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Genetics, caffeine consumption, height and non-melanoma skin cancer 

Abstract 

 Non-melanoma skin cancer (NMSC), including basal and squamous cell carcinoma (BCC 

and SCC, respectively), is the most common malignancy among populations of European 

ancestry. It is estimated that over 2 million cases of NMSC occur each year in the United States, 

with the incidence continues to increase. This disease imposes a growing burden on healthcare 

system, making it an important public health issue. However, understanding of its etiology and 

biological mechanisms remains incomplete.  

 In Chapter 1 of this dissertation, we applied a novel approach that integrates skin 

expression-related single-nucleotide polymorphisms (eSNPs) and pathway analysis to identify 

potential novel biological pathways that are associated with BCC risk. We evaluated the 

associations of skin eSNPs with BCC among 2,323 cases and 7,275 controls of European 

ancestry, and assigned them to the pathways defined by KEGG, GO, and BioCarta databases. 

Three KEGG pathways (colorectal cancer, regulation of actin cytoskeleton, and basal cell 

carcinoma) and two GO pathways (cellular component disassembly involved in apoptosis, and 

nucleus organization) showed significant association with BCC risk. Our results indicate that 

genes that are undetectable by conventional genome-wide association studies (GWASs) are 
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significantly associated with risk of BCC as groups.  

 In Chapter 2, we tested gene-caffeine consumption interaction on BCC risk in a 

genome-wide analysis. We determined that SNP rs142310826 shows a genome-wide significant 

interaction with caffeine consumption (p = 1.78×10
-8

 for interaction, p = 0.64 for heterogeneity 

between genders) on BCC risk. We also found several loci that modify the caffeine-BCC 

association differently in men and women. This study is proof of concept that inclusion of 

environmental factors can help identify genes that are missed in conventional GWASs. 

 In Chapter 3, we prospectively examined the risk of SCC and BCC in relation to adult height. 

After controlling for potential confounding factors, the hazard ratios were 1.09 (95% CI: 1.03, 

1.16) and 1.10 (95% CI: 1.07, 1.12) for the associations between every 10cm increase in height 

and risk of SCC and BCC respectively. However, no significant association was observed 

between height-related SNPs and risk of these diseases.  
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INTRODUCTION 

 

Non-melanoma skin cancer (NMSC) is the most common malignancy among populations of 

European ancestry [1]. NMSC usually refers to basal cell carcinoma (BCC) and squamous cell 

carcinoma (SCC), which together account for more than 95% of all NMSC cases [1]. BCC arises 

from the pluripotential primordial cells in the basal layer of the epidermis [2]. Though the tumor 

tends to grow slowly and rarely metastasizes to other organs or causes death, it can lead to 

extensive tissue destruction, resulting in considerable morbidity if treated insufficiently [2]. SCC 

is a malignant proliferation of the keratinocytes in the epidermis or its dermal appendages [3]. 

Unlike BCC, cutaneous SCC is more likely to invade other tissues and can be fatal [2]. 

Non-melanoma skin tumors also arise from other cell types of skin, such as lymphocytes, 

vascular endothelial cells, and Merkel cells [1, 4]. However, these forms of NMSC are so rare 

compared to BCC and SCC that they will not be discussed in this dissertation.  

The incidence of BCC and SCC is difficult to determine, because neither is registered by 

most cancer surveillance systems. The majority of data on NMSC incidence come from local 

studies in specific geographical locations [5]. Using national population-based data sources, 

Rogers et al. [6] reported that 2,152,500 persons were treated for NMSC in 2006 in the United 

States. Those authors also estimated a 4.2% annual average increase in NMSC cases among the 

Medicare population from 1992 to 2006 [6]. Increases in NMSC incidence have also been 

documented in other countries [5, 7-9]. Such trends may be linked to increased sun-seeking 

behaviors, use of artificial UV tanning beds, ozone depletion, increases in life expectancy, more 
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exposures to chemical carcinogens, and improvements in public awareness or medical detection 

[10, 11]. Although the incidence of NMSC increases with age [2], it is now becoming more 

common among younger people, probably because they spend more time in the sun with their 

skin exposed. The risk of BCC and SCC is higher in men, but incidence in women has been 

steadily increasing [12]. 

Exposure to ultraviolet (UV) radiation is thought to be the main cause of NMSC, though its 

effects on BCC and SCC are different. A strong dose-response association has been found 

between cumulative lifetime sun exposure and SCC, whereas sun exposure during childhood and 

adolescence appear to be more important for development of BCC [13, 14]. Compared to a 

similar degree of continuous exposure, intense intermittent exposure to the sun is associated with 

a higher risk of BCC [13, 15]. A survey conducted in eight geographically diverse locations in 

the United States showed an inverse association between latitude and risk of NMSC (i.e., the 

farther from the equator/higher the latitude, the lower the risk) [16], providing further evidence 

for the important role of UV radiation in the development of NMSC. Physical characteristics 

such as fair complexion, red/blonde hair color, and lower tanning ability are also risk factors for 

NMSC [17]. 

Researchers have also investigated the potential roles of other environmental risk factors. 

Previous studies generally support a positive association between smoking and risk of SCC 

[18-20]. In the Nurses’ Health Study (NHS), smokers had a 50% higher risk of SCC than 

non-smokers [18]. However, such an association has not been found in the majority of studies of 

smoking and BCC risk [21-24]. The association between alcohol intake and risk of NMSC may 
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vary for different types of alcoholic beverages. Some studies found BCC to be positively 

associated with total alcohol intake and white wine consumption, but inversely associated with 

red wine consumption [24-26]. The association between alcohol intake and risk of SCC has been 

sparsely reported. Occupational [27, 28] and therapeutic [29-31] ionizing radiation has been 

reported to increase BCC and SCC risk. Atomic bomb survivors were found to be more likely to 

develop BCC after long latent periods; however SCC risk was not increased [32]. Dietary factors 

with antioxidant and anti-inflammatory effect have also been hypothesized to modify risk of skin 

cancer. Previous animal studies and epidemiological studies have shown that caffeine 

administration/consumption is associated with lower risk of skin cancers [33-38]. Using data 

from the Nurses’ Health Study (NHS) and the Health Professionals Follow-up Study (HPFS), 

Song et al. reported that increased caffeine intake is significantly associated with reduced risk of 

BCC [39]. Anthropometric indicators such as height and BMI are also thought to affect skin 

cancer risk through modification of metabolism and/or immune function, or simply through the 

association of body size with number of target cells. BMI appeared to be inversed associated 

with development of NMSC in the NHS and HPFS [40]. However, the relationship between 

height and NMSC has not been specifically investigated by cohort studies. 

Genetic factors have also been implicated as playing critical roles in the development of 

NMSC [41]. In a large twin cohort study, the heritability of non-melanoma skin cancer was 

estimated to be 43% (95%CI: 26% - 59%) [42]. Mutations in the patched 1 gene (PTCH1), a 

tumor suppressor in the hedgehog signaling pathway, have been found in 30%-40% of sporadic 

BCC cases [43, 44]. RAS mutations [45-48] and UV-induced somatic p53 mutations [49-53] have 
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also been described in NMSC, though the reported rates varied among studies. Most recently, 

genome-wide association studies (GWAS) have identified a number of genetic loci associated 

with risk of NMSC. A meta-analysis of previous GWAS results showed that the significant loci 

are 1p36, 1q42, 5p13, 5p15, 7q32, 9q21, 11q14-21, 12q11-13, 16q24, and 20q11.2-12 for BCC, 

and 5p13 for SCC [54]. Despite recent advances, understanding of the biological mechanisms 

underlying these complex diseases remains incomplete. 

Although GWAS have revolutionized our ability to identify disease susceptibility loci or 

markers associated with them, they do have limitations [55]. On the one hand, most common 

DNA variants with moderate effect size have not yet been identified by GWAS because of a lack 

of power [56]. Realizing this, new approaches are emerging to enhance the information extracted 

from current GWAS data. These include association analyses using multiple genetic markers 

[57-59], association tests with imputed genotypes [60, 61], association analyses incorporating 

linkage information [62], and more recently pathway-based association approaches [63]. On the 

other hand, the majority of GWAS to date have tested for association only between individual 

genetic markers and traits of interest without taking interactions into consideration. As a result, 

they may have failed to discover loci that influence disease only in the presence of particular 

genetic or environmental exposure [64]. It has been widely accepted that “gene-environment 

(G-E) interaction” is ubiquitous in the development of most complex diseases. Therefore, 

including key environmental factors in genetic association studies is anticipated to be an 

important next step for understanding the genetic structure of complex multifactorial disorders.  

In this dissertation, we first conducted a pathway analysis of expression-related SNPs 
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(eSNPs) on risk of BCC. Then, we investigated the interaction between caffeine consumption 

and genetic markers in BCC risk using genome-wide data. Lastly, we comprehensively examined 

the association between height and risk of incident SCC and BCC using data from the NHS and 

the HPFS. These analyses may enhance our understanding of the etiology of NMSC and provide 

more insights into the biological mechanisms of these diseases. 
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Abstract 

Conventional genome-wide association studies (GWAS) have primarily focused on the 

association between individual genetic markers and risk of disease. We applied a novel approach 

that integrates skin expression-related single-nucleotide polymorphisms (eSNPs) and pathway 

analysis for GWAS of basal cell carcinoma (BCC) to identify potential novel biological 

pathways. In all, 70,932 eSNPs in skin tissue with significance levels of 10
-5

 were obtained from 

the Multiple Tissue Human Expression Resource (MuTHER). We evaluated the associations of 

these functionally annotated SNPs with BCC among 2,323 cases and 7,275 controls of European 

ancestry, and then assigned them to the pathways defined by KEGG, GO, and BioCarta 

databases. Three KEGG pathways (colorectal cancer, regulation of actin cytoskeleton, and basal 

cell carcinoma), two GO pathways (cellular component disassembly involved in apoptosis, and 

nucleus organization), and four BioCarta pathways (Ras signaling pathway, T cell receptor 

signaling pathway, Ras-independent pathway in natural killer cell-mediated cytotoxicity, and 

links between Pyk2 and Map Kinases) showed significant association with BCC risk with p 

value < 0.05 and false discovery rate (FDR) < 0.2. In sensitivity analyses, we changed the 

threshold of eSNP determination to 5×10
-5

 and 10
-4

 respectively, and the significant pathways 

identified in main analysis still ranked at top. Two positive controls in KEGG, the hedgehog 

signaling pathway and the BCC pathway, showed significant association with BCC risk in both 

main and sensitivity analyses. Our results show that SNPs that are undetectable by conventional 

GWASs are significantly associated with BCC when tested as pathways. Biological studies of 

these gene groups suggest their potential roles in the etiology of BCC.  
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Introduction 

Basal cell carcinoma (BCC), a major type of non-melanoma skin cancer, is the most 

common malignancy among populations of European ancestry [1-3]. Though rarely fatal, the 

tumor may be locally invasive and cause clinically significant destruction of surrounding tissue if 

not treated adequately [4, 5]. In addition, subsequent skin cancers and other malignancies are 

more common among BCC patients in comparison to the general population [6].  

Both environmental and genetic factors contribute to the genesis of BCC. Though exposure 

to ultraviolet (UV) radiation is generally accepted as the most important environmental risk 

factor for BCC, other known risk factors include family history of skin cancer and pigmentary 

characteristics, such as fair complexion, red or blond hair, and light eye color [7-9]. Most 

recently, genome-wide association studies (GWAS) have identified several genetic loci 

(including 1p36, 1q42, 5p15, 7q32, and 9q21, among others) associated with risk of BCC 

[10-12]. Despite the advances that have been made in understanding the etiology of BCC, the 

genetics of this complex disease is still largely unknown. 

Although GWASs have revolutionized our ability to identify disease susceptibility loci or 

markers associated with them, they usually yield only the most significant SNPs, and the 

percentage of genetic variation explained by GWAS signals has generally been modest [13, 14]. 

One of the potential explanations for this "missing" heritability is that most common DNA 

variants with moderate effect size have not yet been identified by GWAS because of a lack of 

power [15]. Given this limitation of conventional association analysis, new approaches are 
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emerging to enhance the information extracted from current GWAS data. Pathway analysis, 

which jointly considers multiple variants with moderate signals in related genes, is a good 

complement to single-locus GWAS [16]. There is growing evidence that complex molecular 

networks and cellular pathways are often involved in disease susceptibility and disease 

progression [17, 18]. Thus, by taking into account prior biological knowledge about genes and 

pathways, we may have a better chance to identify disease-relevant loci [19], even though the 

signals individually do not meet the GWAS significance threshold [16].  

Borrowing ideas from gene set enrichment analysis (GSEA) in the gene expression 

microarray field [20], Wang et al. first proposed pathway-based analysis of GWAS data in 2007 

[16]. They used SNPs that are physically located in the gene region as the representative SNPs 

for that particular gene. However, SNPs within a gene region may not be the functional variants 

of the gene, and a gene may be regulated in trans by genetic variants that are physically distant 

[21]. Having realized this major shortcoming of conventional pathway analysis, as well as the 

importance of genetic variants that regulate gene transcription in mapping human disease genes 

[22], Zhong et al. suggested integration of expression-related SNPs (eSNPs) into conventional 

pathway analysis [23]. Two main aspects of this new approach are appealing: first, it further 

improves the power to detect genetic associations, because eSNPs can be considered functionally 

relevant variants [24]; secondly, it improves the interpretation of results, because variants that 

cluster within common biological pathways are taken into account jointly. This method has 

recently shown its potential strength in the context of type 2 diabetes GWAS [25]; however, 

applications to cancer have rarely been reported. 
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In 2012, Zhang et al. applied this novel pathway analysis to the GWAS of basal cell 

carcinoma for the first time [26]. Though that study provided novel insights into the biology 

underlying BCC, the false discovery rates of the identified pathways are of only marginal 

significance. Moreover, they used eSNPs discovered in two GWASs of global gene expression in 

lymphoblastoid cell lines (LCL) [22], which is not a tissue relevant to BCC. Because tissue 

dependency seems to be an important feature of disease susceptibility variants that regulate gene 

expression [27], ideally skin eSNPs should be used in BCC studies. Recently, the Multiple Tissue 

Human Expression Resource (MuTHER) project published detailed genomic and transcriptome 

data on three disease-relevant tissues (adipose, LCLs, and skin) originating from a cohort of 856 

deeply phenotyped twins [28]. In the current study, we conducted a skin eSNPs-integrated 

pathway analysis for GWAS on BCC using MuTHER resources and sought to provide more 

insights into the underlying mechanisms of BCC. 

 

Methods 

Study populations 

A BCC GWAS has been established within the sub-cohort of participants who provided a 

blood sample in Harvard cohorts. Eight case-control studies nested within the Nurses’ Health 

Study (NHS), the Nurses’ Health Study II (NHS2), and the Health Professionals Follow-up 

Study (HPFS) were included in the current BCC GWAS: the postmenopausal invasive breast 

cancer case-control study nested within the NHS (BC_NHS), the type 2 diabetes case-control 

studies nested within the NHS and the HPFS (T2D_NHS & T2D_HPFS), the coronary heart 
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disease case-control studies nested within the NHS and the HPFS (CHD_NHS & CHD_HPFS), 

and the kidney stone case-control studies nested within the NHS, the NHS2, and the HPFS 

(KS_NHS, KS_NHS2 & KS_HPFS). See supplementary materials for more detailed 

descriptions of NHS, NHS2, HPFS, and the eight nested case-control studies. The study protocol 

was approved by the Institutional Review Boards of Brigham and Women’s Hospital and the 

Harvard T.H. Chan School of Public Health.   

 

Inclusion and exclusion 

BCC cases who had other common cancers before diagnosis of BCC were excluded. Eligible 

controls were free of BCC and other common cancers. According to the National Cancer 

Institute and the American Cancer Society, common cancers include melanoma, SCC, breast 

cancer, endometrial cancer, ovarian cancer, colorectal cancer, bladder cancer, lung cancer, 

pancreatic cancer, kidney (renal cell) carcinoma, leukemia, non-Hodgkin lymphoma, thyroid 

cancer, and oral cancer. Participants with identical genetic information but different cohort IDs 

were removed; participants whose data appeared in more than one of the eight case-control 

studies were included only once. In total, the BCC GWAS comprised 2,323 BCC cases and 7,275 

controls of European ancestry in the United States.  

 

Genotyping, quality control (QC), and imputation 

Samples from BC_NHS were genotyped using Illumina HumanHap550 array as part of the 

National Cancer Institute’s Cancer Genetic Markers of Susceptibility (CGEMS) Project [29]. We 
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used Affymetrix 6.0 arrays for the T2D_NHS, T2D_HPFS, CHD_NHS, and CHD_HPFS, and 

Illumina 610Q for the KS_NHS, KS_NHS2, and KS_HPFS. Quality control on SNP completion 

rate, sample completion rate, deviation from Hardy-Weinberg equilibrium (HWE), Mendelian 

consistency, minor allele frequency, and duplication samples were conducted within each study, 

although the thresholds were chosen slightly differently. Within each of the eight studies, we 

used the MACH program [30] to impute genotypes for more than 2.5 million markers, using 

haplotype information in the HapMap phase II data build 36(CEU) as a reference panel.  

 

BCC ascertainment 

Disease follow-up procedures are identical for NHS, NHS2, and HPFS. Self-reported BCC 

case-control status is updated every two years without further pathological confirmation. The 

latest update was made in 2008 for the current analysis.  

 

Multiple Tissue Human Expression Resource (MuTHER) project and eSNPs in skin tissue 

A detailed description has been published previously [28]. Briefly, the MuTHER project 

included 856 female individuals of European ancestry recruited from the TwinsUK Adult twin 

registry [31]. Skin tissues were obtained from a photo-protected area adjacent to the umbilicus 

by punch biopsies. RNA from skin samples was extracted using TRIzol Reagent (Invitrogen), 

followed by RNA quality assessment and concentration measurement. Illumina Human Ht-12 V3 

BeadChip (48,804 probes) was used for expression profiling of each sample, with either two or 
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three technical replicates. After quality control, expression profiling of skin tissue was performed 

on 705 individuals, and 23,596 probes were kept for further analysis. The TwinsUK study was 

genotyped by a combination of Illumina HumanHap300, HumanHap610Q, 1M-Suo, and 1.2M 

Duo 1M chips. Genetic imputation was carried out using IMPUTE software package and two 

reference panels: P0 [HapMap 2, release 22, combined Utah residents of Northern and Western 

European ancestry (CEU), Yoruba from Ibadan, Nigeria (YRI) and Asian (ASN) panels] and P1 

(610k+, including the combined HumanHap610k and 1M arrays). Association of expression 

levels with probabilities of imputed genotypes were tested using a two-step mixed model-based 

score test [32, 33] and implemented in the GenABEL/ProbABEL package [34, 35] for 2,029,988 

SNPs with MAF of >5% and IMPUTE info value of >0.8. In total, 667 skin samples that had 

both expression profiles and imputed genotypes were included in the analysis. Results of testing 

associations between gene expression level and SNPs were published and made publicly 

accessible on MuTHER’s website in 2012 (http://www.muther.ac.uk/Data.html). We used a 

significance level of 10
-5

 for eSNP selection.  

 

Statistical analysis 

Association analysis: We used a multivariate logistic regression model, adjusted for age and 

the first three principal components of genetic variation, to evaluate the associations between 

eSNPs and BCC risk in each of the eight nested case-control studies. The principal components 

were calculated for all individuals on the basis of ca. 10,000 unlinked markers using the 

EIGENSTRAT software [36]. The within-study association results for each of the eSNPs were 

http://www.muther.ac.uk/Data.html
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combined by implementing inverse variance-weighted meta-analyses in METAL software [37].  

eSNP enrichment analysis: We integrated the eSNP information into pathway-based GWAS 

analysis using the method of Zhong et al. [23]. For a gene whose expression is associated with 

multiple eSNPs, we chose the eSNP that had the most significant association with BCC risk as 

this gene’s representative. Then we assigned these genes into the pathway defined by pathway 

databases. We evaluated the association of each pathway with risk of BCC with an Enrichment 

Score (ES), which was calculated from the weighted Kolmogorov-Smirnov-like running-sum 

statistic. This ES reflects the overrepresentation of genes within this pathway at the top of the 

entire ranked list of genes being tested. We permuted the case-control status and re-calculated the 

statistic values 1,000 times to assess the significance of each ES. To allow direct comparison of 

pathways of different sizes, a normalized enrichment score (NHS) was computed for each 

pathway. The FDR was calculated to estimate the proportion of false positive findings by using 

NES [38]. We set the significance level for the pathway analysis as p-value < 0.05 and FDR < 

0.2. 

Pathway databases: We used human biological pathways as defined in the Kyoto 

Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/pathway.html/) 

database [39] as the primary pathway collection. Gene Ontology (GO, http://geneontology.org/) 

and BioCarta (http://www.biocarta.com/) databases were also included as secondary pathway 

collections. All pathways that contain at least 3 but at most 200 genes represented by eSNPs 

were tested.  

 

http://www.genome.jp/kegg/pathway.html/
http://geneontology.org/
http://www.biocarta.com/
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Sensitivity analysis 

Results (p-values) of all tested SNP-gene expression pairs are published on the MuTHER 

website. The threshold to identify SNPs that are significantly associated with at least one gene’s 

expression in skin tissue is arbitrary. As the threshold becomes less stringent, the number of 

genes that can be represented by eSNPs increases and the surrogate eSNP for a particular gene 

may change. Therefore, we changed our threshold for eSNP selection to 5×10
-5

 and 10
-4

 

respectively for the purpose of sensitivity analysis.  

 

Results 

From the MuTHER data, we identified 70,932, 87,481, and 97,903 eSNPs in skin tissue 

using the threshold of 10
-5

 (main analysis), 5×10
-5

 (sensitivity 1), and 10
-4

 (sensitivity 2) 

respectively. Among them, 69,988, 86,325, and 96,603 are available in our BCC GWAS, 

respectively. Because all these eSNPs have MAF >1% and imputation R-square >0.4 in our BCC 

GWAS, they were used for further analysis.  

In our main analysis, 2,049 genes with surrogate eSNPs were assigned to the pathways 

defined in the KEGG database. Using the cut-off of containing 3-200 genes, 143 pathways were 

tested for association with BCC risk using our GWAS data. Eleven pathways reached a nominal 

p value < 0.05, which was 1.54-fold higher than the number expected by chance (0.05×143 = 

7.15; this is a conservative estimate, because pathways may be correlated due to overlapping 

genes, and the effective number should be smaller than 143). Three out of the 11 pathways had a 

FDR <0.2: the colorectal cancer pathway (p-value<0.00001, FDR =0.005), the regulation of actin 
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cytoskeleton pathway (p-value=0.03, FDR =0.073), and the basal cell carcinoma pathway 

(p-value=0.002, FDR =0.069). In sensitivity 1 analysis, the numbers of genes that can be 

represented by eSNPs increased to 2,649 when we used the threshold of 5×10
-5

 for eSNP 

identification. A total of 151 KEGG pathways that contain between 3 and 200 genes were 

examined for their association with BCC. Twelve reached a nominal p<0.05, which was 

1.59-fold higher than the number expected by chance. Five out of the 12 pathways had a FDR 

<0.2. Besides the three that have already been found in the main analysis, the other two pathways 

are the adherens junction pathway (p-value=0.028, FDR =0.145) and the pancreatic cancer 

pathway (p-value=0.023, FDR =0.189). In sensitivity 2 analysis, 3,158 genes were included, and 

164 KEGG pathways were tested. Fifteen reached a nominal p<0.05, which was 1.83-fold higher 

than the number expected by chance. Only one out of the 15 pathways had a FDR < 0.2 -- the 

colorectal cancer pathway (p-value<0.00001, FDR =0.175). In total, five KEGG pathways have 

shown significant associations with risk of BCC in either main analysis or sensitivity analysis. 

Results of main and sensitivity analyses for the five significant pathways are listed in Table 1.1. 

We also used GO and BioCarta databases for pathway construction. The results are shown in 

Tables 1.2 and 1.3.  

For certain pre-defined pathways identified through the pathway databases, only some of the 

genes could be represented by eSNPs. Therefore, more attention should be given to the genes and 

eSNPs that were included in the gene set enrichment analysis rather than to the entire pathway. 

For significant pathways, we summarized information on such genes and their corresponding 

eSNPs in Table 1.4. Because no BioCarta pathway appeared to be significantly associated with 
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Table 1.1  KEGG Pathways with significant enrichment (p<0.05, FDR <0.2) in BCC GWAS & Hedgehog Signaling Pathway 

 

Pathway 
Gene 

count 
d
 

Main analysis 
a 

Sensitivity analysis 1 
b 

Sensitivity analysis 2 
c 

Size 
%

 

Pathway 

enrichment 

p-value 
e
 

FDR
f
 Size 

%
 

Pathway 

enrichment 

p-value 
e
 

FDR
f
 Size 

%
 

Pathway 

enrichment 

p-value 
e
 

FDR
f
 

Colorectal Cancer  114 7 <0.00001 0.005 10 0.003 0.172 12 <0.00001 0.175 

Regulation of 

Actin 

Cytoskeleton 

276 14 0.03 0.073 18 0.03 0.183 27 0.529 0.952 

Basal Cell 

Carcinoma  
73 3 0.002 0.069 4 0.001 0.169 4 <0.00001 0.269 

Adherens Junction  110 7 0.346 1 10 0.028 0.145 11 0.02 0.253 

Pancreatic Cancer  115 3 0.054 0.163 5 0.023 0.189 7 <0.00001 0.213 

Hedgehog 

Signaling Pathway  
74 3 0.008 0.657 5 0.031 0.464 5 0.036 0.404 

 

a eSNPs were selected at significance level of 10
-5 

b eSNPs were selected at significance level of 5×10
-5

 

c eSNPs were selected at significance level of 10
-4

 

d The number of genes in the pathway according to the KEGG database 

e&f Based on 1,000 permutations 

f Based on 143, 151, and 164 pathways in main, sensitivity 1, and sensitivity 2, respectively. 

% The number of genes that have surrogate eSNPs in the pathway.  
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Table 1.2  GO Pathways with significant enrichment (p<0.05, FDR <0.2) in BCC GWAS  

 

Pathway 
#
 

Gene 

count 
d
 

Main analysis 
a 

Sensitivity analysis 1 
b 

Sensitivity analysis 2 
c 

Size 
%

 

Pathway 

enrichment 

p-value 
e
 

FDR
f
 Size 

%
 

Pathway 

enrichment 

p-value 
e
 

FDR
f
 Size 

%
 

Pathway 

enrichment 

p-value 
e
 

FDR
f
 

GO0006921  42 3 0.007 0.179 4 0.042 0.932 5 0.137 0.941 

GO0006997 70 4 0.025 0.120 5 0.099 0.717 7 0.166 0.902 

 

a eSNPs were selected at significance level of 10
-5 

b eSNPs were selected at significance level of 5×10
-5

 

c eSNPs were selected at significance level of 10
-4

 

d The number of genes in the pathway according to the GO database 

e&f Based on 1,000 permutations 

f Based on 407, 456, and 506 pathways in main, sensitivity 1, and sensitivity 2, respectively. 

# Annotation: GO0006921 – cellular component disassembly involved in apoptosis; GO0006997 – nucleus organization: a process 

at the cellular level which results in the assembly, arrangement of constituent parts, or disassembly of the nucleus 

% The number of genes that have surrogate eSNPs in the pathway.  
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Table 1.3  BioCarta Pathways with significant enrichment (p<0.05, FDR <0.2) in BCC GWAS 

 

Pathway
 #

 
Gene 

count 
d
 

Main analysis 
a 

Sensitivity analysis 1 
b 

Sensitivity analysis 2 
c 

size 

Pathway 

enrichment 

p-value 

FDR size 

Pathway 

enrichment 

p-value 

FDR Size 
%

 
Pathway enrichment 

p-value 
e
 

FDR
f
 

rasPathway 23 NA 
+
 NA 

+
 3 0.008 0.109 

tcrPathway 45 NA 
+
 NA 

+
 6 0.014 0.189 

nkcellsPathway 20 NA 
+
 NA 

+
 4 0.024 0.188 

Pyk2Pathway 27 NA 
+
 NA 

+
 4 0.048 0.199 

 

a eSNPs were selected at significance level of 10
-5 

b eSNPs were selected at significance level of 5×10
-5

 

c eSNPs were selected at significance level of 10
-4

 

d The number of genes in the pathway according to the BioCarta database 

e&f Based on 1,000 permutations 

f Based on 60, 71, and 114 pathways in main, sensitivity 1, and sensitivity 2, respectively. 

+ These four pathways were not tested in main and sensitivity 1 analyses because their sizes are not between 3 and 200. 

# Annotation: rasPathway – Ras signaling pathway; tcrPathway – T cell Receptor signaling pathway; nkcellsPathway -- 

Ras-Independent pathway in NK cell-mediated cytotoxicity; Pyk2Pathway -- Links between Pyk2 and Map Kinases 

% The number of genes that have surrogate eSNPs in the pathway.  
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Table 1.4  Genes and eSNPs in significant pathways identified in main analysis 
& 

 

Pathway 

database 
Pathway 

Number of 

Genes with 

eSNP 

Pathway 

enrichment 

p-value 

FDR 
Genes with 

eSNP 

Chr 
&&

 

Surrogate 

eSNP 
+
 

eSNP 

PBCC
 #

 

Chr_position 
##

 

KEGG 

Colorectal 

Cancer 

 

7 <0.00001 0.005 

BIRC5 17 rs4789559 0.130  17:76218857 

CYCS 7 rs39454 0.025  7:25135783 

FZD3 8 rs12678890 0.075  8:28451002 

FZD8 10 rs11815242 0.101  10:35995340 

MAPK9 5 rs3812067 0.104  5:179709154 

SMAD3 15 rs7176870 0.097  15:67388553 

SOS1 2 rs12473092 0.029  2:39204040 

Regulation of 

Actin 

Cytoskeleton 

14 0.03 0.073 

ACTG1 17 rs12952655 0.717  17:80421139 

ARHGEF7 13 rs7984371 0.039  13:111958666 

BAIAP2 17 rs4969387 0.309  17:79081724 

C3orf10 3 rs279545 0. 051 3:9972493 

CYFIP2 5 rs11744003 0.085  5:156806993 

FGFR4 5 rs422421 0.099  5:176517326 

GNA12 7 rs7790322 0.051  7:2830498 

ITGA2 5 rs3212544 0.040  5:52358887 

ITGAX 16 rs11150612 0.103  16:31357760 

MYL2 12 rs16941319 0.593  12:111646853 

PAK2 3 rs7646247 0.431  3:196519209 

SOS1 2 rs12473092 0.029  2:39204040 

TIAM1 21 rs2833271 0.280  21:32487749 

VAV3 1 rs11185131 0.604  1:108078183 

VCL 10 rs12360087 0.002  10:76373904 
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Table 1.4  Genes and eSNPs in significant pathways identified in main analysis 
&

 (Continued) 

 

Pathway 

database 
Pathway 

Number of 

Genes with 

eSNP 

Pathway 

enrichment 

p-value 

FDR 
Genes with 

eSNP 

Chr 
&&

 

Surrogate 

eSNP 
+
 

eSNP 

PBCC
 #

 

Chr_position 
##

 

KEGG 
Basal Cell 

Carcinoma 
3 0.002 0.069 

BMP2 20 rs6054443 0.001  20:6647580 

FZD3 8 rs12678890 0.075  8:28451002 

FZD8 10 rs11010260 0.051  10:35995340 

GO 

GO0006921 3 0.007 0.179 

BIRC7 20 rs1075557 0.014  20:61870465 

CYCS 7 rs39454 0.025  7:25135783 

DFFB 1 rs4074709 0.802  1:3796948 

GO0006997 4 0.025 0.120 

BIRC7 20 rs1075557 0.014  20:61870465 

CYCS 7 rs39454 0.025  7:25135783 

DFFB 1 rs4074709 0.802  1:3796948 

PML 15 rs11072463 0.199  15:74303349 

BioCarta 

rasPathway 3 0.008 0.109 

PIK3R1 5 rs9291926 0.016  5:67599656 

RAC1 7 rs2689420 0.013  7:6410321 

RALGDS 9 rs482670 0.362  9:136007358 

tcrPathway 6 0.014 0.189 

CALM3 19 rs973679 0.401  19:47061564 

NFATC2 20 rs231583 0.490  20:49346881 

NFATC3 16 rs13338993 0.289  16:67515312 

PIK3R1 5 rs9291926 0.016  5:67599656 

RAC1 7 rs2689420 0.013  7:6410321 

SOS1 2 rs12473092 0.029  2:39204040 
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Table 1.4  Genes and eSNPs in significant pathways identified in main analysis 
&

 (Continued) 

 

Pathway 

database 
Pathway 

Number of 

Genes with 

eSNP 

Pathway 

enrichment 

p-value 

FDR 

Genes 

with 

eSNP 

Chr 
&&

 

Surrogate 

eSNP 
+
 

eSNP 

PBCC
 #

 

Chr_position 
##

 

BioCarta 

nkcellsPathway 4 0.024 0.188 

PIK3R1 5 rs9291926 0.016  5:67599656 

PTK2B 8 rs472865 0.882  8:26698471 

RAC1 7 rs2689420 0.013  7:6410321 

SYK 9 rs914925 0.766  9:93584793 

Pyk2Pathway 

nkcellsPathway 
4 0.048 0.199 

CALM3 19 rs973679 0.401  19:47061564 

PTK2B 8 rs472865 0.882  8:26698471 

RAC1 7 rs2689420 0.013  7:6410321 

SOS1 2 rs12473092 0.029  2:39204040 

 

& For the BioCarta database, results of sensitivity analysis 2 are presented in this table, because no significant pathway has been 

identified in main and sensitivity 1 analysis. 

&& Chromosome of genes 

+ If a gene’s expression is associated with multiple eSNPs, we used the eSNP that was most significantly associated with BCC risk 

as the gene’s surrogate eSNP. 

# PBCC represents P values of the association between eSNPs and risk of BCC.  

## Chromosome and position of eSNPs 
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BCC risk in main analysis (Table 1.3), we reported the results of sensitivity analysis 2 for 

BioCarta in Table 1.4. On the other hand, some genes belong to more than one of the significant 

pathways. For example, SOS1 and RAC1 were included in four significant pathways and 

PIK3R1 and CYCS were in three significant pathways. Nine eSNPs associated with BCC risk at 

a nominal P < 0.05 are worth noting. These gene-eSNP pairs are CYCS-rs39454 (PBCC = 0.025), 

SOS1-rs12473092 (PBCC = 0.029), ARHGEF7- rs7984371 (PBCC = 0.039), ITGA2- rs3212544 

(PBCC = 0.040), VCL – rs12360087 (PBCC = 0.002), BMP2- rs6054443 (PBCC = 0.001), BIRC7- 

rs1075557 (PBCC = 0.014), PIK3R1- rs9291926 (PBCC = 0.016), and RAC1-rs2689420 (PBCC = 

0.013).   

Moreover, we chose two established BCC-related pathways in the KEGG database as 

positive controls – the basal cell carcinoma pathway and the hedgehog signaling pathway. The 

gene set enrichment p-value for these two pathways reached nominal significance in both the 

main and sensitivity analyses, though the FDRs of the hedgehog signaling pathway are above 0.2 

(Table 1.1). 

 

Discussion 

Conventional GWASs have primarily focused on the associations between individual genetic 

markers and risk of diseases. In the current study, we applied a novel approach that integrates 

skin eSNPs and pathway analysis for GWAS of BCC. Three KEGG pathways (colorectal cancer, 

regulation of actin cytoskeleton, and basal cell carcinoma), two GO pathways (cellular 

component disassembly involved in apoptosis, and nucleus organization), and four BioCarta 
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pathways (Ras signaling pathway, T-cell receptor signaling pathway, Ras-independent pathway 

in natural killer (NK) cell-mediated cytotoxicity, and links between Pyk2 and Map Kinases) 

showed significant associations with BCC risk. Our results demonstrate that SNPs and genes of 

moderate effect that are undetectable by conventional GWASs are significantly associated with 

risk of BCC as groups. These gene sets might be implicated in the etiology of BCC. 

Some well-known cancer-related pathways have been mapped in both the colorectal cancer 

pathway and the BCC pathway in KEGG, including the p53 signaling pathway, the Wnt 

signaling pathway, the PI3K-Akt signaling pathway, the TGF-β signaling pathway, and other 

pathways related to cell cycle and survival. Studies have shown that a personal history of 

non-melanoma skin cancer was significantly associated with a higher risk of other primary 

cancers [6, 40]. Certain genetic components may act systemically and play a role in both 

cutaneous and internal carcinogenesis. The actin cytoskeleton pathway mainly regulates cell 

motility, which is required for many biological processes, such as embryonic morphogenesis, 

immune surveillance, and tissue repair and regeneration. Aberrant regulation of cell migration 

drives progression of many diseases, including cancer invasion and metastasis [41, 42]. In the 

GO database, GO0006921 is defined as the breakdown of structures such as organelles, proteins, 

or other macromolecular structures during apoptosis; GO0006997 is defined as a process that is 

carried out at the cellular level that results in the assembly, arrangement of constituent parts, or 

disassembly of the nucleus, all of which are highly related to cancer development. The RAS 

signaling pathway is a key regulator of normal cell growth and malignant transformation. 

Mutations in RAS genes or alterations in upstream or downstream signaling components have 
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been found in most human tumors [43] including basal cell carcinoma, although with a relatively 

low mutation rate [44]. T cell receptor (TCR) activation promotes a number of signaling 

cascades that ultimately determine cell survival, proliferation, and differentiation. High levels of 

intratumor infiltration of T cells is correlated with prolonged survival in cancer patients [45]. NK 

cells are large granular lymphocytes with natural cytotoxicity against tumor cells [46]. An 

11-year follow-up study has shown that low NK cell activity in peripheral blood is associated 

with increased cancer risk [47].  

In the current study, we made a major improvement by using high-quality eSNPs data on 

disease-relevant tissue. Although detailed gene-expression studies have profiled transcripts and 

genotyped SNPs across the human genome in several population-based cohorts, gene expression 

data in skin tissue from a fairly large cohort was not accessible until the publication of the 

MuTHER project. In that study, the GWAS data and expression data had undergone stringent 

quality controls before testing the association of expression levels with probabilities of imputed 

genotypes. Also, skin eSNP identified in the MuTHER study had been replicated in independent 

cohorts [12]. Other strengths of our study include involvement of multiple pathway databases 

and design of sensitivity analysis as well as positive controls to validate our findings.  

The main limitation of our study is that the proportion of genes that could be represented by 

eSNPs within a predefined pathway is too small, because only 69,988 SNPs that were 

significantly associated with expression of 2,049 genes at significance level of 10
-5

 had been 

included in the main analysis. For example, the colorectal cancer pathway in the KEGG database 

is composed of 114 genes, whereas only 7 genes (6%) were involved in the gene set enrichment 
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analysis. Specifically, we found that a subgroup of seven genes – BIRC5, CYCS, FZD3, FZD8, 

MAPK9, SMAD3, and SOS1 – that belong to the KEGG colorectal cancer pathway showed 

significant association with risk of BCC. Similar conclusions could be drawn for other 

significant pathways, with the subgroups presented in Table 1.4. Given that the identified 

subgroups could hardly represent the original KEGG, GO, and BioCarta pathways, some may 

argue the necessity of using these pathway resources. However, these pre-defined pathways are 

important in two ways: on the one hand, they provide us prior knowledge on how to assign genes 

into different groups in order to conduct a pathway-based analysis; on the other hand, genes have 

been carefully selected, organized, and mapped in these established pathways based on multiple 

sources of evidence. With high-quality pre-collected information, we could interpret a gene’s role 

and its relationship with other genes in the same pathway more easily, despite the limited size of 

identified subgroups.   

A further limitation is that no replication was conducted for the identified gene groups, 

because we used all our BCC GWAS at the discovery stage to maximize statistical power. 

However, the significant gene groups in the main analysis also ranked top among all pathways 

being tested in sensitivity analyses. Besides, the positive controls – the Hedgehog signaling 

pathway and the BCC pathway – were significantly associated with risk of BCC (p<0.05) in both 

main and sensitivity analyses.  

In conclusion, our study identified novel genes and gene sets that may be important for BCC 

development. Genes with moderate effect that are undetectable in conventional GWAS were 

significantly associated with risk of BCC as groups. Further pathway analyses that integrate 
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more skin eSNPs and/or other functional variants are warranted to verify our findings, and 

additional biological studies are needed to better elucidate the roles of these genes and pathways 

in the etiology of BCC.  
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Supplementary Materials 

 

1. Detailed description of study population 

Nurses’ Health Study (NHS): The NHS is a prospective cohort study established in 1976 with 

121,700 female U.S registered nurses, who were then 30-55 years old. All of them completed 

and returned a mailed self-administered questionnaire about their medical histories and lifestyle 

at the baseline. In 1989 and 1990, a total of 32,826 women provided blood samples. Information 

regarding medical history, lifestyle, and disease diagnoses was updated every 2 years with a 

follow-up rate of 90%.  

Health Professionals Follow-up Study (HPFS): The HPFS began in 1986 with 51,529 U.S. 

male health professionals who were 40-75 years old at initial recruitment. They all answered a 

detailed mailed questionnaire at the inception of the study. Disease- and health-related 

information was obtained and updated through biennial questionnaires. Between 1993 and 1994, 

18,159 of these men provided a blood sample. The average follow-up rate for this cohort over 10 

years is greater than 90%.  

Nurses’ Health Study II (NHS2): The NHS2 was established in 1989, when 116,671 female 

registered nurses aged 25–42 and residing in the United States at the time of enrollment 

responded to an initial questionnaire on their medical histories and baseline health-related 

exposures.  Information regarding medical history, lifestyle risk factors, and disease diagnoses 

was updated every 2 years with a follow-up rate of above 90%. Blood samples from 29,616 

nurses were collected in the late 1990’s. 
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BCC GWAS set: A BCC GWAS set has been established within the sub-cohort of participants 

who provided a blood sample. Eight case-control studies were included in current BCC GWAS, 

they are: 

1) Postmenopausal invasive breast cancer case-control study nested within the NHS (BC_NHS): 

Eligible cases in this study consisted of women with pathologically confirmed incident breast 

cancer from the subcohort who gave a blood specimen. Cases with a diagnosis after blood 

collection up to June 1, 2000 with no previously diagnosed cancer except for non-melanoma skin 

cancer were included. One control for each case was randomly selected among women who gave 

a blood sample and were free of diagnosed cancer (excluding non-melanoma skin cancer) up to 

and including the interval in which the case was diagnosed. Controls were matched to cases on 

year of birth, menopausal status, recent post-menopausal hormone (PMH) use, month of blood 

return, time of day of blood collection, and fasting status at blood draw [1].  

2) Type 2 diabetes (T2D) case-control study nested within the NHS and HPFS (T2D_NHS and 

T2D_HPFS): Diabetes cases were defined as self-reported incident diabetes confirmed by a 

validated supplementary questionnaire. For cases before 1998, diagnosis was made using criteria 

consistent with those proposed by the National Diabetes Data Group (NDDG). For cases during 

the 1998 and 2000 cycles, the American Diabetes Association’s diagnostic criteria were used for 

the diagnosis of diabetes cases. The nondiabetic control subjects were matched to cases on age, 

month and year of blood draw, and fasting status [2].  

3) Coronary heart disease (CHD) case-control study nested within the NHS and HPFS 

(CHD_NHS and CHD_HPFS): In both the NHS and HPFS, participants who had reported an 
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incident CHD event on the follow-up questionnaire were contacted for confirmation and 

permission to review medical records was requested. Medical records for deceased participants 

were also sought for deaths that were identified by families and postal officials and through the 

National Death Index. Physicians blinded to the participant’s questionnaire reports reviewed all 

medical records. Fatal CHD cases were identified primarily through review of medical records 

[3]. Among participants who provided blood samples and who were without cardiovascular 

disease or cancer at blood draw, incident CHD cases occurring after blood draw were selected as 

cases. Controls were selected in a 2:1 ratio matched to cases on age, smoking, and month of 

blood return. 

4) Kidney stone case-control study nested within the NHS, NHS2 and HPFS (KS_NHS, 

KS_NHS2 and KS_HPFS): Participants from KS_NHS, KS-NHS2 and KS_HPFS were 

individuals who performed a 24-hour urine collection; two-thirds had a history of incident 

nephrolithiasis. Details regarding the urine collection [4] and the confirmation of kidney stone 

disease were published previously [5]. The biennial questionnaires have asked whether a 

participant had been diagnosed with kidney stone. For newly reported cases, an additional 

questionnaire was sent to inquire date of occurrence and symptoms. Studies have been conducted 

to confirm the validity of the self-reported stones [6, 7]. A control was randomly selected from 

the blood cohorts of NHS, NHS2, and HPFS for each case, matching on age, time of blood draw, 

and fasting status. 
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Supplementary Table 1.1  Number of BCC cases and controls 
#
 in the eight case-control 

studies nested in NHS, NHS2 or HPFS 

Study Number of BCC cases Number of controls 

BC_NHS 248 816 

T2D_NHS 665 2162 

T2D_HPFS 597 1555 

CHD_NHS 253 765 

CHD_HPFS 282 715 

KS_NHS 99 324 

KS_NHS2 58 552 

KS_HPFS 121 386 

Total 2323 7275 

 

# BCC cases who had diagnosis of other common cancers before diagnosis of BCC were 

excluded; Controls who had other cancers were excluded; participants with identical genetic 

information but different cohort ID were removed; participants sampled by more than one studies 

were included only once. Participants who withdrew consent were excluded. 
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Abstract 

Increased caffeine consumption is significantly associated with reduced risk of basal cell 

carcinoma (BCC). To identify common genetic markers that may modify this association, we 

tested gene-caffeine intake interaction on BCC risk in a genome-wide analysis. We included 

3,383 BCC cases and 8,528 controls of European ancestry in the Nurses’ Health Study and 

Health Professionals Follow-up Study. We determined that SNP rs142310826 (minor allele 

frequency or MAF = 1.9%) shows a genome-wide significant interaction with caffeine 

consumption (p = 1.78×10
-8

 for interaction). The estimates for interaction between this SNP and 

caffeine intake in relation to BCC among women were not significantly different from that 

among men (p = 0.64 for heterogeneity). We also found several loci that modify the 

caffeine-BCC association differently in men and women (p for heterogeneity between genders < 

0.001): genetic markers on chromosomes 2p12, 1q32.2, and 10p13 in women, and SNPs on 

chromosome 8p11.21 in men. A sensitivity analysis that modeled caffeine consumption in a 

different way did not change our results materially. This study is proof of concept that inclusion 

of environmental factors can help identify genes that are missed in conventional genome-wide 

association studies. Validation of these findings in additional populations may facilitate targeted 

BCC prevention strategies.  
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Introduction 

Basal cell carcinoma (BCC), a major histological type of non-melanoma skin cancer, is the 

most common malignancy among populations of European ancestry [1, 2]. Some known risk 

factors for BCC include exposure to ultraviolet (UV) radiation, family history of skin cancer, and 

lighter pigmentation [3-5]. Like other common disorders, BCC is thought to have both 

environmental and genetic components and to involve their interactions. Genome-wide 

association studies (GWASs) have identified several genetic loci that confer susceptibility to 

BCC [6-8], however they tested only for association between individual genetic markers and risk 

of BCC without taking interactions into consideration.  

Caffeine is the most widely consumed psychoactive substance in the world. Studies have 

demonstrated caffeine’s protective role against the development of BCC. In mice, oral or topical 

administration of caffeine inhibits UV-induced carcinogenesis [9-11]. Consumption of coffee or 

tea has been associated with lower incidence of non-melanoma skin cancers in several 

epidemiological studies [12-14]. In a recent prospective study using data from the Nurses’ Health 

Study (NHS) and the Health Professionals Follow-up Study (HPFS), researchers found a 

significant inverse association between total caffeine intake and risk of BCC [15]. However, the 

mechanisms behind this association are not well understood. One potential explanation is that 

caffeine could augment apoptosis in UV-damaged keratinocytes through ataxia telangiectasia and 

rad3-related (ATR) kinase and its downstream effector checkpoint kinase-1 (Chk1) [16-19]. 

However, conclusions from these biological studies may not readily be applied to the human 
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body, because they were based on mice and cultured cells to which a larger-than-usual dose of 

caffeine was administered.  

To the best of our knowledge, no epidemiological study considering both caffeine 

consumption and the genetic makeup of participants has been conducted to investigate the 

interrelationship of caffeine and genetic markers in BCC development. In the current study, we 

conducted genome-wide analyses of gene-caffeine consumption interactions among the 

participants of the blood cohorts in the NHS and HPFS. Our study may provide new biologic 

insights into caffeine’s role in BCC development, lead to discovery of BCC-related genes that 

have been missed in conventional GWASs, and help identify subgroups who might benefit from 

personalized advice concerning their coffee consumption habits. 

 

Methods 

Study population, inclusion, and exclusion 

Eighteen case-control studies nested within the NHS and HPFS with cleaned genotype data 

were included in our study. Participants who had other common cancers before 1986 were 

excluded because we only considered caffeine intake measured in 1986. BCC cases who had 

other common cancers before diagnosis of BCC were excluded. Eligible controls were free of 

BCC and other common cancers. Participants with identical genetic information but different 

cohort IDs were removed. Participants who were sampled in more than one of the 18 

case-control studies were included only once. In total, 3,383 BCC cases and 8,528 controls of 
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European ancestry were available. See Supplementary Materials for more detailed descriptions 

of the NHS, the HPFS, and the 18 nested case-control studies. The study protocol was approved 

by the Institutional Review Boards of Brigham and Women’s Hospital and the Harvard T.H. 

Chan School of Public Health. 

 

Genotyping, quality control, and imputation 

Samples from the 18 nested case-control studies were genotyped using a variety of platforms. 

We combined these datasets into three compiled datasets based on their genotype platform type: 

Affymetrix (Affy), Illumina HumanHap series (Illumina), or Illumina Omni Express (Omni) 

(Supplementary Table 2.1). Quality control on SNP completion rate, sample completion rate, 

ancestry consistency, deviation from Hardy-Weinberg equilibrium (HWE), Mendelian 

consistency, minor allele frequency, and duplication samples were conducted within each of the 

three combined datasets. We then imputed the complied datasets using the 1000 Genomes Project 

ALL Phase I Integrated Release Version 3 Haplotypes excluding monomorphic and singleton 

sites (2010-11 data freeze, 2012-03-14 haplotypes) as a reference panel. Detailed descriptions of 

quality control and imputation are provided in Supplementary Materials. We included genetic 

markers with imputation Rsq >=0.3 and minor allele frequency >= 1% in further analysis. The 

numbers of such markers in the three combined datasets are presented in Supplementary Table 

2.2.  

 

Caffeine intake 
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Information on dietary intake of coffee and other foods known to be high in caffeine, 

including tea, cola, and chocolate, was collected by food-frequency questionnaire (FFQ). The 

questionnaires were completed in 1984, 1986, 1990, 1994, 1998, 2002, and 2006 for the NHS, 

and in 1986, 1990, 1994, 1998, 2002, and 2006 for the HPFS. On all questionnaires, participants 

were asked how many times on average during the previous year they had consumed each food 

and beverage. The participants could choose from nine frequency responses (never, 1-3 per 

month, 1 per week, 2-4 per week, 5-6 per week, 1 per day, 2-3 per day, 4-5 per day, and >=6 per 

day). Based on information obtained from the FFQ, the total intake of caffeine was calculated by 

multiplying the reported frequency of each food by the caffeine content of one serving of that 

food (1 cup for coffee or tea, one 12-ounce bottle or can for carbonated beverages, and 1 ounce 

for chocolate). According to the U.S. Department of Agriculture food composition sources, 

caffeine content is 137 mg per cup of caffeinated coffee, 47 mg per cup of tea, 46 mg per bottle 

or can of cola beverage, and 7 mg per serving of chocolate candy. Food and nutrient intakes 

assessed by this dietary questionnaire, including caffeine, have been validated previously against 

two 1-week diet records. The observed correlation between the questionnaire and the diet record 

was about 0.9 for caffeine consumption [20, 21]. We used daily caffeine intake (mg) measured in 

1986 in the current study. 

 

BCC ascertainment 

Disease follow-up procedures are identical for the NHS and the HPFS. Self-reported BCC 

case-control status is updated every two years starting in 1984 in the NHS and 1986 in the HPFS 
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without further pathological confirmation. The latest updates were made in 2008 in the NHS and 

2010 in the HPFS. The validity of self-reported BCC in these medically sophisticated 

populations has been assessed in previous studies [22]. 

 

Statistical analysis 

To account for gender differences (cohort differences), we divided each of the combined 

datasets into two parts and conducted genome-wide gene-environment (G-E) interaction analysis 

in the six datasets (Illumina_NHS, Illumina_HPFS, Affy_NHS, Affy_HPFS, Omni_NHS, and 

Omni_HPFS). We used standard logistic regression with a product term to test the interaction 

between caffeine consumption and genetic markers in relation to BCC risk, adjusted for age in 

1986, and the first three principal components (PCs) from EIGENSTRAT [23] to account for 

population substructure. Both genotyped and imputed markers were examined as continuous 

variables, assuming additive effects. Quartiles of caffeine intake were defined within each of the 

six datasets using the full range from zero to maximum intake among controls. We coded the 

quartiles as an ordinal variable (1
st
 quartile = 1, 2

nd
 quartile=2, 3

rd
 quartile =3, 4

th
 quartile = 4) in 

the main analysis, and used the median values of each quartile to represent the corresponding 

intake levels (1
st
 quartile = median intake of 1

st
 quartile, 2

nd
 quartile=median intake of 2

nd
 

quartile, etc.) for sensitivity analysis. We combined results from Illumina_NHS, Affy_NHS, and 

Omni_NHS using inverse variance-weighted meta-analyses in METAL software [24]. The same 

procedure was implemented for the three HPFS datasets to obtain combined results for men. We 

calculated p-value for heterogeneity between men and women with the Cochran Q test, and 
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performed the third meta-analysis for all six datasets if no significant difference was found 

between genders. All analyses were conducted using the ProbABEL package [25] and R-3.0.2 

(https://www.r-project.org) .  

 

Results 

The characteristics of participants within each of the six subsets are provided in Table 2.1. 

Participants in the NHS (women) consumed more caffeine compared to those in the HPFS (men). 

BCC was more prevalent among males.  

For our main analysis, in which quartiles of caffeine intake were modeled as ordinal 

variables, the p-value for interaction between each genetic marker and caffeine are shown in the 

Manhattan plot and quantile-quantile (Q-Q) plot (Figure 2.1). On chromosome 4, we determined 

that SNP rs142310826 (MAF = 1.9%) had a genome-wide significant interaction with caffeine 

consumption (p = 1.78×10
-8

 for interaction). The estimate for interaction between this SNP and 

caffeine intake in relation to BCC among women was not significantly different from that among 

men (p = 0.64 for heterogeneity). Using the UCSC GRCh37/hg19 assembly, this SNP was 

mapped to gene NEIL3 (Table 2.2).  

In the gender-specific analysis, 19 genetic markers and 3 genetic markers with p-value for 

interaction less than 5×10
-7

 were identified among women and men, respectively (Table 2.3). 

The top significant marker identified among females was 2:76738900:TTAGA (p = 2.51×10
-8 

for 

interaction), which was mapped on gene LRRTM4. Eleven genetic variants located very close to 

this top marker were also identified. As expected, the beta estimates, MAF, and imputation 
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quality of these related genetic markers are very similar. The other two regions identified in NHS 

were mapped to gene ATF3 on chromosome 1 and gene DCLRE1C on chromosome 10, 

respectively. In men, three correlated SNPs on chromosome 8 (POTEA gene) were reported. 

However, the p-value for interaction of the most significant one, rs77868414, failed to reach 

genome-wide significance (p = 5×10
-8

). All 22 gender-specific markers reported above (19 in 

NHS and 3 in HPFS) had p-values for heterogeneity <0.001 or approximately 0.001. Therefore, 

we did not calculate the combined estimates for them. Manhattan plots and Q-Q plots for 

gender-specific analysis are shown in Supplementary Figures 2.1 and 2.2. Markers that interact 

with caffeine consumption in relation to BCC risk at the significance level of 5×10
-6

 are 

presented in Supplementary Tables 2.3, 2.4, and 2.5. 

In sensitivity analysis, we used the median values of each quartile to represent the 

corresponding caffeine intake levels (1
st
 quartile = median intake of 1

st
 quartile, 2

nd
 

quartile=median intake of 2
nd

 quartile, etc.), which did not change the results materially. 

Supplementary Table 2.6 summarizes sensitivity analysis results for the independent markers 

discovered by main analysis.  

Genome-wide association studies have identified several genetic loci that are associated with 

caffeine/coffee consumption [26-29]. We extracted results for these SNPs from our genome-wide 

G-E interaction analysis to better illustrate their potential functions. We also tested their 

individual and combined association with risk of BCC, but no significant association was found. 

Table 2.4 shows analytic methods and results for these additional analyses. 
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Table 2.1  Descriptive Characteristics of Study Population 

 

Datasets 

No. (%) 

Gender 

Age in 1986, 

Mean [Min, 

Max] 

Quartiles of caffeine intake, mg/day, Median [Min, Max] 
&

 

BCC 

cases 

BCC 

controls 
1

st
 Quartile 2

nd
 Quartile 3

rd
 Quartile 4

th
 Quartile 

Illumina_NHS 
544 

(28.6%) 

1355 

(71.4%) 
Female 54 [40, 65] 45 [0,93] 150 [94,208] 353 [209, 381] 554.5 [382, 1128] 

Illumina_HPFS 
302 

(34.5%) 

573 

(65.5%) 
Male 53 [40, 76] 14.5 [0,39] 81 [40,145] 201 [146, 358] 458 [359, 943] 

Affy_NHS 
785 

(23.5%) 

2556 

(76.5%) 
Female 54 [40, 65] 39 [0, 88] 160 [89, 229] 354 [231, 394] 630 [395, 1268] 

Affy_HPFS 
818 

(31.9%) 

1748 

(68.1%) 
Male 55 [40, 73] 11 [0, 48] 115 [49, 167] 348 [168, 377] 630 [378, 1114] 

Omni_NHS 
524 

(25.7%) 

1513 

(74.3%) 
Female 54 [40, 65] 42 [0, 85] 150 [88, 221] 356 [222, 408] 627 [409,1220] 

Omni_HPFS 
410 

(34.4%) 

783 

(65.6%) 
Male 54 [40, 75] 17 [0, 52] 120 [53, 166] 348 [167, 371] 542 [372, 1037] 

 

& Quartiles of caffeine intake were defined for each dataset using the full range of intake (from zero to maximum) among BCC 

controls. 
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Table 2.2  Genetic markers with P-value for interaction < 5×10
-8

 in meta-analysis 

 

SNP rs 

number 
CHR:BP A1 A2 Freq1

a
 

Average 

Imputation 

Rsq 
b
 

NHS 
c
 HPFS 

d
 

Meta-analysis 
e
 P-Het 

f
 

Mapped 

Gene 
g
 

Beta P-value Beta P-value Beta P-value 

rs142310826 4:179402856 a t 0.0185 0.580 -0.82 4.96E-06 -0.68 8.55E-04 -0.76 1.78E-08 6.39E-01 NEIL3 

 

a Frequency for allele 1; 

b Average imputation R square quality metric of Illumina, Affy, and Omni datasets; 

c Results of meta-analysis of Illumina_NHS, Affy_NHS, and Omni_NHS; 

d Results of meta-analysis of Illumina_HPFS, Affy_HPFS, and Omni_HPFS; 

e Results of meta-analysis of Illumina_NHS, Affy_NHS, Omni_NHS, Illumina_HPFS, Affy_HPFS, and Omni_HPFS; 

f P for heterogeneity between results of NHS and HPFS (gender difference); 

g The SNP was mapped to its nearest genes using the UCSC GRCh37/hg19 assembly; 
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Table 2.3  Genetic markers with P-value for interaction < 5×10
-7

 in gender-specific analysis 

 

SNP rs 

number 
CHR:BP A1 A2 

Freq1 
a
 

Average 

Imputati-on 

Rsq 
b
 

NHS 
c
 HPFS 

d
 

P-Het 
e
 

Mapped 

Gene 
f
 Beta P-value Beta P-value 

NHS (Female) 

NA 
&

 2:76738900:TTAGA d r 0.1860 0.969 -0.27 2.51E-08 -0.02 6.77E-01 5.50E-04 

LRRTM4 

rs12624158 2:76736544 a t 0.8186 0.984 0.26 9.62E-08 0.02 7.20E-01 8.42E-04 

rs12477078 2:76711828 t c 0.1835 0.992 -0.25 1.18E-07 -0.003 9.47E-01 4.13E-04 

rs1921242 2:76704590 t c 0.8146 0.995 0.25 1.53E-07 0.01 8.20E-01 6.97E-04 

rs12474352 2:76714536 c g 0.8143 0.997 0.25 1.80E-07 0.01 8.15E-01 7.75E-04 

rs12466281 2:76714567 a g 0.8143 0.997 0.25 1.81E-07 0.01 8.16E-01 7.79E-04 

rs12613882 2:76722019 a g 0.1831 0.999 -0.25 1.93E-07 -0.003 9.60E-01 5.00E-04 

rs12618802 2:76725088 a g 0.8141 0.998 0.24 2.60E-07 0.02 7.32E-01 1.24E-03 

rs17012789 2:76722305 t c 0.8140 0.999 0.24 2.79E-07 0.01 7.82E-01 1.07E-03 

rs12476072 2:76702062 t g 0.8152 0.992 0.24 3.78E-07 -0.004 9.44E-01 4.94E-04 

rs4853248 2:76692117 a g 0.1828 0.987 -0.24 4.04E-07 0.01 8.22E-01 3.58E-04 

rs12463620 2:76701736 a t 0.8155 0.993 0.24 4.16E-07 -0.001 9.78E-01 6.01E-04 

rs6694870 1:212728988 a g 0.1528 0.957 0.27 1.64E-07 -0.03 5.53E-01 5.50E-05 

ATF3 

rs11119969 1:212729555 a g 0.1527 0.957 0.27 1.67E-07 -0.03 5.47E-01 5.41E-05 

rs1344329 1:212724028 a g 0.1442 0.962 0.28 1.74E-07 -0.03 6.27E-01 7.25E-05 

rs12073156 1:212721216 t c 0.8556 0.968 -0.28 1.82E-07 0.02 6.70E-01 9.18E-05 

rs931449 1:212726219 a g 0.1511 0.959 0.27 2.55E-07 -0.03 5.64E-01 7.40E-05 

rs12072138 1:212721010 t c 0.8537 0.959 -0.27 2.62E-07 0.02 6.87E-01 1.24E-04 

rs191976747 10:15021717 a t 0.0105 0.629 -1.32 4.51E-07 -0.04 8.80E-01 5.48E-04 DCLRE1C 
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Table 2.3  Genetic markers with P-value for interaction < 5×10
-7

 in gender-specific analysis (Continued) 

 

SNP rs number CHR:BP A1 A2 
Freq1 

a
 

Average 

Imputati-on 

Rsq 
b
 

NHS 
c
 HPFS 

d
 

P-Het 
e
 

Mapped 

Gene 
f
 Beta P-value Beta P-value 

HPFS (Male) 

rs77868414 8:43285229 c g 0.0343 0.377 0.06 7.19E-01 -0.97 3.43E-07 3.50E-05 

POTEA rs117285747 8:43290783 c g 0.9625 0.411 -0.06 7.02E-01 0.88 4.01E-07 3.72E-05 

rs75594195 8:43273165 a g 0.9635 0.416 -0.07 6.52E-01 0.88 4.72E-07 3.55E-05 

 

& This marker does not have a rs number 

a Frequency for allele 1; 

b Average imputation R square quality metric of Illumina, Affy, and Omni datasets; 

c Results of meta-analysis of Illumina_NHS, Affy_NHS, and Omni_NHS; 

d Results of meta-analysis of Illumina_HPFS, Affy_HPFS, and Omni_HPFS; 

e P for heterogeneity between results of NHS and HPFS (gender difference); 

f Genetic markers were mapped to their nearest genes using the UCSC GRCh37/hg19 assembly. 
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Table 2.4  Interaction between caffeine consumption-related SNPs and caffeine in relation to BCC risk; Individual and 

combined association between caffeine consumption-related SNPs and risk of BCC 

 

Caffeine 

consumption-related 

SNPs 
a
 

CHR:BP 
Mapped 

genes 
b
 

P BCC 
&&

 P Interaction 
##

 
Functional 

group 

Association 

between genetic 

scores by 

functional group 

and risk of BCC 
c
 

Association 

between the 

comprehensive 

genetic score and 

risk of BCC 
c
 

rs1481012 4:89039082 ABCG2 0.39 0.06 

Caffeine 

metabolism 
P 

%%
 = 0.50 

P 
%%

 = 0.78 

rs17685 7:75616105 POR 0.19 0.48 

rs2470893 15:75019449 CYP1A1 0.27 0.57 

rs2472297 15:75027880 CYP1A2 0.39 0.57 

rs6968554 7:17287106 AHR 0.97 0.16 

rs6968865 7:17287269 AHR 0.97 0.22 

rs6265 11:27679916 BDNF 0.01 0.18 
Addiction P 

%%
 = 0.32 

rs9902453 17:28349095 EFCAB5 0.43 0.25 

rs1260326 2:27730940 GCKR 0.55 0.08 
unknown NA 

++
 

rs7800944 7:73035857 MLXIPL 0.13 0.68 

 

a  This SNP list was obtained from the GWAS catalog (http://www.ebi.ac.uk/gwas/home). For SNPs in strong LD (R
2
>0.8), 

we only kept the one that is more significantly associated with caffeine intake in our dataset for following analysis; 

b  Reported by original GWAS papers; 

c  For each individual, we summed the dosage of alleles that associated with increased caffeine intake to obtain the genetic 

score. Three scores were calculated – the caffeine metabolism genetic score, the addiction genetic score, and the comprehensive 

genetic score; 

&&  P-value for the association between SNPs and risk of BCC; 

##  P-value for SNPs’ interaction with caffeine intake in relation to risk of BCC; 

%%  P-value for the association between genetic scores and risk of BCC. Models adjusted for gender, sex, and top three PCs. 

++  Functional genetic score was not calculated for SNPs of unknown function. 
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Figure 2.1  Manhattan plot and Q-Q plot for the interaction results with caffeine intake 
& 

 

  

& Results are for the meta-analysis of six datasets. Quartiles of caffeine intake were modeled as an ordinal variable (main 

analysis). 

 

 

 

rs142310826 
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Discussion 

Using data from the NHS and the HPFS, our group has previously reported an inverse 

association between dietary caffeine intake and risk of BCC [15]. Compared with the lowest 

quintile, the highest quintile had the lowest risk (RR=0.82 in women, 95%CI: 0.76-0.86; 

RR=0.87 in men, 95% CI: 0.81-0.94; Ptrend <0.0001 in both). In the current study, we conducted a 

meta-analysis of genome-wide G-E interaction studies among the blood cohort participants in the 

NHS and HPFS. We determined that caffeine consumption was differentially associated with 

BCC risk according to genetic variation at SNP rs142310826, which is located on chromosome 

4q34.3. We also found several loci that modify the caffeine-BCC association differently in men 

and women (p for heterogeneity between genders < 0.001): genetic markers at chromosome 2p12, 

1q32.2, and 10p13 in women, and SNPs at chromosome 8p11.21 in men. These genetic markers 

and their mapped genes may prove to be important in BCC etiology, especially when caffeine 

consumption is considered. 

UV-induced DNA damage in skin cancer can be caused by direct UV radiation or by indirect 

stress via reactive oxygen species (ROS) [30]. The SNP rs142310826 identified in our study is 

about 1000kb upstream of the NEIL3 gene, which encodes a DNA glycosylase that recognizes 

and removes lesions produced by oxidative stress, such as spiroiminodihydantoin (Sp), 

guanidinohydantoin (Gh), and 8-oxoguanine (8-oxoG), primarily in single-stranded DNA 

(ssDNA) [31]. This gene has been shown to be an important facilitator of cell proliferation in 

neural stem/progenitor cells and tumor cells, suggesting its possible role in replication-associated 

DNA repair [32-34]. Some studies have reported that polymorphisms of DNA glycosylases may 
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possess altered enzymatic activity, increasing the risk of inflammation-related cancers [35-37]. 

Our understanding of the mechanism of caffeine’s inhibitory effect on BCC development is quite 

limited, though previous studies suggested a role of the ATR-Chk1 signaling pathway [16-19]. 

Similar to targets of NEIL3, the ATR binds to the chromosome at the site of ssDNA damage, 

which then leads to activation of checkpoints, DNA repair, and apoptosis to prevent damaged 

cells from progressing through the cell cycle [38]. Caffeine could either directly disrupt the 

ATR-Chk1 checkpoint pathway [19] or inhibit ATR-mediated DNA repair [39], and prematurely 

increase the number of cells that undergo apoptosis. In addition, caffeine has been proven to 

exert antioxidant effects that could neutralize oxidative stress in cells [40], which may decrease 

oxidative DNA damage and alter the expression of related DNA repair genes, such as NEIL3.  

The genetic markers identified among women were mapped on genes LRRTM4, ATF3, and 

DCLRE1C. The leucine-rich repeat transmembrane neuronal 4 (LRRTM4) may play a role in the 

development and maintenance of the excitatory synapse in the vertebrate nervous system [41]. 

SNPs mapped on this gene are associated with phenotypes such as verbal declarative memory, 

sporadic amyotrophic lateral sclerosis, and immunoglobulin G (IgG) glycosylation in the GWAS 

catalog (http://www.ebi.ac.uk/gwas/home). Changes in IgG glycosylation have been linked to 

gastric cancer and ovarian cancer in previous studies [42, 43], indicating other possible functions 

of this gene. The activating transcription factor 3 (ATF3) gene has been demonstrated to play 

opposite roles (oncogene or tumor suppression) in cancer development depending on the cell 

type and context [44]. Though upregulation of ATF3 appears to enhance tumor formation in 

keratinocytes [45], Atf3 protein levels decreased when caffeine was administered in a mouse 

http://www.ebi.ac.uk/gwas/home
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model [46]. Moreover, ATF3 was discovered to be related to the ATR-Chk1 pathway as well [47]. 

The DNA cross-link repair 1C (DCLRE1C) gene encodes a nuclear protein that has 

single-strand-specific exonuclease activity and also functions in the regulation of the cell cycle in 

response to DNA damage [48].  

SNPs that showed the greatest interaction with caffeine in BCC development in males were 

mapped on gene POTEA. POTE is a highly homologous gene family located on numerous 

chromosomes and expressed in a wide variety of human cancers (colon, lung, breast, ovary, and 

pancreas) [49]. In normal tissue, its expression is restricted to testis, ovary, and prostate, with the 

highest expression in testis [50]. Little is known about the biological function of this gene family, 

but there is evidence for its role in inducing programmed cell death [50].  

We specifically extracted analysis results for caffeine consumption-related loci identified by 

previous GWAS analysis. None of them showed significant interaction with caffeine intake in 

relation to BCC risk. We additionally tested the individual and combined associations between 

caffeine SNPs and risk of BCC, but none reached statistical significance. These results suggest 

that the inverse association between caffeine intake and risk of BCC is not due to interaction or 

association with already-known caffeine-related loci. 

 Our study has several strengths. First, we used high-quality cohort data, among which 

information on both caffeine intake and genetic markers is available for studying G-E 

interactions. The relatively large sample size facilitated detection of potential interaction, even 

using a conventional logistic regression approach and a stringent genome-wide significance level. 

Second, we took gender difference into consideration in our analysis, because men and women 
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may have different caffeine consumption habits, and caffeine may interact with sex hormones 

when exerting its biological effects [51]. This study design helps us identify several loci that are 

specific to men or women, although further studies are needed to verify our findings. Third, we 

modeled caffeine consumption in a different way for the purpose of sensitivity analysis, and the 

results did not change materially. 

 We also acknowledge some limitations: First, we used caffeine consumption in 1986 rather 

than cumulative average intake in our analysis. To study G-E interaction, environmental 

exposure should be measured at appropriate time points, because many genes are expressed only 

during specific developmental periods, and some exposures may have greater impact on specific 

stages. However, we understand little about the biological mechanisms and induction period of 

caffeine’s effects on the development of BCC. Given that the induction period of cancer is 

relatively long, and computing cumulative average caffeine intake is not easy among BCC 

controls, caffeine intake in 1986 is an acceptable option. Second, SNP rs142310826 is relatively 

rare and of only moderate imputation quality in our datasets. However, we directly genotyped 

this SNP among 335 participants in our GWAS datasets, the correlation between imputed dosage 

and directly genotyped allele count was 0.7 (p-value<0.0001). Third, because all the participants 

in the current study are health professionals of European ancestry, our results may not be 

generalizable to other ethnic or socioeconomic groups. Finally, we did not split our data into 

discovery and replication sets, because combined analysis across all studies is the most powerful 

analytical strategy [52].  

 In conclusion, in this genome-wide G-E interaction meta-analysis, the association of caffeine 
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intake with BCC risk differed according to genetic variation of SNP rs142310826. Genetic 

markers at chromosomes 2p12, 1q32.2, 10p13, and 8p11.21 modified the caffeine-BCC 

association differently in men and women. Further G-E interaction analyses are warranted to 

verify our findings, and additional biological studies are needed to better elucidate the roles of 

these genetic variants and their mapped genes. 
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Supplementary Materials 

 

1. Detailed description of study population and GWAS sets 

Nurses’ Health Study (NHS): The NHS is a prospective cohort study established in 1976 

with 121,700 female U.S registered nurses, who were then 30-55 years old. All of them 

completed and returned a mailed self-administered questionnaire about their medical histories 

and lifestyle at the baseline. In 1989 and 1990, a total of 32,826 women provided blood samples. 

Information regarding medical history, lifestyle, and disease diagnoses was updated every 2 

years with a follow-up rate of 90%.  

Health Professionals Follow-up Study (HPFS): The HPFS began in 1986 with 51,529 U.S. 

male health professionals who were 40-75 years old at initial recruitment. They all answered a 

detailed mailed questionnaire at the inception of the study. Disease- and health-related 

information was obtained and updated through biennial questionnaires. Between 1993 and 1994, 

18,159 of these men provided a blood sample. The average follow-up rate for this cohort over 10 

years is greater than 90%.  

 

Supplementary Table 2.1  Basic information on the 18 GWAS sets from NHS and HPFS 

 

Study 
Sample size * 

(Genotyped) 

Genotyping 

platform 

Combined 

dataset 

Postmenopausal invasive breast cancer 

case-control study nested within the NHS 

(NHS-BrCa) 

1145 cases, 

1142 controls 
Illumina 550k Illumina 

Type 2 diabetes case-control study nested 

within the NHS (NHS-T2D) 

1532 cases, 

1754 controls 
Affy 6.0 Affy 
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Supplementary Table 2.1  Basic information on the 18 GWAS sets from NHS and HPFS 

(Continued) 

 

Study 
Sample size * 

(Genotyped) 

Genotyping 

platform 

Combined 

dataset 

Coronary heart disease case-control study 

nested within the NHS (NHS-CHD) 

342 cases, 804 

controls 
Affy 6.0 Affy 

Kidney stone case-control study nested within 

the NHS (NHS-KS) 

328 cases, 166 

controls 
Illumina 610Q Illumina 

Pancreas cancer case-control study nested 

within the NHS (NHS- Pancreas) 

82 cases, 84 

controls 
Illumina 550k Illumina 

Glaucoma case-control study nested within the 

NHS (NHS-Glaucoma) 

313 cases, 497 

controls 
Illumina 660 Illumina 

Endometrial cancer case-control study nested 

within the NHS (NHS-Endometrial) 

396 cases, 348 

controls 
Omni Express Omni 

Colon cancer case-control study nested within 

the NHS (NHS-Colon) 

394 cases, 774 

controls 
Omni Express Omni 

Mammographic density study nested within the 

NHS (NHS-Mammographic density) 

153 cases, 641 

controls 
Omni Express Omni 

Gout case-control study nested within the NHS 

(NHS-Gout) 

319 cases, 392 

controls 
Omni Express Omni 

Type 2 diabetes case-control study nested 

within the HPFS (HPFS-T2D) 

1189 cases, 

1298 controls 
Affy 6.0 Affy 

Coronary heart disease case-control study 

nested within the HPFS (HPFS-CHD) 

435 cases, 878 

controls 
Affy 6.0 Affy 

Kidney stone case-control study nested within 

the HPFS (HPFS-KS) 

315 cases, 238 

controls 
Illumina 610Q Illumina 

Pancreas cancer case-control study nested 

within the HPFS (HPFS-Pancreas) 

54 cases, 52 

controls 
Illumina 550k Illumina 

Advanced prostate cancer case-control study 

nested within the HPFS (HPFS-AdvPrCa) 

218 cases, 205 

controls 
Illumina 610Q Illumina 

Glaucoma case-control study nested within the 

HPFS (HPFS-Glaucoma) 

178 cases, 299 

controls 
Illumina 660 Illumina 

Colon cancer case-control study nested within 

the HPFS (HPFS-Colon) 

229 cases, 230 

controls 
Omni Express Omni 

Gout case-control study nested within the 

HPFS (HPFS-Gout) 

717 cases, 699 

controls 
Omni Express Omni 

* These are number of participants who have been genotyped in each of the studies before 

imputation, quality control, and further exclusion. Cases refer to the cases of disease in the 

original nested case-control study. 
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2. Genotyping, quality control, and imputation 

Genotyping 

There were 18 GWAS datasets from the NHS and HPFS with cleaned genotype data 

available. We combined these datasets into three complied datasets based on their genotype 

platform type: Affymetrix (Affy), Illumina HumanHap series (Illumina), or Illumina Omni 

Express (Omni). The Affymetrix dataset was comprised of data on the Affy 6.0 platform 

(NHS-type 2 diabetes, NHS-coronary heart disease, HPFS-type 2 diabetes, HPFS-coronary heart 

disease).  The Illumia HumanHap dataset was comprised of several platforms: Illumina 550K 

(NHS-breast cancer, NHS-Pancreas cancer, HPFS-pancreas cancer), Illumina 610Q (NHS-kidney 

stone, HPFS-kidney stone, HPFS-prostate cancer) and Illumina 660 (NHS-glaucoma, 

HPFS-glaucoma).  The Illumina Omni Express dataset contained only studies genotyped on the 

Omni Express platform (NHS-endometrial cancer, NHS-colon cancer, NHS-mammographic 

density, NHS-gout, HPFS-colon, HPFS-gout). Detailed method about the pooled imputed data in 

this combined dataset is described in Lindström, et al. submitted to Bioinformatics (copy is 

provided for reviewers’ review).  

 

Quality control (QC)  

We combined the individual datasets that were genotyped on the same platform, removing 

any SNPs that were not in all studies and with a missing call rate>5%, and flipping strands where 

appropriate to create a final compiled dataset. This resulted in 668,283 SNPs in the Affymetrix 
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dataset, 459,999 SNPs in the Illumina HumanHap dataset, and 565,810 SNPs in the Illumina 

Omni Express dataset. Analyses were restricted to subjects with self-reported European ancestry. 

Genetic principal components were calculated using sets of independent SNPs (12,000-33,000 

SNPs depending on platform). Subjects who did not cluster with other self-identified Europeans 

based on the top five principal components were also excluded.  

We then ran a pairwise identity by descent (IBD) analysis for each combined dataset to 

detect duplicate and related individuals based on resulting Z scores. If 0<=Z0<=0.1 and 

0<=Z1<=0.1 and 0.9 <=Z2<=1.1 then a pair was flagged as being identical twins or duplicates. 

Pairs were considered full siblings if 0.17<=Z0<=0.33 and 0.4 <=Z1<=0.6 and 0.17<=Z2<=0.33. 

Half siblings or avunculars were defined as having 0.4<=Z1<=0.6 and 0<=Z2<=0.1. Some of the 

duplicates flagged in this step were expected, having been genotyped in multiple datasets and 

hence having the same cohort IDs. In this case, one of each pair was randomly chosen for 

removal from the dataset. Instances where pairs were flagged as unexpected duplicates with the 

different cohort IDs, but pairwise genotype concordance rate>0.999, resulted in removal of both 

individuals from the pair. Related individuals (full sibs, half sibs/avunculars) were not removed 

from the final datasets. In the Affymetrix dataset, 167 individuals were removed because they 

were duplicates or were flagged for removal from secondary genotype data cleaning, leaving a 

total of 8065 individuals. Of the 6894 individuals originally in the Illumina dataset, 107 were 

removed because they were duplicates or flagged for removal in the genotyping step, leaving 

6787 IDs. In addition, 8 pairs of individuals were flagged as related. In the Omni express dataset, 

there were 5956 individuals at the start, with 39 IDs to remove leaving 5917 IDs and 5 pairs of 
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related IDs.  

After removing duplicate IDs and flagging related pairs of IDs, we used EIGENSTRAT [1] 

to run PCA analysis on each compiled dataset, removing one member from each flagged pair of 

related individuals. For Affymetrix and Illumina HumanHap, we used approximately 12,000 

SNPs that were filtered to ensure low pairwise LD. For the OmniExpress dataset we used 

approximately 33,000 SNPs that were similarly filtered. We plotted the top eigenvectors using R 

and examined the plots for outliers.  

Finally as a quality control check, we ran logistic regression analyses using each individual 

study’s controls as “cases” and the rest of the studies controls as “controls”. We then ran 

regressions with each of the other study controls as “cases” versus all of the rest of the controls. 

We looked for p values of genome-wide significance (p<10
-8

) and examined QQ plots to 

determine if any SNPs were flagged as significant where no SNPs should have been significant. 

In the Affymetrix dataset 100 SNPs were flagged and removed. In the Illumina HumanHap 

dataset, 8 SNPs had p<10
-8

 in any of the QC regressions and were removed. No SNPs in the 

Illumina Omni Express dataset had p values<10
-8

, hence no additional SNPs needed to be 

removed. After the datasets were combined and appropriate SNP and ID filters applied, the 

complied datasets were imputed. 

 

Imputation 

After the datasets were combined and appropriate quality control procedures applied, the 
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complied datasets were imputed using the 1000 Genomes Project ALL Phase I Integrated 

Release Version 3 Haplotypes excluding monomorphic and singleton sites (2010-11 data freeze, 

2012-03-14 haplotypes) as reference panel. SNP genotypes were imputed in three steps. First, 

genotypes on each chromosome were split into chunks to facilitate windowed imputation in 

parallel using ChunkChromosome (http://genome.sph.umich.edu/wiki/ChunkChromosome, v. 

2011-08-05). Then each chunk of chromosome was phased using MACH (v. 1.0.18.c) [2]. In the 

final step, Minimac (v. 2012-08-15) [3] was used to impute the phased genotypes to 

approximately 31 million markers in the 1000 Genomes Project. The number of genotyped SNPs 

passed quality control procedure and that of imputed SNPs with minor allele frequency (MAF) > 

1% and imputation R
2
>0.3 in each platform are presented in Supplementary Table 2.2. 

 

Supplementary Table 2.2  Summary of markers in combined datasets 

 

Platform 

# of markers in 

cleaned and 

merged datasets 

Total # of 

1000G 

imputed 

markers 

# of 1000G 

imputed 

markers with 

MAF>1% 

# of 1000G imputed 

markers with 

MAF>1% and 

imputation R
2
> 0.3 

Affymetrix (Affy) 668,283 31,326,389 9,783,513 9,783,513 

Illumina (Illumina) 459,999 31,326,389 9,807,739 8,991,321 

Omni Express 

(Omni) 
565,810 31,326,389 9,771,868 9,148,255 

 

 

 

 

http://genome.sph.umich.edu/wiki/ChunkChromosome
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3. Supplementary Results 

Supplementary Figure 2.1  Manhattan plot and Q-Q plot for the interaction results in the 

NHS 
&& 

 

&& Results are for the meta-analysis of Illumina_NHS, Affy_NHS, and Omni_NHS. Quartiles 

of caffeine intake were modeled as an ordinal variable (main analysis). 

 

Supplementary Figure 2.2  Manhattan plot and Q-Q plot for the interaction results in the 

HPFS 

 

&& Results are for the meta-analysis of Illumina_HPFS, Affy_HPFS, and Omni_HPFS. 

Quartiles of caffeine intake were modeled as an ordinal variable (main analysis). 
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Supplementary Table 2.3  Genetic markers with p-value for interaction < 5×10
-6

 in the 

NHS 

 

Marker 

Name(CHR:BP) 

Allele

1 

Allele

2 
Freq1 

%
 Effect StdErr P-value 

P-Het 
&

 

1:212702723 c g 0.553 0.1761 0.0375 2.72E-06 0.8121 

1:212708134 t c 0.1272 0.2554 0.0558 4.80E-06 0.4712 

1:212709301 t c 0.1273 0.2553 0.0558 4.68E-06 0.4704 

1:212709466 t c 0.8727 -0.2554 0.0558 4.63E-06 0.4707 

1:212710947 t c 0.1273 0.2557 0.0557 4.34E-06 0.4725 

1:212711790 t c 0.1273 0.256 0.0556 4.22E-06 0.4717 

1:212715522 a g 0.8726 -0.2571 0.0556 3.77E-06 0.4644 

1:212716491 t c 0.8726 -0.2573 0.0556 3.68E-06 0.4627 

1:212721010 t c 0.8537 -0.2733 0.0531 2.62E-07 0.4975 

1:212721216 t c 0.8556 -0.2782 0.0533 1.82E-07 0.4491 

1:212724028 a g 0.1442 0.2801 0.0536 1.74E-07 0.4524 

1:212726219 a g 0.1511 0.2702 0.0524 2.55E-07 0.3471 

1:212728988 a g 0.1528 0.2739 0.0523 1.64E-07 0.2726 

1:212729555 a g 0.1527 0.2738 0.0523 1.67E-07 0.2704 

10:15021717 a t 0.0105 -1.3215 0.2619 4.51E-07 0.9034 

10:92155938:A_AT i r 0.3394 -0.1787 0.0389 4.34E-06 0.8978 

11:101777151 a g 0.4049 0.1838 0.0373 8.38E-07 0.3157 

11:101778710 a g 0.5922 -0.1769 0.0369 1.67E-06 0.2897 

11:101779050 a g 0.5922 -0.1768 0.0369 1.69E-06 0.2891 

11:101781044 a g 0.4103 0.1781 0.0371 1.61E-06 0.2841 

11:101781634 a g 0.4078 0.1764 0.037 1.87E-06 0.2929 

11:101785248 a g 0.4092 0.1749 0.0372 2.53E-06 0.2647 

11:101787112 a g 0.5473 -0.1819 0.038 1.69E-06 0.3556 

11:122841232:G_GCT i r 0.361 0.2103 0.0454 3.55E-06 0.5426 

15:35117508 a g 0.9013 0.3883 0.0831 2.97E-06 0.437 

18:35818913 a g 0.3123 0.1932 0.0408 2.19E-06 0.7619 

2:76670131 t c 0.1891 -0.2209 0.0479 3.93E-06 0.9366 

2:76671644 a g 0.1886 -0.2212 0.0477 3.62E-06 0.9343 

2:76673246 t c 0.189 -0.2239 0.0477 2.66E-06 0.9252 

2:76676942 a g 0.1828 -0.2369 0.0479 7.57E-07 0.934 

2:76692117 a g 0.1828 -0.2428 0.0479 4.04E-07 0.9414 

2:76701736 a t 0.8155 0.241 0.0476 4.16E-07 0.9956 

2:76702062 t g 0.8152 0.2419 0.0476 3.78E-07 0.9932 

2:76704590 t c 0.8146 0.25 0.0476 1.53E-07 0.9946 
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Supplementary Table 2.3  Genetic markers with p-value for interaction < 5×10
-6

 in the 

NHS (Continued) 

 

Marker 

Name(CHR:BP) 

Allele

1 

Allele

2 
Freq1 

%
 Effect StdErr P-value 

P-Het 
&

 

2:76711828 t c 0.1835 -0.2542 0.048 1.18E-07 0.9518 

2:76714536 c g 0.8143 0.2481 0.0475 1.80E-07 0.9935 

2:76714567 a g 0.8143 0.248 0.0475 1.81E-07 0.9935 

2:76722019 a g 0.1831 -0.2492 0.0479 1.93E-07 0.9046 

2:76722305 t c 0.814 0.2436 0.0474 2.79E-07 0.9714 

2:76725088 a g 0.8141 0.2443 0.0474 2.60E-07 0.9778 

2:76736544 a t 0.8186 0.2585 0.0485 9.62E-08 0.9789 

2:76738900:TTAGA d r 0.186 -0.2695 0.0484 2.51E-08 0.9626 

20:17953062 a c 0.4782 0.17 0.0371 4.53E-06 0.2878 

4:179402856 a t 0.0189 -0.816 0.1787 4.96E-06 0.7157 

4:92729586 t c 0.4311 0.182 0.0372 9.94E-07 0.3107 

7:7337795 t c 0.145 -0.2679 0.0547 9.86E-07 0.979 

7:7337811 a g 0.1482 -0.2613 0.054 1.28E-06 0.9674 

7:7338285 a g 0.8386 0.2313 0.0505 4.65E-06 0.9408 

7:7338384 a g 0.8385 0.2313 0.0505 4.68E-06 0.9392 

7:7338620 t c 0.1614 -0.2311 0.0506 4.93E-06 0.9227 

7:7339392 a t 0.1617 -0.2327 0.0505 4.15E-06 0.9276 

7:7339551 t c 0.1596 -0.2335 0.0511 4.81E-06 0.9159 

8:138317880 a g 0.2928 -0.1899 0.0398 1.85E-06 0.3364 

8:138320626 a t 0.2927 -0.1919 0.04 1.59E-06 0.3455 

8:54802780 t c 0.0282 0.6935 0.1501 3.82E-06 0.6769 

8:70921095 a c 0.826 -0.2217 0.0483 4.41E-06 0.8813 

8:70922437 a t 0.1744 0.2214 0.0483 4.60E-06 0.8901 

8:70922442 t c 0.1744 0.2214 0.0483 4.57E-06 0.8899 

8:70923078 a g 0.8269 -0.2223 0.0487 5.00E-06 0.9117 

8:70923158 t c 0.1745 0.2217 0.0483 4.46E-06 0.8896 

8:70923473 t c 0.8255 -0.2218 0.0483 4.43E-06 0.8901 

8:70924230 t c 0.1661 0.2371 0.0499 2.03E-06 0.9183 

8:70924250 a g 0.8291 -0.2316 0.049 2.29E-06 0.8879 

8:70924383 t g 0.8258 -0.222 0.0483 4.30E-06 0.8865 

8:70924408 t c 0.8258 -0.2223 0.0483 4.19E-06 0.8867 

 

% Frequency for allele 1; 

& P for heterogeneity comparing estimates of Illumina_NHS, Affy_NHS, and Omni_NHS. 
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Supplementary Table 2.4  Genetic markers with p-value for interaction < 5×10
-6

 in the 

HPFS 

 

Marker Name 

(CHR:BP) 

Allele

1 

Allele

2 
Freq1

 %
 Effect StdErr P-value 

P-Het 
&

 

1:181588271 t c 0.5176 0.1861 0.0408 4.99E-06 0.2566 

10:13948900 t c 0.011 -1.4326 0.3068 3.02E-06 0.5707 

15:69384548 t c 0.9751 -0.6513 0.1343 1.25E-06 0.07403 

15:69385013 t c 0.0249 0.651 0.1342 1.23E-06 0.07386 

15:69385115 a g 0.0243 0.6516 0.1343 1.23E-06 0.07547 

15:69385597 t c 0.0242 0.6499 0.134 1.23E-06 0.07438 

15:69385651 t c 0.9758 -0.6499 0.134 1.23E-06 0.07433 

15:69385656 a c 0.9758 -0.6493 0.1339 1.23E-06 0.07398 

15:69386084 t g 0.9758 -0.648 0.1327 1.05E-06 0.07713 

18:68730423 c g 0.0171 0.9784 0.2081 2.59E-06 0.2683 

20:42631393 a g 0.0151 0.9413 0.2038 3.87E-06 0.3307 

20:42631701 a t 0.985 -0.9439 0.2042 3.79E-06 0.3 

3:25535771 t c 0.7393 -0.2303 0.0477 1.38E-06 0.2116 

3:25538317 a c 0.2565 0.2243 0.0477 2.53E-06 0.2146 

3:25538410 t c 0.7355 -0.2174 0.0472 4.15E-06 0.3173 

3:25538769:T_TCA i r 0.2655 0.2188 0.0471 3.43E-06 0.3184 

3:25538883 a g 0.7358 -0.2201 0.0474 3.36E-06 0.2976 

5:111931224 t c 0.9738 0.9367 0.204 4.38E-06 0.1724 

8:43273165 a g 0.9635 0.8859 0.1759 4.72E-07 0.7391 

8:43285229 c g 0.0343 -0.9745 0.1911 3.43E-07 0.8255 

8:43290783 c g 0.9625 0.8849 0.1746 4.01E-07 0.7656 

8:43359009 t c 0.0362 -0.8988 0.179 5.13E-07 0.7534 

% Frequency for allele 1; 

& P for heterogeneity comparing estimates of Illumina_HPFS, Affy_HPFS, and Omni_HPFS. 

 

 

 

Supplementary Table 2.5  Genetic markers with p-value for interaction < 5×10
-6

 in the 

Meta-analysis of all datasets 

 

Marker Name 

(CHR:BP) 

Allele

1 

Allele

2 
Freq1 

%
 Effect StdErr P-value 

P-Het 
&

 

1:61302504 a g 0.9538 0.6127 0.1247 8.97E-07 0.6522 

13:52427466 a c 0.4913 -0.1259 0.0274 4.25E-06 0.4445 
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Supplementary Table 2.5  Genetic markers with p-value for interaction < 5×10
-6

 in the 

Meta-analysis of all datasets (Continued) 

 

Marker Name 

(CHR:BP) 

Allele

1 

Allele

2 
Freq1 

%
 Effect StdErr P-value 

P-Het 
&

 

13:52433564 t c 0.5306 0.1248 0.0268 3.12E-06 0.3477 

14:100987542 c g 0.0432 -0.5406 0.1089 6.91E-07 0.8224 

14:101000359 a g 0.0181 -0.6936 0.1447 1.64E-06 0.9337 

14:33202232 t c 0.9077 0.2298 0.0485 2.16E-06 0.8696 

14:33203029 c g 0.0899 -0.2267 0.0491 3.92E-06 0.7261 

14:33204319 a g 0.9118 0.2314 0.05 3.62E-06 0.6745 

14:33204393 a t 0.9112 0.228 0.0498 4.60E-06 0.7242 

15:82348040:AGAT_ d r 0.7053 -0.1495 0.0323 3.78E-06 0.4163 

17:74634684 t c 0.128 -0.193 0.0413 2.98E-06 0.2779 

17:74636253 t c 0.128 -0.1926 0.0413 3.09E-06 0.2759 

17:74636448 c g 0.8721 0.1925 0.0413 3.13E-06 0.277 

17:74637002 a g 0.1296 -0.1902 0.0412 3.94E-06 0.2651 

17:74637022 t c 0.872 0.191 0.0413 3.67E-06 0.2798 

17:74637143 t c 0.8719 0.1903 0.0412 3.93E-06 0.2787 

17:74637472 a t 0.8719 0.1901 0.0412 4.01E-06 0.2794 

17:74637649 t c 0.8718 0.19 0.0412 3.99E-06 0.2943 

17:74637738 c g 0.8717 0.1904 0.0412 3.81E-06 0.297 

17:74637881 a g 0.8717 0.1904 0.0412 3.82E-06 0.2975 

17:74638033 a g 0.1278 -0.19 0.0414 4.35E-06 0.2891 

17:74638036 t c 0.8721 0.1899 0.0413 4.25E-06 0.2797 

17:74638043 t g 0.1279 -0.1899 0.0413 4.25E-06 0.2797 

17:74638485 t c 0.8719 0.1896 0.0412 4.21E-06 0.2831 

17:74638873 a g 0.1281 -0.1895 0.0412 4.30E-06 0.2886 

2:223558675 a g 0.0936 -0.2507 0.0535 2.85E-06 0.1861 

4:179402856 a t 0.0185 -0.7571 0.1344 1.78E-08 0.6168 

4:92704420 a g 0.6245 -0.1372 0.0287 1.78E-06 0.2636 

4:92720480 a g 0.6205 -0.1319 0.0278 2.00E-06 0.2829 

6:149913630 a t 0.9407 -0.486 0.104 2.97E-06 0.228 

7:138696170 t g 0.014 0.7159 0.1555 4.13E-06 0.6094 

7:138710477 a t 0.0152 0.742 0.1541 1.48E-06 0.4866 

7:67820903 a g 0.0728 -0.2483 0.0528 2.54E-06 0.3462 

8:110870998 t c 0.025 -0.4426 0.0963 4.31E-06 0.9386 

8:110876861 t g 0.0269 -0.4829 0.1017 2.05E-06 0.7887 

% Frequency for allele 1; 

& P for heterogeneity between results of NHS and HPFS (gender difference). 
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Supplementary Table 2.6  Sensitivity analysis 
++

 results for the independent markers 

identified in the main analysis 

 

Rs number – 

Identified Group 
a
 

CHR:BP 
NHS 

b
 HPFS 

c
 All 

d
 

Beta P-value Beta P-value Beta P-value 

NA 
&
 – NHS 

2:76738900:TT

AGA 
-0.0013 1.59E-07 -0.0002 0.45 NA NA 

rs77868414 – HPFS 8:43285229 0.0003 0.70 -0.0052 4.95E-07 NA NA 

rs142310826 - ALL 4:179402856 -0.0045 6.26E-06 -0.0033 2.02E-03 
-0.004

0 
6.10E-08 

 

a Identified group = NHS if the genetic marker’s p for interaction is less than 5×10
-7

 among 

NHS participants; = HPFS if the marker was identified among HPFS participants; =ALL if 

identified among all participants; 

b Results of meta-analysis of Illumina_NHS, Affy_NHS, and Omni_NHS; 

c Results of meta-analysis of Illumina_HPFS, Affy_HPFS, and Omni_HPFS; 

d Results of meta-analysis of Illumina_NHS, Affy_NHS, Omni_NHS, Illumina_HPFS, 

Affy_HPFS, and Omni_HPFS; NA means the estimates in men and women are significantly 

different. 

++ In sensitivity analysis, we used the median values of each quartile to represent the 

corresponding caffeine intake levels (1
st
 quartile = median intake of 1

st
 quartile, 2

nd
 

quartile=median intake of 2
nd

 quartile, etc.) 

& This marker does not have a rs number 
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Abstract 

Adult height, determined by genetics and by early-life exposures, has been associated with 

an increased risk of several site-specific cancers, including skin cancer. However, less attention 

has been given to non-melanoma skin cancer (NMSC). Using the data from the Nurses’ Health 

Study (NHS) and the Health Professionals Follow-up Study (HPFS), we prospectively examined 

the risk of squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) in relation to adult 

height. After controlling for potential confounding factors, the hazard ratios (HRs) were 1.09 (95% 

CI: 1.03, 1.16) and 1.10 (95% CI: 1.07, 1.12) for the associations between every 10cm increase 

in height and risk of SCC and BCC respectively. No significant interaction between height and 

other risk factors was observed. In the genetic datasets of the NHS and HPFS, none of the 687 

height-related SNPs was significantly associated with risk of SCC or BCC after Bonferroni 

correction. The associations between genetic scores combining independent height-related loci 

and NMSC risk were not significant either. Our data from two large cohorts provide further 

evidence that height is associated with increased risk of non-melanoma skin cancer. More studies 

on height-related genetic loci and early-life exposures may help clarify the underlying 

mechanisms. 

 

 

 

 

 



 

87 
 

Introduction 

Non-melanoma skin cancer (NMSC), including basal and squamous cell carcinomas (BCC 

and SCC, respectively), is the most common malignancy among white people [1]. It is estimated 

that over 2 million cases of NMSC occur each year in the US, with the incidence continues to 

increase [2]. BCC rarely metastasizes to other organs or causes death; however this malignancy 

results in considerable morbidity and places a huge burden on healthcare system worldwide [3]. 

In contrast, SCC is more likely to invade other tissues and could lead to death [3]. Both 

environmental and constitutional factors contribute to the development of NMSC. Ultraviolet 

radiation is a well-established carcinogen for both BCC and SCC [4, 5]. Constitutional risk 

factors that represent certain components of genetic susceptibility include hair color, family 

history, tanning ability, and so forth. [6-8].  

 Taller people are more likely to develop cancer [9]. Though a number of case-control [10-13] 

and cohort studies [14-18] have examined the association between adult height and risk of 

melanoma skin cancer, the association between height and risk of NMSC has been sparsely 

investigated. One prospective study reported a significant higher risk of NMSC among taller men 

and women [16]. However, BCC and SCC were not analyzed separately. Besides, the authors 

failed to consider important confounders such as race, constitutional factors and sun exposure 

history, as well as potential effect modifications by them. Therefore, a comprehensive assessment 

of the relationships between height and risk of different types of NMSC is still lacking.  

 The underlying mechanism for this positive association remains unclear. One possible 

explanation is that height-related genetic factors are also tied to skin cancer; however studies 
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exploring this possibility are rare. Adult height is determined by genetic factors to a great extent 

[19]. The largest genome-wide association study (n = 253,288) on height has been conducted by 

the Genetic Investigation of Anthropometric Traits (GIANT) consortium, in which they 

identified 697 variants at genome-wide significance that together explained one-fifth of the 

heritability for adult height [20]. Testing the associations between these height-related 

single-nucleotide polymorphisms (SNPs) and NMSC risk may help better understand the 

relationship between these two phenotypes and provide more insight into skin tumorigenesis 

 In the present study, we used data from the Nurses’ Health Study (NHS) and the Health 

Professionals Follow-up Study (HPFS) to investigate the association between height and risk of 

incident SCC and BCC simultaneously. We also evaluated the extent to which the observed 

associations were affected by confounding factors, and tested potential interactions between 

height and other factors on NMSC risk. In order to better understand the association at the 

genetic level, we also examined the individual and combined associations of height-related 

variants identified by the GIANT consortium with risk of NMSC in the genetic datasets of the 

NHS and HPFS. 

 

Methods 

Study Population 

Nurses’ Health Study (NHS): The NHS is a prospective cohort study established in 1976 

with 121,700 female U.S registered nurses, who were then 30-55 years old. All of them 

completed and returned a mailed self-administered questionnaire about their medical histories 
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and baseline lifestyle. In 1989 and 1990, a total of 32,826 women provided blood samples. 

Information regarding medical history, lifestyle, and disease diagnoses was updated every two 

years with a follow-up rate of 90%. 

Health Professionals Follow-up Study (HPFS): The HPFS began in 1986 with 51,529 U.S. 

male health professionals who were 40-75 years old at initial recruitment. They all answered a 

detailed mailed questionnaire at the inception of the study. Disease- and health-related 

information was obtained and updated through biennial questionnaires. Between 1993 and 1994, 

18,159 of these men provided a blood sample. The average follow-up rate for this cohort over 10 

years is greater than 90%. 

Genetic datasets: Eighteen case-control studies nested within the NHS and HPFS with 

cleaned genotype data were included in our study. Samples from the 18 studies were genotyped 

using a variety of platforms, which we then combined into three compiled datasets based on their 

genotype platform types: Affymetrix (Affy), Illumina HumanHap series (Illumina), or Illumina 

Omni Express (Omni). Quality control on SNP completion rate, sample completion rate, ancestry 

consistency, deviation from Hardy-Weinberg equilibrium (HWE), Mendelian consistency, minor 

allele frequency, and duplication were conducted within each of the three combined datasets. We 

then imputed the compiled datasets using the 1000 Genomes Project ALL Phase I Integrated 

Release Version 3 Haplotypes excluding monomorphic and singleton sites (2010-11 data freeze, 

2012-03-14 haplotypes) as the reference panel. Basic information on the 18 studies and detailed 

descriptions of quality control and imputation are provided in Supplementary Materials.  
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Measurement of height and ascertainment of skin cancers 

Height was reported by participants at recruitment (1976 for NHS, 1986 for HPFS). New 

diagnoses of non-melanoma skin cancer were reported by participants biennially. With their 

permission, participants’ medical records were obtained and reviewed by physicians to confirm 

the diagnoses of SCC. Though medical records were not obtained for BCC, the validity of BCC 

self-reports was more than 90% in our study [21, 22]. 

 

Measurement of covariates 

 Information on skin cancer risk factors was obtained from questionnaires in both the NHS 

and the HPFS in the 1980s. The risk factors included: (1) natural hair color at age 20; (2) family 

history of melanoma in first-degree relatives; (3) skin reaction after 2 hours of sun exposure as a 

child/adolescent; (4) number of severe sunburns over lifetime; (5) mole count measuring 3mm or 

larger on the left arm; and (6) states lived in at birth, age 15, and age 30.  

Data on weight, smoking status, and menopausal status was first collected at baseline (1976 

for NHS and 1986 for HPFS) and then updated biennially in subsequent questionnaires for all 

cohort members. Body mass index (BMI) was computed as weight in kilograms divided by the 

square of height in meters for each follow-up cycle. Physical activity was first asked with detail 

in 1986 in both cohorts and updated every two years thereafter. The reproducibility and validity 

of self-reported physical activity in both cohorts has been evaluated in detail in previous studies 

[23, 24]. Energy expenditure in metabolic equivalent tasks (METs) [25] measured in hours per 

week was calculated by multiplying the number of hours per week of leisure-time physical 
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activity by the metabolic equivalent (MET) value of the activity and summing the products of all 

types of activities. Food frequency questionnaires were initially collected in 1980 for the NHS 

and 1986 for the HPFS, and alcohol intake and diet were generally updated every four years. 

Previous studies have shown that the food-frequency questionnaire validly assesses dietary and 

alcohol intake during the past year [26, 27]. Self-reported race which was measured in 1982 in 

NHS and 1986 in HPFS was also considered. Non-whites were collapsed into one group because 

of insufficient sample sizes in individual race categories.  

 

Height-related SNPs and calculation of genetic score 

 Of 697 height-related SNPs identified by the GIANT consortium, 687 were available in our 

genetic dataset. For a locus in which multiple SNPs in linkage disequilibrium (LD, defined as r
2
 > 

0.1) were identified, we selected the SNP with the most significant association with height as 

reported by the GIANT paper, leaving 593 SNPs for genetic score calculation. The scores were 

calculated only for individuals who had no missing value in any of the chosen SNPs. We 

assumed an additive genetic model for each SNP, which performs well even when the true 

genetic model is unknown or wrongly specified [28]. For each individual, we summed the 

dosage of alleles that are related to increase in height of those independent loci to obtain the 

simple count genetic score. We also constructed a weighted score by multiplying the dosage of 

effect alleles by the corresponding regression coefficients in the original GWAS paper and then 

summing the products. Both the original simple count score and the weighted score were 

rescaled to a mean of 1186 alleles (2 alleles * 593 SNPs) before testing their associations with 
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NMSC to make the results comparable. 

 

Statistical analysis 

 Height and skin cancer: Participants who did not report their date of birth or height were 

excluded, as were those who had invalid information on height at recruitment (whose reported 

height was < 120 or >200 cm). Participants who had baseline cancers were excluded, and those 

who reported any type of cancer or died during follow-up were also excluded from subsequent 

follow-up. We used cox proportional hazards models stratified by follow-up cycles and age to 

calculate the hazard ratios (HRs) and 95% confidence intervals (CIs) of each type of skin cancer. 

Person-time was calculated for each participant from the date of baseline questionnaire return to 

the date of the first report of NMSC, death, or the end of follow-up (June 2010), whichever came 

first. When quantifying the relationship between NMSC and height, we modeled height as a 

continuous measure expressed in 10cm (increasing) increments. In the multivariate analysis, we 

simultaneously controlled for age, smoking status, alcohol intake, BMI, physical activity, and 

menopausal status/postmenopausal hormone use (only in NHS). Then, we fitted a more complex 

model by additionally including hair color, family history of melanoma, sunburn reaction as a 

child/adolescent, number of severe sunburns, mole count, and states lived in at birth, age 15, and 

age 30. Lastly, race was controlled for in the model to assess potential confounding effects. We 

tested the heterogeneity of the results obtained among men and women and conducted a 

meta-analysis if there was no significant gender difference. Multiplicative interactions between 

height and other potential risk factors of NMSC were tested by using the likelihood ratio test 
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comparing a “main effect only” model vs. a model with the product term. All covariates in the 

multivariable-adjusted models were considered and sequentially tested for interaction each at a 

time. All statistical analyses were performed using SAS software (version 9.3 for UNIX; SAS 

Institute, Cary, North Carolina). We considered 2-sided P values less than 0.05 to be statistically 

significant. 

 Height-related SNPs and skin cancer: Data on participants who appeared in more than one 

of the three combined datasets were included only once in analyses. Baseline common cancer 

cases were excluded, as were NMSC cases who had other common cancers before diagnosis of 

skin cancer. Eligible controls were free of skin cancers or other common cancers. We assessed 

the associations between individual height-related SNPs and SCC as well as BCC using logistic 

regression models adjusted for gender, age, and the top three eigenvectors (EVs). The same 

models were fitted for the associations between genetic scores and risk of NMSC. All the 

analyses were first conducted within each of the platform-specific datasets, and then combined 

by meta-analysis if results were not significantly different. ProbABEL package and R-3.0.2 were 

used to perform these tests. We considered 2-sided P values less than 0.05 to be statistically 

significant. Bonferroni correction using the number of independent tests was applied to account 

for multiple comparisons. 

 

Sensitivity analysis and validation of self-reported ancestry 

Ancestry within the white population is a potential confounder that may bias the estimation 

of height-skin cancer association. Height varies across Europe, with Northern Europeans 
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generally taller than Southern Europeans [29-31]. Intra-European ethnic origin has also been 

found to be related to both melanoma and non-melanoma skin cancers [32, 33]. We adjusted 

self-reported race (Southern European/Mediterranean; Scandinavian; Other Caucasian; and 

None-white ancestry) in the multivariable models for height-NMSC association; however, such 

information may be inaccurate.  

 Therefore, we used participants’ genetic data to estimate their accurate ancestry. Genetic 

ancestry was represented by ancestry coordinates that were calculated by the Locating Ancestry 

from Sequence Reads (LASER) method. This method has been demonstrated to accurately infer 

worldwide continental ancestry and even the fine-scale ancestry within Europe. Detailed 

descriptions of LASER have been published previously [34, 35]. We tested the correlation 

between self-reported European ancestry and the first as well as the second ancestry coordinates 

to validate the information collected by the questionnaire. We also conducted a sensitivity 

analysis in which we compared the cox models without ancestry, with self-reported ancestry, and 

with genetic ancestry coordinates as covariates. These analyses were restricted to participants in 

the genetic dataset, all of whom are of European ancestry.  

 

Results 

Height and skin cancer risk 

We included 117,887 and 50,767 participants from the NHS and the HPFS, respectively. We 

documented 1,646 SCCs over 3,198,317 person-years and 18,681 BCCs during 3,187,992 

person-years in the NHS. In the HPFS, 1,244 SCC events during 862,935 person-years and 9,625 
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BCCs over 854,657 person-years of follow-up were identified.  

 The baseline age-standardized characteristics of participants by quartiles of height are listed 

in Table 3.1. Taller participants tended to be younger, drank more alcohol, excised more, and 

were more likely to be current smokers. Higher prevalence of Southern European ethnicity, 

family history of melanoma, red/blond hair, presence of arm moles, and painful burn/blister skin 

reaction after prolonged sun exposure as a child/adolescent were found in higher quartiles of 

height. Study participants with short stature had a higher BMI than taller participants. These 

trends were consistent in men and women. In the NHS, the percentage of current hormone 

replacement therapy (HRT) users is higher among taller women. 

 In the age-adjusted models (Model 1 in Table 3.2) and multivariate models without race 

(Model 2 & 3), height was significantly positively associated with risk of SCC and BCC in both 

men and women. Further including self-reported race (Model 4) did not alter the results 

materially in the NHS. Risk of SCC only showed a borderline association with height in the 

HPFS. In the full model (Model 4), HRs for the associations between per 10 cm increase in 

height and SCC were 1.09 (95% CI: 1.01, 1.19) in women and 1.09 (95% CI: 1.00, 1.19) in men. 

For BCC, the HRs were 1.11 (95% CI: 1.08, 1.13) and 1.08 (95% CI: 1.05, 1.12), respectively, 

among females and males. Though the magnitude of association measures appeared to be slightly 

higher in the NHS, heterogeneity between genders did not reach statistical significance (P for het 

= 0.91, and 0.23 for SCC and BCC, respectively) (Table 3.2). We found no significant interaction 

between height and other covariates in the full multivariable-adjusted model. 
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Height-related SNPs and skin cancer risk 

 Sample sizes of the genetic datasets before exclusion and number of NMSC cases and 

controls after exclusion are shown in Table 3.3. Among the 687 height-related SNPs available in 

our genetic dataset, 37 and 38 showed nominally significant associations (P value < 0.05) with 

risk of SCC and BCC respectively (Supplementary Tables 3.3 & 3.4). However, none of them 

was significantly associated with risk of skin cancers after Bonferroni correction. Mean values 

and ranges of the genetic scores combining all 593 independent (R
2
 for LD < 0.1) height-related 

SNPs were similar among the Illumina, Affy, and Omni datasets (Table 3.4a & 3.4b). The 

genetic scores were significantly associated with height in our genetic datasets. However, we 

observed no significant association between the scores and risk of NMSC (Table 3.4a & 3.4b). 

We constructed two types of genetic scores using the formula shown in Table 3.4. The results for 

simple count score and weighted score were similar to each other.  

 

Sensitivity analysis and validation of self-reported ancestry 

 The Pearson correlations between self-reported European ancestry and the first ancestry 

coordinate were 0.23, 0.28, and 0.31 in Affy, Illumina, and Omni datasets, respectively (all 

P-values < 0.0001). The Pearson correlations between self-reported European ancestry and the 

second ancestry coordinate were -0.14, -0.16, and -0.16 in Affy, Illumina, and Omni datasets, 

respectively (all P-values < 0.0001). Results of the multivariable-adjusted models with 

self-reported ancestry and the models with genetic ancestry were not different materially 

(Supplementary Table 3.5). 
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Table 3.1  Baseline characteristics by quartiles of height in the NHS (1976-2010) and HPFS (1986-2010) 

 Quartiles of height in cm 

 NHS (women) HPFS (men) 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Age (year) 
a
, mean (SD) 42.8(7.3) 42.5(7.3) 42.2(7.2) 41.7(7.1) 56.3(10.2) 54.7(9.9) 53.8(9.6) 52.3(9.3) 

Self-reported Race         

- Southern 

European/Mediterranean, % 
21.7 18.2 16.5 14.2 29.0 25.5 23.7 21.0 

- Scandinavian, % 4.4 6.2 7.2 9.0 7.6 9.6 12.7 13.6 

- Other Caucasian, % 53.2 57.6 59.1 60.1 55.0 61.1 60.5 62.7 

- Non-white, % 20.7 17.9 17.2 16.8 8.4 3.9 3.1 2.6 

Family history of melanoma, % 6.8 7.1 7.4 7.6 4.0 3.8 4.0 4.0 

Red/blonde hair, % 13.4 15.1 16.1 17.6 11.1 14.3 14.7 15.0 

Presence of arm moles, % 33.7 36.2 37.2 39.2 30.6 32.8 32.7 33.4 

Painful burn/blisters reaction as a 

child/adolescent, % 
14.0 14.5 14.4 15.7 23.4 24.6 24.6 25.8 

Number of blistering sun 

burn >=5, % 
6.4 7.5 7.4 8.3 31.6 34.8 35.3 37.4 

Current smoking, % 32.1 32.8 33.5 35.2 8.8 9.2 9.3 9.4 

Alcohol intake (g/d), mean (SD) 5.8(10.6) 6.5(11.0) 6.8(11.3) 7.2(11.7) 10.5(15.2) 11.8(16.0) 12.1(16.4) 12.8(17.2) 

Body mass index (kg/m2), mean 

(SD) 
24.0(4.3) 23.9(4.2) 23.6(4.1) 23.5(4.0) 25.7(3.7) 25.4(3.1) 25.4(3.1) 25.5(3.1) 

Physical activity 

(metabolic-equivalents 

hours/wk), mean (SD) 

14.0(20.6) 13.8(20.6) 14.3(21.3) 14.2(21.5) 20.5(29.9) 20.6(28.4) 20.9(30.9) 21.3(30.4) 

Menopausal status/PMH status         

- Premenopausal, % 80.5 80.5 80.5 80.3 

NA 
- HRT never use, % 9.2 9.0 9.3 9.0 

- HRT current use, % 6.5 6.9 6.8 7.2 

- HRT past use, % 3.8 3.7 3.4 3.6 

NOTE: Values are means (SD) or percentages and are standardized to the age distribution of the study populations. Values of 

multi-level categorical variables may not sum to 100% due to rounding. HRT stands for hormone replacement therapy 

a Value is not age-adjusted. 
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Table 3.2  HRs and 95% CIs for the associations of height (per 10cm increase) with SCC and BCC risk 

 

 NHS HPFS Meta-analysis 

 HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value P for Het 
#
 

SCC        

- Model 1 1.19 (1.10, 1.28) <.0001 1.18 (1.09, 1.28) 0.0001 1.18 (1.12, 1.25) <.0001 0.9263 

 - Model 2 1.16 (1.07, 1.26) 0.0002 1.16 (1.07, 1.26) 0.0006 1.16 (1.10, 1.23) <.0001 0.9821 

- Model 3 1.11 (1.02, 1.20) 0.0125 1.11 (1.01, 1.21) 0.0227 1.11 (1.04, 1.17) 0.0007 0.9864 

- Model 4 1.09 (1.01, 1.19) 0.0272 1.09 (1.00, 1.19) 0.0610 1.09 (1.03, 1.16) 0.0038 0.9081 

BCC        

- Model 1 1.17 (1.15, 1.20) <.0001 1.14 (1.11, 1.18) <.0001 1.16 (1.13, 1.19) <.0001 0.1416 

 - Model 2 1.16 (1.13, 1.18) <.0001 1.13 (1.09, 1.16) <.0001 1.14 (1.11, 1.17) <.0001 0.2146 

- Model 3 1.12 (1.09, 1.14) <.0001 1.10 (1.06, 1.13) <.0001 1.11 (1.09, 1.13) <.0001 0.3862 

- Model 4 1.11 (1.08, 1.13) <.0001 1.08 (1.05, 1.12) <.0001 1.10 (1.07, 1.12) <.0001 0.2349 

 

a Model 1, age-adjusted; 

b Model 2 adjusted for age, smoking status (never, past, current 1-14,15-24, or 25+ cigarettes/day), alcohol intake (no, <5.0, 

5.0-9.9, 10.0-19.9, or 20.0+ g/day), body mass index (<25.0, 25.0-29.9, 30.0-34.9, or 35.0+ kg/m
2
), physical activity (<3.0, 3.0-8.9, 

9.0-17.9, 18.0-26.9 or 27.0+ metabolic equivalent hours/wk), menopausal status/postmenopausal hormones use (premenopausal, 

HRT never, HRT past, or HRT current; only in the NHS); 

c Model 3 adjusted for covariates in Model 2, plus natural hair color (red, blonde, light brown, dark brown, or black), 

childhood/adolescent sunburn reaction (none or some redness, burn, painful burn or blisters), family history of melanoma (yes or no), 

number of severe sunburns over life time (never, 1-2 times, 3-5 times, or 6+ times), mole count (none, 1-2, 3-9, 10+), and states lived 

at birth, age 15, and age 30 (UV index <=5, =6, or >=7); 

d Model 4 adjusted for covariates in Model 3 and race (Southern European/Mediterranean, Scandinavian, other Caucasian, or 

other race group); 

# Tests for heterogeneity between the NHS and HPFS (gender differences). 
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Table 3.3  Sample size of each platform-specific dataset before exclusion; Number of NMSC cases and controls 
#
 in each of 

the combined datasets after exclusion 

 

Dataset 
Sample size before 

exclusion 

BCC SCC 

cases controls cases controls 

Affy 8065 1781 4304 247 4500 

Illumina 5222 1055 1929 134 2029 

Omni 5253 1062 2297 146 2433 

Total 18540 3898 8530 527 8962 

 

# 1976 and 1986 were considered baseline years for the NHS and the HPFS respectively. Skin cancer cases who had diagnosis of 

other common cancers before diagnosis of skin cancers were excluded; controls who had other cancers were excluded; participants 

with identical genetic information but different cohort ID were removed; participants sampled in more than one study were included 

only once. Participants who withdrew consent were excluded. 
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Table 3.4a  Association between simple count genetic score of height-related SNPs and risk of NMSC 
& 

 

 Illumina Affy Omni Meta-analysis 
%

 

Original 

Mean(range) 
591.4 (538.6, 651.3) 591.0 (535.1, 650.6) 590.9 (537.4, 644.7) 

-- Formula 2.0054(∑𝑆𝑁𝑃𝑖)

593

𝑖=1

 2.0067(∑𝑆𝑁𝑃𝑖)

593

𝑖=1

 2.0074(∑𝑆𝑁𝑃𝑖)

593

𝑖=1

 

Rescaled 

Mean(range) 
1186 (1080, 1306) 1186 (1074, 1306) 1186 (1079, 1294) 

 Beta SE P-value Beta SE P-value Beta SE P-value 
OR (95% CI) 

or Beta 
P-value 

P 

Het 

SCC -0.005 0.003 0.130 0.0001 0.002 0.952 0.0008 0.003 0.783 
1.00 (1.00, 

1.00) 
0.5317 0.296 

BCC -0.001 0.001 0.571 -0.0002 0.001 0.867 -0.002 0.001 0.177 
1.00 (1.00, 

1.00) 
0.0647 0.443 

Height 0.024 0.003 3.99E-16 0.016 0.002 4.74E-12 0.019 0.003 5.83E-10 0.02 <0.0001 0.084 

 

& Logistic regression models were used to assess the relationship between genetic score of height SNPs and risk of skin cancers, 

adjusting for age, gender, and the top three eigenvectors. 

% Analyses were first conducted within each of the platform-specific genetic datasets. We used fixed-effect meta-analysis to obtain 

a combined estimation. P Het is p-value for heterogeneity comparing three combined datasets: Illumina, Affy, and Omni. 
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Table 3.4b  Association between weighted genetic score of height-related SNPs and risk of NMSC 
& 

 

 Illumina Affy Omni Meta-analysis 
%

 

Original 

Mean(range) 
17.17 (15.28, 18.65) 17.16 (15.48, 18.82) 17.16 (15.66, 18.73) 

-- Formula 69.0739(∑𝛽𝑖𝑆𝑁𝑃𝑖)

593

𝑖=1

 69.1142(∑𝛽𝑖𝑆𝑁𝑃𝑖)

593

𝑖=1

 69.1142(∑𝛽𝑖𝑆𝑁𝑃𝑖)

593

𝑖=1

 

Rescaled 

Mean(range) 
1186 (1055, 1288) 1186 (1070, 1300) 1186 (1082, 1295) 

 Beta SE P-value Beta SE P-value Beta SE P-value 
OR (95% CI) 

or Beta 
P-value 

P 

Het 

SCC -0.005 0.003 0.115 0.0006 0.002 0.800 0.003 0.003 0.377 
1.00 (1.00, 

1.00) 
0.8793 0.145 

BCC -0.001 0.001 0.399 -0.0003 0.001 0.785 -0.002 0.001 0.122 
1.00 (1.00, 

1.00) 
0.0567 0.482 

Height (cm) 0.027 0.003 <2E-16 0.018 0.002 6.03E-14 0.022 0.003 3.55E-12 0.02 <0.0001 0.042 

 

& Logistic regression models were used to assess the relationship between genetic score of height SNPs and risk of skin cancers, 

adjusting for age, gender, and the top three eigenvectors. 

% Analyses were first conducted within each of the platform-specific genetic datasets. We used fixed-effect meta-analysis to obtain 

a combined estimation. P Het is p-value for heterogeneity comparing three combined datasets: Illumina, Affy, and Omni. 
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Discussion 

 In this analysis of two large and well-characterized cohorts, height was positively associated 

with risk of both SCC and BCC. To assess confounding due to potential factors, we fitted three 

multivariable models and gradually added covariates. The magnitude of associations changed the 

most when skin cancer constitutional factors and sunburns were adjusted for. Self-reported race 

did not alter the estimates materially when other covariates were already in the models. The 

multivariable-adjusted HRs for BCC risk among women were greater than the corresponding 

ones among men, though tests of gender difference did not yield any significant findings. Thus, 

we combined the estimates of two cohorts by fixed-effect meta-analysis. The combined HRs 

were 1.09 (95% CI: 1.03, 1.16) and 1.10 (95% CI: 1.07, 1.12) for the associations of each 10cm 

increase in height with risk of SCC and BCC, respectively. There were much fewer events for 

SCC than for BCC over the follow-up period, thus the confidence intervals for the former were 

wider.  

 The most important non-genetic factors affecting height are nutritional status, living 

conditions, and serious disease during childhood/adolescence [36]. Height could thus be thought 

of as a marker for these early-life exposures rather than a risk factor itself. Both animal studies 

and epidemiological studies have shown that reduced caloric intake during development reduces 

future risk of malignancy [37-39]. Attention has also focused on the potential mechanistic 

relevance of growth factors and hormones. Higher levels of circulating insulin-like growth factor 

promote linear growth during childhood and has been shown to accelerate cell proliferation [40] 

and to inhibit apoptosis [41]. Another possible explanation is that height may be associated with 
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greater skin surface area, which may put more skin cells at risk of malignant transformation and 

progression to skin cancer [42].  

 Genetic factors contribute strongly to adult height. It has been estimated that 80% of the 

variation in height in Western populations is determined by genetics [43]. Some have proposed 

that the association between height and cancers may result from shared genetic components. 

Certain genes linked with height are also related to cancer regulatory pathways such as p53 and 

HH/PTCH [44]. Besides, height-related SNPs reported by the GIANT consortium have also been 

associated with risk of testicular cancer and prostate cancer [20]. Yet, it remains unclear whether 

these height SNPs are tied to skin cancer risk, individually or jointly. In our study, none of the 

687 height-related SNPs was significantly associated with SCC or BCC risk after correcting for 

multiple comparisons. The genetic scores combining all independent SNPs showed no significant 

association with risk of SCC or BCC. It is possible that we are lacking power in our genetic 

datasets to observe the true associations. 

 The strengths of the current study include prospective design with long-term follow-up and 

high follow-up rate, availability of detailed information on a wide variety of covariates, 

involvement of both women and men, and targeting on SCC and BCC separately. A major 

advantage is that we examined the associations between height and skin cancers more thoroughly 

and accurately than has previously been reported. Potential confounding factors, such as 

pigmentation and sunburn history, which are critical for skin cancers and have not been 

considered before, were included in our cox models. We also took interactions between height 

and other covariates into consideration. In sensitivity analysis, ancestry within the white 
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population was assessed directly using genetic data. Adjustment for genetic ancestry did not 

change the results materially. This may result from lack of power in the genetic subsets and/or 

the control of skin cancer constitutional factors which have already partly explained variation in 

ancestry. Moreover, our novel analysis of the associations between height-related genetic 

variants and risk of skin cancers may eventually yield a better understanding of the underlying 

mechanisms. To our best knowledge, no such analysis has been conducted for skin cancers.  

 We also acknowledge several potential limitations of the present study. First, height was 

self-reported rather than measured in our cohorts, which could result in misclassification. 

However, any misclassification would be non-differential with respect to disease occurrence, 

because information on height was collected prior to the development of skin cancers. Because 

non-differential misclassification would bias the estimation downwards, that could not account 

for the observed positive association. Second, BCC cases were self-reported without further 

pathological confirmation. However, the high validity of self-reported BCC in these medically 

sophisticated populations has been confirmed in previous studies [22]. In addition, using the 

self-reported BCC cases, our group identified the previously well-documented genetic variant in 

the MC1R gene as the top risk locus in our GWAS for BCC [45]. These data support the validity 

of self-report of BCC in our study. Third, we did not have information on all relevant 

confounding variables. For example, data on socioeconomic status, which might affect both 

height and cancer incidence, were not available. However, our study used cohorts of health care 

providers, which has the advantage of minimizing confounding by educational attainment and 

adult socioeconomic status. In addition, adjustment for socioeconomic factors did not affect risk 
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estimates for association between height and cancer in previous large studies [15, 17, 46]. We 

also lacked information on childhood nutritional status, for which height may be a marker. 

Finally, our cohorts consist primarily of white health professionals and thus results may not be 

generalizable. However, such homogeneity in a study population would minimize confounding 

by socioeconomic status and differential access to healthcare and assure a high quality of 

returned data. 

 In conclusion, our data from two large cohorts provide further evidence that height is 

associated with increased risk of SCC and BCC. These associations were not explained by 

confounding by known risk factors, nor were modified by those risk factors. No significant 

association was observed between height-related genetic variants and risk of NMSC, no matter 

individually or jointly. More functional and epidemiological studies on height-related SNPs are 

needed to confirm our findings. Additional research involving a range of pre-adult exposures, 

such as diet, psychosocial stress, chronic illness, and social circumstances, which are rarely 

directly measured in existing datasets, may help clarify possible mechanisms underlying the 

positive associations.  
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Supplementary Materials 

 

1. Basic information on the 18 nested case-control studies 

Supplementary Table 3.1  Basic information on the 18 GWAS sets from NHS and HPFS 

 

Study 
Sample size * 

(Genotyped) 

Genotyping 

platform 

Combined 

dataset 

Postmenopausal invasive breast cancer 

case-control study nested within the NHS 

(NHS-BrCa) 

1145 cases, 

1142 controls 
Illumina 550k Illumina 

Type 2 diabetes case-control study nested 

within the NHS (NHS-T2D) 

1532 cases, 

1754 controls 
Affy 6.0 Affy 

Coronary heart disease case-control study 

nested within the NHS (NHS-CHD) 

342 cases, 804 

controls 
Affy 6.0 Affy 

Kidney stone case-control study nested within 

the NHS (NHS-KS) 

328 cases, 166 

controls 
Illumina 610Q Illumina 

Pancreas cancer case-control study nested 

within the NHS (NHS- Pancreas) 

82 cases, 84 

controls 
Illumina 550k Illumina 

Glaucoma case-control study nested within the 

NHS (NHS-Glaucoma) 

313 cases, 497 

controls 
Illumina 660 Illumina 

Endometrial cancer case-control study nested 

within the NHS (NHS-Endometrial) 

396 cases, 348 

controls 
Omni Express Omni 

Colon cancer case-control study nested within 

the NHS (NHS-Colon) 

394 cases, 774 

controls 
Omni Express Omni 

Mammographic density study nested within the 

NHS (NHS-Mammographic density) 

153 cases, 641 

controls 
Omni Express Omni 

Gout case-control study nested within the NHS 

(NHS-Gout) 

319 cases, 392 

controls 
Omni Express Omni 

Type 2 diabetes case-control study nested 

within the HPFS (HPFS-T2D) 

1189 cases, 

1298 controls 
Affy 6.0 Affy 

Coronary heart disease case-control study 

nested within the HPFS (HPFS-CHD) 

435 cases, 878 

controls 
Affy 6.0 Affy 

Kidney stone case-control study nested within 

the HPFS (HPFS-KS) 

315 cases, 238 

controls 
Illumina 610Q Illumina 

Pancreas cancer case-control study nested 

within the HPFS (HPFS-Pancreas) 

54 cases, 52 

controls 
Illumina 550k Illumina 

Advanced prostate cancer case-control study 

nested within the HPFS (HPFS-AdvPrCa) 

218 cases, 205 

controls 
Illumina 610Q Illumina 
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Supplementary Table 3.1  Basic information on the 18 GWAS sets from NHS and HPFS 

(Continued) 

 

Study 
Sample size * 

(Genotyped) 

Genotyping 

platform 

Combined 

dataset 

Glaucoma case-control study nested within the 

HPFS (HPFS-Glaucoma) 

178 cases, 299 

controls 
Illumina 660 Illumina 

Colon cancer case-control study nested within 

the HPFS (HPFS-Colon) 

229 cases, 230 

controls 
Omni Express Omni 

Gout case-control study nested within the 

HPFS (HPFS-Gout) 

717 cases, 699 

controls 
Omni Express Omni 

 

* These are number of participants who have been genotyped in each of the studies before 

imputation, quality control, and further exclusion. Cases refer to the cases of disease in the 

original nested case-control study. 

 

2. Genotyping, quality control, and imputation 

Genotyping 

There were 18 GWAS datasets from the NHS and HPFS with cleaned genotype data 

available. We combined these datasets into three complied datasets based on their genotype 

platform type: Affymetrix (Affy), Illumina HumanHap series (Illumina), or Illumina Omni 

Express (Omni). The Affymetrix dataset was comprised of data on the Affy 6.0 platform 

(NHS-type 2 diabetes, NHS-coronary heart disease, HPFS-type 2 diabetes, HPFS-coronary heart 

disease).  The Illumia HumanHap dataset was comprised of several platforms: Illumina 550K 

(NHS-breast cancer, NHS-Pancreas cancer, HPFS-pancreas cancer), Illumina 610Q (NHS-kidney 

stone, HPFS-kidney stone, HPFS-prostate cancer) and Illumina 660 (NHS-glaucoma, 

HPFS-glaucoma).  The Illumina Omni Express dataset contained only studies genotyped on the 
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Omni Express platform (NHS-endometrial cancer, NHS-colon cancer, NHS-mammographic 

density, NHS-gout, HPFS-colon, HPFS-gout). Detailed method about the pooled imputed data in 

this combined dataset is described in Lindström, et al. submitted to Bioinformatics (copy is 

provided for reviewers’ review).  

 

Quality control (QC)  

We combined the individual datasets that were genotyped on the same platform, removing 

any SNPs that were not in all studies and with a missing call rate>5%, and flipping strands where 

appropriate to create a final compiled dataset. This resulted in 668,283 SNPs in the Affymetrix 

dataset, 459,999 SNPs in the Illumina HumanHap dataset, and 565,810 SNPs in the Illumina 

Omni Express dataset. Analyses were restricted to subjects with self-reported European ancestry. 

Genetic principal components were calculated using sets of independent SNPs (12,000-33,000 

SNPs depending on platform). Subjects who did not cluster with other self-identified Europeans 

based on the top five principal components were also excluded.  

We then ran a pairwise identity by descent (IBD) analysis for each combined dataset to 

detect duplicate and related individuals based on resulting Z scores. If 0<=Z0<=0.1 and 

0<=Z1<=0.1 and 0.9 <=Z2<=1.1 then a pair was flagged as being identical twins or duplicates. 

Pairs were considered full siblings if 0.17<=Z0<=0.33 and 0.4 <=Z1<=0.6 and 0.17<=Z2<=0.33. 

Half siblings or avunculars were defined as having 0.4<=Z1<=0.6 and 0<=Z2<=0.1. Some of the 

duplicates flagged in this step were expected, having been genotyped in multiple datasets and 

hence having the same cohort IDs. In this case, one of each pair was randomly chosen for 
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removal from the dataset. Instances where pairs were flagged as unexpected duplicates with the 

different cohort IDs, but pairwise genotype concordance rate>0.999, resulted in removal of both 

individuals from the pair. Related individuals (full sibs, half sibs/avunculars) were not removed 

from the final datasets. In the Affymetrix dataset, 167 individuals were removed because they 

were duplicates or were flagged for removal from secondary genotype data cleaning, leaving a 

total of 8065 individuals. Of the 6894 individuals originally in the Illumina dataset, 107 were 

removed because they were duplicates or flagged for removal in the genotyping step, leaving 

6787 IDs. In addition, 8 pairs of individuals were flagged as related. In the Omni express dataset, 

there were 5956 individuals at the start, with 39 IDs to remove leaving 5917 IDs and 5 pairs of 

related IDs.  

After removing duplicate IDs and flagging related pairs of IDs, we used EIGENSTRAT [1] 

to run PCA analysis on each compiled dataset, removing one member from each flagged pair of 

related individuals. For Affymetrix and Illumina HumanHap, we used approximately 12,000 

SNPs that were filtered to ensure low pairwise LD. For the OmniExpress dataset we used 

approximately 33,000 SNPs that were similarly filtered. We plotted the top eigenvectors using R 

and examined the plots for outliers.  

Finally as a quality control check, we ran logistic regression analyses using each individual 

study’s controls as “cases” and the rest of the studies controls as “controls”. We then ran 

regressions with each of the other study controls as “cases” versus all of the rest of the controls. 

We looked for p values of genome-wide significance (p<10
-8

) and examined QQ plots to 

determine if any SNPs were flagged as significant where no SNPs should have been significant. 
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In the Affymetrix dataset 100 SNPs were flagged and removed. In the Illumina HumanHap 

dataset, 8 SNPs had p<10
-8

 in any of the QC regressions and were removed. No SNPs in the 

Illumina Omni Express dataset had p values<10
-8

, hence no additional SNPs needed to be 

removed. After the datasets were combined and appropriate SNP and ID filters applied, the 

complied datasets were imputed. 

 

Imputation 

After the datasets were combined and appropriate quality control procedures applied, the 

complied datasets were imputed using the 1000 Genomes Project ALL Phase I Integrated 

Release Version 3 Haplotypes excluding monomorphic and singleton sites (2010-11 data freeze, 

2012-03-14 haplotypes) as reference panel. SNP genotypes were imputed in three steps. First, 

genotypes on each chromosome were split into chunks to facilitate windowed imputation in 

parallel using ChunkChromosome (http://genome.sph.umich.edu/wiki/ChunkChromosome, v. 

2011-08-05). Then each chunk of chromosome was phased using MACH (v. 1.0.18.c) [2]. In the 

final step, Minimac (v. 2012-08-15) [3] was used to impute the phased genotypes to 

approximately 31 million markers in the 1000 Genomes Project. The number of genotyped SNPs 

passed quality control procedure and that of imputed SNPs with minor allele frequency (MAF) > 

1% and imputation R
2
>0.3 in each platform are presented in Supplementary Table 3.2. 

 

 

 

 

http://genome.sph.umich.edu/wiki/ChunkChromosome
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Supplementary Table 3.2  Summary of markers in combined datasets 

 

Platform 

# of markers in 

cleaned and 

merged datasets 

Total # of 

1000G 

imputed 

markers 

# of 1000G 

imputed 

markers with 

MAF>1% 

# of 1000G imputed 

markers with 

MAF>1% and 

imputation R
2
> 0.3 

Affymetrix (Affy) 668,283 31,326,389 9,783,513 9,783,513 

Illumina (Illumina) 459,999 31,326,389 9,807,739 8,991,321 

Omni Express 

(Omni) 
565,810 31,326,389 9,771,868 9,148,255 

 

 

3. Supplementary results 

 

 

Supplementary Table 3.3  Height-related SNPs significantly associated with SCC risk at 

P-value <0.05 

 

Marker Name  

(CHR: BP) 
Allele 1 Allele 2 Freq 1 Effect SE P-value P Het 

13:50469913 t c 0.20 0.27 0.08 9.40E-04 0.31 

18:74983055 a g 0.96 -0.46 0.14 1.01E-03 0.15 

11:69163161 t c 0.15 0.28 0.09 1.12E-03 0.25 

5:172994624 a g 0.35 -0.22 0.07 1.32E-03 0.76 

16:990815 t c 0.38 0.20 0.06 2.00E-03 0.89 

9:119422807 a t 0.92 -0.31 0.11 3.42E-03 0.42 

7:73304636 t c 0.14 0.25 0.09 4.59E-03 0.36 

11:128577624 c g 0.25 0.19 0.07 7.30E-03 0.20 

11:45936035 a g 0.92 0.37 0.14 8.31E-03 0.55 

13:33143406 a g 0.36 0.16 0.07 1.71E-02 0.42 

8:135612595 a g 0.30 0.16 0.07 1.78E-02 0.78 

11:2171601 t c 0.79 -0.19 0.08 2.01E-02 0.49 

4:122720999 a g 0.67 0.16 0.07 2.07E-02 0.13 

9:18629792 a g 0.31 0.16 0.07 2.49E-02 0.96 

6:6889818 a g 0.13 0.21 0.09 2.53E-02 0.23 

15:94028149 t c 0.64 0.15 0.07 2.55E-02 0.38 
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Supplementary Table 3.3  Height-related SNPs significantly associated with SCC risk at 

P-value <0.05 (Continued) 

 

Marker Name 

(CHR: BP) 
Allele 1 Allele 2 Freq 1 Effect SE P-value P Het 

13:30172751 t g 0.21 0.17 0.08 2.65E-02 0.05 

1:54954245 t c 0.89 0.27 0.12 2.89E-02 0.48 

5:171189571 a g 0.67 0.15 0.07 3.05E-02 0.62 

9:109518208 a g 0.83 0.21 0.10 3.18E-02 0.94 

19:19591066 a g 0.83 0.20 0.09 3.19E-02 0.76 

1:184007119 t c 0.30 0.15 0.07 3.24E-02 0.17 

12:124801226 t c 0.27 -0.16 0.08 3.34E-02 0.64 

17:54778817 a t 0.67 0.15 0.07 3.39E-02 0.78 

11:12678415 t c 0.55 0.14 0.07 3.55E-02 0.97 

1:67510474 a g 0.28 -0.15 0.07 3.65E-02 0.73 

4:184215675 a g 0.23 -0.17 0.08 3.72E-02 0.24 

2:44907331 a g 0.14 -0.21 0.10 3.79E-02 0.79 

10:127673877 t c 0.33 0.14 0.07 3.79E-02 0.44 

12:28952342 c g 0.33 0.14 0.07 4.13E-02 0.42 

6:45244415 t c 0.58 -0.13 0.06 4.14E-02 0.18 

2:233442091 a g 0.28 -0.15 0.07 4.50E-02 0.23 

9:117011595 t c 0.37 -0.13 0.07 4.55E-02 0.35 

8:145037573 a t 0.40 0.13 0.06 4.58E-02 0.60 

6:85448103 t c 0.54 0.13 0.06 4.61E-02 0.55 

6:105392745 t c 0.69 0.14 0.07 4.95E-02 0.45 

13:21570246 t g 0.18 0.33 0.08 1.88E-05 0.97 

NOTE: Freq 1 is the frequency of allele 1; P Het is p-value for heterogeneity comparing three 

combined datasets: Illumina, Affy, and Omni. 

 

 

 

Supplementary Table 3.4  Height-related SNPs significantly associated with BCC risk at 

P-value <0.05 

 

Marker Name 

(CHR: BP) 
Allele 1 Allele 2 Freq 1 Effect SE P-value P Het 

7:150508720 t c 0.29 0.11 0.03 2.58E-04 0.94 

15:51269629 a g 0.20 -0.12 0.04 7.10E-04 0.69 

4:7055253 t c 0.22 -0.11 0.03 1.03E-03 0.27 

4:123835656 a c 0.74 -0.10 0.03 1.70E-03 0.84 
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Supplementary Table 3.4  Height-related SNPs significantly associated with BCC risk at 

P-value <0.05 (Continued) 

Marker Name 

(CHR: BP) 
Allele 1 Allele 2 Freq 1 Effect SE P-value P Het 

14:55203126 c g 0.76 -0.10 0.03 2.59E-03 0.96 

15:89113138 c g 0.33 -0.09 0.03 3.07E-03 0.39 

3:68622366 a g 0.55 -0.08 0.03 5.71E-03 0.96 

5:176675423 a g 0.98 0.26 0.10 1.01E-02 0.13 

1:21583311 t c 0.41 -0.07 0.03 1.20E-02 0.64 

6:126216403 c g 0.55 0.07 0.03 1.40E-02 0.23 

3:190815978 a g 0.89 0.11 0.05 1.76E-02 0.44 

2:218284278 c g 0.31 0.07 0.03 2.00E-02 0.23 

3:129050943 a g 0.21 -0.08 0.03 2.06E-02 0.35 

14:65568215 a g 0.37 -0.07 0.03 2.27E-02 0.62 

2:242191410 c g 0.75 0.07 0.03 2.29E-02 0.22 

7:8086639 a g 0.57 -0.07 0.03 2.56E-02 0.69 

7:96039648 c g 0.29 0.07 0.03 2.58E-02 0.82 

4:8608634 t c 0.43 -0.06 0.03 2.83E-02 0.05 

1:172241251 t c 0.68 0.07 0.03 2.85E-02 0.68 

2:42462930 a g 0.91 -0.11 0.05 2.86E-02 0.86 

11:75276178 a c 0.14 0.09 0.04 2.88E-02 0.49 

7:23475919 a g 0.14 0.09 0.04 3.28E-02 0.00 

14:103878774 c g 0.63 -0.06 0.03 3.32E-02 0.01 

14:59688820 a g 0.51 -0.06 0.03 3.32E-02 0.24 

2:88924622 t c 0.68 -0.06 0.03 3.33E-02 0.97 

2:33315750 c g 0.23 -0.07 0.04 3.68E-02 0.70 

1:9292282 a g 0.15 -0.08 0.04 4.07E-02 0.95 

2:232779223 t c 0.74 0.07 0.03 4.17E-02 0.94 

5:88327782 t g 0.52 0.06 0.03 4.29E-02 0.86 

16:30030195 a c 0.60 0.06 0.03 4.48E-02 0.60 

6:144079629 t g 0.34 -0.06 0.03 4.51E-02 0.91 

10:105577409 a g 0.10 0.09 0.05 4.55E-02 0.88 

9:95387983 t c 0.58 -0.06 0.03 4.55E-02 0.21 

20:35544673 a g 0.85 0.08 0.04 4.63E-02 0.26 

7:46201355 a g 0.78 0.07 0.03 4.66E-02 0.93 

2:136187345 t c 0.11 -0.09 0.05 4.76E-02 0.27 

12:69827658 t g 0.35 -0.06 0.03 4.85E-02 0.94 

4:145565826 t c 0.44 -0.06 0.03 4.93E-02 0.71 

NOTE: Freq 1 is the frequency of allele 1; P Het is p-value for heterogeneity comparing three 

combined datasets: Illumina, Affy, and Omni. 
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Supplementary Table 3.5  HRs and 95% CIs for the associations of height (per 10cm 

increase) with SCC and BCC risk in sensitivity analysis 

 

 NHS HPFS 

 HR (95% CI) P-value HR (95% CI) P-value 

SCC     

- Model 1 1.24 (1.01, 1.51) 0.0366 1.01 (0.83, 1.23) 0.9292 

 - Model 2 1.21 (0.99, 1.48) 0.0624 0.99 (0.81, 1.21) 0.9108 

- Model 3 1.16 (0.95, 1.42) 0.1415 0.93 (0.76, 1.14) 0.4952 

- Model 4 1.14 (0.93, 1.40) 0.1957 0.92 (0.75, 1.13) 0.4452 

- Model 5  1.14 (0.93, 1.39) 0.2221 0.92 (0.75, 1.13) 0.4221 

     

BCC     

- Model 1 1.15 (1.08, 1.23) <0.0001 1.14 (1.05, 1.23) 0.0017 

 - Model 2 1.13 (1.06, 1.21) 0.0003 1.12 (1.04, 1.22) 0.0043 

- Model 3 1.09 (1.02, 1.17) 0.0098 1.10 (1.02, 1.20) 0.0178 

- Model 4 1.09 (1.02, 1.17) 0.0117 1.10 (1.01, 1.19) 0.0220 

- Model 5  1.08 (1.01, 1.16) 0.0185 1.12 (1.03, 1.21) 0.0078 

 

a Model 1, age-adjusted 

b Model 2 adjusted for adjusted for age, smoking status (never, past, current 1-14,15-24, or 

25+ cigarettes/day), alcohol intake (no, <5.0, 5.0-9.9, 10.0-19.9, or 20.0+ g/day), body mass 

index (<25.0, 25.0-29.9, 30.0-34.9, or +35.0 kg/m
2
), physical activity (<3.0, 3.0-8.9, 9.0-17.9, 

18.0-26.9 or +27.0 metabolic equivalent hours/wk), menopausal status/postmenopausal 

hormones use (premenopausal, HRT never, HRT past, or HRT current; only in the NHS); 

c Model 3 adjusted for covariates in Model 2, plus natural hair color (red, blonde, light brown, 

dark brown, or black), childhood/adolescent sunburn reaction (none or some redness, burn, 

painful burn or blisters), family history of melanoma (yes or no), number of severe sunburns 

over life time (never, 1-2 times, 3-5 times, or 6+ times), mole count (none, 1-2, 3-9, 10+), and 

states lived at birth, age 15, and age 30 (UV index <=5, =6, or >=7); 

d Model 4 adjusted for covariates in Model 3 and self-reported white ancestry (Southern 

European/Mediterranean, Scandinavian, or other Caucasian); 

e Model 5 adjusted for covariates in Model 3 and genetic ancestry (top 2 coordinates); 
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