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Abstract

Background: Public data integration may help overcome challenges in clinical implementation of microarray profiles. We
integrated several ovarian cancer datasets to identify a reproducible predictor of survival.

Methodology/Principal Findings: Four microarray datasets from different institutions comprising 265 advanced stage
tumors were uniformly reprocessed into a single training dataset, also adjusting for inter-laboratory variation (‘‘batch-
effect’’). Supervised principal component survival analysis was employed to identify prognostic models. Models were
independently validated in a 61-patient cohort using a custom array genechip and a publicly available 229-array
dataset. Molecular correspondence of high- and low-risk outcome groups between training and validation datasets was
demonstrated using Subclass Mapping. Previously established molecular phenotypes in the 2nd validation set were
correlated with high and low-risk outcome groups. Functional representational and pathway analysis was used to explore
gene networks associated with high and low risk phenotypes. A 19-gene model showed optimal performance in the
training set (median OS 31 and 78 months, p,0.01), 1st validation set (median OS 32 months versus not-yet-reached,
p = 0.026) and 2nd validation set (median OS 43 versus 61 months, p = 0.013) maintaining independent prognostic power in
multivariate analysis. There was strong molecular correspondence of the respective high- and low-risk tumors between
training and 1st validation set. Low and high-risk tumors were enriched for favorable and unfavorable molecular subtypes
and pathways, previously defined in the public 2nd validation set.

Conclusions/Significance: Integration of previously generated cancer microarray datasets may lead to robust and widely
applicable survival predictors. These predictors are not simply a compilation of prognostic genes but appear to track true
molecular phenotypes of good- and poor-outcome.
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Introduction

Epithelial ovarian cancer (EOC) presents an example of the

promise and challenges of using microarray analysis for prognostic

biomarker research. Based on its highly heterogeneous clinical

course [1,2,3] (even within advanced EOC, which represents over

70% of cases) and the modest discriminatory power of conven-

tional prognostic factors (amount of residual disease after initial

surgery, age, tumor grade, and histologic subtype [1,4,5]),

microarray studies were pursued in an attempt to account for

the molecular and biologic complexity of the disease [6,7,8,9,10].

However, none produced a gene expression signature that has
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been appropriate for clinical use. This is largely due to, among

other reasons, variable or small sample size, lack of adequate

validation, or inclusion of subtypes (clear cell, mucinous, papillary

EOCs), which constitute distinct molecular entities [11]. While

collectively these studies may be sufficient to identify useful

signatures, combining data or the analytical results is difficult for

many reasons, including the use of a variety of array platforms,

different data normalization and analysis approaches, and variability

in experimental protocols and patient selection. Finally, in many

instances it is not clear if the prognostic signatures reflect

reproducible stable disease phenotypes or are simply a combination

of prognostic genes. These limitations, which are not unique to

ovarian cancer, demonstrate the challenges limiting the application

of microarray signatures in cancer care and research, especially in

cancers with more limited availability of appropriate tissue resources.

In an effort to address these challenges, we assembled, curated,

and processed a collection of 265 raw gene expression arrays from

four previously reported ovarian cancer microarray studies

[10,12,13,14] applying consistent data normalization, quality

control, and analytical methods. A multi-gene model was

identified in this composite set that was then independently

validated in two separate tumor cohorts, one of which was profiled

on a custom array genechip and the other was a publicly available

standard oligonucleotide array dataset [15]. Finally, we showed

that this multi-gene model is not simply prognostic of outcome but

reflects reproducible ovarian cancer phenotypes and appears to

simultaneously track deregulation of several biological or onco-

genic pathways in this disease.

Results

Development of multi-gene prognostic classifiers in the
integrated training set

Figure 1 shows the workflow of our study (consort diagram). We

designed a custom array gene chip that included approximately

650 top performing candidate genes identified by applying the

supervised principal component survival analysis in each of the

four previously reported datasets. Then, we combined all four

microarray datasets into a composite training set (excluding 39

outlier samples), which consisted of 239 tumor arrays (Table 1,

Figure 1). Hierarchical clustering in the combined training set

revealed that, before application of the batch adjustment

algorithm, each dataset clearly separated from all the others

reflecting non-biological experimental variation (‘‘batch effect’’),

whereas after adjustment for batch effect, tumor samples from all

datasets were well intermixed (Figure 2).

We subsequently used the pool of the 650 marker genes (without

knowledge of their performance on the custom array) in order to

generate multi-gene prognostic classifiers in the combined training

set. Genes associated with survival (p,0.05) were ranked based on

their absolute Cox regression coefficients, and prognostic models

with the top ranking genes were developed using supervised

principal component survival analysis [16].

Since our goal was to develop oligogene prognostic signatures

we first identified models with the lowest number of genes that

could provide prognostic information in the integrated training set.

Models with as few as 2 genes distinguished between a high and a

low-risk group for survival in the combined training set (HR = 1.7,

p = 0.003). Then, we evaluated models with higher number of

genes in the training set and noticed progressively increased

hazard ratios (HRs) until there was a plateau, with stable,

statistically significant HRs between 14 and 19 genes (i.e.

HR = 2.1–2.3, p,0.001). Of these models, the 19-gene model

showed the best prognostic performance as evident by its higher

hazard ratio compared to the others. The best prognostic model

(19 genes, Table 2) distinguished between a high and a low-risk

group (median OS 31 and 78 months respectively, log rank

p,0.01, permutation p = 0.02) (Figure 3).

Independent validation of the multi-gene prognostic
classifiers

The 19-gene prognostic classifier was applied without any

further modification to the 1st validation set which included

expression data obtained from an independent cohort of advanced

stage ovarian cancers (Table 1, n = 61) using our custom array

containing the 650 previously selected genes; these genes had been

selected without prior knowledge about their prognostic perfor-

mance in the validation set. The 19-gene model distinguished

between a high and a low-risk group (median OS 32 months

versus not-yet-reached respectively, log rank p = 0.026, at 33

months median follow up, Figure 3). Of note, when we prioritized

the 19 genes based on their correlation with the principal

components of the dataset or the weight of their contribution to

the model, classifiers including the top 8–19 genes were also

prognostically valid in the 1st validation set (Text S1).

The 19-gene prognostic classifier was also applied without any

further modification to the 2nd validation set which included

expression data from 229 ovarian cancers (Table 1, n = 229).

Again, the 19-gene model distinguished between a high and a low-

risk group (median OS 43 months versus 61 months respectively,

log rank p = 0.013, Figure 3). Similar to the 1st validation set, when

we prioritized the 19 genes based on their correlation with the

principal components or their weight of contribution to the model,

several classifiers including the top 8–19 genes were also

prognostically valid in the 2nd validation set (Text S1).

Importantly, we tried to reproduce the prognostic power of two

previously reported signatures, from the BIDMC and DUKE

datasets, respectively [6,10]. Neither signature was reproducible in

either of the two independent validation sets (Text S1). Reasoning

that this may be due to different analytical algorithms applied in

the previous studies, we attempted to build new signatures using

the supervised principal component survival method separately in

each of the 4 datasets that comprised the integrated training set.

Again, none of these signatures could be validated in either of the

two independent sets (Text S1). These observations underscore the

value of integrating multiple expression datasets in order to derive

widely reproducible signatures.

Independent prognostic significance of the classifier
adjusted for known clinical and pathologic prognostic
factors

We performed multivariate analysis and formally established

that the 19-gene model maintained independent prognostic

significance adjusted for confounding factors, in both training

and the two independent validation sets (Figure 4A and Table 3).

Specifically, the Hazard Ratio (HR) of death for the unfavorable

versus the favorable group was 2.47 in the training set (95% CI,

1.71 to 3.56; p,0.01), 2.2 in the 1st validation set (95% CI, 1.01 to

7.76; p = 0.04), (Figure 4A) and 1.59 in the 2nd validation set (95%

CI, 1.05 to 2.4; p = 0.03), (Table 3). Because only 8/229 (3%) of

the tumors were definitely known to be suboptimally debulked in

the 2nd validation set, debulking status was included in the

multivariate analysis of the 2nd validation set as ‘‘grossly visible’’

versus ‘‘no visible’’ residual disease after surgery. Notably the

independent prognostic value of the profile held true regardless of

whether low grade was defined as grade 1 or grade 1 and 2 disease

(Table 3).

Integration of Ovarian Cancer Microarray Datasets
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Data on chemotherapy response were available only for the 1st

validation set. When we included chemotherapy response (i.e.

achievement of complete clinical response (CCR) after first line

chemotherapy versus no achievement of CCR) in the multivariate

analysis for the 1st validation set, the 19-gene profile maintained

its independent prognostic significance (HR = 3.96, 95% C.I.

1.56–10.1;p = 0.004).

Figure 4B also shows that the 19-gene profile was still prognostic

of OS when applied in the homogeneous subsets of patients with

optimal and suboptimal debulking status in the training set. This

subset analysis could not be performed in the 1st validation set

because of sample size limitations, and in the 2nd validation set

because only 8/229 tumors (3%), were definitely known to be

suboptimally debulked.

Gene expression models and debulking status were the strongest

independent predictors of survival; therefore we were interested to

assess their combined prognostic power, which is also shown in

Figure 4C. Notably, the combination of optimal debulking and

low-risk 19-gene profile was associated with a median OS of 119

months in the training set and not-yet-reached in the 1st validation

set, while the combination of suboptimal debulking and high-risk

19-gene profile was associated with a median OS of 23 months in

the training set (HR = 7.3, 95% C.I. 3.4–13.5) and 21 months in

the 1st validation set (HR = 5.8, 95% C.I. 2.1–16) demonstrating

that the combination of the two variables is much more powerful

than either of them individually. This combination could not be

assessed in the 2nd validation set because only 3% of the tumors

were definitely known to be suboptimally debulked.

Figure 1. Consort Diagram (Study work flow). Raw data (Affymetrix .CEL files) from four previously reported microarray datasets from different
institutions were used. Outlier samples were excluded and batch effect was adjusted resulting in the final training set (239 arrays). 650 genes were
selected by performing survival analysis in each dataset and were used to develop prognostic models in the final training set. Data pre-processing
(quality control and batch adjustment) and normalization resulting in an integrated training set was done separately from the selection of 650 genes,
which were chosen independently by performing survival analysis in each of the 4 datasets (MD ANDERSON, PENN, DUKE, BIDMC). These preselected
650 genes were then used to develop prognostic models in the unified training set. These models were independently validated in two independent
datasets: a 61-tumor cohort using a custom array containing the 650 preselected genes and a 229-tumor recently published ovarian cancer
microarray dataset. The correspondence of the low- and high-risk phenotypes was assessed using SubMap.
doi:10.1371/journal.pone.0018202.g001

Integration of Ovarian Cancer Microarray Datasets
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Genome-wide molecular correspondence of high and
low-risk groups between the training and validation sets

It is frequently unclear if prognostic gene expression models are

surrogates for underlying wider molecular or biological pheno-

types, or simply a combination of individual prognostic genes. In

order to test the hypothesis that our prognostic models are tracking

molecular phenotypes of high versus low risk ovarian cancer, we

used a methodology (Subclass Mapping-SubMap) that is uniquely

suitable to assess the genome-wide molecular correspondence of

pre-specified subtypes in independent and even technically

disparate datasets [17]. Specifically, we investigated whether high

or low-risk tumors in the combined training set were molecularly

homologous with high or low-risk tumors in the 1st validation set,

above and beyond the handful of genes contained in the models.

This is done by demonstrating enrichment of the gene profile of

the ‘‘high risk’’ (or ‘‘low risk’’) group in the training set for a large

number of markers genes for the ‘‘high risk’’ (or ‘‘low risk’’) group

in the validation set and vice versa. As shown in Figure 5A, for the

19-gene model, high and low-risk tumors in the combined training

set corresponded with high degree of statistical certainty with high

and low-risk tumors respectively in the validation set (Table S1).

This result was reproduced using various subsets of marker genes

for the 19-gene model.

For the 2nd validation dataset, favorable (C3 and C6) and

unfavorable (C1, C2, C4, C5) prognostic molecular subtypes had

already been defined by the authors [15]. We therefore assessed

whether these previously defined molecular subtypes were

reproduced in the low and high-risk groups as defined by our

19-gene profile in the 2nd validation set (Figure 3). Indeed, in the

2nd validation set, the low risk group (as defined by the 19-gene

profile) was enriched for the favorable (C3 and C6) subtypes and

the high-risk group was enriched for the unfavorable subtypes, as

previously defined [15] (2-sided Fisher’s exact p = 0.0016).

Pathway analysis in high and low-risk disease groups
In order to gain insight into the pathway complexity of high and

low-risk disease, we performed pathway and representational

analyses to identify annotated pathways and functional gene

groups that were overrepresented (enriched) in the gene profiles of

the two risk categories in the large training set (the custom array,

by design, contained too few genes to perform this analysis in the

validation set).

GSA pathway analysis was performed over a wide range of

differentially expressed genes between high and low-risk groups

[using a t-test p from 0.01 (3264 genes) to as low as 0.0001 (1698

genes)], and revealed eight pathways (Figure 5B) that were

consistently statistically significantly differentially expressed (Efron-

Tibshirani GSA test p ,0.05).

We also performed functional representational analysis using

EASE among genes that were upregulated and downregulated in

Table 1. Clinical and Pathological Characteristics of Training and Validation Cohorts.

Clinical and Pathological characteristics

INTEGRATED
TRAINING a 1st VALIDATION 2nd VALIDATION

Patients (n = 239) Patients (n = 61) Patients (n = 229)

Characteristic No. % No. % No. %

Age Median 58.5 63 59.3

Range 36–82 44–84 23–80

Grade I 9 4 0 0 0 0

II 67 28 5 8 85 37

III 144 60 56 92 144 63

Debulking
Status b

Optimal 101 42 43 70 129 56

Suboptimal 110 46 18 30 8 3

Stage c 1 0 0 0 0 12 5

2 0 0 0 0 12 5

3 204 85 47 77 191 83

4 34 14 13 21 14 6

Histology Serous 230 96 60 98 216 94

Endometrioid 9 4 1 2 13 6

Chemotherapyd Platinum-Taxane 175 73 61 100 171 75

Platinum-Cytoxan 51 21 0 0 0 0

Platinum alone 2 1 0 0 45 20

No chemotherapy 0 0 0 0 13 6

aData were not available for all patients in the integrated training set (grade was not available for 19 pts, debulking status for 18 pts, stage for 1 pt and chemotherapy
for 11 pts).

b8/229 (3%) of the tumors were definitely known to be suboptimally debulked in the 2nd validation set. 129/229 (56%) were optimally debulked. 61/229 (27%) had
,2 cm residual disease after surgery but is unclear how many had ,1 cm, and for 31/229 (14%) debulking status was unknown.

cStage was not available for one patient in the training and for 1 patient in the 1st validation set.
dChemotherapy information was not known in the training set for 11 patients.
doi:10.1371/journal.pone.0018202.t001

Integration of Ovarian Cancer Microarray Datasets
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the high- versus low-risk patients (using a t-test p,1026). We

found 22 and 54 pathways overrepresented among genes

upregulated and downregulated in high-risk tumors respectively

at a within-system FDR threshold of 0.01. A full list of these

pathways is found in Tables S2, S3 and S4, while selected

pathways are presented in Figure 5B.

Interestingly, several of these pathways (Figure 5B), that were

upregulated in high risk tumors i.e. ‘‘cytokine-cytokine receptor

interaction’’, ‘‘cell communication’’, ‘‘ECM-receptor interaction’’,

‘‘pathogenic invasion’’, ‘‘cell growth’’, and low risk tumors i.e.

‘‘differentiation’’, were also similarly expressed in the high and low-

risk tumors as previously reported in the 2nd validation set [15].

Figure 2. Adjustment for non-biological experimental variation. Multidimensional scaling of the combined training set revealed that, before
application of the batch adjustment algorithm, each dataset clearly separated from all the others (‘‘batch effect’’), whereas after correction of batch
effect, samples from all datasets were well intermixed.
doi:10.1371/journal.pone.0018202.g002

Table 2. Genes and Probe Sets That Constitute the 19-Gene Model.

GENE SYMBOL PROBESET GENE NAME

INVS 210114_at Inversin

CACNG1 206612_at calcium channel, voltage-dependent, gamma subunit 1

ANXA2P1 210876_at annexin A2 pseudogene 1

NEBL 217585_at Nebulette

PAGE1 206897_at P antigen family, member 1 (prostate associated)

MPZL2 203780_at myelin protein zero-like 2

MAP3K10 206362_x_at mitogen-activated protein kinase kinase kinase 10

H6PD 206933_s_at hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase)

ANXA2P3 211241_at annexin A2 pseudogene 3

CAMP 210244_at cathelicidin antimicrobial peptide

PLD2 209643_s_at phospholipase D2

CTSZ 212562_s_at cathepsin Z

SLC12A4 209401_s_at solute carrier family 12 (potassium/chloride transporters), member 4

RBP3 210318_at retinol binding protein 3, interstitial

TPO 210342_s_at thyroid peroxidase

LBX1 208380_at ladybird homeobox 1

ASGR1 206743_s_at asialoglycoprotein receptor 1

DMN 214304_x_at Desmuslin

KRT31 206677_at keratin 31

doi:10.1371/journal.pone.0018202.t002

Integration of Ovarian Cancer Microarray Datasets
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Prognostic gene expression models reflect activation of
known oncogenic pathways in individual tumor samples

Given that GSA or EASE cannot assign pathway activation

status for individual tumor samples, we applied previously

developed gene expression ‘‘readouts’’ resulting from experimen-

tally controlled activation of specific oncogenic pathways (src, b-

catenin and E2F3) that have been shown to bear prognostic

relevance in ovarian cancer [12]. We discovered that in the 239-

tumor training set, the odds-ratios of activation of src and b-catenin

pathways in our high versus low-risk group were 3.42 (95% C.I.

1.89–6.18) and 2.77 (95% C.I. 1.59–4.8) respectively, while the

odds-ratio for E2F3 was 0.251 (95% C.I. 0.141 – 0.446). This is

consistent with previous studies indicating that activation of src and

b-catenin pathways are associated with poor outcome while

activation of E2F3 is associated with good outcome, and indicates

that our analysis captures biologically relevant information that is

not immediately obvious by examining the content of the 19-gene

profile. In multivariate analysis including the 19-gene model and the

3 oncogenic pathways, the 19-gene model maintained independent

prognostic significance, whereas the activation patterns of the

oncogenic pathways did not (data not shown).

Discussion

Although the suitability of gene expression profiling for

prognostication has been demonstrated in ovarian cancer

[6,8,10], several challenges must be addressed before it becomes

a clinically useful tool. Previous prognostic microarray studies were

limited by sample size, interlaboratory variability, lack of external

(out of study) validation, non-standardized analytical approaches

Figure 3. Association between 19-gene model and overall survival in the training and validation sets. The 19-gene model distinguished
between a high and a low-risk group in the training set with a median OS of 31 months and 78 months respectively (log rank p,0.01, permutation
p = 0.02), a high and a low-risk group for OS in the 1st validation set (median OS 32 months versus not-yet-reached respectively, log rank p = 0.026),
and a high and a low-risk group for OS in the 2nd validation set (median OS 43 months versus 61 months respectively, log rank p = 0.013).
doi:10.1371/journal.pone.0018202.g003

Integration of Ovarian Cancer Microarray Datasets
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and inclusion of histologic subtypes with distinct genetic profiles

and outcome (i.e. clear cell, and mucinous cancers) [11]. In this

study we described a successful pipeline that may also be useful for

similar efforts in other cancers. We reprocessed and integrated raw

data from four separate, previously generated microarray datasets

[10,12,13,14] originating from different laboratories and run on

different platforms, into a large and homogeneous set, excluding

mucinous and clear cell EOCs, thus maximizing our power to

identify robust profiles while minimizing false positive findings. We

corrected the non-biological experimental variation (‘‘batch

effect’’) [18], which was clearly evident across studies (Figure 2)

and composed a final training cohort of 239 tumors. We also used

a standardized survival analysis method that compares favorably

to other methods applied on microarray data [16,19]. The

resulting prognostic model was validated twice, in two separate

independent sets. This is the first time, to our knowledge, that this

has been attempted in this disease. Tumors included in the two

validation cohorts originated from different institutions and were

run in different laboratories and time periods than the tumors

included in the combined training cohort. A custom chip was used

for the 1st validation set, and a large publicly available whole-

genome dataset was used as a 2nd validation set, while the training

samples were previously run on different (whole-genome) plat-

forms many years earlier. In addition to the rigor of this validation

process, our use of publicly available datasets and of a customized

design chip minimizes the cost of introducing gene-profiling

technology to routine clinical practice.

A 19-gene model with optimal prognostic performance in the

training set discriminated between a high and a low-risk group for

OS in the two validation sets, while maintaining its independent

association with survival in multivariate analysis adjusting for

known clinicopathologic confounding factors. Of note, previously

reported gene expression signatures from individual component

datasets of the training set [6,10], or newly generated models using

our current methodology in these datasets, were not reproducible

in either of the two independent validation datasets. This suggests

Figure 4. Independent prognostic significance of the multigene classifiers adjusted for known clinical and pathologic prognostic
factors. A) Prognostic value of the 19-Gene expression profile adjusted for known prognostic factors by Cox Proportional Hazards Regression in the
training and 1st validation sets. B) Kaplan-Meier analysis for OS as a function of the 19-gene profile for homogeneous subsets of patients with optimal
and suboptimal debulking status in the training set. C) The combination of optimal debulking and low-risk 19-gene profile was associated with a
median OS of 119 months in the training set and not-yet-reached in the validation set, while the combination of suboptimal debulking and high-risk
19-gene profile was associated with a median OS of 23 months in the training set (HR = 7.3, 95% C.I. 3.4–13.5) and 21 months in the 1st validation set
(HR = 5.8, 95% C.I. 2.1–16).
doi:10.1371/journal.pone.0018202.g004

Integration of Ovarian Cancer Microarray Datasets
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Table 3. Multivariate Analysis in the 2nd Validation Set.

19-Gene Profile Adjusted for Age, Grade, Stage and Residual Disease* in 2nd Validation Set

Prognostic Factor Univariate P Value Multivariate P Value

Age 0.035 (HR = 1.56) 0.06

Gradea 0.452 0.96

Stage 0.267 0.205

Grossly Visible vs
No Visible

0.003 (HR = 2.32) 0.008 (HR = 2.21)

Gene Profile (high/low risk) 0.015 (HR = 1.65) 0.03 (HR = 1.59)

aGrade 1 tumors were removed from this dataset (Table 1). If we also remove grade 2 tumors from the 2nd validation dataset (as grade 2 disease can also be considered
low grade), the 19-gene profile was again associated with overall survival both in univariate (HR = 1.8, 95% C.I. 1.09–2.99) and multivariate analysis (HR = 1.91, 95% C.I.
1.13–3.26).

doi:10.1371/journal.pone.0018202.t003

Figure 5. A) Genome-wide molecular correspondence of high and low-risk groups between training and 1st validation set. SubMap
analysis of genome-wide correspondence (similarity) between respective high and low risks groups in the training and 1st validation set. The legend
shows the relationship between color and FDR-adjusted p-values. Red color denotes high confidence for correspondence; blue color denotes lack of
correspondence (Table S1). B) Functional gene set analysis and functional representational analysis in high and low-risk disease
samples. Gene set analysis (GSA) over a wide range of differentially expressed genes revealed 8 pathways that were consistently statistically
significantly differentially expressed. (Efron-Tibshirani GSA, p,0.05). Selected pathways-gene sets are shown that were overrepresented among high-
risk and low-risk tumors by functional representational analysis using EASE (within-system FDR #0.01). A full list of these pathways is found in Tables
S2, S3 and S4. Asterisks (*) denote pathways that were similarly expressed in corresponding prognostic groups in the 2nd validation set.
doi:10.1371/journal.pone.0018202.g005
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that our strategy of integrating information from different and

technically disparate datasets into a composite training set

augments our ability to capture widely reproducible prognostic

gene expression patterns. The variability in Hazard Ratio

estimates for the 19-gene profile between the training and two

validation sets, likely reflects the differences between the various

clinical cohorts, whose characteristics are rarely identical in

microarray studies. For instance, the 2nd validation set appears

to overwhelmingly consist of optimally debulked, thus improved

prognosis patients. Nonetheless, this further underscores the

validity of the profile when applied to a wide range of ovarian

cancer patient populations.

Gene expression models were as powerful as debulking status,

the strongest known clinical predictor of survival in advanced

EOC [4], and the combination of optimal debulking and low-risk

profile defined a population with a long survival plateau (70% 5-

year survival in both training and 1st validation set). Conversely,

the combination of suboptimal debulking and high-risk profile

defined a population with only 10% 5-year survival. Such

powerful prognostic stratification in advanced EOC is not possible

using conventional clinical factors at the time of diagnosis and may

be useful for stratification of high-risk patients that are considered

for investigational approaches using maintenance and/or consol-

idation strategies, or low-risk medically unstable patients that may

avoid the relatively toxic intraperitoneal chemotherapy [20].

Our study also aimed to investigate wither the profile is not

simply a mathematical combination of 19 prognostic variables, but

is also tracking molecular phenotypes of high- versus low-risk

ovarian cancer. Using a methodology (SubMap) that is uniquely

suitable to assess the wider genomic resemblance of subtypes

identified in multiple, independent, and disparate datasets [17], we

confirmed that the low and high-risk groups assigned by our

prognostic models were molecularly homologous between training

and validation sets, suggesting that we have not simply validated a

mathematical prognostic function but also true molecular pheno-

types of good- and poor-outcome. In the 2nd validation set,

molecular outcome subtypes had already been established by the

authors [15]. Our finding that these molecular subtypes were

overrepresented (enriched) in the high and low risk groups identified

by our 19-gene profile, further attests to the notion that the profile is

tracking true and reproducible outcome phenotypes in EOC.

While it was beyond the scope of our study to investigate the

precise biological role of any specific pathway, it is noteworthy that

pathways that were upregulated in the high- risk group have been

implicated in ovarian carcinogenesis and/or associated with

aggressive disease and poor outcome [21,22,23]. Furthermore,

pathways that were overrepresented among genes overexpressed

in high-risk tumors have been also been associated with inferior

outcome [24,25,26], lending biologic plausibility to the phenotypes

we discovered. Importantly, several of these pathways (Figure 5B)

were also similarly expressed in the high and low-risk tumors

previously reported in the publicly available 2nd validation set,

demonstrating reproducibility of biological networks associated

with good and bad-outcome between the different datasets [15].

Finally, we took advantage of previously developed gene

expression ‘‘read outs’’ resulting from experimentally controlled

oncogenic pathway activation (src, b-catenin and E2F3) to assess

activation status in individual tumor samples [12,27]. Although

there is an ongoing debate about how the oncogenic pathway

analysis described by Bild et al. [12]. was applied in one particular

study [28], the original oncogenic pathway analysis method

described by Bild et al. has not been challenged. Consistent with

known prior data, src and b-catenin pathways were more

frequently activated in high-risk compared to low-risk tumors,

while the opposite was true for the E2F3 pathway [12,27,29]. The

novel association of the oncogenic pathway activation status with a

phenotype ‘‘captured’’ by a marker 19-gene profile, of which none

of the pathway genes is a member, demonstrates that biological

inference in microarray studies should not be limited to the

frequently applied approach of screening a list of top marker genes

in a prognostic signature. Of note, these oncogenic pathways lost

independent prognostic significance in multivariate analysis when

the profile was included, suggesting that our prognostic classifier is

capturing complex phenotypes and that outcome differences in

ovarian cancer may not be adequately explained by deregulation

of a single oncogenic or signaling pathway.

In conclusion, our approach exemplifies how integration and

disciplined analysis of the rich information content of published

but disparate cancer microarray datasets can overcome previous

limitations and lead to development of robust and potentially

widely applicable prognostic classifiers. A custom array may also

be a practical tool in the study and management of cancer. Our

study is consistent with, but provides complementary insight to

previous seminal work that demonstrated the reproducibility of

various gene expression profiles, when multiple array cohorts were

run simultaneously, using the same protocol, on the same

microarray platform in different laboratories [30].

The success of our approach does not negate the importance of

previous individual expression studies, which have identified gene

patterns with clinical and biologic relevance; rather effective

integration of these studies may represent an important step

forward towards wider clinical application of gene expression assays.

Materials and Methods

Synthesis of the combined training set
Raw gene expression profile data (Affymetrix .CEL files) were

retrieved from four previously reported clinically annotated micro-

array datasets from different institutions (Beth Israel Deaconess

Medical Center (BIDMC) [10], University of Pennsylvania (PENN)

[14], Duke (http://data.genome.duke.edu/oncogene.php) and

MD Anderson (http://www.mdanderson.org/departments/expther/

bastovcalab/) comprising 265 advanced stage (stages 3 and 4)

papillary serous ovarian cancers. These were profiled on Affymetrix

U95Av2 (BIDMC and MD Anderson), Affymetrix U133A (Duke)

and Affymetrix U133 Plus 2.0 (Penn) array platforms (the

hybridization protocols are commercially available, websites in

Text S1).

These were reprocessed uniformly and combined into a single

training dataset: First, signal intensity was normalized within each

individual dataset using Robust Multi-Array Average (RMA)

analysis. Probesets were mapped across different platforms using

Affymetrix annotation files and the Affymetrix ‘best match’ tool. In

order to minimize the possibility that there are experimental batch

effects that associate with OS within each individual dataset, we

performed unsupervised hierarchical clustering in each of the 4

datasets. In all cases, we observed 2 predominant clusters, and

there was no statistically significant difference in overall survival

between these 2 predominant clusters in any of the datasets.

Coinertia analysis [31] was performed in order to determine the

loss of information incurred by reducing the number of genes to

the subset common to the different Affymetrix platform. The

overall similarity between datasets in the set of common samples

was measured using a multivariate extension of the Pearson

correlation coefficient called the RV-coefficient. The RV-coeffi-

cient is calculated as the total co-inertia (sum of eigenvalues of a

co-inertia analysis) divided by the square root of the product of the

squared total inertias (sum of the eigenvalues) from the individual
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COAs. It has a range 0 to 1 where a high RV-coefficient indicates

a high degree of co-structure. When the subset of common genes

was examined, the RV co-efficient was 0.86 indicating that the

global correlation structure between datasets was not affected by

the reduction in genes. Hence we decided to just examine the

common genes in subsequent analysis.

Following normalization, technical outlier samples were iden-

tified and excluded using a model-based quality control assessment

that included relative log2 expression (RLE) measures, normalized

un-scaled standard errors (NUSE), array pseudo-images, and the

percent of probe sets called ‘‘present’’. Finally, systemic non-

biological interlaboratory experimental variation (‘‘batch effect’’)

between the datasets was adjusted using non-parametric empirical

Bayes frameworks implemented in ComBat (http://statistics.byu.

edu/johnson/ComBat) [18]. The resulting normalized, standard-

ized dataset contained 239 samples.

Independent Validation Sets
The 1st independent validation set included 61 patients with

advanced stage (III, IV) ovarian cancer diagnosed between 9/2001

and 7/2008 at BIDMC, Massachusetts General, and Brigham and

Women’s hospitals (Table 1). All patients underwent standard

surgical and chemotherapy treatment [1]. The study protocol for

collection and use of tissue and clinical information for all patients

was approved by the institutional review boards at Beth Israel

Deaconess Medical Center, Massachusetts General Hospital,

Brigham and Women’s Hospital and Dana Farber Cancer

Institute. All patients provided written informed consent autho-

rizing the collection and use of the tissue for study purposes.

Profiling was performed using a custom Affymetrix GeneChipTM

with 650 genes. After we had integrated the 4 aforementioned

datasets into one combined training set, and developed and

validated the prognostic models in the 1st independent validation

set using the custom Affymetrix GeneChipTM, another ovarian

cancer dataset became publicly available and thus we decided to

use it as a 2nd independent validation set (GSE9899) [15]. This

dataset included 229 patients with epithelial ovarian, primary

peritoneal, or fallopian tube cancer (after excluding patients with

grade 1 disease, and those with no survival data), diagnosed

between 1992 and 2006. Profiling was performed using Affymetrix

U133 Plus 2.0 arrays. The clinicopathologic characteristics for

both validation sets are shown in Table 1.

Design of Custom Array Chip
Gene-expression profiling in the 1st independent validation

dataset, was performed using a custom Affymetrix GeneChip (data

available at GEO, accession number GSE19161, http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?token = bdgzfwmysouamxe&

acc = GSE19161). The number of probe sets on the custom chip

represents a compromise between cost and inclusion of an adequate

pool of top candidate prognostic genes, a priori identified by

applying the supervised principal component survival analysis

method in each of the individual training datasets. Specifically, we

applied supervised principal components analysis [16] in each

dataset and selected subsets of probe sets that created a maximum

significant survival split. Then, we applied the models to the

remaining training datasets and identified the maximum number of

probe sets that could also generate a significant survival splits in all

remaining training datasets. This analysis was repeated for the

different training datasets, ultimately generating a pool of markers that

was the union of probe sets resulting from these analyses. This pool,

including probe sets that were part of significant prognostic models in

all datasets, was selected for the custom array. We also added pre-

defined prognostic signatures from previous publications [6,10]. Next,

we screened the list for duplicates and if there were duplicates we

retained only the U 133-based probe set. Finally, we added a set of

control spikes and normalization probe sets. The total number of

probe sets was set to approximately 1200 (the precise number was

1191), based on the maximum number of probe sets that could be

custom-spotted at the minimal possible cost. The array contained a

total of 658 unique prognostic genes (excluding controls, averaging

probe sets that were duplicates of the same gene, and converting all

probe sets to the U 133 A platform). The design was carried out in

collaboration with the Affymetrix technical design team.

Development of prognostic models using the supervised
principal component survival algorithm

Firstly, genes associated with survival in the combined training

set at a significance level of 0.05 (Cox proportional hazards model)

were identified. More details are included in Text S1. These genes

were subsequently ranked based on their absolute Cox regression

coefficients, and prognostic models with several sets of top ranking

genes using the supervised principal component survival algorithm

were developed. The methodological principles of the Survival

Risk Prediction Algorithm have been previously described [16].

A high and a low-risk survival groups were defined based on a

multivariate model of the expression level of the genes contained

in each set of top ranking genes and the Cox regression coefficient

for each gene. This multivariate model was used in a leave-one-out

cross validation process to assign risk-group membership for

clinical samples. Kaplan-Meier OS curves were plotted for two

risk groups, with higher or lower than median risk of death or

recurrence. Statistical significance of the survival splits was

assessed by the log-rank test and a permutation statistic was

calculated by randomly reassigning the survival data among cases,

repeating the entire survival risk prediction 100 times and

estimating how many times the log-rank statistic is lower than

the log-rank statistic for the real data. This represented the

permutation significance level for testing the null hypothesis that

there is no relation between the expression data and survival.

These models were directly applied without any modification to

the two validation sets after adjustment of non-biological

experimental variation across data sets [18]. Multidimensional

plots of the training, validation 1 and validation 2 datasets, before

and after correction of batch effect show that before application of

the batch adjustment algorithm, each dataset clearly separated

from all the others (‘‘batch effect’’), whereas after correction of

batch effect, samples from all datasets were well intermixed (Figure

S1). All reported p-values are two-sided. Multivariate adjustment

for known prognostic factors was performed using a Cox

proportional hazards regression model that included grade, age

(,65 years versus $65 years), stage (early stage 1 or 2 versus

advanced stage 3 or 4), debulking status (optimal, less than or

equal to 1 cm.; or suboptimal, greater than 1 cm. residual disease)

and 19-gene profile risk status (low- vs high-risk). Because only 8/

229 (3%) of the tumors were definitely known to be suboptimally

debulked (based on the 1 cm cutoff criterion for debulking status)

in the 2nd validation set, debulking status was included in the

multivariate analysis of the 2nd validation set as ‘‘grossly visible’’

versus ‘‘no visible’’ residual disease after surgery.

Genome-wide molecular correspondence of high and
low-risk groups between the training and validation sets
using Subclass Mapping (SubMap)

In order to assess whether tumors assigned as high or low-risk in

the combined training set were molecularly homologous with

tumors assigned as high or low-risk, respectively, in the validation
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set, we used a recently developed methodology (Subclass

Mapping-SubMap) that is uniquely suitable to assess the

genome-wide molecular correspondence of pre-specified subtypes

in independent and even technically disparate datasets.

Submap is an unsupervised subclass mapping method that

identifies the correspondence or commonality of subtypes found in

multiple, independent data sets potentially generated on different

platforms. Suppose we have two independent datasets A and B

with i and j candidate subclasses respectively (a subclass must

contain at least 10% of the samples of a dataset to be considered as

a candidate subclass). Marker gene lists ‘marker(Ai)’ for each

candidate subclass in A (A1, …Ai) are determined based on the

differential gene expression versus the rest of A subclasses, while

genes in data set B are rank-ordered according to their correlation

with each Bj subclass versus the other B subclasses to yield a gene

list, ‘ranking(Bj)’. Association between Ai and Bj is evaluated by

quantifying the over-representation of ‘marker(Ai)’ in the up-

regulated end of the list ‘ranking(Bj)’ using Gene Set Enrichment

Analysis (GSEA) as previously described [32]. An enrichment

score (ESAiBj) is calculated, and statistical significance is assessed

as a p-value, pAiBj, by randomly permuting sample class labels in

B and estimating the null distribution of ESAiBj score. This

process is repeated by interchanging the role of A and B to

compute ESBjAi and pBjAi. Mutual enrichment information is

defined by combining pAiBj and pBjAi using the Fisher inverse

chi-square statistic, Fij. Statistical significance is estimated based

on a null distribution for the Fij generated by randomly picking the

p from corresponding null distributions for ESAiBj and ESBjAi. A

FDR adjustment to account for multiple hypotheses testing is

performed, and FDR adjusted p-values are summarized in the

subclass association matrix (SA matrix).

Pathway Analysis
In order to assess whether the gene expression profiles of high-

and low-risk disease samples were enriched for specific functional

groups of genes, we performed functional category representa-

tional analysis using EASE [33] among genes that were

upregulated and downregulated in the high- versus low-risk

patients (using a t-test p,1026). We analyzed representation of

Gene Ontology assignments, phenotype, PFAM, PIR, Swiss-Prot

keywords, GenMAPP and KEGG pathways. For each functional

category of genes we utilized a False Discovery Rate (FDR) of

#0.01 to assess the impact of multiple testing.

Furthermore, we performed gene set analysis (GSA) as

described by Efron and Tibshirani [34], which is an evolution of

the previously reported Gene Set Enrichment Analysis (GSEA).

GSA pathway analysis was performed over a wide range of

differentially expressed genes between high and low-risk groups

[using a t-test p from 0.01 (3264 genes) to as low as 0.0001 (1698

genes)], to identify pathways that were consistently statistically

significantly differentially expressed at a GSA p,0.05.

Prediction of probability of oncogenic pathway
activation in tumor samples

We used signatures of experimentally controlled oncogenic

pathway activation that are publicly available at http://dig.

genome.duke.edu/. These signatures have been validated in a

variety of in vitro models and patient samples. Specific

mathematical models based on the Bayesian probit regression

algorithm, estimating the probability of activation of each pathway

were trained in the experimental systems used to develop these

signatures (arrays available at the website indexed above) and

applied on individual tumor samples of the training set. Non-

biological experimental variation between the experimental system

arrays and the ovarian cancer datasets was corrected using a

previously described batch effect adjustment algorithm, ComBat

(http://statistics.byu.edu/johnson/ComBat) [18]. Each individual

tumor sample was assigned a probability value of pathway

activation, from 0 to 1. A probability value higher than 0.5 was

used as cut off for pathway activation. The association between

gene expression profile risk status (i.e. low versus high-risk) and

activation of oncogenic pathways in each tumor sample was tested

using 262 table statistics and Odds-ratios.

Supporting Information

Figure S1 Adjustment for non-biological experimental
variation. Multidimensional scaling of the integrated training

and validation sets revealed that, before application of the batch

adjustment algorithm, each dataset clearly separated from all the

others (‘‘batch effect’’), whereas after correction of batch effect,

samples from all datasets were well intermixed.

(TIF)

Table S1 Assessment of genome-wide molecular correspon-

dence of high and low-risk groups between the training and

validation sets using SubMap

(DOC)

Table S2 Pathways identified by GSA and their Efron-

Tibshirani p values

(DOC)

Table S3 Pathways overrepresented among genes upregulated

in high-risk tumors by EASE

(DOC)

Table S4 Pathways overrepresented among genes upregulated

in low-risk tumors by EASE

(DOC)

Text S1 Supplementary Text

(DOC)
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