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Abstract

Chromatin profiling provides a versatile means to investigate functional genomic elements and 

their regulation. However, current methods yield ensemble profiles that are insensitive to cell-to-

cell variation. Here we combine microfluidics, DNA barcoding and sequencing to collect 

chromatin data at single-cell resolution. We demonstrate the utility of the technology by assaying 

thousands of individual cells, and using the data to deconvolute a mixture of ES cells, fibroblasts 

and hematopoietic progenitors into high-quality chromatin state maps for each cell type. The data 

from each single cell is sparse, comprising on the order of 1000 unique reads. However, by 

assaying thousands of ES cells, we identify a spectrum of sub-populations defined by differences 

in chromatin signatures of pluripotency and differentiation priming. We corroborate these findings 

by comparison to orthogonal single-cell gene expression data. Our method for single-cell analysis 

reveals aspects of epigenetic heterogeneity not captured by transcriptional analysis alone.
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Introduction

The diversity of cells and tissues in an organism depends on chromatin organization, which 

controls access to genes and regulatory elements1. Regulatory proteins that catalyze post-

translational histone modifications, remodel nucleosomes or otherwise alter chromatin 

structure are implicated in a wide range of developmental programs, and are frequently 

mutated in cancer and other diseases2. Chromatin immunoprecipitation followed by 

sequencing (ChIP-seq) is a widely used method for mapping histone modifications, 

transcription factors and other protein-DNA interactions genome-wide. Complementary 

methods have also been established for mapping accessible DNA, chromosomal loops, and 

higher-order structures and interactions. The various data types can be integrated into 

genome-wide maps that provide systematic insight into the locations and cell type-

specificities of promoters, enhancers, non-coding RNAs, epigenetic repressors and other 

fundamental features of genome organization and regulation1, 3, 4.

A limitation of chromatin mapping technologies is that they require large amounts of input 

material and yield ‘averaged’ profiles that are insensitive to cellular heterogeneity. This is a 

major shortcoming given that cell-to-cell variability is inherent to most tissues and cell 

populations. Cellular heterogeneity may be evident histologically, functionally (e.g., in self-

renewal assays), or in gene expression measurements, which have revealed striking 

heterogeneity within apparently homogeneous samples5-7. However, despite some initial 

progress8-11, the extent and significance of chromatin-state heterogeneity remains largely 

uncharted.

Although single cell genomic technologies are evolving rapidly and challenging traditional 

views of biological systems6 enabling the study of genetic mutations and transcriptomes at 

single cell resolution, and revealing marked heterogeneity in tissues, cellular responses and 

tumors5, 12-15, single cell analysis of chromatin states has remained elusive so far.

In parallel, advances in microfluidics are impacting chemistry, biology and medical 

diagnostics16. Miniaturized lab-on-chip devices enable precise control of fluidics in 

increasingly sophisticated configurations. Drop-based microfluidics (DBM) is a further 

innovation in which micron sized aqueous drops immersed in an inert carrier oil are rapidly 

conducted through a microfluidics device17. The drops are ideal microreactors and can be 

precisely sized to contain one individual cell. Individual drops can be filled, steered, split, 

combined, detected and sorted in microfluidics devices, and thousands of individual drops 

can be manipulated in less than a minute, using microliters of reagent18-20.

Here we combined microfluidics, DNA barcoding and next-generation sequencing to 

acquire low coverage maps of chromatin state in single cells. We applied the method to 

profile H3 lysine 4 trimethylation (H3K4me3) and dimethylation (H3K4me2) in mixed 

populations of mouse embryonic stem (ES) cells, embryonic fibroblasts (MEF) and 

hematopoietic progenitors (EML), and show that we can determine the identity of each 

individual cell and recapitulate high-quality chromatin profiles for each cell state in the 

mixture. Although the resulting single-cell data are sparce – capturing on the order of 1000 

marked promoters or enhancers per cell, the data are sufficient to identify distinct epigenetic 
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states and to characterize underlying patterns of variability. Within the ES cell population, 

we detect coherent variations at pluripotency enhancers and Polycomb targets, which appear 

to reflect a spectrum of differentiation priming, and delineate three sub-populations of cells 

along this spectrum.

Results

Microfluidics system indexes chromatin from single cells

A fundamental limitation of chromatin mapping technologies relates to the 

immunoprecipitation (ChIP) step in which an antibody to a modified histone or transcription 

factor is used to enrich target loci. Low levels of non-specific antibody binding pull down 

off-target sites, and lead to experimental noise. The issue is exacerbated in small input 

experiments, where the amount of on-target epitope may be exceedingly low. Although 

recent studies have used indexing and amplification procedures to reduce input requirements 

substantially21-23, achieving single cell resolution has remained unattainable.

We reasoned that this limitation might be overcome – at least in part – by labeling chromatin 

from single cells prior to immunoprecipitation. Indexed chromatin from multiple cells could 

then be combined, possibly in combination with carrier chromatin24, prior to 

immunoprecipitation, thus avoiding the non-specific noise associated with low input 

samples. We therefore sought to develop a microfluidics system capable of processing single 

cells to indexed chromatin fragments (Fig. 1, Supplementary Fig. 1, Supplementary Table 1, 

Supplementary Table 2 and https://pubs.broadinstitute.org/drop-chip).

We developed a DBM device that captures and processes single cells in ∼50 micron-sized 

aqueous drops (Fig. 1A and Fig. 2). As an initial step, we engineered a co-flow drop maker 

module in which a suspension of dissociated ES cells is mixed with solution containing 

weak detergent and micrococcal nuclease (MNase), milliseconds prior to encapsulation of 

individual cells in drops (Fig. 2A and Supplementary Movie 1). We confirmed visually that 

a vast majority of the aqueous drops produced by the module contain either one or zero 

cells, and confirmed effective cell lysis by fluorescent staining. Under our optimized 

conditions, MNase preferentially cut accessible linker DNA and efficiently digested the 

chromatin of single cells within drops (Fig. 3). The resulting mix of mono-, di- and tri-

nucleosomes is retained in the same drop as the original cell.

In parallel, we engineered a barcode library consisting of a pool of drops, wherein each drop 

contains a distinct oligonucleotide adaptor. We designed 1152 oligonucleotide adaptors that 

each contains a unique ‘barcode’ sequence, an Illumina-compatible adaptor and restriction 

sites for selecting ‘desired’ products (Fig. 3A). We then engineered a parallel drop-maker 

that extracts the oligonucleotides from individual wells in 384-well plates across a pressure 

gradient into drops, such that each drop contains multiple copies of the same barcode 

(Supplementary Fig. 2). The barcode-containing drops are then combined into a single 

emulsion (Supplementary Fig. 2).

We used a 3-point merging device to merge each nucleosome-containing drop with a single 

barcode-containing drop (Fig. 2B). We re-injected a stream of nucleosome-containing drops 
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into one inlet, a stream of barcode-containing drops into a second inlet, and an enzymatic 

buffer with DNA ligase into a third inlet. The barcode drops (smaller) and the nucleosome 

drops (larger) pair asymmetrically due to hydrodynamic forces, and an electric field triggers 

fusion between one barcode drop, one nucleosome drop and a small aliquot of the enzymatic 

solution. Barcoded adaptors are ligated to both ends of the nucleosomal DNA fragments, 

thus indexing the chromatin contents of each drop to their originating cell (Fig. 2B and 

Supplementary Movie 2).

Although the microfluidics system is designed to yield fusions between one drop containing 

nucleosomal contents of one single cell and one drop containing a unique barcode, alternate 

scenarios are possible and must be minimized. First, to mitigate the possibility that one drop 

might contain more than one cell, we titrated the cell density of the initial suspension such 

that only 1 in 6 drops contain a cell. The remaining empty drops fuse with barcode but their 

inert contents do not contribute to the eventual sequencing library (Fig. 2C). Second, we 

tuned the system such that each nucleosome-containing drop fuses with either one or two 

barcodes (Fig. 2D), with the understanding that these alternative scenarios can be decoded at 

the analysis stage (see also Methods). Third, we limit each collection to 100 cells paired 

with barcodes randomly drawn from a library of 1152 barcodes, ensuring that >95% of 

barcodes will be unique to a single cell (per Poisson statistics). This conservative approach 

has little impact on throughput as we multiplex thousands of single cells by collecting 

multiple samples in parallel and adding a second ‘sample’ index prior to sequencing.

Chromatin immunoprecipitation and sequencing

The chromatin fragments generated by the microfluidics platform contain barcode adaptors 

that index them to originating cells and provide a handle for PCR. We combine indexed 

chromatin from 100 cells with carrier chromatin from a different organism, perform ChIP, 

and use the enriched DNA to prepare a sequencing library. The barcode adaptors comprise 

symmetric sequences, such that both ends are available for ligation to nucleosome ends (Fig. 

3A). Each end contains the same 8 bp barcode (1 out of 1152 possible sequences) flanked by 

a universal primer and restriction sites. Adaptor concatemers produced due the large excess 

of adaptors in the drops (∼109 copies vs ∼107 nucleosomal fragments) are eliminated by 

restriction prior to amplification (Fig. 3B). Symmetrically labeled nucleosomal fragments 

are amplified by PCR and a second restriction yields an overhang compatible with standard 

Illumina library preparation. At this stage, we introduce a second ‘sample’ barcode, enabling 

us to multiplex thousands of cells in a single sequencing run.

We paired-end sequence these ‘Drop-ChIP’ samples, reading the ‘sample’ indexing barcode, 

the ‘single cell’ indexing barcode and the intervening genomic DNA. We used Hiseq 2500 

(Illumina, USA) for sequencing, with each lane producing on average 320 million reads with 

high accuracy (88% of reads >= Q30 (PF)). The typical yield per pool of 100 cells is 7 

million aligned reads, of which ∼700,000 are unique (Supplementary Table 3A). We 

performed a series of quality controls to ensure homogeneous distribution of barcodes 

within and across experiments (Fig. 3D), to ensure the stability of the barcode library (Fig. 

3E) and to ensure that barcodes were not mixing or exchanging between drops (Fig. 3F). We 

then filtered the sequencing data to only include reads that contain symmetric barcodes on 
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both sides of the nucleosomal insert (Fig. 3C, see also Methods), and to exclude highly over-

represented barcodes that may have labeled two or more cells (Fig. 2D). After filtering, we 

retain between 500 and 10,000 Drop-ChIP reads per single cell (Supplementary Table 3B).

Single-cell profiles de-convolve cell type-specific landscapes

We benchmarked Drop-ChIP in a series of biological settings. We initially focused on three 

different mouse cell populations: ES cells, MEFs and the hematopoietic line EML. We 

separately applied suspensions of each cell type to the microfluidic device and labeled 

individual cells from each population with a different set of barcodes. We then combined 

labeled chromatin from the three cell types, performed ChIP with H3K4me3 antibody and 

sequenced the resulting library. We acquired a total 1.1M uniquely aligned sequencing 

reads. These reads were distributed on the basis of their barcodes into 868 bins, each 

corresponding to a single cell.

Visual inspection of single-cell data for 50 individual ES cells and 50 individual MEFs 

reveals the high quality of the resulting data (Fig. 4A and Methods). Reads from single cells 

have a strong tendency to coincide with peaks evident in bulk ChIP-seq profiles for the 

corresponding cell types. The specificity is sufficient that single-cell profiles for ES cells are 

readily distinguished from single cell MEF profiles by examination of differentially marked 

regions (e.g., Anxa1 for MEFs; Oct4 and Sox2 for ES cells). Considering all single cells in 

the H3K4me3 dataset, more than 50% of sequencing reads fall within known positive 

regions, defined from bulk ChIP-seq data (Fig. 4B). This proportion is essentially identical 

to the proportion of reads in bulk ChIP-seq datasets that fall within enriched intervals. The 

sensitivity of the single-cell profiles is compromised by the low per cell sequencing 

coverage. Only ∼800 peaks are detected per cell, which corresponds to an overall sensitivity 

for peak detection of ∼5% (Fig. 4B). The overall accuracy of the single-cell data is 

nonetheless supported by the very strong concordance of aggregated data to conventional 

ChIP-seq measurements (Supplementary Fig. 3).

Although the single-cell profiles lack sensitivity for de novo peak calling, we reasoned that 

detection of ∼800 true peaks with high specificity might be sufficient to classify or group 

individual cells with related chromatin landscapes. Indeed, we found that detection of just a 

few hundred peaks is sufficient to distinguish single-cell MEF profiles from single-cell ES 

cell profiles with nearly 100% accuracy. For example, single-cell profiles are readily and 

accurately identified as ES cell or MEF by comparison against conventional ChIP-seq maps 

(Fig. 4C). Moreover, we could apply an unsupervised-clustering approach to distinguish the 

respective cell states without any prior information about their landscapes. Representing 

each single cell profile as the number of reads in non-overlapping 5kb windows spanning 

the genome, we calculated the covariance between all pairs of cells. We then used a divisive 

hierarchical clustering algorithm to cluster the cells based on pairwise distances (DIANA, 

see Methods). This unbiased analysis distinguished three main groups of cells, which are 

clearly evident in a cluster tree (Fig. 4D). Since each cell type had been labeled with a 

distinct barcode set in this pilot, we were able to evaluate the accuracy of the clustering. We 

found that >97% of cells in the first cluster were EML cells, >91% of cells in the second 

cluster were ES cells and >97% of cells in the third cluster were MEFs. Moreover, when we 
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aggregated reads from single-cells in each cluster, the resulting profiles closely matched 

conventional ChIP-seq data for EML cells, ES cells and MEFs, respectively (Supplementary 

Fig. 4). We note that high-quality single-cell level information was absolutely critical for de-

convolving these populations: when we compromised in silico the resolution of our single 

cell profiles by randomly combining sets of 5 cells, we were no longer able to distinguish ES 

cells from MEFs, or deconvolute profiles for the cell types in the mixed population 

(Supplementary Fig. 5).

Finally, we performed an additional Drop-ChIP experiment in which we mixed ES cells and 

MEFs prior to application to the microfluidics device. The DIANA algorithm again 

effectively resolved single cells of each type based solely on their chromatin profiles, 

enabling us to produce aggregate profiles for ES cells and MEFs, which closely match 

conventional ChIP-seq data (Supplementary Fig. 6).

Epigenetic states distinguished in a population of ES cells

Transcriptional activity varies between individual cells, even within apparently 

homogeneous cell types or tissues. Yet how this transcriptional heterogeneity relates to cell-

to-cell variability in the underlying gene regulatory elements remains an open question. We 

therefore examined H3K4me2, a marker of promoters and enhancers. H3K4me2 profiles 

have been used to survey regulatory element activity genome-wide in a range of cell and 

tissue types1, 4. However, the extent to which these landscapes vary across single cells in a 

population has yet to be determined.

We acquired H3K4me2 data for 4,643 ES cells, cultured in serum with LIF, and 762 MEFs 

(numbers reflect cells retained after quality controls; see Methods). The DIANA algorithm 

readily clustered these cells into two major groups. Aggregation of reads from cells in the 

larger group yielded a chromatin profile that closely matched a corresponding bulk 

H3K4me2 profile for ES cells, while aggregation of reads from the smaller group yielded a 

profile consistent with MEFs.

We next considered whether the single-cell clustering patterns might reveal additional sub-

structure among the ES cells, potentially reflecting sub-populations with distinct regulatory 

states. The existence of such sub-populations is supported by prior studies that examined 

gene reporters and transcriptional signatures at single-cell resolution25-29. However, when 

we used DIANA to cluster individual ES cells based on their H3K4me2 data, we found that 

the results were highly sensitive to algorithm parameters and technical attributes, such as 

mean single-cell coverage.

We therefore implemented an alternative approach based on the assumption that 

functionally-related genomic elements, which tend to vary coherently across cell types, also 

vary coherently across individual ES cells. We reasoned that our sensitivity to detect subsets 

of ES cells with distinct regulatory patterns would be increased by considering such element 

sets or ‘signatures’, which would have higher signal-to-noise ratio in our data than 

individual elements. This strategy is analogous to signature-based methods that have been 

successfully applied in the analysis of single-cell RNA-seq, DNA methylation and 

chromatin accessibility data10, 13, 28, and in the interpretation of cancer mutations30, 31. To 
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identify signature sets relevant to chromatin states, we collected 314 publically-available 

ChIP-seq profiles for histone modifications, transcription factors and chromatin regulators. 

We collated target (enriched) regions for each profile, and then clustered the profiles based 

on the overlaps between these target regions. We thereby identified 91 representative 

signatures, each composed of a set of genomic elements with shared chromatin states (e.g., 

H3K9me3 in ES cells, etc.), transcription factor binding (e.g., Oct4 targets, etc.), and/or 

chromatin regulator occupancy (e.g., p300 targets, etc.) (Supplementary Fig. 7 and 

Supplementary Table 4).

For each individual ES cell (or MEF), we calculated the number of reads overlapping each 

signature, thereby creating a matrix of 5,405 single cells by 91 signatures. Agglomerative 

hierarchical clustering of the signature matrix distinguished several prominent groups of 

cells with correlated chromatin landscapes (Fig. 5A and Supplementary Table 5; see 

Methods). The major division segregated all MEFs from ES cells, which were distributed 

across several clusters. To visualize the relationship between cells, we derived multi-

dimensional scaling (MDS) plots from the signature matrix (Fig. 5B). The MEFs show a 

relatively tight distribution, suggestive of more concordant H3K4me2 landscapes. By 

contrast, the individual ES cells cover a much larger region within the MDS plot, 

segregating into three loose groups (Fig. 5B). The tighter distribution among individual 

MEFs may relate to observations that such lineage-committed cells adopt a relatively 

constrained chromatin state. By contrast, ES cell chromatin is notable for its accessible and 

plastic state32.

Several lines of evidence support the robustness and validity of the signature-based 

clustering (Supplementary Note 1). First, the most prominent division accurately 

distinguishes ES cells from MEFs (98% of ES cells are correctly classified as ES cells; 95% 

of MEFs are correctly classified as MEFs). Second, the signature-based clusters are 

independent of read coverage (Supplementary Fig. 8A). Third, the signature-based clusters 

are robust to removal of subsets of single cells. When we repeatedly simulated the clustering 

after randomly removing 50% of the cells, only a fraction of cells at edge of clusters 

switched their assignments (Fig. 5C and Supplementary Fig. 8B). By contrast, when reads 

were randomly reassigned between cells, the correlation structure driving the clustering was 

lost (Supplementary Fig. 8C). We also tested our sensitivity to detect small sub-populations 

by removing cells from one of the clusters in silico. We found that sensitivity depends on the 

frequency of the sub-population and the total number of sampled cells, such that detection of 

rarer subsets requires analysis of larger numbers of cells (e.g., detecting a sub-population 

present at 5% requires the analysis of 1000 cells in total; Supplementary Fig. 9).

To test the dependence of the clusters on the set of signatures used, we repeated the 

agglomerative hierarchical clustering using a) all 314 signatures without any filtration, or b) 

a distinct collection of signatures from a recently established resource of functional genomic 

datasets (E. Meshorer, personal communication). In both cases, we again distinguished a 

tight cluster of MEFs, and three groups of ES cells that closely correspond to the groups 

derived using the original 91 signatures (Supplementary Fig. 8D). Finally, to exclude the 

possibility that the ES cell clusters reflect different cell cycle signatures, we tested but found 

no evidence for differential activity of cell cycle-related genes (Supplementary Fig. 8E).
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Coherent variations at pluripotency elements and bivalent promoters

We considered the biological significance of the three ES cell sub-populations defined from 

the single cell data, which we termed ES1, ES2 and ES3. First, we examined the distribution 

of signature scores across these sub-populations. We observed notable differences in the 

H3K4me2 signal distributions over pluripotency-related signatures, such as Oct4 or Sox2 

targets33. Cells in the ES1 group tend to have the highest signal over pluripotency 

signatures, ES2 cells tend to have intermediate signals, and ES3 cells tend to have the lowest 

signals over these elements (Fig. 6A). These differences in target element activity may relate 

to the heterogeneous expression of pluripotency factors, previously documented in ES cell 

populations27, 29. We observed the opposite pattern for a signature composed of targets of 

FoxA2, with progressively higher signals in ES2 and ES3. FoxA2 is an endodermal 

transcription factor whose regulatory targets are dynamically activated during early ES cell 

differentiation34. Although FoxA2 expression is rarely evident in undifferentiated ES cells, 

this signature may reflect a degree of lineage-priming associated with very low expression 

of factors involved in early specification.

The respective sub-populations also vary in terms of their signal distributions over 

Polycomb and CoREST targets. Polycomb targets correspond to bivalent domains, which 

are inactive but poised in pluripotent cells35, 36. CoREST is a potent repressor that silences 

neural-related genes in ES cells. H3K4me2 signals over Polycomb and CoREST signatures 

are lowest in ES1, consistent with a pure pluripotent state, but progressively increase in the 

ES2 and ES3 populations (Fig. 6A). In fact, the Polycomb signatures correlate inversely 

with pluripotency signatures across all single ES cells in the dataset (Fig. 6B). Thus, the 

latter populations show reduced chromatin activity at pluripotency targets and increased 

activity at sites that are normally inactive in pluripotent cells.

We also generated aggregate H3K4me2 profiles for the ES1, ES2 and ES3 sub-populations 

by combining reads from the cells in each cluster (see Methods). Comparison of these 

profiles confirmed differences over elements in the various signatures, most notably 

pluripotency and Polycomb targets. We also observed global differences between the 

landscapes. H3K4me2 peaks in the ES3 profile are present in fewer numbers and are 

narrower than in ES1 and ES2 (Fig. 5D, E). In addition to their global accessibility32, 

pluripotent cells have relatively larger numbers of elements marked by distal chromatin 

signatures37. The reduced H3K4me2 peaks in ES3 may thus be an additional reflection of a 

primed chromatin state. Alternatively or in addition, the changes in ES3 may reflect a 

spectrum of sub-threshold priming events associated within alternative early fates; such a 

scenario might explain the relatively higher variance of the ES3 single cell profiles (Fig. 

5B). Together, our findings suggest that the respective sub-populations reflect a continuum 

of ES cell states with varying degrees of pluripotency- or priming-related chromatin 

features.

Prior studies have documented variability in pluripotency factor expression and DNA 

methylation levels across individual ES cells, which may in part reflect naïve and primed 

sub-populations27, 38, 39. Our findings suggest that this cell-to-cell variability is 

accompanied by widespread alterations at pluripotency-associated regulatory elements, 

lineage-specific genes and Polycomb targets. Yet lineage-specific genes and Polycomb 
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targets show scarce expression in ES cells27, 40, suggesting that the chromatin alterations 

may occur with relative independence from downstream transcriptional changes. However, a 

recently published single-cell RNA sequencing study for ES cells41 reported that the 

expression of pluripotency genes and Polycomb targets is variable across individual ES cells 

– a conclusion that directly parallels our findings. Indeed, when we directly analyzed the 

single-cell RNA data, we found that the composite expression of pluripotency-related genes 

anti-correlates with the composite expression of Polycomb-target genes across single cells, 

again consistent with our chromatin findings (Fig. 6C, D). Furthermore, clustering of the 

single cell RNA profiles, based on these signature gene sets, distinguished two ES cell sub-

populations with features of ES1 and ES3, respectively (Supplementary Fig. 10 and 

Supplementary Note 2). This concordance between single-cell chromatin and RNA profiling 

supports our technological approach and biological findings.

Discussion

Access to genomic information is controlled by cell type-specific chromatin structures. 

Chromatin maps provide a systematic means to identify regulatory sequences and track their 

activity across cellular states1. However, current methods yield averaged ‘ensemble’ profiles 

that are insensitive to internal heterogeneity. This is a major limitation given that cellular 

heterogeneity is inherent to most if not all tissues, cell types and models.

Here we sought to overcome this limitation by combining drop-based microfluidics with 

genomic barcoding to establish a platform for profiling chromatin at single-cell resolution. 

Although our method was able to detect cell-cell variations, this first attempt has limitations 

that will need to be addressed through further innovations. The coverage per cell will need 

to be increased by improved ligation efficiency, more efficient amplification and/or 

alternative barcoding methods. It may also be valuable to replace MNase digestion with 

other fragmentation strategies, thus expanding applicability beyond chromatin marks. 

Similarly, the use of barcoded beads could substantially increase the number of cells per 

sample and improve the efficiency of our method18, 19.

The single-cell chromatin data are sparse, with only about a thousand peaks detected in each 

individual cell due to low coverage. Nonetheless, specificity is high with ∼50% of reads 

aligning to known positive sites. The accuracy and information content can be appreciated 

through visualization of the single-cell tracks (Fig. 4A), and by comparing aggregate data 

for as few as 50 cells to conventional profiles. Regardless, the primary goal of our single-

cell study is to find patterns of cell-to-cell variation across a population, rather than to 

examine an individual given cell. Several lines of evidence establish the capacity of our 

assay to acquire such information. First, the data from each single-cell contains ample 

information to decipher its cell identity based on comparisons to known landscapes. 

Moreover, an unbiased clustering procedure applied to Drop-ChIP data generated for a 

mixed population of cells could effectively distinguish the ‘cell type’ of each single-cell 

profile with nearly 100% accuracy. Finally, aggregate profiles derived for each unbiased 

cluster closely matched conventional profiles for the respective substituents of the mixed 

population. Although this approach has been successful, we note that its success relies on 

the existence of a coherent chromatin state in a sufficient number of sampled cells. Power to 
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distinguish such sub-populations thus benefits from sampling large numbers of cells, and 

from the high-throughput of microfluidics systems.

We used the method to investigate cell-to-cell variability of different types of regulatory 

elements. We profiled H3K4me2, a marker of promoters and enhancers, in thousands of 

individual ES cells. We then asked whether coherent variations in the single cell chromatin 

data might unveil sub-populations with distinct epigenetic states. To maximize our 

sensitivity to distinguish closely related cell states, we implemented a clustering procedure 

based on ‘signature’ sets of elements. In this way, we were able to delineate three sub-

populations (ES1, ES2 and ES3) whose identity is robust to permutations. The sub-

populations are distinguished by their signals over loci bound by pluripotency- or 

differentiation-associated transcription factors, or targeted by epigenetic repressors, 

including Ezh2, Ring1B and REST. Specifically, the ES1 population sustains high 

pluripotency factor activity and robust silencing over Polycomb and CoREST targets, and 

may thus be analogous to ‘naïve’ ES cells39. By contrast, the ES3 population exhibits signs 

of differentiation priming, including increased chromatin activity over enhancers implicated 

in early endodermal lineages, and subtle de-repression of Polycomb targets. This population 

also appears relatively heterogeneous, with lower concordance between individual cells 

potentially reflecting alternate priming states. Remarkably similar patterns of cell-to-cell 

variability are evident in single-cell RNA expression data generated for an analogous ES cell 

population41. Here again, pluripotency factors and Polycomb targets are seen to vary 

coherently across individual cells, with positive and negative correlations among gene and 

regulator sets showing striking parallels to their corresponding patterns of chromatin activity 

(Fig. 6B-D). We suggest that integration of single-cell chromatin and single-cell expression 

data may allow more precise coupling of regulatory elements with target genes and deeper 

understanding of their functional dynamics and relationships.

Online Methods

The procedures for Drop-ChIP are explained in Supplementary Figure 1 and in a dedicated 

web portal with an interactive flow chart (https://pubs.broadinstitute.org/drop-chip).

Buffers

Recipes for all buffers are described in Supplementary Table 1.

Reagents

For the inert carrier oil we use HFE-7500 (3M, USA) with 1% w/w of a block co-polymer 

surfactant of perfluorinated polyethers (PFPE) and polyethyleneglycol (PEG) (008-

FluoroSurfactant, Ran Biotechnologies, USA). To separate the emulsion we use a 

commercially available demulsifier (1H,1H,2H,2H-perfluoro-1-octanol, CAS # 647-42-7, 

Sigma-Aldrich, USA). Antibodies for Immuno Precipitation were purchased from Millipore 

(H3K4me3: 07-473, H3K4me2: 07-030, H3.3: 09-838).
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Microfluidic devices

We fabricate polydimethylsiloxane (PDMS) devices using photolithography and coat them 

with fluorophilic Aquapel (Rider, MA, USA) to prevent wetting of drops on the channel 

walls. Electrodes are fabricated on chip using low melting temperature solder42. The designs 

used to fabricate the devices are available in ACAD format (Supplementary File 1). We use 

OEM syringe pumps (KD Scientific, MA, USA) to drive the fluidics and a fast camera 

(HiSpec1, Fastec Imaging, USA) to image encapsulation and drop fusion.

Cell cultures

Mouse embryonic stem cells from a male mouse embryo (v6.5, NBP1-41162, Novus, USA) 

were cultured on mitotically inactivated mouse embryonic fibroblasts (MEFs, Globalstem, 

USA). ES cells were maintained in medium containing Knockout DMEM (Gibco, USA), 

15% Fetal Bovine serum, 1% Pen/Strep (Gibco, USA), 1% Non-essential amino acids 

(Gibco, USA), 1% Glutamax (Gibco, USA), 0.01% LIF (ESG1107, Millipore, USA) and 

0.0004% beta-mercaptoethanol. Mouse embryonic fibroblasts (Globalstem, USA) were 

cultured in the same medium but without LIF. EML (CRL-11691, ATCC, USA) were grown 

in Iscove's modified Dulbecco's medium (IMDM) with 4 mM L-glutamine adjusted to 

contain 1.5 g/L sodium bicarbonate containing 200 ng/ml mouse stem cell factor, 1% Pen/

Strep (Gibco, USA) and 20% Fetal Bovine serum. Human K562 cells were grown in 

DMEM (Gibco, USA), 20% Fetal Bovine serum, 1% Glutamax (Gibco, USA) and 1% Pen/

Strep (Gibco, USA). Cell lines were tested for mycoplasma contamination and ES cells 

authenticated by measuring Oct4 levels, characteristic morphology and chromatin state.

Preparation of unlabeled chromatin

About 100M K562 cells were suspended in 1mL of 1× digestion buffer. The suspension is 

incubated at 4C for 10 minutes to lyse the cells, after which MNase is activated by 

incubating at 37C for 15 minutes and inactivated by adding 40uL of 0.5M EGTA (final 

concentration of 20mM). Next, we centrifuged the lysate for 5 minutes at max speed, 

separate the chromatin supernatant and mix it with 1mL of 2× stopping buffer.

Barcode and primer design

The design of barcode adapters is shown in Supplementary Figure 2A. A sequence of 5 

Guanine nucleotides on each side of the barcode is not complementary and forms a loop. 

These loops were designed to prevent the formation of hairpins or stem-loops that inhibit 

priming during amplification of labels. The 1152 barcode sequences are listed in 

Supplementary Table 2. To prime the barcoded genomic DNA, we use the following SC-

PCR primer sequences:

TAAGGTGGGGGGGATAC 59.6(Tm)

TAAGGTCCCCCGGATAC 59.6(Tm)

Barcode library generation

Barcodes were commercially synthesized (IDT, USA) and suspended in quick ligase buffer 

(NEB, USA) at a concentration of 500 uM in 384 well-plates. We use a 96 parallel drop-
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maker microfluidic chip with aqueous inlets for each drop-maker that precisely fit one 

quarter of a 384 well-plate and that are immersed in 96 different wells, each containing a 

unique barcode. Oil with surfactant is distributed to all drop-makers via a common inlet that 

is connected to a pressurized (9 psi) oil reservoir. The plate and the microfluidic parallel 

device are placed in a pressure chamber while a common outlet for all 96 barcode drop-

makers is located outside the pressure chamber. Upon pressurizing the chamber (6 psi), each 

of the 96 barcode solutions is forced through its own drop-maker, thereby forming an 

emulsion of ∼35um diameter drops where every drop contains about 1 billion copies of one 

of the 96 barcodes. The process is repeated until all barcodes are encapsulated. Before use, 

the emulsion is pooled in a single tube and mechanically mixed by rolling the tube for 5 

minutes.

Cell encapsulation

Cells were suspended at a concentration of 5M/mL in PBS and loaded in a syringe together 

with a magnetic stirrer bar stirred by a motorized magnet located externally to prevent 

sedimentation of the cell suspension. The suspension of cells is co-flowed at a 1:1 ratio with 

2× digestion buffer, containing both a detergent for cell lysis and Micrococcal Nuclease 

(MNase). MNase is an endonuclease that digests single-stranded nucleic acids, but is also 

active against double-stranded DNA and under optimized conditions will preferentially 

digest the open DNA at the inter-nucleosomal regions, resulting in the fragmentation of 

chromatin into primarily mono-nucleosomes. The two aqueous phases - cell suspension and 

buffer - meet immediately before passing through the microfluidic drop making junction so 

that they only mix inside the ∼50um diameter drops containing them (Supplementary Movie 

1). After encapsulation, drops were incubated at 4C for 10 minutes for lysis and then at 37C 

for 15 minutes for MNase digestion.

Barcode-cell drop fusion

Drops containing native chromatin from single-cells and drops containing barcodes are re-

injected into a custom 3-point merger microfluidic device. The third inlet in the 3-point 

merging chip is fed with 2× labeling buffer, optimized for both end repair of dsDNA and 

blunt end ligation in the same solution. A high voltage amplifier (2210, TREK, USA) which 

supplies a 100 V square A/C wave at a frequency of 25 kHz is used to drive the device 

electrodes which induce an electric field that electro-coalesces the 3 phases (cell drops, 

barcode drops and labeling buffer). After merging, all fused drops are collected in a single 

tube preloaded with a bed of carrier drops that protect the sample drops from evaporating or 

wetting the tube walls. The carrier drops are 70um in diameter, similar to the size of the 

fused drops, and contain a carrier buffer optimized to match the mixed buffers in the fused 

drops, thereby minimizing the osmotic forces acting on the sample drops. To simplify the 

distribution of samples into wells downstream, we use 2mL of carrier drops for every 10,000 

cells collected. After collection, the mixed emulsion is incubated at room temperature for 2 

hours to allow ligation.

Extracting samples from fused drops

The 2mL of emulsion containing fused drops and carrier drops are distributed in aliquots of 

20uL into wells containing 20uL of 1% surfactant oil. This ensures that each well contains a 
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sample of about 100 labeled cells. Each well is then topped with 50uL stopping buffer that 

stops the ligation reaction and 25uL of unlabeled chromatin from ∼1M K562 cells. The 

unlabeled chromatin acts as a buffer, minimizing nonspecific binding during ChIP and 

protecting the minute amounts of labeled chromatin from being lost during liquid handling. 

To separate the emulsion, 10uL of demulsifier is added to each well and the plate is 

centrifuged at 1000 rpm for 30 seconds. The aqueous phase in each well, containing labeled 

chromatin from ∼100 cells, separates above the oil phase and is transferred to a new well for 

ChIP.

ChIP

Each sample of ∼100 cells was incubated at 4C overnight with 1-3uL of antibodies (see 

reagents). The complexes were precipitated with 20uL of protein-A coated magnetic beads 

(10008D, Life Technologies, USA) in a total volume of ∼125uL per sample. Beads were 

washed sequentially twice with low-salt immune complex wash, twice with high-salt 

immune complex wash, once with LiCl immune complex wash, and twice with TE (10mM 

Tris-HCl). Wash volumes are 100uL per sample, except for the last wash where the 

immunoprecipitated chromatin remains bound to the beads in 21.5uL of TE per sample for 

downstream reactions and is eluted later in the library preparation.

Library preparation

To minimize the abundance of barcode adaptors concatemers we add 1uL of PacI restriction 

enzyme (R0547L, NEB, USA) and 2.5ul of NEB Buffer 1 to each sample of 100 cells in 

21.5uL of TE and incubate at 37C for 2 hours and then at 65C for 20 minutes. This is done 

immediately after ChIP washing steps and while the chromatin is still bound to the ChIP 

beads. PacI digest in between bound concatemers and in the middle of each adapter to form 

30bp DNA fragments that can be easily filtered out using simple size selection (see Fig. 3A 

and Supplementary Fig. 2A). Next, we elute the chromatin by adding 25uL of 2× elution 

buffer, digest RNA contaminates by adding 3uL of Rnase (11119915001, Roche 

Diagnostics, USA) and incubate at 37C for 20 minutes and remove the nucleosomes by 

adding 3uL of Proteinase K (P8102S, NEB, USA) and incubating at 37C for 2 hours and 

deactivating at 65C for 30 minutes. We purify the DNA using 1.5× AMPure XP beads 

(A63880, Beckman Coulter, USA) and follow with 14 rounds of Single-Cell-PCR (SC-PCR, 

Supplementary Table 1) to amplify the labeled DNA and with another purification using 

1.1× AMPure XP beads. To reduce unspecific Illumina adapter ligation we first 

dephosphorylate all 5′ ends by adding 1uL pf Antarctic Phosphatase (M0289L, NEB, USA) 

and 2.5uL of Antarctic Phosphatase Buffer in a total volume of 25uL including the DNA 

and incubating at 37C for 30 minutes. We then purify the DNA using 1.1× AMPure XP 

beads, add 1uL of BciVi enzyme (R0596L, NEB, USA) and 2.5ul of NEB Buffer 4 in a total 

volume of 25uL including the DNA and incubate at 37C for 1 hour. This will specifically 

cleave the labeled DNA, leaving an A overhang at the 5′ end of all DNA fragments with 

single cell adapters. To ligate Illumina adapters, we purify DNA using 1.1× AMPure XP 

beads, reduce the sample volume to 4uL via evaporation, add 0.5uL Quick Ligase (M2200L, 

NEB, USA), 6uL of 2× Quick Ligation Reaction Buffer and 1.5uL Illumina adapters diluted 

1:150 and incubate at room temperature for 15 minutes. Before amplifying the illumina 

adapters we apply PacI again to digest concatemers that may have formed during the 
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ligation step. For this, we first purify DNA using 0.7× AMPure XP beads and then use the 

same concentrations and incubation times as the first application of PacI. Finally, we purify 

DNA using 0.7× AMPure XP beads and amplify the illumina adapters by adding 12.5uL of 

PCR Mix (PfuUltra II Hotstart PCR Master Mix, 600850, Agilent Technologies, USA) and 

0.5uL of Illumina Primers at 25uM in a total volume of 25uL including the DNA and 

thermocycling (initial denaturation at 95C for 3 minutes, 14 rounds of 95C for 30 seconds, 

55C for 30 seconds and 72C for 1 minute and final extension at 72C for 10 minutes). The 

amplified sample is purified one last time using 0.7× AMPure XP beads and then the DNA 

content is measured and the sample is sequenced.

Sequencing

We use illuminaHiseq to sequence 2×60 bp paired end reads. The first 11 sequencing cycles 

are dark to prevent low complexity failure when reading the non-variable regions of the 

barcode adaptor.

Filtering single-cell reads

Barcodes are expected at the first 8 bps of the first read and bps # 12-19 of the second read. 

Half of PacI recognition site “TTAA” will follow the barcode sequence, and the rest of the 

read is genomic. Since barcodes are symmetric, both ends may be sequenced, so several 

combinations for read#1 and read#2 are possible, all representing the same fragment, as 

shown in Supplementary Figure 2B. Reads with barcode sequences not matching any of the 

1152 barcodes were discarded. Remaining reads were aligned to mm9 genome using 

Bowtie243 in paired end mode, trimming the first 23 bp on each 5′ end and discarding mutli-

mapped reads and reads that are longer than 1kb (syntax: “bowtie2 -X 1000 --trim5 23 -x 

mm9 -1 [read#1.fastq] -2 [read#2.fastq] –S [output.sam]”). Of the remaining distinct reads 

only those reads with matching barcodes on both ends were saved, with the following 

exception – if two (and only two) barcodes happen to mutually label 10% or more of reads 

associated with either of the two barcodes, then those barcodes are treated as identical and 

all reads labeled by either or both barcodes are considered to have matching barcodes on 

both ends. This exception handles cases where two barcode drops fuse with one cell drop. 

Finally, to determine those barcodes that are associated with single cells, the numbers of 

reads per barcode were analyzed based on Poisson statistics, as described below. The reads 

associated with the chosen barcodes, along with their barcode of origin, were used in 

downstream analysis.

Poisson based statistics for choosing cell-representing barcodes

See Supplementary Note 3.

Visualizing and assessing precision and sensitivity of single-cell chromatin profiles

To visualize the information content attainable by Drop-ChIP (Fig. 4A), we selected 100 

single-cell H3K4me3 profiles (50 ES cells and 50 MEFs). These examples were selected 

based on high read coverage over target regions. The reads from each single-cell profile 

were plotted across representative regions. Although these best case examples better 

illustrate the accuracy of the profiles, visualization of essentially any subset of single cells 
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recapitulates similar enrichment over target regions. We calculated the precision of each 

single-cell profile from the fraction of reads overlapping known peaks, and sensitivity from 

the fraction of known peaks overlapping single-cell reads (peaks defined from 

corresponding bulk profiles).

Supervised classification of single-cell tracks into ES and MEF cell types

For 400 H3K4me3 tracks (200 ES cells and 200 MEFs), we calculated the fraction of reads 

overlapping with peaks specific to either ES cells or MEFs (based on bulk H3K4me3 

profiles). We plotted the ES cell score of each single-cell vs. its MEF specific score, with 

both scores normalized to a maximum of 1. A simple comparison between the two scores 

correctly classifies cells with >95% accuracy (Fig. 4C).

Clustering ES cells, MEFs and EMLs based on H3K4me3 single-cell profiles

We counted reads intersecting with 5kb genomic bins to produce a vector ν of ∼500,000 

values for each of the cells. Next we binarized the data to reduce any possible bias that 

might originate from over-represented bins (e.g. repetitive regions):

To reduce noise we filtered out low coverage cells and non-informative bins by selecting 

only single cells that occupy at least 250 bins, and restricting the set of bins to only those 

that were occupied by at least 2% but no more than 50% of the single cells.

We divided each binary vector by the total number of non-zero bins to control for cell-

coverage variability, and calculated pair-wise covariances:

Where α and β are indices for individual cells.

Finally, we used a divisive clustering algorithm to cluster the columns of C by applying the 

function “diana” from the “cluster” R package.

Peak calling

We use Scripture44 with a segmentation length of 1000bp -5000bp to identify enriched 

regions in chromatin profiles.
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Chromatin signatures collection and analysis

To build our signature library we first collected 314 available ChIP-seq data sets from GEO 

and ENCODE, called peaks for each data set using Scripture, and defined the signature as 

the set of all 5kb genomic bins overlapping the peaks of a data set. Pearson correlations ρij 

between signatures correspond to the degree of overlap of genomic regions between them, 

and we used the distance function dij = 1 – ρij to cluster the signatures by applying the R 

function hclust (using the complete linkage method). Finally, we set a threshold that cut the 

dendrogram into 91 biologically meaningful clusters each consisting of highly overlapping 

maps and manually chose a representative signature from each cluster, taking into account 

quality of data and biological relevance. The correlation between the 91 signatures is shown 

in Supplementary Figure 7 and the signature names and their public sources are listed in 

Supplementary Table 4.

Clustering H3K4me2 using chromatin signatures scores

To cluster H3K4me2 single-cell profiles, we first calculated the coverage, or score of cells 

in each of the chromatin signatures: we binned the reads of each single cell in 5kb genomic 

bins and then calculated the number of bins that overlapped with each signature profile to 

produce a matrix of 10,128 cells (9,207 ES cells and 921 MEFs) over 91 signatures. We 

used two specific signatures, the H3K4me2 signature score of ES cells and MEFs, to filter 

out single-cell profiles with a low ChIP signal. For ES cells and MEFs separately, we 

compared the single-cell scores for the respective H4K3me2 signature to a distribution of 

signature scores obtained by randomly choosing reads from input ChIP-seq bulk 

experiments of the same cell type (Whole Cell Extract, WCE). We filtered out cells with 

H3K4me2 signature scores that are lower than the 95% percentile of the H3K4me2 signature 

score of WCE virtual single-cells. 7,327 cells (6,432 ES cells and 895 MEFs) satisfied this 

criterion and were retained for the next step (these were also retained for unsupervised 

clustering using DIANA, which classified the two cell types at >95% purity). We 

normalized each cell for coverage and standardized (subtracted the mean and divided by 

standard deviation) the distribution of each signature variable over the remaining cells. We 

applied two distance metrics, Euclidean and Manhattan, to create two pairwise distance 

matrices and then separately applied the R agglomerative hierarchical clustering method 

hclust (using the complete linkage method) on each of the matrices. We found 4 to be the 

minimal number of clusters required to separate the ES cells and MEFs. Clustering using the 

two metrics agreed on 84% of the cells. To make downstream results less dependent on the 

choice of metric, we decided to keep only those cells on which both metrics agreed. As a 

final step of cleaning up potentially noisy data, we noticed that when we partitioned the data 

to 5 clusters, 3 large (>1,400 cells) ES clusters are formed, one clear MEF cluster, and an 

additional smaller, somewhat more mixed cluster (360 cells, 26 of which are MEFs), and we 

have discarded the cells in the last cluster remaining with 4,643 ES cells and 762 MEFs. All 

subsequent analyses of population heterogeneity in H3K4me2 (Fig. 5 and 6) use these 5,405 

cells.
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Multidimensional scaling (MDS) plots

For these plots (Fig. 5B, 5C and Supplementary Fig. 8D), we used ρij, the Pearson 

correlation between signature-scores vectors of single cells, for the distance function: dij = 1 

– ρij. The MDS was calculated from a matrix of these distances using the isoMDS function 

in the MASS R package45, which implements Kruskal's non-metric multidimensional 

scaling.

Analysis Code

Analysis and plots were performed using Matlab, R and ggplot.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Aviv Regev, Nir Yosef, Efrat Shema, Itay Tirosh, Huidan Zhang, Shawn Gillespie and Jeff Xing for their 
valuable comments and critiques of this work. We also thank Gavin Kelsey for sharing single-cell data for 
comparisons. This research was supported by funds from Howard Hughes Medical Institute, the National Human 
Genome Research Institute's Centers of Excellence in Genome Sciences (P50HG006193), ENCODE Project 
(U54HG006991), the National Heart Lung and Blood Institute (U01HL100395), the NSF (DMR-1310266), the 
Harvard Materials Research Science and Engineering Center (DMR-1420570) and DARPA (HR0011-11-C-0093).

Bibliography and references cited

1. Rivera CM, Ren B. Mapping human epigenomes. Cell. 2013; 155:39–55. [PubMed: 24074860] 

2. Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational 
implications. Nature reviews Cancer. 2011; 11:726–734. [PubMed: 21941284] 

3. Consortium EP, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 
2012; 489:57–74. [PubMed: 22955616] 

4. Ernst J, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 
2011; 473:43–49. [PubMed: 21441907] 

5. Shalek AK, et al. Single-cell transcriptomics reveals bimodality in expression and splicing in 
immune cells. Nature. 2013; 498:236–240. [PubMed: 23685454] 

6. Kalisky T, Quake SR. Single-cell genomics. Nat Methods. 2011; 8:311–314. [PubMed: 21451520] 

7. Munsky B, Neuert G, van Oudenaarden A. Using gene expression noise to understand gene 
regulation. Science. 2012; 336:183–187. [PubMed: 22499939] 

8. Nagano T, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 
2013; 502:59–64. [PubMed: 24067610] 

9. Brown CR, Mao C, Falkovskaia E, Jurica MS, Boeger H. Linking stochastic fluctuations in 
chromatin structure and gene expression. PLoS Biol. 2013; 11:e1001621. [PubMed: 23940458] 

10. Cusanovich DA, et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial 
cellular indexing. Science. 2015

11. Murphy PJ, et al. Single-molecule analysis of combinatorial epigenomic states in normal and 
tumor cells. Proceedings of the National Academy of Sciences of the United States of America. 
2013; 110:7772–7777. [PubMed: 23610441] 

12. Treutlein B, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell 
RNA-seq. Nature. 2014

13. Patel AP, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. 
Science. 2014; 344:1396–1401. [PubMed: 24925914] 

Rotem et al. Page 17

Nat Biotechnol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Xu X, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a 
kidney tumor. Cell. 2012; 148:886–895. [PubMed: 22385958] 

15. Wang Y, et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. 
Nature. 2014; 512:155–160. [PubMed: 25079324] 

16. Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical 
research. Nature. 2014; 507:181–189. [PubMed: 24622198] 

17. Guo MT, Rotem A, Heyman JA, Weitz DA. Droplet microfluidics for high-throughput biological 
assays. Lab on a Chip. 2012; 12:2146–2155. [PubMed: 22318506] 

18. Klein AM, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. 
Cell. 2015; 161:1187–1201. [PubMed: 26000487] 

19. Macosko EZ, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using 
Nanoliter Droplets. Cell. 2015; 161:1202–1214. [PubMed: 26000488] 

20. Rotem A, et al. High-Throughput Single-Cell Labeling (Hi-SCL) for RNA-Seq Using Drop-Based 
Microfluidics. PloS one. 2015; 10:e0116328. [PubMed: 26000628] 

21. Adli M, Zhu J, Bernstein BE. Genome-wide chromatin maps derived from limited numbers of 
hematopoietic progenitors. Nature methods. 2010; 7:615–618. [PubMed: 20622861] 

22. Wu AR, et al. Automated microfluidic chromatin immunoprecipitation from 2,000 cells. Lab Chip. 
2009; 9:1365–1370. [PubMed: 19417902] 

23. Lara-Astiaso D, et al. Immunogenetics. Chromatin state dynamics during blood formation. 
Science. 2014; 345:943–949. [PubMed: 25103404] 

24. O'Neill LP, VerMilyea MD, Turner BM. Epigenetic characterization of the early embryo with a 
chromatin immunoprecipitation protocol applicable to small cell populations. Nature genetics. 
2006; 38:835–841. [PubMed: 16767102] 

25. Hackett JA, Surani MA. Regulatory principles of pluripotency: from the ground state up. Cell stem 
cell. 2014; 15:416–430. [PubMed: 25280218] 

26. Hough SR, et al. Single-cell gene expression profiles define self-renewing, pluripotent, and lineage 
primed states of human pluripotent stem cells. Stem cell reports. 2014; 2:881–895. [PubMed: 
24936473] 

27. Singer ZS, et al. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol Cell. 
2014; 55:319–331. [PubMed: 25038413] 

28. Smallwood SA, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic 
heterogeneity. Nature methods. 2014; 11:817–820. [PubMed: 25042786] 

29. Chambers I, et al. Nanog safeguards pluripotency and mediates germline development. Nature. 
2007; 450:1230–1234. [PubMed: 18097409] 

30. Ben-Porath I, et al. An embryonic stem cell-like gene expression signature in poorly differentiated 
aggressive human tumors. Nature genetics. 2008; 40:499–507. [PubMed: 18443585] 

31. Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013; 500:415–
421. [PubMed: 23945592] 

32. Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nature 
reviews Molecular cell biology. 2006; 7:540–546. [PubMed: 16723974] 

33. Chen X, et al. Integration of external signaling pathways with the core transcriptional network in 
embryonic stem cells. Cell. 2008; 133:1106–1117. [PubMed: 18555785] 

34. Li Z, et al. Foxa2 and H2A.Z mediate nucleosome depletion during embryonic stem cell 
differentiation. Cell. 2012; 151:1608–1616. [PubMed: 23260146] 

35. Azuara V, et al. Chromatin signatures of pluripotent cell lines. Nature cell biology. 2006; 8:532–
538. [PubMed: 16570078] 

36. Bernstein BE, et al. A bivalent chromatin structure marks key developmental genes in embryonic 
stem cells. Cell. 2006; 125:315–326. [PubMed: 16630819] 

37. Zhu J, et al. Genome-wide chromatin state transitions associated with developmental and 
environmental cues. Cell. 2013; 152:642–654. [PubMed: 23333102] 

38. Farlik M, et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic 
cell-state dynamics. Cell Rep. 2015; 10:1386–1397. [PubMed: 25732828] 

Rotem et al. Page 18

Nat Biotechnol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Nichols J, Smith A. Naive and primed pluripotent states. Cell stem cell. 2009; 4:487–492. 
[PubMed: 19497275] 

40. Ku M, et al. Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent 
domains. PLoS genetics. 2008; 4:e1000242. [PubMed: 18974828] 

Bibliography and References Cited in Online Methods Only

41. Kumar RM, et al. Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature. 
2014; 516:56–61. [PubMed: 25471879] 

42. Mazutis L, et al. Single-cell analysis and sorting using droplet-based microfluidics. Nature 
protocols. 2013; 8:870–891. [PubMed: 23558786] 

43. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012; 
9:357–359. [PubMed: 22388286] 

44. Guttman M, et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the 
conserved multi-exonic structure of lincRNAs. Nature Biotechnology. 2010; 28:503–510.

45. Venables, WN. Modern applied statistics with S. 4th. Springer; New York: 2002. 

Rotem et al. Page 19

Nat Biotechnol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Overview of Drop-ChIP procedure for acquiring single cell chromatin data
A) Microfluidics workflow. A library of drops containing DNA barcodes is prepared by 

emulsifying DNA suspensions from plates (top left). Cells are encapsulated and lysed in 

drops, and their chromatin is fragmented (bottom left). Chromatin-bearing drops and 

barcode drops are merged in a microfluidic device, and DNA barcodes are ligated to the 

chromatin fragments, thus indexing them to originating cell. B) Combined contents of many 

drops are immunoprecipitated in the presence of ‘carrier’ chromatin and the enriched DNA 

is sequenced. C) Sequencing reads are partitioned by their barcode sequences to yield single 

cell chromatin profiles (left). An unsupervised algorithm identifies groups of related single 

cell profiles, which are then aggregated to produce high-quality chromatin profiles for sub-

populations (right). See also Supplementary Figure 1.
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Figure 2. Labeling single-cell chromatin by drop-based microfluidics
A) Micrograph shows an aqueous suspension of cells (‘S’) co-flowed together with lysis 

buffer and MNase (‘B’) as they enter the drop maker junction and disperse in oil (‘O’), 

resulting in the formation of cell-bearing drops (see also Supplementary Movie 1). B) 
Micrograph shows cell-bearing drops (∼50um diameter) and barcode-bearing drops 

(∼30um diameter) paired in a microfluidics “3-point merger” device. As adjacent drops 

flow by the electrodes (+-), an induced electric field triggers their coalescence; 

simultaneously, labeling buffer (B) containing ligase is injected into the merged drops 

(Supplementary Movie 2). C) Table depicts estimated frequencies of possible drop fusion 

outcomes. The number of cells in each drop was measured from Supplementary Movie 1 

(see Panel A). Drops containing cells or cell debris may fuse with one (90%) or two (10%) 

barcode drops (green frame). Two-barcodes fusion events can be detected and corrected in 

silico. Background reads contributed by drops that only contain cell debris are also filtered 

in silico. D) The frequency distribution of barcodes is plotted as a function of the number of 

reads contributed by each barcode and fitted to a sum of two Poisson distributions, one for 

the background reads (blue) and one for the single-cells reads (green, see Methods). 

Barcodes in the highlighted range are assumed to originate from single cells, and retained 

for further analysis. Scale bars are 100um.
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Figure 3. Symmetric barcoding and amplification of chromatin fragments
A) Barcode adapters (top) are 64 bp double-stranded oligonucleotides with universal 

primers, barcode sequences and restriction sites, whose symmetric design allows ligation on 

either side. Schematic (bottom left) depicts possible outcomes of ligation in drops, including 

symmetrically labeled nucleosomes, asymmetrically labeled nucleosomes, and adapter 

concatemers. Concatemers are removed by digestion of PacI sites formed by adapter 

juxtaposition (bottom center), allowing selective PCR amplification of symmetrically 

adapted chromatin fragments (bottom right). See also Supplementary Figure 2. B) Gel 

electrophoresis for DNA products at successive assay stages: left: DNA ladder; MNase: 

DNA fragments purified after capture, lysis and MNase digestion of single cells in drops 

confirm efficient digestion to mononucleosomes (∼1 million drops collected); Concat: 
Illumina library prepared from adaptor-ligated chromatin fragments without PacI digestion 

reveals overwhelming concatemer bias. Library: Illumina library prepared from adaptor-

ligated chromatin fragments digested with PacI, reveals appropriate MNase digestion 

pattern, shifted by the size of barcode and Illumina adapters. C) Pie charts depict numbers of 

uniquely aligned sequencing read that satisfy successive filtering criteria (values reflect data 

from 100 single cells, averaged over 82 trials). We select reads that have barcode sequences 

on both ends (top) with matching sequence (middle). We then apply a Poisson model to 

identify barcodes that represent single cells (bottom). D) Heatmap depicts homogeneity of 

barcode selection. Barcodes (rows) are colored according to their relative prevalence (rank 

order) across 37 experiments (columns). The absence of bias towards particular barcodes 

(light or dark horizontal stripes) indicates the homogeneity of the barcode library. The mean 

normalized rank over all barcodes (right) is close to 0.5, consistent with balanced 

representation. E) Stability of the barcode library emulsion over time. The fraction of reads 

with matching barcodes on both ends is plotted as a function of time from encapsulation of 

the barcode library. F) The microfluidics system was applied to barcode a mixed suspension 

of human and mouse cells. For each barcode, plot depicts the number of reads aligning to 

the mouse genome (y-axis) versus the number of reads aligning to the human genome (x-

axis). The data suggest that a vast majority of barcodes is unique to a single cell.

Rotem et al. Page 22

Nat Biotechnol. Author manuscript; available in PMC 2016 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Single-cell H3K4me3 chromatin data inform about subpopulations of known cell types
A) Selected Drop-ChIP data is shown for 50 ES cells (ESCs) and 50 MEFs across 

representative gene loci. Each row represents data from a single cell. Each column includes 

reads in 330kb regions centered on selected genes (Anxa1: chr19: 20465000, m6p3: chr6: 

122269000, Egr2: chr10: 67022000, Ring1B: chr17: 34262000, Cyb5d1: chr11: 69207000, 

Ctbp2: chr7: 140254000, Pou5f1: chr17: 35612000, Sox2: chr3: 34573000). A high 

proportion of reads aligns to genomic positions enriched in both bulk ChIP-seq assays 

(‘Bulk’) and aggregated chromatin profiles from 200 single-cell (‘200’), providing evidence 

that single-cell data are informative. B) The precision (fraction of single-cell reads 

overlapping known H3K4me3 peaks) and sensitivity (fraction of known H3K4me3 peaks 

occupied by single cell reads) are plotted for the top 50 ES cells by sensitivity and for all ES 

cells in the dataset. These data are compared to random profiles simulated by arbitrarily 

positioning reads. The average ES cell H3K4me3 profile has a precision of 53%±12% and a 

sensitivity of 7%±4%, while the average ES cell H3K4me2 profile has a precision of 42%

±5% and a sensitivity of 3%±2% (not shown). C) For 400 single-cell H3K4me3 profiles, 

scatterplot depicts normalized detection of ES cell-specific intervals versus MEF-specific 

intervals. In this experiment, ES cells (red) and MEFs (green) were separately barcoded in 

the microfluidics device, but collectively immunoprecipitated and processed. A naive 

classification (black line) distinguishes ES cell profiles from MEF profiles with >95% 

specificity and sensitivity. D) ES cells, MEFs and EML cells were separately barcoded but 

collectively processed to acquire 883 single-cell profiles (314 ES cells, 376 MEFs, 193 

EMLs). These profiles were clustered using an unsupervised divisive hierarchical clustering 

algorithm (see Methods). The hierarchal tree discriminates between cell types with >95% 

accuracy, indicating that the information content of single-cell profiles is sufficient to 

accurately group related cells and thereby distinguish cell states within a mixed population. 

See also Supplementary Figures 3 – 6 and Methods.
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Figure 5. A spectrum of ES cell sub-populations with variable chromatin signatures for 
pluripotency and priming
A) Singe-cell H3K4me2 data for 4,643 ES cells and 762 MEFs were subjected to 

agglomerative hierarchical clustering based on their scores in 91 signature sets of genomic 

regions (see Methods). Pie chart (left) depicts the proportions of individual ES cells that 

cluster into each of three clusters (1436 cells in ES1, 1550 cells in ES2 and 1648 cells in 

ES3). Pie chart (right) depicts the relative numbers of ES cells and MEFs that cluster into a 

fourth group, which corresponds to MEFs. Heatmap (below) depicts the mean signature 

scores (rows) for each cluster (columns). B) Multidimensional scaling (MDS) plot compares 

the chromatin landscapes of single ES cells and MEFs (colored dots). The distance between 

any two dots (cells) approximates the distance between their 91-dimensional signature 

vectors. The plot shows 1,000 single cells (randomly sampled from the 5,405 cells with 

H3K4me2 data), colored by their cluster association. Tight co-localization of the MEF 

cluster and, to a lesser degree, the ES1 cluster suggests that the corresponding landscapes 

are relatively more homogeneous. In contrast, the ES2 and ES3 clusters are more broadly 

distributed and may reflect a gradient of single cell states. C) MDS plot as in B, but with 

indication of cells (black) that frequently switched clusters in bootstrapping tests on varying 

subsets of cells (see Methods). These unstable cells are exclusively located on the borders 

between clusters. D) Violin plots show the distribution of peak widths for peaks called from 

aggregate ES1, ES2 or ES3 profiles (see Methods). E) Venn diagram depicts the relative 

numbers and overlaps of peaks called from aggregate ES1, ES2 or ES3 profiles. The ES1 

cluster is notable for higher pluripotency signature scores, larger numbers of peaks and 

tighter internal concordance. In contrast, the ES3 cluster has higher activity over Polycomb 

signatures and increased heterogeneity, potentially reflecting a mixture of primed states. See 

also Supplementary Figure 7–8, Supplementary Table 5 and Supplementary Note 1.
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Figure 6. Orthogonal single-cell assays corroborate ES cell sub-populations and cell-to-cell 
variability in regulatory programs
A) The distribution of single-cell scores for 8 dominant signatures is plotted for ES1, ES2 

and ES3. Vertical lines depict the mean score of each signature in MEFs. DNAme signature 

consists of 10,000 regions identified by Kelsey et. al.28 as most variable in their methylation 

status in ES cells. B) Heat map depicts positive and negative correlations between 6 selected 

signatures, based on co-variation of H3K4me2 across single ES cells. C) Heat map depicts 

positive and negative correlations between 6 selected signatures, based on co-variation of 

expression across single ES cells (See Supplementary Note 2). D) Scatterplot depicts 

correlations between indicated signature pairs across single ES cells, as determined from 

H3K4me2 or RNA expression data. Best fit line and Pearson correlation are also indicated. 

Thus, orthogonal single-cell techniques lead to similar conclusions regarding ES cell sub-

populations and underlying patterns of variability in pluripotency and Polycomb signatures, 

suggestive of a continuum from pluripotent to primed states. See also Supplementary Figure 

10.
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