 5 
years 518 22.8 

Doctor prescribed medication for depression 575 15.8 
Married or living with a partner  565 65.7 
Unemployed 575 58.6 
Household income 387 - 
Less than $10,000 91 23.5 
$10,000 to $20,000 96 24.8 
$20,000 to $40,000 129 33.3 
Greater than $40,000 71 18.4 
Maternal education 581 - 
Less than high school education 150 25.8 
High school diploma or vocational 248 42.7 
Some college and/or beyond 183 31.5 
Paternal education 242 - 
Less than high school education 53 21.9 
High school diploma or vocational 109 45.0 
Some college and/or beyond 80 33.1 
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Table 2.2 shows the distribution of maternal blood arsenic, lead and manganese at 

delivery. The mean (SD) blood arsenic, manganese and lead levels at delivery were 0.188 

(0.167) µg/dL, 2.55 (1.05) µg/dL and 0.713 (0.437) µg/dL respectively.  The results indicate the 

distributions of blood metal concentration are highly skewed thus making it appropriate to log-

transform them in our statistical models. The median arsenic, manganese and lead levels were 

0.144 µg/dL, 2.32 µg/dL and 0.601 µg/dL respectively. The range of arsenic concentration was 

0.023 – 2.41 µg/dL. The range of manganese levels was 0.802 – 11.74 µg/dL. The range of lead 

concentrations was 0.027 – 3.14 µg/dL. 

 Table 2.2 also shows the summary statistics for EPDS scores. We had depression scores 

for 582 mothers at delivery. The mean (SD) EPDS score was 5.19 (5.50) with a range of 0 to 27. 

The median EPDS score was 4.0.  EPDS scores were not normally distributed. We therefore, as 

stated in the methods, choose to conduct quantile regression in our models. 

 

 

Table 2.2 Maternal Blood Concentrations and EPDS Scores at Delivery 

Variable N Mean (SD) 25th 
pct 

Median 75th 
pct 

Min Max 

Arsenic (ug/dL) 578 0.188 (0.167) 0.097 0.144 0.220 0.023 2.41 
Manganese (ug/dL) 580 2.55 (1.05) 1.91 2.32 2.98 0.802 11.74 
Lead (ug/dL) 580 0.713 (0.437) 0.410 0.601 0.898 0.027 3.14 

        EPDS Score 582 5.19 (5.50) 0.0 4.0 8.0 0.0 27.0 
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Table 2.3 shows the results of univariate regression at the 50th quantile using the imputed 

data. We found a positive association between blood arsenic and maternal depression with, β 

(SE) = 1.17 (0.60) but the results were only marginally significant (p = 0.064). Manganese and 

lead were not significantly associated with depression in our univariate analysis. Higher maternal 

age at birth was marginally associated with lower depression scores, β (SE) = - 0.105 (0.058), p 

= 0.07. We found an association between maternal education and EPDS scores (p=0.001). 

Mothers with at least a high school diploma or vocational training had lower scores than mothers 

who did not complete such training with β (SE) = -3.0 (0.80), p = 0.0002. Mothers with some 

college education also had less depression compared to mothers who did not complete high 

school with β (SE) = -3.0 (1.05), p = 0.005. Household income was also a significant predictor of 

PPD. Overall, mothers whose annual household income was > $10,000 had significantly lower 

scores (p for trend = 0.039). Mothers whose annual income was between $20,001 and $40,000 

had significantly lower EPDS scores with β (SE) = -3.0 (1.04), p = 0.004 compared to those 

whose annual household income was less than $10,000. We did not find significant associations 

for mothers with household income between $10,000 to $20,000 and over $40,000 with β (SE) = 

-2.0 (1.41), p = 0.156 and β (SE) = -2.0 (1.31), p = 0.127 respectively.   Current smokers had 

higher depression scores than non-smokers with β (SE) = 2.0 (0.79), p = 0.011.Maternal history 

of depression was a strong predictor of PPD. Mothers previously prescribed antidepressants, β 

(SE) = 4.0 (0.99), p <0.0001 had worse depression scores.
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Table 2.3  Univariate Median Regression Analysis for Postpartum Depression 

Variable n β (SE) p-value 
Maternal blood arsenic 578 1.17 (0.60) 0.064 
Maternal blood manganese 580 0 (0.82) 1 
Maternal blood lead 580 0 (0.57) 1 
Maternal age at birth 581 -0.105 (0.058) 0.07 
Maternal education 581 - 0.001 
Maternal education above high school 183 -3.0 (1.05) 0.005 
Maternal education at least to high school 248 -3.0 (0.80) 0.0002 
Maternal education, less than high school 150 - - 
Household income 387 - 0.039 
Household income > $40,000  71 -2.0 (1.31) 0.127 
Household income $20,001 - $40,000  129 -3.0 (1.04) 0.004 
Household income $10,001 - $20,000  96 -2.0 (1.41) 0.156 
Household income ≤ $10,000 91 - - 
Current smoker 582 2.00 (0.79) 0.011 
Ever prescribed depression medication 575 4.00 (0.99) <0.0001 
Living with at partner 565 0.00 (0.90) 1 
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Table 2.4 shows the results of multivariable regression at the median. We found that 

maternal blood arsenic concentration at childbirth was significantly associated with depression 

with β (SE) = 0.967 (0.438), p = 0.027 after adjusting for maternal age, smoking, maternal 

education, household income, living with a partner, and having ever been prescribed 

antidepressant medication. Neither maternal blood manganese nor maternal blood lead were 

associated with depression at the 50th quantile with β (SE) = -0.862 (0.744), p = 0.247 and β (SE) 

= -0.002 (0.587), p = 0.997 respectively. Maternal history of antidepressant use remained 

significant in the full model with β (SE) = 3.84 (0.97), p < 0.0001. 

 

Table 2.4 Multivariable Median Regression Analysis for Postpartum Depression  

Variable β (SE) p-value 
Maternal blood arsenic 0.967 (0.438) 0.027 
Maternal blood manganese -0.862 (0.744) 0.247 
Maternal blood lead -0.002 (0.587) 0.997 
Maternal history of antidepressant 
use 

3.84 (0.97) <0.0001 

 
Model adjusted for age, maternal education, household income, living with a partner, smoking 
status and having ever been prescribed antidepressants.  
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As previously stated, the EPDS scores were abnormally distributed. To explore if effects 

of metals concentration varied depending on the quantile of depression scores, we also modeled 

our data at various quantiles of EPDS scores from the 25th quantile to the 90th quantile.  Figures 

2.1 to 2.3 show that the effect estimates of association between PDD and the arsenic, manganese 

and lead at different quantiles of depression scores.  

Arsenic was positively associated with depressive symptoms. Shown in Figure 2.1, the 

association between maternal blood arsenic concentrations and PPD were statistically significant 

at the 25th, 30th , 40th , 50th  and 60th, 75th  quantiles with β (SE) = 0.586 (0.214), p = 0.006; β (SE) 

= 0.782 (0.249), p = 0.002; β (SE) = 1.07 (0.32), p = 0.001; β (SE) = 0.967 (0.438), p = 0.006; β 

(SE) = 0.971 (0.503), p = 0.054 and β (SE) = 1.03 (0.519), p = 0.047 respectively. Arsenic was 

marginally associated with depression scores at the 70th quantile with, and β (SE) = 0.944 

(0.498), p = 0.058. We did not find an association between arsenic and depression scores at the 

80th and 90th quantiles of depression with β (SE) = 0.851 (0.519), p = 0.101 and β (SE) = -0.040 

(0.684), p = 0.954 respectively. 
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Figure 2.1 The Association between Postpartum Depression and Arsenic Varies by Quantile 
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Figure 2.2 shows the estimates of the association between manganese and PPD. While 

the association between manganese and PDD scores was statistically significant at the 60th 

quantile with β (SE) = -1.98 (0.90), p = 0.029. The association between manganese and PDD 

scores was marginally significant at the 70th quantile with β (SE) = -1.83 (1.02), p = 0.074. We 

found no other significant associations at other quantiles of depression score. At the 25th 

quantile, the association between manganese and EPDS scores was β (SE) = -0.093 (0.305), p = 

0.762. The association at the 30th percentile was β (SE) = -0.115 (0.397), p = 0.773. The estimate 

at the 40th quantile was β (SE) = -0.449 (0.524), p = 0.392. The estimate at the 50th quantile was 

β (SE) = -0.862 (0.744), p = 0.247. The associations at the 75th, 80th and 90th quantiles were β 

(SE) = -1.72 (1.06), p = 0.105, β (SE) = -1.41 (1.11), p = 0.203 and β (SE) = -1.43 (1.36), p = 

0.294 respectively.
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Figure 2.2: The Association between Postpartum Depression and Manganese Varies by Quantile 
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As shown in Figure 2.3, we found no significant associations between blood lead levels 

and PPD scores in our study. At the 25th quantile, the association between manganese and EPDS 

scores was β (SE) = -0.163 (0.170), p = 0.339. The association at the 30th percentile was β (SE) = 

-0.163 (0.241), p = 0.499. The estimate at the 40th quantile was β (SE) = 0.088 (0.330), p = 

0.790. The estimate at the 50th quantile was β (SE) = -0.002 (0.587), p = 0.997. The associations 

at the 60th, 70th, 75th, 80th and 90th quantiles were β (SE) = 0.072 (0.726), p = 0.921; β (SE) = 

0.253 (0.698), p = 0.716; β (SE) = 0.311 (0.754), p = 0.681; β (SE) = 0.108 (0.759), p = 0.886 

and β (SE) = -0.252 (1.009), p = 0.803 respectively. 

 

Figure 2.3 The Association between Postpartum Depression and Lead by Quantile  
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  In addition to the main effects, we investigated interactions between metals. As shown in 

Table 2.5, we found a significant lead-arsenic interaction at the 50th quantile (median) with β 

(SE) = 1.49 (0.62), p = 0.017. The main effect of arsenic was still significant with β (SE) = 0.80 

(0.34), p = 0.018. The main effects of lead and manganese remained insignificant with β (SE) = -

0.31 (0.45), p = 0.489 and β (SE) = -1.04 (0.81), p = 0.200 respectively. Again, the association 

between maternal history of antidepressant use and EPDS scores remained significant with β 

(SE) = 4.09 (0.85), p < 0.0001. Additionally, we found that mothers whose reported household 

income was ≤ $10,000 per year had higher depression scores than mothers who reported annual 

household incomes greater than $40,000 with β (SE) = 3.07 (1.19), p = 0.011. 

 

Table 2.5 Interaction between arsenic and lead in PPD  

Variable β (SE) p-value 
Maternal blood arsenic 0.80 (0.34) 0.018 
Maternal blood manganese -1.04 (0.81) 0.200 
Maternal blood lead -0.31 (0.45) 0.489 
Maternal blood arsenic*lead interaction 1.49 (0.62) 0.017 
Household income ≤ $10,000/year 3.07 (1.19) 0.011 
Maternal history of antidepressant use 4.09 (0.85) <0.0001 

Model adjusted for age, maternal education, household income, living with a partner, smoking 
status and having ever been prescribed antidepressants.  
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DISCUSSION 

 We found several interesting results in our study of the association between metals 

toxicity and postpartum depression. We found a significant positive association between blood 

arsenic concentrations and depression in mothers in our adjusted model. EPDS scores increased 

by 1.03 (0.45) points for every 1 unit increase in blood arsenic level above the mean (p=0.023). 

In addition, we found a significant interaction between arsenic and lead in our model β = 1.49 

(0.62), p = 0.017. These results highlight the importance of looking at metal co-exposures when 

investigating their neurotoxicity.  

 At lower EPDS score quantiles of (≤ 60th percentile), manganese shows a protect effect 

on PPD. This protective effect lessens at higher quantiles of depression scores. One possible 

explanation is that mothers in higher quantiles of EPDS scores have competing risks for PPD. 

While we adjusted for some risk factors such as maternal history of smoking, age, marital status 

and maternal education, other risks factors exist.  

Recent studies have suggested that depression may be the result of chronic systemic 

inflammation and oxidative stress (Rawdin et al, 2012 and Schiepers et al 2005). Studies have 

found that pro-inflammatory cytokines are associated with increased depression (Reus et al, 

2015). A 2013 study by Vargas et al found that subjects with a history of suicide attempts had 

higher levels of nitric oxides (p = 0.001) and lower plasma total antioxidant potential ( p =0.005) 

than subjects without a history of suicide attempts. These results further support studies that 

suggest that oxidative stress is a key mechanism in the neurotoxicity of arsenic, lead and 

manganese.  

The results of our study are consistent with suggestions that arsenic is neurotoxic in 

adults even at low levels of exposure. Women of childbearing potential are particularly 
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susceptible to the adverse effects of environmental toxicants. These exposures are not only 

harmful to fetal development, but can have a significant impact on maternal mental health. This 

further compounds the detrimental effects of child development. More research is in the area of 

heavy metals and maternal mental health is needed. 

Strengths  

The current cross-sectional analysis focuses on the associations between low-level 

exposures to arsenic, lead and manganese and postpartum depression. Many previous studies, 

particularly those investigating arsenic toxicity are within populations with much higher arsenic 

exposure than seen in the US. Because our subjects have relatively low arsenic concentrations 

we avoid the extreme outward indications seen with arsenicosis. Participants are therefore 

unlikely to have suffered the same social isolation and stigmatization due to chronic arsenic 

toxicity seen in many international studies.  

Many previous studies have relied on environmental measures of exposure such as 

analysis of drinking water samples. The use of biomarkers of exposure allows us to better 

estimate actual body burden on the individual level. 

Limitations 

In our current analysis, we do not make use of the longitudinal aspect of the study design. 

Instead, we focus on investigating the association of maternal metals concentrations and 

postpartum depression at delivery. By performing a cross-sectional analysis, we avoid the issues 

of loss to follow-up. On the other hand, we are not able to investigate the timing of exposure and 

it relationship to the development of depression symptoms. Missing data at follow-up could be 

due to population and area instability. Subjects submitted baseline EPDS questionnaires within 

hours of childbirth. Though hormonal changes occur within new moms within 48 hours of 
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delivery, our results may reflect antepartum depression as well as postpartum depression. We 

partially control for this by including previous history of depression (having ever been prescribed 

antidepressants) in our adjusted models. Still, there may be some residual confounding. 

Using blood levels as a biomarker has its disadvantages. The half-life of arsenic and 

manganese in blood are in the order of hours. Use of blood is therefore not ideal in investigating 

chronic metals exposure. Analysis of other biomarkers such as hair may be best for future 

analyses.  

We did not adjust for race in our analysis. Study participants are predominantly white and 

Native American population thus limiting the generalizability of the results to other ethnic 

populations. Finally, the final regression model may not capture residual confounding from other 

variables.  

Future study  

Future analysis will examine the association between metal and depression in mothers at 

6 and 12 months postpartum. Doing so while allow us to explore the association between the 

progression of PDD and heavy metals. We will also analyze a sub-set of data using hair as a 

biomarker of exposure. Though analysis will involve a much smaller sample size, this may help 

to address concerns over the appropriateness of using blood as a biomarker. We will continue to 

analyze possible competing risk factors such as major life events that may shed light on the 

differences in the association between manganese and EPDS at different quantiles. 
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ABSTRACT 

Background: Arsenic exposures lead to various epigenetic changes. Previous studies have found 

that arsenic is associated with changes in histone levels. In addition, post-translational histone 

modifications (PTHM)  have been identified in the brain tissue of children with neural tube 

defects (NTD).   

Objective: Our objective was to investigate the association between arsenic exposure and 

histone levels in mothers of children with neural tube defects. 

Design: We conducted a case-control study in Bangladesh. Cases were confirmed by physicians 

Controls were from the same area. We performed ELISA assays to investigate levels of total 

histone 3 and the histone modification H3K27me3 in maternal blood plasma. 

Results: We found a significant association (β = 0.041, p =0.006) between H3K27me3 levels 

and NTD case status.  Among mothers with low folate, H3 was negatively associated (β = -10.5, 

p =0.016) with maternal arsenic exposure. 

Conclusion: Our results suggest that histone levels may differ among mothers of children with a 

NTD and those without NTD.  

INTRODUCTION 

Arsenic is a metal found globally in the earth’s crust at varying concentrations.  Exposure 

to arsenic primarily stems from contamination of drinking water (Tchounwou, 1999), direct 

exposure to soil, and inhalation of house dust (Zota, 2011). Current studies seek to elucidate the 

metabolic pathway of arsenic. Both animal and human studies suggest a couple of possible 

pathways. However, the exact mechanism of arsenic toxicity remains unknown.  

Studies have linked arsenic exposure to numerous adverse health outcomes. Arsenic is 

classified as a 1 carcinogen (human carcinogen) according to the International Agency for 
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Research on Cancer (IARC). Numerous studies have investigated the neurological effects of 

arsenic. Though predominantly thought of as toxic to the peripheral nervous system, emerging 

evidence suggest that arsenic is also toxic to the central nervous system.   

The neural tube, which eventually forms the spinal cord and brain, begins to develop 

around 21 days of gestation. The process involves fusion of tissue at various sites and the 

progressive closure from those sites to formation of an intact central nervous system. Neural 

Tube Defects (NTDs) affect one per 1,000 pregnancies worldwide (Greene et al, 2011).   

Epigenetic mechanisms operate throughout the life cycle including fertilization and are 

critical in embryonic development. The epigenetic mechanisms of DNA methylation, micro 

RNA and post-translational histone modifications (PTHM) are important in gene regulation. 

During fetal development, DNA and histone methylation signals undergo programming and 

reprogramming (Pozharny, 2010).   

Previous studies have shown that arsenic exposure affects epigenetic mechanisms.  Many 

studies have investigated mechanisms involving DNA methylation. An in vitro study by 

Reichard et al, 2007 found that arsenic exposure repressed DNMT1 and DNMT3A expression 

and depleted the methyl donor, SAM. DNMT1 and DNMT3A are major DNA 

methyltransferases that affect gene expression via methylation (Feng et al, 2010). A 2012 study 

by Pilsner et al found that increasing maternal urinary arsenic was associated with increased 

global DNA methylation in cord blood.  

Post-translational histone modifications are an important epigenetic mechanism. These 

modifications have an important role in chromatin structure and gene transcription. Some 

modifications work to activate transcription while others suppress transcription. PTM can 

include methylation, acetylation and phosphorylation (Schneider et al, 2007).  
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Recent studies have investigated post-translational histone modification (PTHM) as 

another epigenetic mechanism. A study by Zhou, Q et al, 2008 found that arsenite affected 

several histone modifications including increased H3K9 dimethylation and decreased H3K27 

trimethylation in A459 cancer cells. In a Bangladesh study by Chervona et al,, 2012, researchers 

found that levels of H3K27me3 increased with increasing water arsenic among female adults but 

showed a negative association among males. The same study found total urinary arsenic was 

negatively associated with H3K9ac. Though most studies examine intracellular histones, studies 

have shown that histone modifications can be detected in plasma (Deligezer, U. et al, 2010). 

Particulate matter (PM1) was found to have a positive association with extracellular H3K4me3 

and H3K9ac levels (Cantone et al, 2013) 

A study examining human fetal brain tissue found decreased H3K79me2 expression in 

brains with neural tube defects. Additionally, the study found a novel site, H2bK5me1, which 

showed no expression in brains with NTDs compared to normal tissue (Zhang, 2013). A study by 

Tsurubuchi, T et al, 2013 sought to identify early biomarkers of NTDs (n=6). Researchers found 

that H3K4me2/3 and H3K27me2 levels were higher in the amniotic fluid stem cells (AFSC) of a 

woman carrying a fetus affected with myelmeningocele. Higher levels of H3K27me3 were found 

in women carrying both myelmeningocele and anencephaly-affected fetuses. The woman 

carrying the myelmeningocele fetus also had decreased levels of H3K9ac and H3K18ac. 

Limited information exists on the association between arsenic and epigenetic mechanisms 

in the context of NTDs. Our current analysis investigates the possible association between 

histone levels and arsenic toxicity in neural tube defects in case-control pilot study in Bangladesh 

(Mazumdar et al, 2015).  
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METHODS 

Study Population 

The study population has been described previously (Mazumdar et al, 2015). Briefly, case-

control pilot study was conducted in 2013 in Bangladesh. Subjects were recruited from 

communities served by Dhaka Community Hospital (DCH). Eligible cases were children under 

the age of 1 year with a neural tube defect, specifically myelmeningocele). Controls came from 

the same communities but did not share family drinking wells. Controls were selected randomly 

using immunization records and matched on gender and age within 2 months. 57 cases and 55 

controls were identified. Investigators collected information such as nutrition (including plasma 

folate levels), education, medical history, family history and smoking from interviews and 

questionnaires. 

Arsenic Exposure 

Maternal toenail arsenic 

Stainless steel scissors were used to clip toenail samples. Samples were stored in a paper 

envelope at room temperature until analysis at the Harvard School of Public Health (HSPH), 

Trace Metals Laboratory in Boston, Massachusetts Samples were digested with nitric acid as 

described in Chen, et al, 1999. Digested toenail samples were analyzed for arsenic using 

Inductively Couple Plasma Mass Spectrometry (ICP-MS) according to?. 

Maternal blood plasma collection 

10 ml samples of maternal whole blood were collected in EDTA tubes within 30 minutes 

of blood drawing. Samples were centrifuged at 2,000 rpm for 12 minutes. Plasma was collected 

in 5 mL cryovials and stored at -20oc. Plasma samples were shipped to HSPH. Samples were 

aliquoted and kept at -80oc until analysis.  
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Histone Modification Analysis 

 The concentrations of total histone H3 and H3K27me3 were measured using sandwich 

enzyme-linked immunoabsorbent assay (ELISA). 96-well microplates (Fisher Scientific, 

Pittsburg, PA) were coated with histone H3 antibody (Abcam, Cambridge, MA) and incubated 

overnight at 4oc. Plates were blocked with 3% milk in PBST for 1.5 hours at room temperature 

with agitation. After coating incubation, plates were washed with PBST. Histone standards (total 

histone H3 and H3K27me3) were made by diluting desired amount of recombinant protein 

(Active Motif, Carlsbad, CA) in MQ water. Two Quality control (QC) plasma samples were 

prepared by separately pooling 50 maternal plasma samples.  5 µL of plasma was diluted in MQ 

water for each sample. 100 µL of standards, QCs and assay samples were added to each well. 

The plates were incubated at room temperature with agitation for 1.5 hours. Following 

incubation, samples were washed with PBST. Polyclonal antibody (Active Motif, Carlsbad, CA) 

was added to each well and incubated for 1 hour at room temperature with agitation. Plates were 

then washed with PBST. Secondary antibody goat anti-rabbit IgG-HRP (Santa Cruz 

Biotechnology, Santa Cruz, CA) was added to each well and incubated for 1 hour without 

agitation. Following incubation with secondary antibody, wells were washed with TBST. TMB 

(Fisher Scientific, Pittsburg, PA) was added to each well. Reaction was stopped when desired 

samples reached desired color (10-20 minutes). 2 M H2SO4 was added to stop the reaction. The 

optical density was read at 450 nm on the Infinite 200Pro spectrophotometer using 

V_3.22_12/10_Infinite firmware.  Of the 112 subjects, 88 total histone H3 and 64 H3K27me3 

samples have been analyzed.  

Statistical Analysis: 
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Data was analyzed using SAS 9.3. Samples that failed quality control standards were 

excluded from the analysis. The current analytical dataset includes 85 samples (45 cases, 40 

controls). Maternal arsenic measurements were log-transformed for analysis to approximate a 

normal distribution. 

We used general linear regression to model the association between total histone H3 and 

H3K27me3 levels and variables. Maternal arsenic concentrations were log-transformed and 

modeled continuously. H3K27me3 concentrations were normalized by total histone H3 and were 

reported as proportions (ng/µL of H3K27me3 / ng/µL of total histone H3). Total histone H3 was 

modeled as measured (ng/µL). Both total H3 and H3K27me3 were modeled continuously.  

Previous study of this population found a significant interaction between reported folate 

use and water arsenic concentrations (Mazumdar, 2015). This finding further underlined the need 

to include folate in our full analytical models. We modeled folate as a dichotomous variable, low 

folate. Mothers with low folate had plasma folate levels < 2 ng/mL based on WHO criteria. We 

also performed a stratified analysis to investigate whether the association between plasma 

histones and maternal arsenic differed between mothers with adequate folate and those with low 

folate. 

We conducted a conditional logistic regression analysis to investigate the association 

between histone levels as a predictor and case status as dichotomous outcome. Again, we 

modeled maternal arsenic and histone levels as continuous variables and folate as a dichotomous 

variable. Other variables of interest include maternal age, paternal age, vitamin use and measures 

of SES such as receiving an ultrasound during pregnancy. 

We also performed a secondary analysis in which we included a variable for the ELISA 

plate analyzed. This analysis was performed to explore possible batch (plate) effects. 
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RESULTS 

 Table 3.1 shows the characteristics of the study population. The mean (SD) maternal age 

at enrollment was 24.2 (5.03). Fathers were older with a mean (SD) age of 31.8 (5.93). The mean 

maternal age at childbirth was 23.4 (5.04). 33% of the mothers have low folate. Mean (SD) folate 

was 3.87 (3.95) ng/mL. The majority of mothers (88.2%) received some sort of prenatal care, 

indicated by receiving an ultrasound during pregnancy. Mothers also report taking folic acid 

supplements (51.8%) and vitamins (37.7%) during pregnancy. 47.1% of mothers reported use of 

medication. Only one mother (1.18%) reported being a smoker. 

 

Table 3.1. Characteristics of Bangladesh Neural Tube Defect Pilot Study Population, n = 87 

Characteristic Mean (SD) 
or % 

Mother's age 24.2 (5.03) 
Mother's age at birth 23.4 (5.04) 
Father's age 31.8 (5.93) 
Folate (ng/ml) 3.87 (3.95) 
Low folate 32.9% 
Ultrasound during pregnancy 88.2% 
Maternal vitamin use  37.7% 
Maternal medication use 47.1% 
Folic acid supplementation during 
pregnancy 

51.8% 

Maternal smoking 1.18% 
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 The median (SD) maternal toenail arsenic is 0.69 (3.96) µg/g with a range of 0.12 to 27.7 

µg/g.  The mean total plasma H3 and plasma H3K27me3 concentrations are 160 (43.1) and 31.8 

(11.8) ng/µL respectively (Table 3.2) 

 

Table 3.2.  Maternal Arsenic Exposure and Plasma Histones  

Variable Mean (SD) 25th Median 75th Min Max 
Exposure       

Maternal toenail arsenic (µg/g) 2.19 (3.96) 0.384 0.694 2.29 0.115 27.7 
Outcome      

 Total H3 (ng/µL) 160 (43.1) 128 158.0 179 108 455 
H3K27me3 (ng/µL) 31.8 (11.8) 24.1 29.20 37.4 10.70 71.70 
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 In our univariate analysis (Table 3.3a) of total plasma H3, maternal arsenic was not 

associated with total H3 levels with β (SE) = -6.05 (3.91), p = 0.126. We did not find an 

association with low folate status or case status with β (SE) = 1.33 (10.0), p = 0.895 and β (SE) = 

2.97 (9.43), p = 0.777 respectively.  

In our full, adjusted model, we found no association between maternal toenail arsenic and 

total plasma H3 with β (SE) = -6.97 (4.13), p = 0.096. Again, we did not find an association with 

low folate status or case status with β (SE) = 0.613 (9.97), p = 0.951 and β (SE) = 7.53 (9.82), p 

= 0.446 respectively.  

In our univariate analysis (Table 3.3b) of modified H3K27me3, maternal arsenic was not 

associated with H3K27me3 levels with β (SE) = 0.002 (0.006), p = 0.764. We did not find an 

association with low folate status with β (SE) = -0.017 (0.009), p = 0.267. We found a significant 

association with case status with β (SE) = 0.038 (0.009), p = 0.007. Controls have higher plasma 

H3K27me3 concentrations than cases.  

In our full, adjusted model, we found no association between maternal toenail arsenic and 

H3K27me3 levels with β (SE) = -0.003 (0.006), p = 0.50. Again, we did not find an association 

with low folate status with β (SE) = -0.017 (0.015), p = 0.234. The significant association 

between H3K27me3 levels and case status remained significant with β (SE) = 0.041 (0.014), p = 

0.006. 

  



87 

 

Table 3.3a. Association between arsenic exposure and plasma total histone 3  

Total H3 
Variable Crude Model Adjusted Model* 

 β (SE) p-value β (SE) p-value 
Maternal arsenic -6.05 (3.91) 0.126 -6.97 (4.13) 0.096 
Low folate 1.33 (10.0) 0.895 0.613 (9.97) 0.951 
Controls 2.67 (9.43) 0.777 7.53 (9.82) 0.446 

     * full model adjusted for folate status, arsenic exposure and total 
H3 levels 
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Table 3.3b. Association between arsenic exposure and plasma H3K27me3 

H3K27me3 
Variable Crude Model Adjusted Model* 

 β (SE) p-value β (SE) p-value 
Maternal arsenic 0.002 (0.006) 0.764 -0.003 (0.006) 0.570 
Low folate -0.017 (0.009) 0.267 -0.017 (0.015) 0.234 
Controls 0.038 (0.014) 0.007 0.041 (0.014) 0.006 

     * full model adjusted for folate status, arsenic exposure and case status 
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We also performed a stratified analysis to investigate whether the association between 

plasma histones and maternal arsenic differed between mothers with adequate folate and those 

with low folate.  

We did not find an association between maternal arsenic and total H3 levels among 

mothers with adequate folate concentrations with β (SE) = -5.11 (5.89), p = 0.390 (Table 3.4a). 

However, among mothers with low folate, we found maternal arsenic was significantly 

associated with total H3 levels with β (SE) = -10.5 (4.05), p = 0.016. Among mothers with low 

folate, maternal arsenic is negatively associated with H3 levels. No association was found 

between total H3 levels and case status for either adequate or low folate groups with β (SE) = 

9.80 (13.8), p = 0.482 and β (SE) = 2.78 (9.85), p = 0.780 respectively. 

We did not find an association (Table 3.4b) between H3K27me3 levels and maternal 

arsenic for either adequate or low folate groups with β (SE) = -0.005 (0.007), p = 0.517 and β 

(SE) = -0.001 (0.012), p = 0.912 respectively. We found a significant association between 

H3K27me3 levels and case status among mothers with adequate folate levels with β (SE) = 

0.046 (0.016), p = 0.007 but not among mothers with low folate with β (SE) = 0.030 (0.029) p= 

0.306. Among mothers with adequate folate levels, controls had higher H3K27me3 levels.  
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Table 3.4a. Association between maternal arsenic and total H3 stratified by low folate status 

Total H3 
Variable Adequate Folate Low folate 

 
β (SE) p-value β (SE) p-value 

Maternal arsenic -5.11 (5.89) 0.390 -10.5 (4.05) 0.016 
Controls 9.80 (13.8) 0.482 2.78 (9.85) 0.780 
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Table 3.4b. Association between maternal arsenic and total H3K27me3 stratified by low folate 

status 

H3K27me3 
Variable Adequate folate Low folate 

 
β (SE) p-value β (SE) p-value 

Maternal arsenic -0.005 (0.007) 0.517 -0.001 (0.012) 0.912 
Controls 0.046 (0.016) 0.007 0.030 (0.029) 0.306 
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 We conducted a conditional logistic regression analysis to investigate the association 

between histone levels as predictor and case status as an outcome. Overall, we found no 

significant associations with total H3 levels (Table 5a). The univariate and adjusted OR was 1.00 

(0.99, 1.02). The univariate OR (95% CI) and adjusted OR (95% CI) for the association with 

maternal arsenic was 1.46 (0.96, 2.22) and 1.47 (0.96, 2.24) respectively. The univariate OR 

(95% CI) and adjusted OR (95% CI) for the association with low folate status was 0.71 (0.23, 

2.25) and 0.70 (0.21, 2.32) respectively. 

 However, we found that H3K27me3 levels were significantly associated with case status 

(Tables 3.5b). The univariate OR (95% CI) and adjusted OR (95% CI) for the association with 

H3K27me3 levels was 999.9 (19.7, >999.9) and 999.9 (33.0, >999.9) respectively. The 

univariate OR (95% CI) and adjusted OR (95% CI) for the association with maternal arsenic was 

1.46 (0.96, 2.22) and 1.82 (1.001, 3.30) respectively. The univariate OR (95% CI) and adjusted 

OR (95% CI) for the association with low folate status was 0.71 (0.23, 2.25) and 1.46 (0.32, 

6.71) respectively. 
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Table 3.5a. Conditional Logistic Regression for Case Status and Total H3 levels 

 Variable Unadjusted OR (95% CI) Adjusted OR (95% CI)* 
Maternal arsenic 1.46 (0.96,2.22) 1.47 (0.96, 2.24) 
Total H3 1.00 (0.99, 1.02) 1.00 (0.99, 1.02) 
Low folate 0.71 (0.23,2.25) 0.70 (0.21, 2.32) 

   * Full model adjusted for folate status, arsenic exposure and total H3 levels 
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Table 3.5b. Conditional Logistic Regression for Total Case Status and H3K27me3 levels 
 

 Variable Unadjusted OR (95% CI) Adjusted OR (95% CI)* 
Maternal arsenic 1.46 (0.96,2.22) 1.82 (1.001, 3.30) 
H3K27me3 999.9 (19.7, >999.9) 999.9 (33.0, >999.9) 
Low folate 0.71 (0.23,2.25) 1.46 (0.32, 6.71) 

   *full model adjusted for folate status, arsenic exposure and normalized 
H3K27me3 levels 
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In our secondary analyses, we explored possible batch (plate) effects. We repeated the 

previous analyses looking at (1) histone levels as a continuous outcome (2) stratification by 

folate status and (3) case status as an outcome, but also included plate as a variable in our model.  

In our full, plate-adjusted model (Table 3.6a) of total plasma H3, maternal arsenic was 

not associated with total H3 levels with β (SE) = -0.897 (3.71), p = 0.810. We did not find an 

association with low folate status or case status with β (SE) = 5.23 (8.69), p = 0.549 and β (SE) = 

-10.9 (9.62), p = 0.262 respectively.  

In our full, plate-adjusted model (Table 3.6b) of modified H3K27me3, maternal arsenic 

was not associated with H3K27me3 levels with β (SE) = -0.004 (0.006), p = 0.566. We did not 

find an association with low folate status with β (SE) = -0.021 (0.014), p = 0.144. We found a 

marginally significant association with case status with β (SE) = 0.028 (0.016), p = 0.075. 

Controls had higher plasma H3K27me3 concentrations than cases.  
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Table 3.6a. Association between arsenic exposure and plasma total histone 3 in plate-adjusted 

model 

Total H3 
Variable Plate-Adjusted Model 

 β (SE) p-value 
Maternal arsenic -0.897 (3.71) 0.810 
Low folate 5.23 (8.69) 0.549 
Case status -10.9 (9.62) 0.262 
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Table 3.6b. Association between arsenic exposure and H3K27me3 in plate-adjusted model 

H3K27me3 
Variable Plate-Adjusted Model 

 β (SE) p-value 
Maternal arsenic -0.004 (0.006) 0.566 
Low folate -0.021 (0.014) 0.144 
Case status 0.028 (0.016) 0.075 
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 Again, we performed a stratified analysis to investigate whether the association between 

plasma histones and maternal arsenic differed between mothers with adequate folate and those 

with low folate. 

Unlike the non-plate adjusted analyses, we did not find an association between maternal 

arsenic and total H3 levels among mothers with adequate or low folate concentrations with β 

(SE) = 0.931 (5.42), p = 0.864 (Table 3.7a) and β (SE) = -3.16 (2.99), p = 0.302 respectively. We 

did find a significant association between case status and total H3 levels in mothers with low 

folate, β (SE) = -16.9 (7.58), p = 0.036, but not in mothers with adequate folate, β (SE) = -8.17 

(14.1), p = 0.566 

Consistent with our non-plate adjusted analyses, we did not find an association (Table 

3.7b) between H3K27me3 levels and maternal arsenic for either adequate or low folate groups 

with β (SE) -0.004 (0.007), p = 0.565 and β (SE) = -0.0004 (0.013), p = 0.976 respectively. We 

found a marginally significant association between H3K27me3 levels and case status among 

mothers with adequate folate levels with β (SE) = 0.034 (0.019), p = 0.074 but not among 

mothers with low folate with β (SE) = 0.017 (0.033) p= 0.605.  
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Table 3.7a. Association between maternal arsenic and total H3 stratified by low folate status in 

our plate-adjusted analysis 

Total H3 in plate-adjusted model 
Variable Adequate folate Low folate 

 
β (SE) p-value β (SE) p-value 

Maternal arsenic 0.931 (5.42) 0.864 -3.16 (2.99) 0.302 
Controls -8.17 (14.1) 0.566 -16.9 (7.58) 0.036 
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Table 3.7b. Association between maternal arsenic and H3K27me3 stratified by low folate status 

H3K27me3 in plate-adjusted model 

 
Adequate folate Low folate 

 
β (SE) p-value β (SE) p-value 

Maternal arsenic -0.004 (0.007) 0.565 -0.0004 (0.013) 0.976 
Controls 0.034 (0.019) 0.074 0.017 (0.033) 0.605 
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Again, we conducted a conditional logistic regression analysis for case status. Overall, 

we again found no significant association with total H3 levels (Table 3.8a). The adjusted OR 

(95% CI) was 0.84 (0.64, 1.09). The adjusted OR (95% CI) for the association with maternal 

arsenic and low folate status was 1.90 (0.68, 5.34) and 0.54 (0.04, 6.73) respectively. Again, we 

found that H3K27me3 levels were significantly associated with case status (Tables 3.8b). The 

adjusted OR (95% CI) for the association with H3K27me3 levels was 999.9 (33.0, >999.9). The 

univariate OR (95% CI) and adjusted OR (95% CI) for the association with maternal arsenic and 

low folate status was 2.62 (0.71, 9.65) and 1.41 (0.10, 21.0) respectively.  
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Table 3.8a. Conditional Logistic Regression in our plate-adjusted analysis 

 Variable Adjusted OR (95% CI) in plate-adjusted model 
Maternal arsenic 1.90 (0.68, 5.34) 
Total H3 0.84 (0.64, 1.09) 
Low folate 0.54 (0.04, 6.73) 
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Table 3.8b. Conditional Logistic Regression in our plate-adjusted analysis 

 Variable Adjusted OR (95% CI) in plate-adjusted model 
Maternal arsenic 2.62 (0.71, 9.65) 
H3K27me3 999.9 (33.0, >999.9) 
Low folate 1.41 (0.10, 21.0) 
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 DISCUSSION 

Our current study investigates the association between plasma histone levels arsenic and 

mothers of children with myelmeningocele (cases). The results of our study suggest that the 

epigenetic profile of mothers of cases may differ from those whose children did not have a NTD. 

A strength of this pilot study is the ability to look at a specific modification (H3K27me3) that 

has been shown in previous literature to be associated, separately, with both arsenic and neural 

tube defects. The study of plasma histone levels may provide an opportunity for important 

insight into possible mechanisms as well as use as a biomarker of detection. Another strengthen, 

is the use maternal biomarkers of arsenic exposure (maternal toenail arsenic) and maternal, 

which provides a more accuracy representation of arsenic exposure. 

Our study found a significant association between H3K27me3 and NTD case status when 

adjusting for maternal arsenic and folate status. Controls had higher levels of H3K27me3. The 

result of our conditional logistic regression also supports this finding. No association was found 

between total H3 levels and case status. The results of my study are interesting considering the 

findings of Tsurubuchi et al, 2013 which found that mothers with NTD fetuses had higher levels 

of H3K27me3 and Chervona et al, 2012 which found the direction of the association between 

wAs and H3K27me3 levels differed by gender. These results suggest that further analysis of 

modified extracellular (plasma) histone levels may provide insight into the mechanisms of 

arsenic toxicity in neural tube defects. This underlines the importance of studying appropriate 

modifications when investigating the role of posttranslational histone modifications and neural 

tube defects. 

Our stratification analysis supports previous research that folate is important in arsenic 

toxicity as well as the pathology of neural tube defects. The levels of plasma total H3 were lower 
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with increasing arsenic only among mothers with low folate (< 2 ng/mL). This suggests that with 

adequate folate, the effects of arsenic on total H3 levels disappear. However, an association 

between case status and H3K27me3 levels was found only in mothers with adequate folate 

levels. These results suggest that even with the presence of adequate folate, plasma H3K27me3 

levels are associated with NTD. Since the association disappears among mothers with low folate, 

this may suggest that the effect of folate on NTD is independent of plasma H3K27me3 levels. 

In our results of our plate-adjusted analyses, while statistically weaker, the direction and 

magnitude of the association between H3K27me3 and case status remained the same with or 

without adjusting for plate effects. However, the associations between total H3 and maternal 

arsenic were not consistent. This brings into question the appropriateness of adjusting for plate 

effects. The cases and controls were not evenly distributed among ELISA plates. In addition, 

controls had higher levels of arsenic than cases. The seeming plate effect on total H3 levels is 

likely an artifact that cannot be teased apart with our current analysis. Adjustment for plate/ 

batch effects is more appropriate when measurements can be repeated in such a way that 

minimizes any pattern of sample analysis among plates. Combined with reduced power from the 

introduction of another variable, it is not completely surprising that the results of the analyses 

with total H3 levels were unstable. This further strengthens our view that H3K27me3 levels are a 

more robust biomarker of NTD status than overall plasma H3 levels.  

Overall, the results of our study suggest that the relationship between histone 

modifications and arsenic exposure in mother’s with NTD affected children is complex  and like 

other epigenetic mechanisms, are in need of further study. 
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CONCLUSION 
 

In my work, I have shown that low-dose exposures to arsenic, lead and manganese can 

affect neurological outcomes in mothers and children. Not only are arsenic and lead separately 

detrimental, studying co-exposures to these metals is also important when looking at 

neurotoxicity. Typically, the association between arsenic and health has focused on cancer 

outcomes. My work shows that arsenic toxicity goes beyond that of its carcinogenic properties. 

While arsenic and lead have no nutritional benefit, the association between manganese and 

neurological outcomes remain unclear.  

In Chapter 2, I investigated the association between metals exposure and neurobehavioral 

outcomes in children in the Tar Creek Cohort. We found a significant association between 

prenatal lead concentrations and the scores of Adaptive Skills domain of the BASC-2 (β = -5.99, 

p-value 0.025).  Our results further support previous research that has shown that a positive 

cognitive home environment is important to neurobehavioral outcomes as measured by the 

BASC-2 and BRIEF assessments. We also showed there are gender differences in some of the 

neurobehavioral sub-domains.  

My dissertation helps to address a much-needed topic – mental health, in a vulnerable 

population. In Chapter 3, we investigated the effect of low-level metals on postpartum 

depression. The results showed that mothers with increased arsenic exposure are more likely to 

suffer from depression. We also found a significant interaction between lead and arsenic. These 

results further reiterate the need to study metal co-exposures. We also found an interesting 

association between manganese, depending on the quantile of EPDS scores. Manganese appears 

to have a protective effect for mothers who were at or below the 60th percentile for EPDS scores. 

Using the data from the Tar Creek cohort allowed us to observe these associations in a US 
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population with significantly lower heavy metal exposures than typically studied in international 

studies.  

Chapter 4 of my dissertation is an epigenetic investigation of the association between 

arsenic and neural tube defects. The analysis of post-translational histone modifications in this 

pilot study found a significant association between epigenetic markers and arsenic. Our results 

also suggest that the epigenetic profile of mothers of children born with neural tube defects may 

differ from mothers whose children did not have a NTD. Much of the information we know 

about arsenic neurotoxicity relies on animal studies. My dissertation is a step showing that 

epigenetic mechanisms may help to explain arsenic toxicity in neurodevelopment.  

 

Suggestions for Further Research 

The longitudinal design of the Tar Creek cohort allows us to investigate the association 

between biomarkers of arsenic, lead and manganese exposure and other neurological outcomes.  

Data from additional neuropsychological instruments including intelligence, memory and 

motor skills are available for children in the Tar Creek cohort. An examination of the association 

between other domains such as memory and motor skills and metals exposures may provide 

further insight.  An important continuation for this study is to incorporate data from the 

children’s neurological outcomes and postpartum depression. This may provide a richer 

understanding of the role of chemical toxicants and maternal mood in healthy child 

neurodevelopment. 

Data from repeated measures of postpartum depression are available for this cohort. 

Future analyses will investigate the association between arsenic, lead and manganese levels and 

EPDS scores at 6 and 12 months. This may shed light onto the role of these metals in the 
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progression of PDD. Additionally, other instruments available delve more deeply into the 

psychosocial environment of the mothers and children; data is available on other factors 

including stress, anxiety and discrimination. This data may aid in our understanding of why 

beneficial effects of manganese up to the 60th percentile of EPDS cease for mothers at higher 

quantiles of EPDS scores. 

Our Bangladeshi pilot study of the association between arsenic and histones is an 

important first step. While DNA methylation is an important epigenetic mechanism likely 

involved in arsenic toxicity, our study shows that another epigenetic mechanism, the role of 

histone modifications may also prove useful to our understanding. Future studies should focus on 

additional modifications related to arsenic toxicity such as H3K9ac. 


