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Recommendations for open data science
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Abstract

Life science research increasingly relies on large-scale computational analyses. However, the code and data used for
these analyses are often lacking in publications. To maximize scientific impact, reproducibility, and reuse, it is crucial
that these resources are made publicly available and are fully transparent. We provide recommendations for
improving the openness of data-driven studies in life sciences.
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Background
The ability to generate increasingly large and complex
datasets has ushered in an era of ‘big data’ in life sci-
ences and in other fields such as astronomy, economics,
and physics. The field of data science has emerged to
tackle the challenge of extracting information from these
data sets by combining aspects of statistics, machine
learning, software engineering, and data visualization.
Data science has been accompanied by a number of
‘open’ movements aimed at maximizing scientific impact
by increasing accessibility of science, promoting repro-
ducibility and enabling future studies. These include the
sharing of raw data sets (open data), source code (open
source), publications (open access), and education (open
teaching). The life sciences community has long recog-
nized the importance of open data [1], and has recently
reinforced its importance [2]. Methods used to generate
results are equally important, but availability of tools and
workflows are often not required for publication. For sci-
entific progress, it is critical that the life sciences undergo
a cultural shift whereby computational methods are held
to similarly high standards.
We have provided recommendations for open data sci-

ence to facilitate this shift.
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Recommendations
1. Provide or cite source code for tools in public repositories
Software packages are critical in data-driven studies.
Other researchers can only fully utilize results if the details
of the computational methods used are completely trans-
parent. Provide source code for all original software in
public repositories such as Github [3] with a license per-
mitting as free use as possible. Cite precise versions and
command line prompts for all previously published tools.
Do not use proprietary software that cannot be accessed
by other researchers.
Follow best practices in software engineering [4] to

make tools easy to use and maintain by others. A common
hurdle for reusing software is the cumbersome and het-
erogeneous steps required to install a specific program. To
alleviate this issue, deposit tools in standard packageman-
agers, such as the Python Package Index (PyPI) for Python
or the Comprehensive R Archive Network (CRAN) for
R. Alternatively, provide instructions for easy installation
using standard tools.
Taking these steps to ensure that software is publicly

available and user-friendly will ultimately result in much
greater impact by making the software more widely used,
and thus more likely to be improved and maintained by
the community.

2. Provide or cite pipelines in public repositories
Workflows integrating diverse data sources and indi-
vidual tools to generate numerical results, figures, or
tables, are important components of many computational
analyses. However, although publications often describe
these workflows in varying levels of detail, the pipelines
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implementing them are rarely shared, despite being fun-
damental for understanding how results were generated
and for repeating analyses.
As ‘big data’ analyses become more widespread, best

practices for publishing pipelines are still evolving. Full
transparency requires that all code, data, and steps be
shared in formats that allow another researcher to easily
regenerate the same results. For analysis of large data sets
using standard tools, use citable pipelines (e.g. Galaxy [5]),
or a standardized pipeline language such as Yet Another
Workflow Language (YAWL) [6]. For smaller pipelines,
post documented source code at a stable website, such as
a Git repository, containing scripts and links to data that
is specific to a manuscript. This code could take the form
of reproducible notebook tools such as Jupyter notebooks
[7] or Sweave/knitr [8] scripts, which integrate code with
results and figures. Another option is to provide a script
or makefile that can regenerate all analyses of a paper with
a single command. Finally, containerizing analyses (e.g.
using Docker [9]) can allow them to be easily rerun by
others without having to install additional dependencies.

3. Train scientists in data science
A critical element of a cultural revolution toward high
standards for data analysis will be engaging young sci-
entists in data science training. Valuable new tools are
emerging for facilitating open data science such as Github
[3] for sharing code, and Project Jupyter notebooks [7]
for publishing reproducible analyses. However, students
rarely receive formal training in current data science tools
and techniques.Moreover, they often face pressure to pro-
duce results as quickly as possible. As a result, scientists
may produce hastily and poorly written code that they are
reluctant to share and is unusable by others.
The primary source of training often comes from the

laboratory environment itself. For wet-lab work, students
are usually trained in practices such as keeping a lab note-
book and sharing protocols. Similar efforts must now be
invested for computational work. For instance, tools and
analyses should be reviewed within the lab for quality and
correctness. One suggestion is to maintain a lab Github
repository where analyses are discussed as ‘issues’ and
peer-reviewed via ‘pull-requests’. Another suggestion is
to hold lab-wide or institute-wide data science tutorials.
Finally, trainees can take advantage of online learning plat-
forms (e.g. Software Carpentry [10]) that provide freely
available training in tools and practices for data-driven
research.

4. Journal editors and reviewers must enforce
computational reproducibility
These recommendations will likely only take effect
if required for publication. Many journals encourage
authors to publish source code and data, but often do

not have specific requirements about what should be pro-
vided, and how. For instance, Nature instructs authors to
include a ‘Code Availability’ section in their manuscripts
to indicate ‘whether and how the code can be accessed’.
PLoS posts guidelines for requiring source code, docu-
mentation, and test data sets, although these refer specifi-
cally to manuscripts describing new software.GigaScience
goes a step further with more specific requirements for
code, data, and workflows, and states that ease of repro-
ducibility is a key criterion during the review process.
Importantly, editors must enforce these guidelines by fol-
lowing through with authors’ promises to post code and
data.
Reviewers also have a responsibility to ensure that com-

putational methods are adequately reported. One sug-
gestion is that journals provide authors and reviewers
with a ‘computational reproducibility checklist’, similar to
checklists already provided for statistical analyses. This
checklist may ask whether the source code and data for all
tools and analyses are available, whether new tools have
been deposited in public package managers, and whether
sufficient documentation and user manuals are available.
Failure to comply with this checklist should disqualify a
study from publication. Requiring more thorough review
of code and analyses takes additional time that most
reviewers are unwilling to spend, especially if new tools
are difficult to install and don’t work ‘out of the box’. A
suggestion to reduce this burden is to designate specific
data science reviewers. Requiring specific review of these
aspects will incentivize scientists to invest greater effort in
the practices outlined above.

Conclusions
Making computational research fully reproducible, trans-
parent, and reusable is challenging, time consuming,
and is often a low priority for researchers. Nevertheless,
investing efforts in establishing best practices and stan-
dards for sharing computational analyses will ultimately
move science forward faster.
This revolution will not occur by itself. It will require

a concerted effort by trainees, senior scientists, editors,
and reviewers, as was the case for previous revolutions in
data sharing and statistics. These recommendations offer
a potential springboard for the policies and mental shift
needed across the field to make the ideals of open data
science a reality.
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