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ABSTRACT—Background: Ventilatory strategy and specifically positive end-expiratory pressure (PEEP) can modulate the

inflammatory response and pulmonary-to-systemic translocation of lipopolysaccharide (LPS). Both inflammation and

ventilatory pattern may modify brain activation, possibly worsening the patient’s outcome and resulting in cognitive

sequelae. Methods: We prospectively studied Sprague–Dawley rats randomly assigned to undergo 3 h mechanical

ventilation with 7 mL/kg tidal ventilation and either 2 cmH2O or 7 cmH2O PEEP after intratracheal instillation of LPS or

saline. Healthy nonventilated rats served as baseline. We analyzed lung mechanics, gas exchange, lung and plasma

cytokine levels, lung apoptotic cells, and lung neutrophil infiltration. To evaluate brain neuronal activation, we counted

c-Fos immunopositive cells in the retrosplenial cortex (RS), thalamus, supraoptic nucleus (SON), nucleus of the solitary

tract (NTS), paraventricular nucleus (PVN), and central amygdala (CeA). Results: LPS increased lung neutrophilic

infiltration, lung and systemic MCP-1 levels, and neuronal activation in the CeA and NTS. LPS-instilled rats receiving

7 cmH2O PEEP had less lung and systemic inflammation and more c-Fos-immunopositive cells in the RS, SON, and

thalamus than those receiving 2 cmH2O PEEP. Applying 7 cmH2O PEEP increased neuronal activation in the CeA and

NTS in saline-instilled rats, but not in LPS-instilled rats. Conclusions: Moderate PEEP prevented lung and systemic

inflammation secondary to intratracheal LPS instillation. PEEP also modified the neuronal activation pattern in the RS,

SON, and thalamus. The relevance of these differential brain c-Fos expression patterns in neurocognitive outcomes

should be explored.

KEYWORDS—Experimental, inflammation, mechanical ventilation, neuronal activation, PEEP

ABBREVIATIONS—ALI—Acute lung injury; ARDS—Acute respiratory distress syndrome; BAS—Basal; CeA—Central

amygdala; IL—Interleukin; LPS—lipopolysaccharide; MAP—Mean arterial pressure; MCP—Monocyte chemoattractant

protein; MV—Mechanical ventilation; NTS—Nucleus tractus solitarius; PEEP—Positive end-expiratory pressure;

PVN—Paraventricular nucleus; RS—Retrosplenial cortex; SEM—Standard error of the mean; SON—Supraoptic

nucleus; TNF—Tumor necrosis factor; VILI—Ventilator-induced lung injury; VT—Tidal volume
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INTRODUCTION
Endotracheal intubation increases the risk of bacterial col-

onization of the lower respiratory tract, and may eventually lead

to pneumonia or pneumonitis (1). This event is clinically

relevant in critically ill patients attended in intensive care units

(ICU) and can trigger acute lung injury (ALI) or acute respir-

atory distress syndrome (ARDS) (2,3). Mechanical ventilation

(MV) also increases the risk of infection and can contribute to

the dissemination of bacteria or bacterial products (3–6). The

translocation of inflammatory mediators could compromise the

functionality of different organs and systems, including the

brain, and may be involved in ICU-acquired delirium or post-

ICU cognitive decline. The recent literature reflects growing

interest in lung–brain crosstalk (7,8), and its possible role in the

development and prevention of cognitive impairment (9,10) in

mechanically ventilated critically ill patients.

A protective ventilatory strategy with low tidal volume (Vt)

prevents ALI and inflammatory decompartmentalization after

intratracheal instillation of lipopolysaccharide (LPS) in rabbits

(11). Conversely, adverse ventilatory strategies cause pulmon-

ary-to-systemic translocation of LPS or bacteria, thereby pro-

moting the dissemination of inflammation (12,13). Whitehead

et al. (4) explored the effect of MV on cytokine response to

intratracheal LPS or saline using different ventilatory patterns

in an ex vivo rat model. They found TNFa levels in bronchoal-

veolar lavage in lungs from animals instilled with saline under-

going MV were lower with low Vt; however, this protective

effect of low Vt was dampened in animals instilled with LPS.

Likewise, optimizing positive end-expiratory pressure (PEEP)

could help prevent ALI and inflammation (14,15) and neuro-

logical alterations.

The central nervous system (CNS) receives both humoral

and sensory inputs, which are regulated through the central

autonomic network, and the brain’s neuroimmune system helps

maintain body homeostasis. In a mouse model of ventilator-

induced lung injury (VILI), MV triggered apoptosis in hippo-

campal neurons via vagal and dopaminergic pathways (16).

However, how protective MV can affect brain homeostasis

remains unresolved (7). In a previous study using a rodent

model of VILI, we found that different levels of Vt resulted in

early differential neuronal activation, as reflected in increased

expression of c-Fos protein (8). The brain can probably sense

differential inputs from pulmonary stretch receptors that

change with Vt and PEEP level (17).

The optimal PEEP level is a matter of debate, and its

contribution in modulating lung–brain crosstalk is unknown.

We hypothesize that optimizing PEEP level immediately after

tracheal instillation could be crucial to prevent local and

systemic inflammation secondary to LPS and MV. Moreover,

we postulate that PEEP might also modify the pattern of

neuronal activation in the brain and changes in activation

patterns could help elucidate which areas of the brain partici-

pate in this modulatory response.

In this study, to ascertain the best level of PEEP to prevent local

inflammation and systemic dissemination and to explore the

influence of PEEP level on neuronal activation, we investigated

the effects of two PEEP levels on local, systemic, and brain

responses immediately after intratracheal instillation of LPS.
MATERIALS AND METHODS

Animal preparation and measurements

In accordance with the European Commission Directive 2010/63/EU for
animal experimentation, the university’s animal ethics committee approved the
study. We studied 38 adult male Sprague–Dawley rats (mean weight,
348� 32 g) housed in standard conditions with a 12-h light–dark cycle and
food and water ad libitum. Animals were anesthetized with 75 mg/kg ketamine
and 10 mL/kg xylazine intraperitoneally, placed supine, and tracheotomized.
An endotracheal tube (2 mm inner diameter) was inserted and tightly tied to
avoid air leaks, and the rats were ventilated using a Servo-300 ventilator
(Maquet; Solna, Sweden) while paralyzed with repeated doses of succinylcholine
chloride. Anesthesia and muscle relaxation were administered every 45 min.
Airway pressure was monitored via a side port in the tracheal tube using a
pressure transducer (Valydine MP45, Valydine Engineering, Northridge, CA).
The left carotid artery was cannulated and connected to a pressure transducer
(Transpac Monitoring Kit, Abbot, Sligo, Ireland) to monitor mean arterial
pressure (MAP). The right jugular vein was cannulated for fluid infusion
(10 mL/kg/h). Blood and airway pressures were routed to an amplifier (Preso-
graph, Gould Godart, The Netherlands), converted to digital (Urelab, Barcelona,
Spain), and recorded in a personal computer (Anadat-Labdat Software, RTH
InfoDat, Montreal, Canada).

Rats were randomly assigned to one of five experimental groups: basal
group, in which animals were immediately exsanguinated after anesthesia and
no LPS or MV was not administered (n¼ 6); low-PEEP-saline group (SAL-2),
in which animals were ventilated with 2 cmH2O PEEP after saline instillation
(n¼ 8); low-PEEP-LPS group (LPS-2), in which animals were ventilated with
2 cmH2O PEEP after LPS instillation (n¼ 8); moderate-PEEP-saline group
(SAL-7), in which animals were ventilated with 7 cmH2O PEEP after saline
instillation (n¼ 8); and moderate-PEEP-LPS group (LPS-7), in which animals
were ventilated with 7 cmH2O PEEP after LPS instillation (n¼ 8). During
preparation, all rats were ventilated with 7 mL/kg Vt and 2 cmH2O PEEP, at
46 breaths/min, FiO2¼ 0.4, and 1:2 inspiratory-to-expiratory ratio. Immedi-
ately after a 15-min stabilization period, 200 mg/kg LPS from Escherichia coli
055:B5 serotype (Sigma-Aldrich, Madrid, Spain) diluted in a total volume of
200 mL of sterile saline was intratracheally instilled; animals were rotated in
both lateral decubitus positions to facilitate homogeneous distribution. MV with
Vt 7 mL/kg was maintained for 3 h, and at the end of this period arterial blood
gases and respiratory system mechanics (inspiratory and expiratory pause) were
recorded. MAP was continuously monitored.

At the end of the 3-h MV period, rats were euthanized by exsanguination.
For protein determinations, 7 mL of blood from each animal was centrifuged
and plasma was stored at �808 C. Lungs and brains were removed and frozen
for tissue analyses. The left lung was fixed for histological analysis.
Histological analysis

Left lungs were fixed by instillation of 4% buffered formaldehyde at a
pressure of 5 cmH2O and then immersed in the same fixative. Lungs were
embedded in paraffin and sliced at 5 mm for histopathology and for terminal
deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling
(TUNEL) assay. After hematoxylin-eosin staining, two investigators (MEQ,
JLA), blinded to experimental groups, assessed alveolar neutrophil infiltration
by counting the neutrophils in 50 random fields per animal at a magnification of
�400 using ImageJ v1.36 (Wayne Rasband, NIH, USA) (18).

TUNEL assays in lung tissue

The TUNEL assay was performed using the In situ Cell Death Detection Kit,
Fluorescein (Roche Applied Science, Barcelona, Spain), according to the
manufacturer’s protocols. Briefly, deparaffinized sections were permeabilized,
rehydrated, and digested with proteinase K (Dako, Agilent Technologies,
Barcelona) at 378C for 30 min and then washed in phosphate buffer saline
(PBS) for 15 min. Then, sections were incubated with TUNEL reaction mixture,
containing TdT and fluorescein-dUTP, at 378C for 1 h in the dark. Slides were
washed in PBS, mounted with Fluoromount Aqueous Mounting Medium
(Sigma-Aldrich), and viewed with a fluorescent microscope (Nikon Eclipse
Ti, Nikon Corp., Tokyo, Japan) using an excitation wavelength of 450–500 nm.
To identify and count TUNEL-positive cells, 10 to 15 lung fields were captured
and examined with a magnifying power of �100 (ImageJ 1.40 g, Wayne
Rasband).

Plasma and lung protein immunoassays

We measured interleukin (IL) IL-1b, IL-6, and IL-10; tumor necrosis factor
(TNF)a; and monocyte chemoattractant protein (MCP)-1 levels in plasma and
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lung tissue homogenates with a rat multiplex immunoassay kit (RCYTO-80K
MILLIPLEX MAP Rat Cytokine/Chemokine Panel, Millipore Corp., Billerica,
MA) using high-throughput multiplex Luminex technology (Luminex 200
System, Luminex, Austin, TX). Analyses of all samples, standards, and controls
were run in duplicate.

Brain immunohistochemistry

To investigate the functional location of neural activity induced by PEEP, we
examined brain c-Fos expression. C-Fos Protein is the product of the immediate
early gene c-fos, and it has been widely used as a marker of neuronal activity. Its
basal expression is low but increases quickly induced by a variety of stimuli. At
the end of the experiments, rats’ brains were removed and immediately frozen
and stored at �808C. Later, the brains were cut into 20-mm coronal sections
(Cryostat CM1900, Leica Microsystems, Barcelona, Spain) and stored at
�808C. Some sections were stained with cresyl violet to identify the regions
of interest, and additional sections were processed for immunohistochemistry to
assess c-Fos expression in different areas (8): the paraventricular nucleus of the
hypothalamus (PVN), nucleus tractus solitarius (NTS), supraoptic nucleus
(SON), central amygdala (CeA), retrosplenial cortex (RS), and thalamus. After
immunostaining, activated areas were identified by light microscopy (DM250,
Leica, Wetzlar, Germany) with the aid of a stereotaxic atlas. Brain sections were
digitized; the c-Fos-positive cells were evaluated according to the staining
intensity of cells, and then semiquantified using Image J software (ImageJ
1.40 g, Wayne Rasband) (8). An optimal threshold was set for all sections to
minimize any background signal.

Statistical analysis

Statistical analysis was performed with SPSS software (version 21; SPSS
Inc, Chicago, IL) under the supervision of an expert statistician. Results are
reported as mean� standard error of the mean (SEM). All data were tested for
homogeneity of variance (Levene’s test). Statistical analysis was performed
with one-way analysis of variance (17) followed by post-hoc Dunnett t-test for
comparisons between MV groups and the basal group (nonventilated animals).
Differences between the two levels of PEEP were assessed by Student t tests
separately for each saline or LPS instillation groups. MAP was compared by
one-way ANOVA for repeated measures. Level of significance was set at
P< 0.05 and P< 0.1 was considered to be a trend, because approaching,
although not reaching, the significant level.

RESULTS

Physiological parameters

MAP was similar in all groups. In animals ventilated with

7 cmH2O PEEP (PEEP-7), respiratory system compliance

decreased (Fig. 1) (P¼ 0.008 in SAL; P¼ 0.0042 in LPS).

Animals ventilated with PEEP-7 had lower pH (P¼ 0.049 in

SAL; P¼ 0.0001 in LPS) and higher PaCO2 (P¼ 0.01 in LPS)

than those ventilated with 2 cmH2O PEEP (PEEP-2), and LPS-

instilled animals receiving PEEP-7 had lower PaO2/FiO2 than

LPS-instilled animals receiving PEEP-2 (P¼ 0.002).

Inflammatory response

In basal rats, TNFa, IL-1b, MCP-1, and IL-10 plasma levels

were low. By contrast, all rats undergoing tracheal instillation

and MV presented a global inflammatory response. Moreover,

the administration of LPS increased MCP-1 levels in plasma

(P¼ 0.008 in PEEP-2). In LPS-instilled animals, TNFa

(P¼ 0.048), IL-1b (P¼ 0.08), IL-6 (P¼ 0.09), MCP-1

(P¼ 0.038), and IL-10 (P¼ 0.09) levels were higher in

PEEP-2 than in PEEP-7 (Fig. 2). In saline-instilled animals,

IL-6 (P¼ 0.03) and IL-10 (P¼ 0.09) plasma levels were higher

in PEEP-2 than in PEEP-7.

Similar effects were observed in lung tissue homogenates

(Fig. 3). TNFa, IL-1b, IL-6, and MCP-1 levels were low in lung

tissue homogenates of basal rats. Intratracheal instillation of

LPS increased MCP-1 (P¼ 0.024) and TNFa (P¼ 0.095)

levels in lungs. In LPS-instilled animals, PEEP-7 reduced
TNFa (P¼ 0.09), IL-1b (P¼ 0.095), MCP-1 (P¼ 0.038),

and IL-10 (P¼ 0.06) levels. In saline-instilled animals,

PEEP-7 reduced IL-10 (P¼ 0.007).

Lung neutrophil infiltration and apoptosis

Low levels of neutrophils and apoptotic cells were found in

the lungs of basal animals. Neutrophil infiltration was higher in

LPS-instilled than in saline-instilled animals (P¼ 0.021)

(Fig. 4), but PEEP-7 significantly reduced the number of infil-

trated neutrophils in the lung (P¼ 0.002). All instilled-MV rats

had TUNEL-positive cells in lung sections. In LPS-instilled rats,

there were no differences between the two levels of PEEP; by

contrast, in saline-instilled rats, there were fewer TUNEL-

positive cells in PEEP-7 than in PEEP-2 (P¼ 0.092) (Fig. 4).

c-Fos immunopositive brain areas

We found no c-Fos-immunopositive cells in brains from

healthy, nonventilated animals (see Figures, Supplemental

Digital Content 1, at http://links.lww.com/SHK/A324). By con-

trast, all rats that underwent instillation and MV presented c-Fos

immunoreactivity in all areas studied (Figs. 5 and 6 and Figures,

Supplemental Digital Content 1, at http://links.lww.com/SHK/

A324). Neuronal activation was higher in LPS-instilled rats than

in saline-instilled rats in CeA (P¼ 0.048) and NTS (P¼ 0.0001).

PEEP level had no effect on neuronal activation in these areas in

LPS-instilled rats. In saline-instilled rats, however, neuronal

activation in the CeA (P¼ 0.09) and NTS (P¼ 0.01) was higher

in animals receiving PEEP-7 than in those receiving PEEP-2. In

the PVN, no differences in neuronal activation were found

between groups. LPS-7 rats had more c-Fos-immunopositive

cells than LPS-2 rats in the RS (P¼ 0.012), SON (P¼ 0.049),

and thalamus (P¼ 0.049), but there were no differences between

SAL-7 and SAL-2 rats (Figs. 5 and 6). No differences between

brain hemispheres were found. Supplemental Digital Content 1,

at http://links.lww.com/SHK/A324, contains representative

images of c-Fos-immunopositive cells in the different areas of

the brain explored.
DISCUSSION

The major finding of our study is that applying moderate

PEEP immediately after intratracheal LPS instillation

prevented lung inflammation and the dissemination of inflam-

matory mediators. Our results also demonstrate that the pattern

of neuronal activation that can be modified by intratraqueal

instillation of LPS might also be modulated by PEEP.

Intratracheal LPS instillation has been widely used to mimic

contamination of the endotracheal tube and upper airways and the

inflammatory response secondary to local infection in animal

models of ALI/ARDS (19). In the present study, intratracheal

LPS instillation contributed to local inflammation and neutrophil

recruitment in the lungs of animals undergoing MV with low PEEP.

Regarding the use of higher levels of PEEP to protect from

the adverse effects of LPS instillation, a recent experimental

study demonstrated that higher PEEP decreased ventilation

heterogeneities in the first 2 h following bronchoaspiration

(20). In the present study, we found PEEP-7 was beneficial in

preventing the inflammatory response secondary to LPS

http://links.lww.com/SHK/A324
http://links.lww.com/SHK/A324
http://links.lww.com/SHK/A324
http://links.lww.com/SHK/A324


FIG. 1. Course of mean arterial pressure (MAP) and respiratory characteristics after mechanical ventilation. MAP was similar in all experimental
groups. Plateau pressure after 3 h of mechanical ventilation was higher in animals receiving 7 cmH2O PEEP (PEEP-7). Respiratory system compliance (Crs), pH,
and PaO2/FiO2 were lower and PaCO2 was higher in PEEP-7 than in those receiving 2 cmH2O PEEP (PEEP-2). Bars represent means�SEM. **P<0.05 PEEP-7
vs. PEEP-2.
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administration, despite a certain degree of lung overdistension

in these rats. PEEP-7 decreased static lung compliance, prob-

ably by increasing alveolar dead space (21,22). PEEP-7 may

have expanded aerated airspaces, inducing overinflation, prob-

ably because of the low potential of recruitment in these lungs.

The height of the rat thorax is around 2 cm (compared with 8 cm

in humans), so PEEP-7 level would correspond to 26–

28 cmH2O in humans, which is excessive (23). This could

favor ventilation/perfusion mismatch and might contribute to

the hypercapnia and respiratory acidosis observed in both

saline- and LPS-instilled rats receiving PEEP-7. PEEP

decreased both the local inflammatory and systemic inflam-

matory responses to LPS; we hypothesize that this trend to

decrease resulted from PEEP’s effect of reducing strain and

shear stresses during the repeated opening and closing of lung

units (15,24). Several authors have also reported that

pulmonary cells respond differently to different insults (25).

Hypercapnic acidosis modulates inflammation in VILI (26)

but not in lung injury caused by bacterial pneumonia (27). In

view of our results, we cannot rule out a protective contri-

bution from hypercapnic acidosis in our model. We postulate

that in the rats receiving LPS instillation and MV PEEP-7

prevented both local and systemic inflammatory responses

induced by LPS, even when these PEEP levels promoted over-

distension.

Intratracheal LPS also induced a CNS response evidenced by

c-Fos immunoreactivity in the CeA and NTS, corroborating

organ cross-talk in the proinflammatory response. The CeA is

involved in processing autonomic information and receives

sensory inputs and inputs from the NTS, which is itself a

primary detector of cytokines (28). Vagal afferent neurons

can be activated by peripheral LPS, so vagal innervation could
explain how intratracheal LPS could cause neuronal activation

before a systemic response develops (29). In fact, in a recent

study we showed that after stimulation with LPS, pulmonary

epithelial cells release different mediators that significantly

affect brain cells in culture (30).

Furthermore, the results of the present study corroborate our

previous finding that MV in itself promotes c-Fos immunor-

eactivity in several areas of the brain (8). Beyond this finding,

our results show that PEEP can contribute to the differential

regional regulation of neuronal activity that accompanies the

pulmonary and systemic inflammatory cascades. Although

PEEP may affect the cerebral circulation by hemodynamic

(31) and CO2-mediated mechanisms (21), in our study, similar

levels of hypercapnia in PEEP-7 animals resulted in different

activation patterns in the brain depending on whether they

received LPS or saline. Even in the absence of LPS instillation,

PEEP-7 resulted in increased neuronal activation in the NTS

and CeA. We also observed neuronal activation in PVN and

CeA independent of inflammatory mediators in the LPS-7

group. PEEP-7 immediately after tracheal LPS instillation

prevents the proinflammatory cascade. We speculate that PEEP

results in neuronal activation before a systemic response is

manifest, and this neuronal activation is achieved through

neural pathways. The NTS controls the response to baroreflex

stimuli (29), so information about lung stretching could reach

the NTS in the brain stem via the vagus nerve (32).

The vagal pathway plays a crucial role in lung–brain com-

munication by activating the cholinergic anti-inflammatory

reflex, which attenuates VILI (16,32). The sensory nerves

respond to mechanical forces and to tissue damage by inhibit-

ing the local activation of macrophages, enabling targeted

control of the damage focused only on maintaining local



FIG. 2. Plasma levels of cytokines. After 3 h of mechanical ventilation, plasma levels of inflammatory cytokines were higher than in basal (BAS)
nonventilated animals (# P<0.1 and ## P<0.05 compared with BAS). LPS-instilled rats had higher MCP-1 levels than saline-instilled rats (†† P<0.05). LPS-
instilled rats receiving 7 cmH2O PEEP (LPS-7) presented lower levels of inflammatory mediators than those receiving 2 cmH2O PEEP (LPS-2). The application of
7 cmH2O PEEP (PEEP-7) reduced IL-10 levels in both saline-instilled and LPS-instilled animals. The application of PEEP-7 also reduced IL-6 levels in saline-
instilled rats. Bars represent means�SEM. * P<0.1 and ** P<0.05 comparing PEEP-7 vs. 2 cmH2O PEEP.
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tissue integrity without compromising the global immune

response.

Various studies indicate that brain regions (hippocampal

nuclei, SON, and PVN) respond to acute stress by increasing

immunoreactivity to c-Fos (33,34). In the present study, RS,

SON, and thalamus immunoreactivity to c-Fos was clearly

higher in LPS-instilled rats receiving PEEP-7 than in LPS-

instilled rats receiving PEEP-2 or in saline-instilled rats

receiving either PEEP level. Thus, it seems that moderate

PEEP could contribute to modulating not only the inflam-

matory response but also neuronal activation in these discrete

areas. Interestingly, in our previous study (8), we also

observed increased immunoreactivity to c-Fos in the RS

and thalamus in rats receiving high Vt without PEEP and

in spontaneously breathing rats. Our present data cannot

determine whether neuronal activation in RS, SON, and

thalamus is definitely linked with the modulation of inflam-

mation observed in LPS-7 animals, and future studies should

clarify this point.

Limitations of the study

Caution is warranted in extrapolating the results obtained

with experimental animal models into the clinical setting.

Nevertheless, intratracheal LPS instillation is a widely

accepted model to mimic tracheal contamination. Moreover,

although the 3-h experimental period is short, it is sufficient

to examine the early effects of our ventilatory strategies

(8,18). Animals receiving 7 cmH2O PEEP presented hyper-

capnia, probably associated with lung overdistension. The

brain is sensitive to CO2 (35) and we cannot rule out some
overlooked effects in this regard. This study provides infor-

mation about which areas in the brain participate in the

response to LPS and PEEP, but it does not explore the

mechanisms involved in lung-to-brain communication. The

use of vagotomized or haloperidol-treated animals could

address the role of vagal signaling in the response to PEEP

in future studies (16,32).

Clinical relevance

Cytokine release has negative effects on emotional and

memory functions and can compromise outcomes in critically

ill patients (36). Despite the recovery of lung function,

survivors of critical disease often fail to recover their previous

functional status and have cognitive impairment, memory

deficits, or emotional disturbances (9,36). Brain–lung cross-

talk during MV is a novel but growing area of research

(7,8,16,32,37,38). We can only speculate about how changes

in c-fos expression in different areas of the brain could modify

susceptibility to long-term neurocognitive disorders. In this

regard, the thalamus is involved in processing nociceptive

signals and contributes to spatial memory and adaptation to

stress (39). The RS is vital for memory, and RS hypoactivity has

been reported in the early stages of Alzheimer’s disease

(39,40). Both the thalamus and RS are functionally connected

with the hippocampus (40), which is involved in forming,

organizing, and storing memories and also in connecting

emotions and senses to memories.

Characterizing the mechanisms underlying these CNS alter-

ations could help improve strategies to prevent cognitive

impairment. Management strategies that contribute to reducing



FIG. 3. Lung levels of cytokines. After 3 h of mechanical ventilation, lung levels of cytokines were higher than in basal (BAS) non-ventilated animals
(# P<0.1 and ## P<0.05 compared with BAS). LPS-instilled rats had higher MCP-1 and TNFa levels than saline-instilled rats († P<0.1 and †† P<0.05). LPS-
instilled rats receiving 7 cmH2O PEEP (LPS-7) presented lower levels of TNFa, IL-1b, MCP-1, and IL-10 than those receiving 2 cmH2O PEEP (LPS-2). The
application of 7 cmH2O PEEP reduced IL-10 levels in both saline-instilled and LPS-instilled animals. Bars represent means�SEM. * P<0.1 and ** P<0.05
comparing 7 cmH2O PEEP vs. 2 cmH2O PEEP.
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inflammation might somehow help prevent cognitive impair-

ment in intensive care survivors.

CONCLUSIONS
In our experimental model, applying moderate PEEP

immediately after intratracheal LPS instillation showed a
FIG. 4. Neutrophilic infiltration and apoptotic cell counts in lung. Mechanic
compared with BAS group). LPS-instilled rats had higher lung neutrophil infiltra
apoptosis rates. LPS-instilled rats receiving 7 cmH2O PEEP presented lower
means�SEM. * P<0.1 and ** P<0.05 comparing 7 cmH2O PEEP vs. 2 cmH2O
tendency to prevent lung inflammation, neutrophil recruitment,

and the dissemination of inflammatory mediators. Moreover,

PEEP modified the neuronal activation pattern in particular

areas of the brain, such as the RS, SON, and thalamus.

Although neuronal activation in some specific areas might also

be explained by the inflammatory response, PEEP might help
al ventilation promotes lung neutrophilic infiltration and apoptosis (## P<0.05
tion than saline-instilled rats (†† P<0.05), but there were no differences in
levels of neutrophils than those receiving cmH2O PEEP. Bars represent
PEEP.



FIG. 5. Quantification of c-Fos immunopositive cells per field in
different areas of the brain. No immunopositive cells were found in non-
ventilated rats. LPS-instilled rats had more immunopositive cells in the CeA
and NTS than saline-instilled rats (†† P<0.05). Saline-instilled rats receiving
7 cmH2O PEEP had more immunopositive cells in the CeA and NTS than
saline-instilled rats receiving 2 cmH2O PEEP(* P<0.1 and ** P <0.05).
No differences between groups were found in the PVN. Bars represent
means�SEM.

FIG. 6. Quantification of c-Fos-immunopositive cells per field in
different areas of the brain. No immunopositive cells were found in non-
ventilated BAS rats. The administration of LPS did not modify the number of
immunopositive cells in the thalamus, RS, or SON. LPS-instilled rats receiving
7 cmH2O PEEP had more immunopositive cells in the thalamus, RS, and
SON than those receiving 2 cmH2O PEEP (** P<0.05). Bars represent
means�SEM.
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prevent inflammation by protecting against injury from

repeated opening and closing of alveoli.

Cognitive impairment after discharge from intensive care is

undoubtedly multifactorial. Our findings show that MV and

PEEP level could modulate neuronal activity in some areas in

the brain that are related to memory impairment and responses

to stress. Further studies are necessary to understand the
complex lung-brain interactions in mechanically ventilated

patients and to prevent neurocognitive impairment in these

patients.

Key messages

PEEP modulates inflammation and the pattern of neuronal

activation in the brain.
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Lung-brain cross-talk in critically ill patients receiving

mechanical ventilation is clinically relevant and deserves

special attention in the intensive care unit.
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