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Abstract
Eosinophils are granulocytic innate immune cells whose presence is conspicuous in a variety of
disease states, including eosinophilic hyperproliferative and infiltrative processes, as well as
conditions associated with maladaptive Th2 inflammation. This review discusses the role of
eosinophils in disease pathogenesis, including a consideration of relevant eosinophil biology.
Eosinophilic disease patterns of tissue infiltration are also detailed, as are candidate mechanisms
by which eosinophils cause fibrosis and hypercoagulability and the importance of eosinophils in
allergic inflammation. Eosinophils are unique cells in their spectrum of associated disease, with
the promise of future discoveries in delineating the manner in which they contribute to disease
pathogenesis.

Eosinophils are granulocytic innate immune cells that are classically regarded as having a
homeostatic role in the defense against helminth parasitic infections. However, their
presence is conspicuous in a variety of disease states, including eosinophilic
hyperproliferative and infiltrative processes, as well as conditions associated with
maladaptive Th2 inflammation. The mechanisms by which eosinophils cause disease have
not been fully elucidated, but accumulated observations and evidence have allowed for
improved understanding of the interaction of eosinophil biology with disease pathogenesis
and of patterns of disease caused by blood and tissue eosinophilia. This review will discuss
the role of eosinophils in disease pathogenesis, including a consideration of eosinophil
biology, with a focus on mechanisms of eosinophilia and mechanisms of eosinophil
activation. In addition, the spectrum of eosinophilic infiltration, the contribution of
eosinophils to tissue fibrosis and to hypercoagulability, and the importance of eosinophils in
allergic inflammation will be detailed.

Eosinophil Biology
Blood eosinophilia occurs in response to soluble factors, namely, the cytokines interleukin
(IL)-5, granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-3 (Figure 1).
IL-5 has been well established to be specific and essential to eosinophils, having a central
role in promoting eosinophil differentiation,1,2 proliferation,3 trafficking,4 and survival.5
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IL-5 was discovered as a cytokine that could specifically promote eosinophil differentiation
from bone marrow precursor cells.1 The priming of eosinophils with IL-5 facilitates their
chemotaxis to eosinophil chemoattractants and is itself a potent eosinophil
chemoattractant.4,5 Eosinophils stimulated with IL-5 have extended survival when cultured
in vitro.5 Exposure to IL-5 has also been shown to facilitate degranulation and release of
cationic cytotoxic mediators from eosinophils.6 Human eosinophils cultured with IL-5
release eosinophil-derived neurotoxin (EDN), eosinophil peroxidase (EPO), and eosinophil
cationic protein (ECP) and become hypodense due to release of these granule contents.6

Several disease processes characterized by hypereosinophilia have been shown to be
associated with elevated production of IL-5, including hypereosinophilic syndrome (HES),7

asthma,8 Churg-Strauss syndrome (CSS),9 and eosinophilic esophagitis (EoE).10 The
association of IL-5 elevation with these disorders, in concert with the known importance of
IL-5 to eosinophils, has made neutralization of IL-5 an attractive therapeutic target.
Monoclonal antibody against IL-5 has been demonstrated in human trials to be effective in
the treatment of HES,11 eosinophilic asthma,12,13 and CSS.14 Treatment of HES patients
negative for the FIP1L1-PDGFRA gene rearrangement with the anti-IL-5 antibody
mepolizumab (GlaxoSmithKline, Brentford, UK) reduced eosinophil counts and allowed for
substantial tapering of corticosteroids in a randomized, placebo-controlled clinical trial.11

Use of mepolizumab was effective in reducing asthma exacerbations in two randomized
controlled trials of patients with asthma selected on the basis of sputum eosinophilia.12,13

An open-label study of mepolizumab in CSS similarly resulted in both tapering of
corticosteroids and reduction of disease exacerbation.14

Both GM-CSF and IL-3 also have potent effects on eosinophils, though unlike IL-5 their
activity is not specific to eosinophils alone nor is their presence essential to eosinophil
differentiation and proliferation like that of IL-5. The receptors for IL-5, GM-CSF, and IL-3
all share a common β subunit that is responsible for signaling activity, explaining some of
the overlapping effects of these cytokines on eosinophils.15-17 All three cytokines have the
ability to promote eosinophil survival in low concentrations.17 In fact, antagonism of
binding with antibody against the binding site on the β subunit can inhibit the activity of all
three cytokines.18 It has been suggested that among this group of cytokines, GM-CSF has
the greatest effect on eosinophil survival.19 This assertion comes from the observation that
the bronchoalveolar lavage fluid from patients with asthma has the ability to promote
eosinophil survival that is neutralized to the greatest extent by antibody against GM-CSF,
compared to antibody against IL-5 or IL-3.19 In addition to enhanced survival, exposure to
IL-3 also activates eosinophils, making them more hypodense, augmenting lipid mediator
release, and facilitating toxicity to helminths.20 GM-CSF activates eosinophils in a wide-
ranging manner, resulting in augmented secretion of granule contents,21 augmented
adhesion,22 increased vascular endothelial growth factor (VEGF) secretion,23 and
upregulation of major histocompatibility complex (MHC) class II.24 GM-CSF and IL-3
exposure primes eosinophils to secrete ECP in response to stimulation with the complement
fragment C3b.21 GM-CSF–stimulated eosinophils have improved binding to endothelium in
a very late antigen-4 (VLA-4)–dependent fashion compared to unstimulated eosinophils.22

As discussed below, eosinophils have been found to have antigen-presenting properties.
GM-CSF is key to the antigen-presenting activity of eosinophils, as it is necessary for the
expression of MHC class II and obligate co-stimulatory surface proteins.24,25 Eosinophils
are also themselves capable of producing GM-CSF and IL-3 (as well as IL-5), resulting in
autocrine effects on eosinophil survival and function.26

Eosinophils become activated in response to a variety of stimuli, contributing to their ability
to infiltrate tissues and participate in disease pathogenesis. Specifically, eosinophils may
demonstrate increased secretion of granule contents, release of cytokines, respiratory burst,
chemotaxis, release of lipid mediators, and cytoskeletal rearrangements with shape change
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when activated.27,28 Though a range of soluble factors can activate eosinophils, one prime
example is the response of eosinophils to stimulation via the eotaxin receptor, C-C
chemokine receptor-3 (CCR3), by the eotaxins.27 Interestingly, treatment of HES patients
with mepolizumab results in the reduced ability of eosinophils to become activated ex vivo
as measured by shape change in response to CCR3 stimulation by eotaxin−1, −2, and −3.29

MHC class II, co-stimulatory molecules, and adhesion molecules are upregulated in various
disease states in which eosinophils are activated.25 In asthma, complete remission of disease
has been differentiated from active disease by reversal of eosinophil activation, as assayed
by the release of cationic granule proteins.30

Disease Pathogenesis
The spectrum of eosinophilic diseases is broad, with the potential to involve all organ
systems. It is important to note the tissue eosinophilia may occur with or without blood
eosinophilia. Similarly, the presence of blood eosinophilia does not necessarily portend the
presence of tissue eosinophilia. Though the mechanisms by which tissue eosinophilia occurs
and cause disease still remain incompletely understood, some overarching themes can be
applied to eosinophilic disease pathogenesis.

Tissue Infiltration
While the presence of a modest number of eosinophils may be normal in some tissues, such
as the gastrointestinal tract, the excessive infiltration of eosinophils into tissues is in and of
itself pathologic and potentially representative of local or systemic disease. Eosinophilic
inflammation is a central component of a distinct set of diseases involving the skin, lungs,
heart, gastrointestinal tract, kidneys, sinuses, and nervous system, with or without other
systemic manifestations (Figure 2).

Eosinophils are commonly found infiltrating skin lesions in atopic dermatitis,31 as well as in
blistering skin diseases and urticarial disorders.32 Eosinophilia may affect all tissue layers of
the skin, with eosinophilic cellulitis, fasciitis, and panniculitis all having been
described.33–35 Blood eosinophilia occurs with flares of episodic angioedema with
eosinophilia, also known as Gleich's syndrome.36

The lungs are a common site for pathologic eosinophilic infiltration, most commonly in
allergic asthma. As discussed above, the specific targeting of eosinophils via neutralization
of IL-5 in asthma has proven to be a successful therapy for selected patients in clinical trials.
The pulmonary parenchyma is commonly involved in hypereosinophilic syndrome, with
40% of patients demonstrating pulmonary involvement.7 While cough and eosinophilic
pulmonary infiltrates are the most common pulmonary manifestations, fibrosis of the lung
parenchyma may occur as well.7 Similarly, though CSS is a systemic process characterized
by eosinophilic vasculitis, patients often present with eosinophilia in the context of
asthmatic symptoms coupled with pulmonary infiltrates and sinus abnormalities.37 The
eosinophilic pneumonias, both acute and chronic, provide illustrative examples of the
potentially pathogenic nature eosinophilic infiltration.37 Acute eosinophilic pneumonia
causes respiratory failure resembling the acute respiratory distress syndrome, and chronic
eosinophilic pneumonia manifests itself in dyspnea and hypoxemia. Allergic
bronchopulmonary aspergillosis, drug reactions, and parasitic infections are also associated
with pathologic eosinophilic lung inflammation.37

The infiltration of eosinophils into the heart in HES, tropical eosinophilia, and several other
systemic eosinophilic disorders has downstream effects, starting with necrosis and
thrombosis, but culminating in fibrosis.7 A more detailed discussion of the relationship of
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tissue eosinophilia with fibrosis follows below. Cardiac involvement of CSS may include
coronary vasculitis and myocardial damage.37

EoE is emerging as an increasingly recognized gastrointestinal eosinophilic infiltrative
disease. The inflammatory processes leading to infiltration of esophagus have significant
overlap with allergic disease, with an important Th2 inflammatory component.38

Eosinophilic inflammation may also occur in other parts of the gastrointestinal tract, causing
gastroenteritis or contributing to hepatobiliary disease.

Infiltration of nervous structures can occur with CSS and HES.7,37 Neurologic dysfunction
in HES can occur due to direct CNS dysfunction and peripheral neuropathy, or can be due to
central thromboembolic phenomena directly related to eosinophilia.7

Fibrosis
Tissue eosinophilia may result in local fibrosis, particularly in the heart, the airway, and the
skin. It has been suggested that eosinophils and deposition of eosinophilic granule contents
may be involved in a wide range of inflammatory fibrotic processes.39 Eosinophils have
been noted in several in vitro studies to be profibrogenic. Pincus et al observed that extracts
from both eosinophils and eosinophil granule preparations had the ability to stimulate DNA
synthesis in human fibroblasts.40 Similarly, sonicated eosinophils have the ability to
stimulate lung fibroblast proliferation, as well as collagen production from dermal
fibroblasts.41 The stimulatory effect of eosinophils on fibroblasts is dependent on the pro-
fibrotic cytokine-transforming growth factor-β (TGF-β), as antibody neutralization of TGF-
β partially reverses these effects.41 Eosinophils from patients with hypereosinophilia have
increased expression of mRNA for TGF-β compared to eosinophils from normal donors,42

supporting the idea that eosinophils are abnormally activated in disease. Conditioned media
from cultured eosinophils have been demonstrated to stimulate fibroblast replication as
well.43 Human eosinophils cultured with fibroblasts augment the contraction of three-
dimensional collagen matrices.44 ECP itself has been observed to have the same effect on
collagen matrices, as well as stimulating TGF-β release from fibroblasts.44,45 Other data
suggest that IL-1β secretion by eosinophils is an important mediator in promoting a
fibrogenic phenotype by fibroblasts.46 Interestingly, HES patients with elevated serum
tryptase levels are more likely to develop end-organ fibrosis.47 These data, in concert with in
vitro data in the literature showing significant cross-talk between eosinophils and mast
cells,48 suggest that mast cells may have an important role in eosinophil-mediated fibrosis.

Cardiac fibrosis has long been recognized as a potential complication of hypereosinophilia,
whether related to parasitic disease, idiopathic HES, malignancy, CSS, or other
causes.7,49,50 It is a significant source of morbidity in HES and CSS.7,37 Of note, cardiac
fibrosis is not only characteristic of the chronic eosinophilic leukemia variant of HES,51 but
common to a wide-range of eosinophilic disorders. In tropical eosinophilia and HES, cardiac
fibrosis is a late manifestation of the disease, occurring after progression through the earlier
stages of cardiac necrosis and thrombosis.7 The development of cardiac fibrosis in
eosinophilic disorders is unpredictable with unclear etiology beyond that described by the
above in vitro data. It is likely that the activation state of eosinophils contributes to their
ability to cause tissue fibrosis. A commentary in The Lancet in 1977 presciently noted that
there may be “benign” and “sinister” eosinophils that explain the differential development of
cardiac fibrosis.52

A correlation between lung eosinophilia and idiopathic pulmonary fibrosis (IPF) has been
observed, with elevated bronchoalveolar lavage eosinophil counts and ECP levels found in
IPF and with more rapid progression of disease.53,54 Elevated eosinophil counts and ECP
levels can be found in induced sputum of patients with IPF as well.55 In bleomycin murine
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models of pulmonary fibrosis, hypereosinophilia induced by transgenic overexpression of
IL-5 increases the extent of lung injury.

Asthma is characterized by subepithelial fibrosis, and ample evidence exists that eosinophils
have a significant pathologic role in promoting airways fibrosis.57 Eosinophils have been
found in airway biopsies from patients with asthma to be a major source of TGF-β, as
detected by both mRNA and protein expression.58 TGF-β is produced by airway eosinophils
after allergen challenge to asthmatic subjects.59 The TGF-β2 isoform has specifically been
found to be associated with severe eosinophilic asthma.60 Murine models of asthma show
that eosinophils recruited to airways produce TGF-β, and that depletion of eosinophils either
through IL-5 receptor gene knockout or administration of anti-IL-5 antibody prevents
subepithelial and peribronchial fibrosis.61 Similarly, data from eosinophil deficient Δdbl
GATA mice support the role of eosinophils in fibrosis. Δdbl GATA mice are deficient in
eosinophils in a selective manner due to the deletion of a high-affinity binding site in the
GATA-1 promoter, and these animals show reduced airway extracellular matrix deposition
upon allergen sensitization and airway challenge.62 One of the preliminary studies of the use
of anti-IL-5 therapy in human subjects with asthma described reduced airway fibrosis with a
decrease in the subepithelial deposition of extracellular matrix proteins.63

Subepithelial fibrosis is also characteristic of EoE.64 The fibrosis that occurs in EoE has
significant clinical consequences, contributing to dysphagia and strictures.64 Aceves et al
found increased subepithelial fibrosis in biopsy specimens from pediatric patients with EoE,
and they also noted that many of the TGF-β–expressing cells were eosinophils.65

Hypercoagulability
Eosinophilia, particularly in the context of HES, has been recognized to contribute to disease
pathogenesis through promotion of hypercoagulability.50 Several case reports have
described the occurrence of several varieties of thrombosis in HES, including deep venous
thrombosis and cutaneous infarction,66 superficial venous thrombophlebitis,67 and
thrombotic microangipathy.68 Ogbogu et al have described in detail the potential for HES to
cause intracardiac thrombosis.50 These investigators suggest that up to a quarter of HES
patients develop thrombotic complications, based on compilation of case series and case
reports.50 Diffuse systemic thrombophlebitis in the context of hypereosinophilia has been
described as well.

Patients with eosinophilia of various etiologies have been observed to have increased levels
of fibrinogen, fibrin degradation products, and platelets compared to control subjects.70

From a mechanistic perspective, Venge and colleagues noted in 1977 that ECP had the
ability to promote the coagulation of plasma in a factor XII-dependent fashion.71 Other
cationic eosinophil granule proteins, such as MBP and EPO, can activate platelets in vitro.72

In addition, MBP has the ability to inhibit the activity of both endothelial cell surface
thrombomodulin and soluble thrombomodulin in generating the anticoagulant activated
protein C.73 EPO, as well as protein extract from lysed eosinophil granules, is able to inhibit
the anti-coagulant effect of the mast cell tryptase/heparin complex.74 EPO itself acts as a
procoagulant and counters the anticoagulant activity of heparin.74 The oxidization product
of thiocyanate by EPO is a potent inducer of tissue factor activity by human umbilical vein
endothelial cells.75 Peripheral eosinophils are themselves a significant source of tissue
factor, and stimulation of eosinophils with GM-CSF and platelet-activating factor causes
translocation of tissue factor to the eosinophil cell surface.76 Lysed stimulated eosinophils
cause the formation of factor Xa from factor X when incubated with coagulation factor
concentrate; this effect is dependent on tissue factor, given the observed inhibition with
addition of neutralizing antibody to tissue factor.76
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Allergic Mechanisms
The substantial contributions of eosinophils to allergic mechanisms of disease have been
discussed in prior reviews.25,77 The presence of eosinophils is a hallmark of allergic
inflammation. As described earlier, the generation of IL-5 in Th2 inflammation promotes
eosinophilic infiltration and survival. Eosinophils are a source of lipid mediators of allergic
inflammation (including leukotriene C4), as well effectors of cytotoxic activity through the
release of their cationic granule contents.78 Of particular note is the development of a robust
literature demonstrating that eosinophils have diverse immunoregulatory functions that are
integral to allergic inflammation.25 Eosinophils possess pools of preformed cytokines that
they are able to rapidly mobilize and differentially secrete, allowing them to participate
intimately in modulation of Th2 and Th1 inflamma-tion.79 Recent evidence suggests that
distinct eosinophil subpopulations may exist that express differential cytokine and
chemokines in dermatologic disorders,80 and circulating eosinophil subpopulations
characterized by differential surface marker expression differentiate between EoE,
inflammatory bowel disease, and airway allergy.81 They are able to function as antigen-
presenting cells as well, which may be important for perpetuation of allergic
inflammation.82 Recent data suggest that eosinophils also contribute to bronchoconstriction
in allergic airway disease through stimulation of nerves to airway smooth muscle,83 and that
eosinophils may stimulate neuronal growth in atopic dermatitis.84

Conclusions
Ehrlich first identified the eosinophilic leukocyte almost 140 years ago, but a full
understanding of the mechanisms of eosinophilic disease pathogenesis remains elusive.
However, a series of findings over the last 30 years has allowed for a better appreciation of
the importance of cytokines and chemokines, particularly IL-5, GM-CSF, and the eotaxins,
to the promotion of eosinophilia and eosinophilic disease. Neutralization of IL-5 with
monoclonal antibody has become a promising potential therapy for a wide-spectrum of
eosinophilic diseases, while providing important mechanistic insights into eosinophilic
disease. Accumulated case series and case reports of end-organ eosinophilic infiltration have
facilitated improved categorization of eosinophilic disease patterns. Candidate mechanisms
by which eosinophils cause fibrosis and hypercoagulability have been elucidated, as has a
more sophisticated understanding of the role of eosinophils in allergic inflammation.
Eosinophils are clearly unique cells in their spectrum of associated disease, with the promise
of future discoveries in delineating the manner in which they contribute to disease
pathogenesis.
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Figure 1.
The effect of major stimulatory cytokines on eosinophils. IL-5, GM-CSF, and IL-3 have
wide-ranging effects on eosinophils. IL-5 promotes eosinophil differentiation and
proliferation. IL-5, GM-CSF, and IL-3 all have important effects on trafficking, survival,
degranulation, and activation of eosinophils.
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Figure 2.
Organs involved in tissue eosinophilia. As depicted, eosinophils have the potential to
infiltrate most organ systems and cause disease. Tissue eosinophilia may lead to end-organ
fibrosis. Hypereosinophilia is associated with hypercoagulability.

Akuthota and Weller Page 12

Semin Hematol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


