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Abstract

What are the origins of abstract concepts such as seven, and what role does language play

in their development?  To address these questions, experiments probed the natural 

number words and concepts of three-year-old children who can recite number words to 

“ten” or beyond but produce an appropriate number of objects only when asked for “one”

or “two.”  Children judged correctly that a set labeled “eight” retains this label if it is 

unchanged, that it is not also “four,” and that “eight” is more than “two.”  In contrast, 

children failed to judge that a set of eight objects is better labeled by “eight” than by 

“four,” that “eight” is more than “four,” that “eight” continues to apply to a set whose 

members are rearranged, or that “eight” ceases to apply if the set is increased by one, 

doubled, or halved.  The latter errors contrast with children’s correct application of words

for the smallest numbers.  These findings suggest that children interpret number words by

relating them to two distinct preverbal systems that capture only limited numerical 

information.  In order to master number words and counting, children must construct the 

system of abstract, natural number concepts from these foundations. 
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The Development of Language and Abstract Concepts:  The Case of Natural Number

Human science, technology, economics, and other cultural achievements depend 

on systems of abstract concepts, especially the rich system of number concepts that 

supports counting, arithmetic, and the measurement of space and time.  Before children 

begin formal schooling, most have developed a robust system of natural number 

concepts, expressed by the words of their verbal counting routine (Case & Griffin, 1990; 

Gelman & Gallistel, 1978; Siegler, 1991).  Such children understand that each number 

word picks out a set of individuals, with one more individual than the set designated by 

the preceding count word.  They can use verbal counting to perform the numerical 

operations of addition and subtraction (e.g., Carpenter, Moser, & Romberg, 1982; 

Siegler, 1991), and they understand that addition and subtraction change the cardinality 

of a set and hence the application of a number word (Lipton & Spelke, 2006).  Their 

representations of number connect intimately to representations of space via a mental 

“number line” (Temple & Posner, 1998).  Finally, many children understand that the 

natural numbers have no upper bound (Gelman, 1993), and that even number words to 

which they cannot count reliably pick out sets with specific cardinal values (Lipton & 

Spelke, 2006).  Findings such as these have led some developmental psychologists to 

suggest that humans are innately predisposed to form natural number concepts (Dehaene, 

1997; Gelman & Gallistel, 1978; Wynn, 1990; 1992).

Research exploring this suggestion has investigated the numerical abilities of 

human infants and non-human primates.  The findings of this research provide evidence 

for two core systems capturing numerical information.  One system serves to represent a 

set of individuals exactly and in parallel, with an upper bound of 3 to 4 objects or events 

(hereafter called the "small, exact number system": Feigenson & Carey, 2005; Hauser, 

Carey, & Hauser, 2000).  The other system serves to represent sets of individuals with no 

clear upper bound and with a ratio limit on discriminability (hereafter, the “large 

approximate number system”: Brannon, Abbott, & Lutz, 2004; Hauser, Tsao, Garcia, & 
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Spelke, 2003; Lipton & Spelke, 2004).  These findings suggest that knowledge of number

develops from its own, inherent foundations.  Because natural numbers show neither the 

set size limit of the small exact number system nor the ratio limit of the large 

approximate number system, however, something beyond these systems is required in 

order for children to gain entry into the world of natural number.

 Natural language is often claimed to meet this requirement, both through its 

system of recursive rules (Chomsky, 1980) and through the verbal counting routine that 

children master during the preschool years (Carey, 2001; Mix, Huttenlocher, & Levine, 

2002; Spelke, 2000; see Mix, Sandhofer, & Baroody, 2005, for review).  By two to three 

years of age, and sometimes younger, children begin to count.  When they are presented 

with a plate of cookies and asked, “How many cookies are on this plate?” they may 

exhibit their counting skill by pointing successively to each cookie while reciting an 

ordered list of number words (Gelman & Gallistel, 1978; Wynn, 1990).  At this stage, 

however, children have limited understanding of number word meanings (Case & Griffin,

1990; Fuson, 1988; Mix et al., 2002; Wynn, 1990).  

The limits of children’s understanding appear most clearly in experiments by 

Wynn (1990; 1992).  After children counted a set of objects, they were asked to give the 

experimenter a specific number of objects.  Most 2.5-year-old children produced a single 

object when asked for “one,” even in a context with no overt plural marker, and produced

more than one object when asked for other numbers.  In contrast, most children produced 

a handful of objects when asked for “two,” “three,” or other numbers designated by 

words that the children themselves had produced during counting; the numbers children 

produced bore no relation to the number words used in the request (Wynn, 1990).  Even 

in a simpler task, in which children simply had to choose which of two pictures depicted 

(e.g.) “three fish,” children chose at random when presented with pictures of two and 

three objects; they succeeded in picking the array of three objects only when the 

contrasting array depicted a single object.  All these findings provide evidence that 
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children understood that “one” refers to a single individual and that other number words 

contrast with “one” in reference.   Nevertheless, children evidently did not understand the

reference of the other words in their own count list.

  Further research by Wynn (1992) provides evidence that children come to master 

the reference of number words in a series of steps over a period of about 18 months.  

Many months after mastering the reference of “one,” children learn that “two” picks out a

set of two objects.  Then they learn the reference of “three.”  Later still, children work out

the logic and purpose of the counting routine and begin to use counting to produce the 

correct number of objects when tested with any of the number words in their counting 

routine.  This protracted course of development is striking because children of this age 

are prodigious word learners, acquiring enduring representations of the meanings of 

many novel words in a single session (e.g., Carey & Bartlett, 1978; Markson & Bloom, 

1997; Baldwin, 1991).  Moreover, children readily and happily recite the number words 

as part of their counting routine, they quickly master part of their application (i.e., that 

number words above “one” do not apply to sets of just one object), and they use number 

words such as “two” in certain appropriate, though restricted, contexts (e.g., “two shoes”:

Mix, 2002).  Children’s failure to master the reference of number words therefore cannot 

plausibly be attributed to lack of exposure, attention, or interest.

The present research aims to shed light on the origins and development of 

children’s number concepts by distinguishing between two general accounts of children’s

developing understanding of number words and the verbal counting routine. According to

one family of accounts (Carey, 2001; Spelke, 2000), children initially have no 

understanding of the logic of the natural number system, and they construct this 

understanding by building on concepts that derive from the two nonsymbolic number 

systems described above: the concept numerically distinct individual, which arises from 

the small exact number system, and the concept set, which arises from the large 

approximate number system and supports the quantificational system of natural language.
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On this view, “one” does not initially designate a set with one member but rather a single 

entity (it is roughly synonymous with “a” or “an”), and all the other number words 

initially designate collections of entities with an indeterminate cardinal value (roughly 

synonymous with the plural marker “s”). Over the course of learning verbal counting, on 

this view, children combine these concepts to construct the system of natural number.  

They learn, in sequence, (a) that “two” designates a set composed of an individual A and 

a numerically distinct individual B, (b) that “three” designates a set composed of 

numerically distinct individuals A, B, and C, (c) that a set of “three” can be formed from a

set of “two” by the operation of adding one, and finally (d) that every count word 

designates a set of individuals with a unique cardinal value that exceeds, by one, the set 

designated by the previous word. 

According to the second account (Gallistel & Gelman, 1990; Gelman & Gallistel, 

2004; Pica, Lemer, Izard, & Dehaene, 2004; Wynn, 1990), children have an innate 

understanding of the logic of the natural number system, embodied in their system for 

representing large approximate numerosities.  On this view, the large approximate system

shows all the logical features of natural numbers:  It is iterative, its internal states are in 

1:1 correspondence with the items to be enumerated, and it represents each numerosity as

a unique cardinal value.  Children are not able to determine accurately the exact 

numerosity of any sets larger than three or four, however, because noise in the large-

number system precludes discriminating higher numbers precisely.  Nevertheless, 

children understand that each large set of objects has some unknown but determinate 

cardinal value, and that the cardinal value of a large set will change (albeit imperceptibly)

if a single individual is added to or removed from the set.

On the second view, the verbal counting routine allows children to overcome the 

ratio limit to their discrimination of cardinal values, but it is difficult to learn because the 

counting procedure obscures the reference of count words (Mix et al., 2005; Wynn, 
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1992).  When a child counts an array of six objects by pointing to each object in turn 

while reciting the words of the count list, each word is applied to single object, in the 

presence of the set of six objects, yet the words from "two" to "five" name neither the 

individual objects nor the cardinality of the full set.  Instead, they specify the order of

pointing and the cardinality of the subset of objects to which the child has pointed thus 

far.  Although the logic of natural number is apparent to children from the beginning, on 

this view, the reference of each number word is obscured by noise in the large, 

approximate number system and by the complexity of the counting routine. 

The second account posits that the cognitive state of a child who does not 

understand verbal counting is like that of an adult who is asked to apply her number 

concepts to large arrays of objects that she cannot count.  Imagine, for example, that an 

adult is presented with two jars of marbles.  If she is asked to point to “the jar with 371 

marbles” when the numbers of marbles in the two jars differ minimally, she can only pick

at random.  The adult nevertheless would succeed at a variety of other verbal number 

tasks.  In particular, if she were asked to estimate how many marbles were in each jar, she

would be more apt to respond with “four hundred” than with “four” or “forty”:  even 

without counting, she can map number words to approximate numerical values.  If she 

were told that there were "371" marbles in one jar, she would know that there were not 

"372" marbles in that jar, for each distinct number word picks out a distinct cardinal 

value.  If the marbles in the jar were stirred but nothing was added or removed, she would

know that the same number word applied to the jar’s contents.  Finally, if some marbles 

were removed from or added to the jar, she would know that the jar no longer held “371” 

marbles, for the application of a number word is changed by addition and subtraction. 

Research by Lipton and Spelke (2006) provides evidence that five-year-old 

children, who have mastered number word reference at least to “twenty” and who use 

counting to determine exact cardinal values, appreciate all these aspects of number word 
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meanings.  Children who had not mastered the base system of count words, could not 

count to 80, and could not judge whether “eighty” or “sixty” designated a larger value, 

were shown a jar and were told that it contained “eighty” objects.  These children then 

judged that the jar still contained “eighty” objects when it was shaken or when one object

was removed and a different object replaced it, and that it did not contain “sixty” objects. 

Finally, they judged that the jar did not contain “eighty” objects when a single object was

removed, or after a sequence in which one object was removed, a second object replaced 

it, and then the original object was returned.  These findings provide evidence that five-

year-old children have mastered the logic of number word reference, and that their 

mastery extends beyond their counting skill.  Nevertheless, the findings do not reveal 

whether younger children, who have not yet mastered the logic of the verbal counting 

routine, have a similar understanding.

Answering this question could contribute to the debate over the origins of natural 

number concepts.  Considerable research reveals that children use lexical contrast to 

work out the meanings of new words within a semantic domain for which they possess 

the relevant concepts.  For example, children who know the meaning of “red” can learn, 

in a single session, the reference of a new color term like “chromium,” if they are 

presented with red and green objects and asked for “the chromium one, not the red one” 

(Carey & Bartlett, 1978).  This learning ability shows that children possess a set of color 

concepts, understand that distinct colors are contrastive (i.e., a single uniformly colored 

object cannot be both red and green), and draw on this understanding in working out the 

reference of new color terms.  

If the logic of natural number is innate and only the verbal counting routine must 

be learned, then children also should pass the above tasks, once they have mastered the 

reference of the first few words in their count list.  For example, children who understand 

the reference of “two,” and who take “two” and “six” to contrast in meaning, should infer

that “six” picks out a specific cardinal value, even though they have no means to 



The development of language   10

determine which visible sets have exactly six members.  In contrast, if natural number 

concepts are constructed during or after learning to count verbally, then children who 

have not yet mastered the logic of verbal counting should fail to appreciate that the later 

words in their count list pick out specific cardinal values.  Although children may 

appreciate that “two” and “six” contrast in reference, they should fail to understand that 

the basis of this contrast is numerical.

To date, research provides mixed evidence concerning young children’s partial 

knowledge of number word meanings.  In one experiment (Sarnecka & Gelman, 2004), 

three-year-old children were told that an array contained “six” elements, a single element 

was removed, and then they were asked whether the array contained “five” or “six” 

elements.  Children tended to respond correctly, consistent with the thesis that they 

understand that each number word picks out a specific, unique cardinal value.  In a 

second experiment, however, children were shown two arrays that either differed in 

number (six vs. five elements) or were the same in number (both six elements).  After 

they judged, correctly, that a pair of arrays was numerically equal or different, they were 

told that one array contained “six” elements.  When children then were asked whether the

second array contained “five” or “six” elements, their judgments were unaffected by the 

equality or inequality of the two arrays.  In light of these conflicting findings, it is not 

clear whether children master the logic of number word reference before, or after, they 

master the system of verbal counting.

The present experiments addressed this question.  Like Sarnecka and Gelman 

(2004), we focused on children who could recite the first eight or more words in the count

list, but who failed to understand the counting routine or the reference of words for all but

the smallest numbers.  Six experiments probed children’s understanding of the number 

words that they produced in their count list:  both those whose reference they had 

mastered (e.g., “one” and “two”) and those that they failed to map to the correct cardinal 

values (e.g., “five” and “ten”).  In the first experiment, we asked whether children 



The development of language   11

understand that each number word contrasts in reference with other number words but 

not with the quantifier “some” or with adjectives.  Our findings provide evidence that 

children make this contrast at every point in their mastery of counting, replicating and 

extending Wynn (1992) and setting the stage for our studies of children’s understanding 

of number word meanings.  In Experiment 2, we asked whether children map each 

number word to an approximate numerical value.  In Experiment 3, we asked whether 

children understand that number words occurring later in the count list refer to larger 

numerosities. In the remaining experiments, we asked if children appreciate that a 

number word no longer applies to a set after the set is transformed by addition or 

subtraction, whereas it continues to apply to a set after its objects are rearranged.

Experiment 1 

Experiment 1 investigated whether 3-year-old children infer that different words 

in their count list apply to different arrays of objects, but that a given number word can 

apply to the same array of objects as do other quantifiers and adjectives.  In light of 

Wynn’s (1990, 1992) findings that children who understand only the meanings of “one” 

and “two” take the other words in their count list to contrast with “one” and “two” in 

reference, we investigated whether children also take the later words in their count list to 

contrast in reference.  Do children infer that an array labeled “five fish,” is not also an 

array of “six fish,” although it may be an array of “some fish” or “happy fish”? 

Method

This experiment and all its successors consisted of a counting pretest, designed to 

assess children’s ability to recite the number words, in order, to “twenty,” a pretest of 

number word reference, designed to determine which number words designate correct 

cardinal values for each child, and then the critical test of children’s understanding of 

number word meaning.  Performance on the critical test was analyzed only for children 

who could recite the count list without error at least to “eight,” who passed the test of 

number word reference for “one,” and who failed the test of number word reference for 
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all number words above “four.”  In the main text, performance of all such children is 

analyzed as a single group.  In the supporting online materials, performance of children 

who differed in counting skill or number word knowledge is compared.

Participants.  Thirty-two 3- to 3.5-year-old children (15 males) ranging in age 

from 37.0 to 42.3 months (mean age 38.7 months) took part in either the numerical 

contrast group (n = 16) or the non-numerical contrast group (n = 16).  Children were 

recruited from birth records and by letter and phone from the greater Boston area.  An 

additional 12 children participated in the experiment but were excluded from the analyses

for failure to complete enough test questions (n=5), failure to produce a count sequence 

(n=1), or for ceiling performance on the give-a-number pretest (n=6).

Displays.  Pretest materials consisted of 20 1” (2.5cm) multi-colored plastic fish 

and a small, rectangular cardboard box.  Displays for the numerical contrast group 

consisted of 4” x 8”  (10 x 20cm) cards with familiar 3D objects (e.g., horses, stars) glued

onto them.  Cards were presented in pairs containing identical objects in sets of varying 

numerosity.  On the two trials contrasting “one” with a different number word, the two 

cards depicted objects whose labels lacked an overt plural marker (e.g., sheep).  Displays 

for the non-numerical contrast group consisted of color images of familiar animals 

printed on 8” x 11” (20 x 28cm) paper.  Pictures were presented in pairs depicting 

animals of different colors (e.g., one picture of 10 red sheep and one picture of 5 blue 

sheep).  

Design.  Children who could count at least to “eight” in the counting pretest, but 

who failed to respond correctly to numbers requested beyond "four" in the give-a-number

pretest, were included in the experimental session.  For the numerical contrast group, 

children were presented with a total of 18 trials divided into two conditions defined by 

the type of words tested:  (a) a known number word condition (6 trials, in which one of 

the sets contained a number of objects that the child named reliably on the give-a-number

pretest), and (b) an unknown number word condition (12 trials, number pairs 3 vs. 6 and 
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4 vs. 8 for 2-knowers and 4 vs. 8 and 5 vs. 10 for 3-knowers, with numbers differing by a 

2:1 ratio).  The test session was divided into three types of questions:  Same-number 

word questions, different-number word questions, and some questions (6 trials each, 4 

with unknown number words).  On half the trials in each condition, the number word 

produced by the experimenter designated the larger set.  For the non-numerical contrast 

group, children were presented with 8 to 10 trials each in two conditions defined by the 

type of comparison the child saw:  (a) number-number and  (b) number-adjective. The 

number words used in the test session were “five,” “seven,” “nine,” and “ten,” which 

were produced by all children during the counting pretest and fell outside each child’s 

known number word range; no known number words were tested in this part of the 

experiment. The adjectives were “happy,” “hungry,” "smart," and "brand-new":  words 

that were found in informal pretesting to be familiar to children but whose reference to 

either of the two arrays of objects was ambiguous with respect to the visible properties of 

those arrays (which showed animals of indeterminate mood or state).

Procedure.  The child entered the study room with his/her parent and was seated 

across a small table from the experimenter.  A coder was seated to the side at a small 

table and recorded the child’s responses.  Video cameras, one focused on the child’s face 

and the other on the experimenter’s face, recorded the test session for future recoding and

analysis of possible experimenter bias.  

For the counting pretest, the experimenter placed 20 toy fish on the table in front 

of the child and asked the child to count the fish out loud.  If a child refused to count, the 

experimenter prompted the child by beginning the count sequence, saying, “one, two…” 

while pointing to fish.  Children were not probed to continue counting after they reached 

20.  For the give-a-number pretest, the experimenter placed 15 toy fish on the table in 

front of the child and identified a small blue box as “the pond where some fish like to 

swim.”  Then the experimenter asked the child to put a particular number of fish in the 

pond.  The pretest always began with the experimenter asking for “one fish,” followed by
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2, 3, 4, 5 and 6 fish in an irregular order (never consistently ascending or descending).  

Once the child failed to give a number accurately, the experimenter asked for the number 

below the failed number and then asked for the failed number again. If a child succeeded 

once and failed once at a particular number, the number was probed a third time as a 

tiebreaker.  Thus, a child who successfully gave 1, 2, and 3 objects but failed twice to 

give 4 objects was coded as a “3-knower” based on this pretest.  If a child failed to 

produce a number correctly by producing a previous number, this was considered a 

failure at both the requested number and the produced number (e.g., a trial on which a 

child produced 3 objects when asked for 4, was scored as a failure for both 3 and 4).   

Number words inside each child’s known number word range are referred to hereafter as 

known number words; the other words that the child produced while counting are referred

to as unknown number words.i 

For the test session, the experimenter placed a pair of cards in front of the child, at

least 8” (20cm) apart, and identified the objects while pointing to both cards (e.g., “Look 

at these sheep”).  On all the numerical contrast trials, the experimenter then pointed to the

target card and identified it by number twice while calling attention to the other card 

(“This card has ten sheep, there are ten sheep here, and this card has sheep as well”).  The

experimenter removed her hands from the cards and asked the child one of three 

questions.  On same-word questions, the experimenter asked the child to point to a 

picture designated by the same number word she had just used (e.g., “Can you point to a 

card with ten sheep?”). On different-number questions, the experimenter asked the child 

to point to a picture designated by a different number word (e.g., “five sheep”).  On some 

questions, the experimenter asked the child to point to a card with “some sheep.”  On the 

non-numerical contrast trials, the initial picture was identified by either a number word or

an adjective (e.g., “This picture has hungry sheep”) and the child was then asked to point 

to a card with the other type of modifier (“Can you point to a picture with five sheep?”).   

In each condition for both the numerical and non-numerical contrast groups, the different 
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types of questions occurred in a quasi-random, intermixed order such that a single type of

question did not occur twice in succession; the specific order of questions was varied 

across children.  On all trials of this and the subsequent experiments, the experimenter 

was careful to look only into the child’s eyes when asking the question to avoid cueing 

the child to an answer.  Generalized positive feedback was given on every trial regardless

of the accuracy of the child’s choice (e.g., “Thank you" or "Nice job”).  If a child refused 

to point, the experimenter repeated the question and asked the child to either touch or 

hand the experimenter the picture.  If the child continued to refuse, the question was 

dropped from the analyses and the experimenter moved on to the next question.

Analyses.  Trials were included in the analysis only if they tested numbers that 

children spontaneously produced on the counting pretest.  Trials were categorized as 

known or unknown number word trials in accord with the child’s performance on the 

give-a-number pretest.  For example, a test question contrasting 3 vs. 6 was coded as an 

unknown number trial for a child categorized as a two-knower on the give-a-number test, 

and as a known number trial for a child categorized as a three-knower. 

Children’s responses were coded as the proportion of trials on which the child 

chose the target card (which had just been identified by the experimenter). For the 

numerical contrast group, the mean proportion of target responses was analyzed by a 3 

(Question: same-number vs. different-number vs. some) x 2 (condition:  known vs. 

unknown number word) x 2 (sex) mixed-factor analysis of variance (ANOVA), with the 

last factor between subjects.  A second analysis for the numerical contrast group 

compared responses in the unknown number word condition only by means of a 3 

(Question: same-number vs. different-number vs. some) x 2 (sex) mixed factor ANOVA 

with the last factor between subjects.  For the non-numerical contrast group, the ANOVA

factors were 2 (Question:  same-word vs. different-word) and 2 (Condition:  number 

word vs. adjective).  Two-tailed t tests compared performance in each condition to 

chance (50%).   Further t tests compared performance on unknown number words across 
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the two groups based on type of contrast:  wholly numerical (number vs. number), 

quantificational (number vs. some) and non-numerical (number vs. adjective). 

Results  

Pretests. On the counting pretest, all children produced every number word from 

one to ten.  On the give-a-number pretest, of the 32 children included in the final 

analyses, 2 were 1-knowers, 16 were 2-knowers, 9 were 3-knowers, and 5 were 4-

knowers.  No child in this or later experiments succeeded on a particular number word on

the give-a-number pretest without also passing the test for the previous number words. 

Main experiment.  Children’s performance is depicted in Figures 1a and 1b.  In 

the known number word condition, children always chose the originally labeled card 

when tested with the same word, and they almost always chose the other card when tested

with a different number word.  The same patterns were observed, though somewhat less 

strongly, in the unknown number word condition.   Performance differed from chance for

both types of questions and for both known and unknown number words (all ts 

(15)>3.65, all ps<. 01, h2=0.974).  In contrast, children chose the two arrays at random 

when asked for a card with some items or for a card with happy items.  The analysis of 

the unknown number word trials of the numerical contrast condition revealed a main 

effect of question (F(2, 13)=61.25, p<.001, h2=.904), reflecting the fact that children 

rejected the target differently depending on whether they were asked for the same 

number, a different number, or some.   A further analysis revealed that children avoided a

card with a single object when asked for some items:  Children chose the target card on 

only 20% of trials when the target card depicted one object. Thus, children tended not to 

apply the word some to arrays containing one object but otherwise applied this term 

indiscriminately to arrays that were or were not first designated by a known or unknown 

number word.  The analysis of the non-numerical contrast condition revealed only a main

effect of condition (F (1,14)=16.38, p<.001, h2=0.539), reflecting children’s greater 
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rejection of the target on number-number trials (74%) than on number-adjective trials 

(57%). 

Finally, a further analysis compared the performance of children showing 

different levels of counting skill and number word mastery on the two pretests (see 

supporting online materials).  Children’s performance was unaffected by the length and 

accuracy of their count list.  In contrast, performance on the number-number trials was 

higher for children categorized as “three-knowers” and “four-knowers” than for those 

who had mastered the reference only of “one” and “two.”  Across several experiments, 

nevertheless, even the children who had mastered only one or two number words tended 

to use all the words in their count list both stably and contrastively (see supporting online 

materials).

Discussion

The findings of Experiment 1 replicate and extend those of Wynn (1992).  They 

provide evidence that 3-year-old children, who have not mastered the exact reference of 

most number words in their counting lists, take those number words to contrast in 

meaning both with known and with other unknown number words.  Children who were 

told that a set contained “five” objects chose a different set when asked to point to “ten” 

objects.  This performance does not reflect a general bias to point to an unlabeled set, 

because children did not tend to choose the unlabeled set when asked for a different 

quantifier (“some sheep”) or an adjective (“happy sheep”).  In particular, children 

appeared to interpret “some” as referring to any sets larger than one, whether or not those

sets were previously designated by a word in their counting list.  Similarly, children were 

equally likely to apply non-numerical adjectives to both labeled and unlabeled sets.  

These findings provide evidence that children’s number words, like their color terms 

(Carey & Bartlett, 1978), form a domain in which different number words contrast 

specifically with one another. The findings do not reveal, however, whether the basis for 

the contrast is numerical (i.e., different count words apply to sets with different cardinal 
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values), non-numerical but quantitative (e.g., different count words apply to sets 

containing differing amounts of material), or non-quantitative (e.g., different count words

apply to sets in different locations, or to sets of different objects).  

These findings set the stage for the present tests of the origins of natural number 

concepts.  If humans possess the system of natural number concepts prior to learning 

counting, then children like those in Experiment 1, who have learned the reference of the 

first few number words and who take all the words in their count list to contrast in 

meaning, should appreciate that each word in the count list has numerical content.  

Although children lack an effective procedure for determining the exact cardinal values 

of arrays of objects, they might be able to map number words to approximate 

numerosities (Experiment 2), judge that words later in the list designate larger 

numerosities (Experiment 3), and change their application of a number word when 

elements are added to or removed from the set that it designated (Experiments 4-6).  The 

remaining experiments test for these abilities.

Experiment 2

Children who recited the number words at least to “ten,” but who failed to show 

mastery of the reference of any number words beyond “four,” were shown two arrays of 

objects.  The arrays differed in cardinal value by a 2:1 ratio, and both cardinal values 

could be labeled by words that the children produced in the correct order when counting: 

for example, arrays of five four vs. ten eight objects.  Children then were asked to point to

the array with “five” or with “ten” objects.  Because sets differing by a 2:1 ratio are 

discriminable even by infants (e.g., Brannon, 2002; Xu & Spelke, 2000), children who 

have mapped the words in their counting routine to approximate numerical magnitudes 

should succeed at this task.  

Method

The method was the same as for Experiment 1, except as follows.
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Participants:   Participants were 16 3- to 3.5-year-old children (8 males) ranging 

in age from 36.5 to 40.2 months (mean age 37.6 months). An additional 8 children 

participated in the experiment but were excluded from the analyses for failure to 

complete enough test questions (n=2), ceiling performance on the give-a-number pretest 

(n=1), low counting (n=2) or failure to produce a count sequence (n=3) in the counting 

pretest.

Displays:  Displays for the main experiment consisted of color pictures of familiar

animals printed on 8” x 11” (20 x 28cm) paper.  Pictures were presented in pairs 

containing identical objects in sets that varied by at least a 2:1 ratio.  Both pictures 

depicted sets whose cardinal values were named by words that the child herself produced 

in the counting pretest.

Design:  After the counting and give-a-number pretests, children were presented 

with 10 to 20 trials in the test session.  For each trial, the experimenter presented a pair of

pictures and asked the child to point to a picture designated by one of the two appropriate

number words. On known number word trials, at least one array presented a cardinal 

value named by a word that the child had fully mastered (“one,” “two,” and for some 

children, “three” or "four").  On unknown number word trials, both arrays presented 

cardinal values named by words that the child produced on the counting pretest but failed

to comprehend on the give-a-number pretest (for most children, 4 vs. 8 and 5 vs. 10; for 

children who were 2-knowers, the unknown number word pairs also included 3 vs. 6).  In

each category, the experimenter asked for the larger array on half the trials.  

Procedure:  For the test session, the experimenter placed a pair of pictures in front

of the child, as in Experiment 1, and identified the objects while pointing to both pictures 

(“Look, I have pictures of sheep here”).  After removing her hands from the pictures, the 

experimenter asked the child to point to the picture with a particular number of objects 

(e.g., “Can you point to the picture with eight sheep?”).  The session was ended when 20 

questions were completed, or once the child refused to answer any more questions.



The development of language   20

Analyses:  Only test trials presenting numbers whose count words were produced 

by the child during the counting pretest were included in the final analyses of the test 

session.  Children’s responses were scored as correct/incorrect and each question was 

coded with regard to each child’s known number word range.  Mean correct responses 

were compared across the two types of trials with a 2 (trial type:  known vs. unknown 

number words) x 2 (sex) repeated measures ANOVA with the last factor between 

subjects.  Two-tailed t tests compared performance in each condition to chance (50%). 

Results   

Pretests.  All children in the final sample counted at least to ten.   Three of the 16 

participants were categorized as 1-knowers, 8 as 2-knowers, 4 as 3-knowers, and 1 as a 4-

knower. 

Test session.  For the main experiment children performed well on known number

trials (mean proportion correct=0.86, SD=0.18, t(15)=8.08, p<.001) but at chance levels 

on unknown number trials (mean proportion correct=0.49, SD=0.35, t(15)<1, NS).  The 

analysis revealed only a significant main effect of Trial type, F (1,14)=13.02, p<.001 

(h2=0.473), reflecting children’s lower levels of correct responding when both sets 

presented numbers of elements for which the number word was unknown.   This 

difference was confirmed by a non-parametric analysis (Wilcoxon matched-pairs signed-

rank test z = 2.9, p<.01).  

Discussion

Experiment 2 provides evidence that children who have not mastered the exact 

meanings of their counting words also do not map those words onto representations of 

approximate numerosity.  This failure cannot be attributed to a failure to discriminate 

between the two numerosities, because the numerosities presented on each trial differed 

by a ratio that even infants can discriminate (Xu & Spelke, 2000).  The failure also 

cannot be attributed to a failure to recognize or order the number words, because all the 

number word pairs probed in this study were spontaneously produced by the children in 
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the correct order when they were asked to count.  The failure cannot be attributed to lack 

of understanding of the task or lack of motivation to perform it, because children 

succeeded robustly on the same task when tested with a known number.  Finally, 

children’s failure cannot be attributed to a lack of attention to, or processing of, the 

unknown number word, because children performed well when queried with an unknown

number word, provided that the contrasting set presented a cardinal value designated by a

known number word.  Children accurately pointed to a picture of ten sheep when asked 

for “ten” and shown a comparison picture presenting one or two sheep, but they 

succeeded no better than chance when the comparison picture depicted a set of five sheep.

Although one can never be certain that an ability is wholly absent at a particular age, the 

present findings provide evidence against the thesis that children endow all the words in 

their count list with (approximate) numerical meaning.

In the next study we continue to address this issue by investigating whether the 

words in children’s counting routine have weaker numerical meaning.  Children may 

understand that the counting words are ordered, such that words that appear later in the 

count list refer to larger numerosities, even if the ordinal list is poorly calibrated to true 

numerical values.  This possibility is not implausible, because both adults and older 

children show monotonically increasing but poorly calibrated functions when they give 

verbal estimates of large numerosities (Izard, 2006; Lipton & Spelke, 2005).  

Accordingly, Experiment 3 tested children’s understanding of the ordering of the 

numerosities conveyed by the words in their count list.

Experiment 3

In Experiment 3, children were told to imagine that they and the experimenter had

different numbers of objects (with the numbers conveyed only verbally), and they were 

asked who had more objects.  If children understand that unknown number words 

designate higher numbers than known number words, then a child who can count to ten 

but only has mastered the reference of “one” and “two” should judge that a person with 
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“seven” objects has more objects than a person with “two” objects.  If children also 

understand that unknown number words occurring late in the count list designate higher 

numbers than those occurring earlier in the count list, then children also should judge that

a person with “ten” objects has more objects than a person with “five” objects.   

Method

The method was the same as Experiment 1 except as follows.

Participants.  Sixteen 3- to 3.5-year-old children (8 males) ranging in age from 

36.9 to 42.0 months (mean age 39.0 months) took part in the study. An additional 7 

children were excluded from the experiment for failure to complete enough test questions

(n=4) or ceiling performance in the give-a-number pretest (n=3).

Displays.  Displays for the main experiment consisted of four pictures containing 

an image of a familiar object (a single apple, butterfly, rock, or flower) presented on 8 x 

11” (20 x 28cm) paper.  

Design.   Each child was presented with 12 trials in two conditions:  known 

number words (4 trials) and unknown number words (8 trials).   The former trials tested 

the number pair 2 vs. 7, while the latter trials were chosen from the pairs 4 vs. 8, 5 vs. 10,

and 6 vs. 12 based on the child’s pretest performance.  The order of the number words 

presented (larger first vs. smaller first) and the pairing of number words with characters 

(child has more vs. experimenter has more) were counterbalanced across trials.  One 

known number word and two unknown number word trials were presented with each of 

four types of objects.  The number word pairs used in the test session were produced by 

all children, in the correct order, during the counting pretest.  Children who did not 

complete at least 4 trials in each condition were excluded from the analyses.

Procedure.  After the counting and give-a-number pretests, children were shown 

the first of four pictures (e.g., an apple) that served as the theme for three trials each.  The

experimenter told the child a short, three-sentence story that began with an introduction 

of the theme (e.g., "Let's pretend that we went apple picking").  In the next sentence, two 
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number words were presented in contrast to each other (e.g., "I picked 8 apples and you 

picked 4 apples").  Then the experimenter asked the child, "Which is more:  8 or 4?".  If 

the child failed to answer or responded that he did not know, the experimenter asked if he

would like to hear the story again and repeated the trial.  If the child again answered that 

he did not know, that answer was coded as incorrect.  Each child's test session began with

a warm-up question with the pair of number words 1 v. 3 (e.g., "Let's pretend that we 

went apple picking.  I picked 3 apples and you picked 1 apple.  Which is more: 3 or 1?") 

that was not analyzed.  (All participants answered the warm-up question correctly.)

Analyses.  Children’s responses were coded as the proportion of correct responses

when asked which number was more.  Mean correct responses were analyzed by means 

of a 2 (condition: known vs. unknown number word) x 2 (sex) mixed factor ANOVA, 

with the last factor between subjects.  Two-tailed t-tests compared responses in each 

condition to chance (50%).

Results 

Pretests.  On the counting pretest, all children counted correctly at least to 10 and 

produced all the number words used in the test session.  On the give-a-number pretest, of 

the 16 participants included in the final analyses, 7 were 2-knowers, 7 were 3-knowers, 

and 2 were 4-knowers.  

Main experiment.  Results were analyzed as the the proportion of trials on which 

children answered correctly that the larger number word of each pair was more. On 

known number word trials, children successfully identified the larger number word as 

more on the majority of trials (M=0.79, SD=0.23, t(15)=5.02, p<.001).  On unknown 

number word trials, in contrast, children chose the larger number word as more on only 

half of trials (M=0.49, SD=0.22, t(15)=.22, NS); the distribution of performance across 

children was unimodal and centered on 50%.  The results of the mixed-factor ANOVA 

revealed only a main effect of condition (F (1,14)=10.29, p<.01, h2=0.424), reflecting 

children’s greater correct responding with known as compared to unknown number 
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words.  This finding was confirmed by a non-parametric analysis comparing performance

with known vs. unknown number words (Wilcoxon z = 2.64, p<.001). 

Discussion

The findings of Experiment 3 provide evidence that children understand that the 

unknown number words in their count lists refer to greater quantities than their known 

number words.  This finding accords with those of Wynn (1990) and reveals that children

understood the task, interpreted the question “which is more:  two or seven?” as intended,

were motivated to answer it, and showed no reluctance to produce a large and unknown 

number word (“seven”) as an answer.  In contrast, the findings provide no evidence that 

children were sensitive to the numerical ordering among the unknown number words in 

their count list.  Presented with the same question but with two unknown number words 

(e.g., “which is more, five or ten?”), children produced each of the words at random.  

Although children produced these words in a stable and appropriate order when counting,

and although the words picked out numerosities that differed by a 2:1 ratio, children 

showed no tendency to judge as more numerous the set labeled by the word that appeared

later in the count list.   

Children’s failure with the unknown number words could stem from a failure to 

segment and order the words in their count lists.  Studies of children’s counting (e.g., 

Fuson, 1988; Ginsburg & Baroody, 2003) suggest that in the early stages of counting, 

children recite the count list as an “unbreakable list.”  During this phase, children do not 

understand the order and position of each separate number word in their count list, 

despite the fact that they produce the list in a stable order.  Alternatively, children may 

have succeeded in parsing the count list but still fail to appreciate that the order of words 

in the list corresponds to the order of numerical magnitudes that the words designate.  

Research in progress is now attempting to distinguish these possible reasons for 

children’s failure to judge that “ten” is more than “five”  (LeCorre & Carey, personal 

communication, October 10, 2006).  
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Together, the findings of Experiments 1 – 3 indicate that 3-year-old children lack 

much of older children’s understanding of the number words in their count sequence.  

Most children of this age can recite the number words to “ten” but do not appreciate that 

“five” is a better label than “ten” for a set of five objects.   These children also fail to 

judge that a set labeled “ten” objects is more numerous than a set labeled “five.”. Further 

analyses of the data from Experiments 2 and 3 revealed no evidence for these abilities, 

even among the subset of children with the highest counting skill or with command of the

reference of the most number words (see supporting online materials).  These findings 

suggest that the children in the present studies have not begun to map the later words in 

their count list to approximate numerical magnitudes.

In contrast, the experiments provide evidence that children understand two 

aspects of number word meaning.  First, children judge that a set labeled by an unknown 

word in their count list is “more” than a set labeled by a known number word.  Second, 

children who have heard a set of objects labeled by one unknown number word 

systematically choose that set when asked for that number word, and choose a different 

set when asked for a different unknown number word.  Children’s rejection of a set 

labeled “five” when asked for “ten” does not depend on a purely pragmatic bias, because 

children accept that a set of ten and a set of five can both be called “some,” and that a set 

of “five fish” can also be called a set of “hungry fish.”  Thus children appear to 

understand that the words in their count list contrast with one another in their application 

to sets of objects.

These positive findings are consistent with both of the principal accounts of the 

development of number word meanings.  First, children may understand that each 

number word depicts a specific, ordered numerosity, but they may have mastered the 

ordering relationship only for the first few words.  Thus, children may judge that “seven” 

designates a larger number than “two” because they know that “one” and “two” designate

the smallest cardinal values, and they may judge that “ten” and “five” apply to different 
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sets because each refers to a distinct cardinal value.  Children may fail to judge whether 

“five” or “ten” is more numerous, and they may fail to apply “five” to a set of five rather 

than ten objects, because they have not yet discovered that the sequential ordering of 

words in the count list maps to the numerical order of the natural numbers (Wynn, 1992). 

Discovering this relationship may be difficult, in part, because children’s count list itself 

is not yet parsed into a set of independent and ordered elements (Fuson, 1988).

Alternatively, children may understand that the unknown words in their count list 

contrast in reference with one another and with known number words, without 

understanding that the basis of the contrast is numerical (Carey, 2001).  Children may be 

unclear, for example, whether pictures of “four cats” and “eight cats” differ in number or 

in some continuous quantitative variable, such as total volume or density.  Children even 

may fail to appreciate that the basis of the distinction between “four” and “eight” is 

quantitative.  Children who have not mastered the basic principles of counting may 

understand the differences among “four,” “six,” and “eight” the way children who have 

not mastered the basic principles of reading understand the differences among “A,” “B,” 

and “C.”  Such children may appreciate that “seven” and “ten,” and  “A” and “B” refer to

different sorts of entities without knowing what those entities are or how they differ.  

The plausibility of each of these two accounts depends in large part on the nature 

of children’s prelinguistic number representations.  If children possess a single set of 

natural number concepts and lack only the ability to apply these concepts exactly to 

perceived arrays of objects, then the first account is more plausible.   Given that children 

view different number words as contrasting in meaning, and given that they interpret 

words for small numbers as designating specific numerical values, children should 

appreciate that words for large numbers also designate specific numerical values.  In 

contrast, if children possess two distinct and limited systems for capturing numerical 

information--a system for representing exact small numbers and a separate system for 

representing approximate large numbers--then the second account is more plausible.  If 
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the meanings of known number words derive from the small, exact number system, then 

children may master their meanings without understanding how these words contrast with

unknown number words.  Because the exact small number system has a set size limit of 3

or 4, it does not provide the numerical concepts that define the basis of this contrast.

Although the primary goal of our research is to distinguish these two accounts, we

must first consider a third possible explanation for children’s performance in Experiments

1-3.  Children may have a single set of underlying, natural number concepts, consistent 

with the first view, and they may represent all the words in their count list as contrasting 

in meaning with one another.  Children may fail to understand that the relevant contrast is

numerical, however, because they do not yet endow their known number words with 

numerical meaning.  One-, two-, and three-knowers may succeed at the give-a-number 

task, and at the tasks involving known numbers in Experiments 2 and 3, by mapping each

number word to a non-numerical visual representation such as a spatial pattern or a 

specific configuration of objects (see Simon, 1997; Mix, 1999).  If children fail to confer 

numerical meaning on their known number words, then they would not be expected to 

confer such meaning on their unknown number words, even if they possessed the full set 

of natural number concepts.

To distinguish the third account from the first two accounts, Experiment 4 

investigated whether children who have mastered the reference of the first words in their 

count list apply those words to representations with numerical content.  In this 

experiment, children were presented with a small set of objects, the set was named by a 

known number word, and then the objects were placed in an opaque box, out of the 

child’s view.  On different trials, the set of objects in the box was subjected to one of 

three transformations:  addition of objects, subtraction of objects, or rearrangement 

(moving the box).  Without revealing the objects, the child was then asked whether the 

same number word, or a different number word, applied to the set.  If children’s first 

number words convey numerical information, children should apply a different word to 
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the set after the addition or subtraction transformation, and they should apply the same 

word to the set after the rearrangement transformation.  In contrast, if the first number 

words are mapped to visual patterns lacking numerical content, then children might fail to

take account of the different transformations in applying the number words.

Experiment 4

Method

The method was the same as the previous experiments, except as follows.

Participants.  Twenty-four 3-year-old children (9 males) ranging in age from 37.2 

to 42.0 months (mean age 39.3 months) took part in the study.  An additional 9 children 

were excluded from the analyses for refusal to provide a count sequence (n=5), ceiling 

performance on the give-a-number pretest (n=1), or failure to complete enough test trials 

(n=3).

Displays.  Displays for the main experiment consisted of small, familiar, toy 

objects (e.g., sheep) and a large, red, opaque box with a hinged top lid.

Design.  In the test session, each child was presented with a total of 6 trials 

presenting three types of transformations:  Addition, subtraction, and displacement (2 

trials each).   The numbers presented in the test session were chosen from between 1 to 4,

with the restriction that that only numbers produced by each child in the counting pretest 

and comprehended by the child in the give-a-number pretest were included in the 

analyses.  Because this test concerned only known number words, the largest array 

presented to each child (either as the sum or as the initial collection prior to 

transformation) never exceeded the child’s highest known number word.

Procedure:  After the counting and give-a-number pretests, the experimenter 

placed a single set of objects in front of the child and identified the set twice by number 

(“Look, there are two sheep here”).  Then the experimenter gathered the objects and 

placed them inside an opaque box while narrating (“Look, I’m putting these sheep in the 

box”).  Then the experimenter asked a memory question (“Do you remember how many 
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sheep I said went into the box?”).  Trials on which the child failed the memory check 

were excluded from the analyses (a total of 4 trials were eliminated:  1 trial each for 4 

participants).  In the displacement condition, the experimenter made no change to the set 

other than to place it in the box, but to match the procedural delay of the other 

transformations, she used a placeholder statement (“So we have nice sheep in this box”).  

In the addition condition, the experimenter added objects to double the number in the box

while narrating (“Look, I’m putting these sheep in the box”).   In the subtraction 

condition, the experimenter removed half of the objects from the box while narrating 

(“Look, I’m taking these sheep out of the box”).  Then on all trials the experimenter 

asked the child two counterbalanced yes/no questions involving the same number word 

and a second number word that was half or twice as large (e.g., “Are there two sheep in 

the box?  Is there one sheep in the box?”).  For the Addition and Subtraction 

transformations, the different number word that was proposed was always correct.   

Analyses.  Children’s responses were coded as the proportion of trials on which 

the child responded yes.  Responses were analyzed by means of a 3 (transformation:  

addition,  subtraction, or displacement) x  2 (question: same or different) x 2 (sex) mixed-

factor ANOVA with the last factor between subjects.  

Results

Pretests.  On the counting pretest, all children counted correctly at least to 10.  On

the give-a-number pretest, 13 of the 24 children were 2-knowers, 9 were 3-knowers, and 

2 were 4-knowers. 

Main experiment.   Children performed with high accuracy in all three conditions 

(Figure 2).  For the displacement transformation, children judged reliably that the 

unchanged set should retain the same number word (98% correct) and should not be 

designated by the different number word (87% correct, both ts(27)>6.1, p<.001).   For the

addition transformation, children judged reliably that the altered set should be designated 

by the different word and not by the same word (92% and 83% correct, respectively, both
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ts>5.1, p<.001).  For the subtraction transformation, children again accepted the different 

word and rejected the same word for the transformed array (94% and 97% correct, 

respectively, both ts>12.6, p<.001).   The ANOVA revealed a main effect of question (F 

(1,22)=25.72, p<.001, h2=0.539), qualified by an interaction between transformation and 

question (F (2,22)=229.61, p<.001, h2=0.851).  Children answered yes more often on 

different than on same number word questions, but they answered yes more often on 

same number word questions after the no-change transformation than after the addition or

subtraction transformations.  

Discussion  

Experiment 4 provided evidence that children endow known number words with 

numerical meaning.  Even when the words designated sets of objects that were out of 

view, children changed their application of the words when the sets were transformed by 

addition or subtraction, and they maintained their application of the words when the sets 

underwent a non-numerical transformation (displacement from a tray to a box).  These 

findings accord with those of recent case studies of number development in very young 

children:  For example, one child labeled an initial collection “one,” then after another 

item was added, she commented, “another one,” and labeled the collection “two” 

(Baroody, Lai, & Mix, 2006).

In this and subsequent experiments, the different number word offered by the 

experimenter gave the correct cardinal value after the addition or subtraction 

transformation.  It is not clear, however, whether children understood this exact value.  

Children may appreciate that a small set of objects cannot be designated by its original 

number word after addition or subtraction, without knowing which new number word 

designates the set.  Although children responded as confidently to the different-word 

questions as to the same-word questions (“I don’t know” responses did not occur in either

condition), they may have accepted the new number word because it was offered by the 
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experimenter as an alternative to the old number word, as did the children in Experiment 

1.

The last two experiments investigated whether children endow the unknown 

number words in their counting routine with the same numerical meanings.   In these 

experiments, children were presented with an array of objects that was designated by a 

number word.  Then the array was transformed by moving the objects around, adding 

new objects to the array, or removing objects from the array.  Studies of human infants 

and of adult non-human primates provide evidence that nonlinguistic number systems 

represent these transformations differently:  addition and subtraction result in a change in

cardinal value, whereas rearrangement of the objects in a set does not (e.g., Feigenson & 

Carey, 2005; Hauser et al., 2000).  Five-year-old children who have mastered verbal 

counting generalize this understanding to unknown number words (Lipton & Spelke, 

2006), and the 3-year-old children in Experiment 4 demonstrated this understanding for 

their known number words.  If such children also understand that the unknown number 

words in their count list pick out sets with different cardinal values, therefore, children 

should fail to apply the original number word to a set after elements have been added to 

or taken from it, and they should continue to apply that number word to the set after 

elements have been moved around with no addition or subtraction. 

Experiment 5

The method for this experiment was adapted from Lipton & Spelke (2006) for use

with smaller numbers and younger children.  Three-year-old children were presented with

two trays of objects, one of which was named with a number word (e.g., “this tray has 

five sheep”).  Then the labeled tray was transformed in one of two ways:  sheep were 

moved around, or one more sheep was added to the pile.  Finally children were asked to 

point to the tray with “five sheep” or the tray with “six sheep.”  Because children used 

these number words contrastively (Experiment 1), they were expected to use opposite 

pointing responses for the two number words.  If they understood that the application of 
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these number words changed after addition but not rearrangement, then they should have 

shown systematic and opposite pointing responses after the two transformations. 

Method

The method was the same as the previous experiments, except as follows.

Participants.  Sixteen 3- to 3.5-year-old children (9 males) ranging in age from 

36.0 to 41.8 months (mean age 38.3 months) took part in the study. An additional 8 

children were excluded from the experiment for failure to complete enough test trials 

(n=5) or failure to give a count sequence (n=3).

Displays.  Displays for the main experiment consisted of small, familiar, 3D toy 

objects (e.g., sheep, horses) presented on trays.  Trays were presented in pairs containing 

identical objects in sets of varying numerosity.  

Design. For the main experiment, each child received 2-4 trials in each of four 

conditions defined by the type of transformation applied to the named array (addition vs. 

rearrangement) and the type of number word in the question posed to children (same vs. 

different from the number word used initially to label one array).  The number words 

used in the test session were “five,” “six,” “seven,” and “eight”; all of these numbers 

were outside each participant’s known number word range and were produced by all 

children in the counting pretest.  All conditions and questions were presented in an 

intermixed order.  Children who did not complete at least 2 trials in each condition were 

excluded from the analyses.

Procedure:  After the counting and give-a-number pretests, the experimenter 

placed a pair of trays in front of the child and identified the objects while pointing to both

trays (“Look, I have lots of sheep here”).   In the addition condition, the trays initially 

contained the same number of objects; in the rearrangement condition, the trays 

contained sets that differed in numerosity by one object (although the difference between 

sets was not highlighted for the children).  In both conditions, the experimenter pointed to

the target tray and identified it twice by number while also calling attention to the non-
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target tray (“This tray has five sheep, there are five sheep here; and there are sheep here as

well”), before performing the transformation.  In the addition condition, the experimenter

produced another object from below the table and added it to the target tray while 

narrating (“Look, I’m putting another sheep on this tray”).  In the rearrangement 

condition, the experimenter rearranged the objects on the target tray (“Look, I’m putting 

these sheep in a row”).  In both conditions, the experimenter then removed her hands 

from the trays and asked the child to point to a tray designated by either a different 

number word or the same number word (e.g., “Can you point to the tray with six/five 

sheep?”). 

Analyses.  Children’s responses were coded as the proportion of trials on which 

the child chose the originally named tray.   Responses were analyzed by means of a 

mixed-factor 2 (transformation: addition vs. rearrangement) x 2 (question: same vs. 

different number word) x 2 (sex) mixed-factor ANOVA, with the last factor between 

subjects.

Results  

Pretests.  On the counting pretest, all children counted correctly at least to 8.  On 

the give-a-number pretest, 8 children performed as 1-knowers, 6 as 2-knowers, and 2 as 

3-knowers.  

Main experiment.  Children were equally likely to choose the originally named set

and the comparison set on all questions and for both transformations (all Fs (1,14)<1.32, 

NS; Figure 3).  After the addition transformation, children chose the originally named 

tray (incorrectly) on 57% of same word trials, and (correctly) on 61% of different word 

trials.  These choices did not differ from chance (both ts(15)<1.95, NS) or from one 

another (t(15)<1).  After the rearrangement transformation, children chose the originally 

named tray (correctly) on 60% of same question trials and (incorrectly) on 60% of 

different question trials.  These identical choice rates did not differ from chance (both 

ts(15)<1.51, NS). 
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Discussion

 Children who heard an unknown number word applied to a set of objects were 

equally likely to apply that number word, and a different number word, to the set after 

rearrangement of the objects.  These findings provide no evidence that children 

understand that a number word that falls outside their known number word range should 

still apply to a given set if the items in the set are rearranged.  Moreover, children who 

heard a number word applied to a set were equally likely to apply that word, and a 

different number word, to the set after one object was added to it, changing the set’s 

cardinal value.  Thus, the experiment provides no evidence that 3-year-old children, like 

older preschool children (Lipton & Spelke, 2006), understand that an unknown number 

word ceases to apply to a set of objects if an item is added to the set.  These findings 

provide initial evidence against the view that children take the unknown number words in

their count list to designate specific cardinal values.

Children’s poor performance in Experiment 5 contrasts with their excellent 

performance in Experiment 4.  In Experiment 4, children judged correctly that a known 

number word continued to apply to a set after addition of one item, and that it no longer 

applied to the set after rearrangement of the items, even though the sets were out of view.

In Experiment 5, children made the same inference about known number words applied 

to visible sets.  In contrast, the children in Experiment 5 failed to make the same 

inferences about the application of unknown number words. Children’s poor performance

cannot plausibly be attributed to a lack of knowledge of the new number word offered by 

the experimenter, because children performed at least as poorly when tested with the 

original number word (47% correct) as when tested with the new number word (50% 

correct).  Children therefore do not appear to extend the numerical meanings of known 

number words to the unknown words in their count list.

It is possible, nevertheless, that children failed the present task because it was 

confusing, insufficiently motivating, or unduly taxing of memory or perception of 
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numerosity.  For example, the children in Experiment 5 were presented with two arrays 

of objects and were asked to choose the array best named by a given number word.  

Although this procedure is more similar to Experiment 1 (in which children were 

successful) than is the one-array method of Experiment 4, it is possible that the use of 

two piles confused children or overtaxed their memory.  Moreover, the children in 

Experiment 5 were presented with the transformation of adding one rather than doubling 

or halving an array.  Although the operation of adding one led to successful performance 

in one past study (Sarnecka & Gelman, 2004), it is possible that the doubling and halving 

transformations used in Experiment 4 are more salient and motivating to children.  

To address these possibilities, we conducted two further experiments in which 

children viewed a single set of objects that was transformed either by addition, 

subtraction, or rearrangement (see supporting online materials).  To make the numerical 

changes more perceptually apparent, the addition and subtraction transformations 

doubled or halved the number of objects in the array.  In Experiment A, children simply 

were asked to produce the original target number word after the transformation, and they 

succeeded, showing memory for the relevant number word.  In Experiment B, children 

were asked whether the original number word, or a word for a number that was half or 

twice as large, applied to the transformed array.  As in Experiment 4, children rejected 

the original number word, and accepted the new number word, when they were tested 

with known numbers.  When the tests involved unknown numbers such as “five” and 

“ten,” in contrast, children were equally likely to accept the original and the new number 

word after doubling or halving of the numbers of objects in the array.  Together with the 

findings of Experiment 5, these findings suggest that the children failed to understand that

the unknown number words in their count lists denote specific cardinal values and 

therefore change their application when the arrays they designate change in number.  

Nevertheless, this conclusion must be offered with caution.  The most important 

conditions in Experiment 5 and its extensions are those in which sets labeled by unknown
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number words are transformed by addition, subtraction, or rearrangement.   It is possible 

that children were confused by the presence of multiple transformations on large sets of 

objects.  Perhaps children suffered from proactive interference across these experiments:  

on any given trial, they may have forgotten whether a set was transformed by addition, 

subtraction, or rearrangement.  On the known number trials of Experiment 5, children 

may overcome this confusion by using either exact, nonsymbolic number representations 

or known verbal labels to enhance memory for the events.  On unknown number trials, in 

contrast, children may remember the number word labels but forget the critical addition, 

subtraction, or rearrangement events.  The final experiment reduced this potential source 

of error by means of a between-subjects design, in which each child was presented with 

only a single type of transformation throughout the study.

Experiment 6  

Children were presented with two sets of objects, one set was labeled by a number

word, and then the set was transformed.  Separate groups of children were presented with

four different transformations:  addition (doubling), subtraction (halving), rearrangement,

and no change.  Children were tested with known number words on some trials and with 

unknown number words on other trials.   Based on the findings of Experiments 1 and 5, 

children were expected to succeed on all questions with known number words and in the 

no-change condition with unknown number words.  The critical question concerns 

children’s performance when unknown number words are applied to sets that then are 

transformed by addition, subtraction, or rearrangement. 

Method

The method is the same as in the previous experiments, except as follows.

Participants:  Forty 3- to 3.5-year-old children (18 males) ranging in age from 

36.0 to 42.0 months (mean age 39.4 months) took part in the study.  An additional 16 

children were tested but excluded from the analyses for failure to complete enough test 

questions (n=5), failure to give a count sequence (n=2), low counting on the counting 
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pretest (n=2), ceiling performance on the give-a-number pretest (n=4), or parent 

interference (n=3).

Displays.  Stimuli for the main experiment consisted of small, familiar, 3D toy 

objects (e.g., sheep, horses) presented on trays as in Experiment 5.  

Design.  In the test session, four transformations were presented between 

participants, such that 10 children each received 12 trials with a single transformation: No

change, rearrangement, addition, or subtraction.   Each child received 4 trials with known

number words and 8 trials with unknown number words within their count list.  Each trial

ended with one of two types of question presenting either the same or a different number 

word as the previously identified target (2 known and 4 unknown number word trials with

each type of question).   The number words used in the test session were selected from 

between 1 to 14, with the restriction that the pair of outcome sets were in a 2:1 ratio and 

one member of the pair corresponded to the number in the question.  Children who did 

not complete at least one question of each type were excluded from the analyses.

Procedure.  After the counting and give-a-number pretests, the experimenter 

placed a pair of trays in front of the child and identified the objects while pointing to both

trays (“Look, I have lots of sheep here”).  For the no-change and rearrangement 

transformations, the trays contained sets that differed in number by a 2:1 ratio; for the 

addition and subtraction transformations, the trays initially contained equal sets.  For all 

children, the experimenter pointed to the target tray and identified it twice by number 

while calling attention to the non-target tray (e.g., “This tray has five sheep, there are five 

sheep here, this tray also has sheep”) before performing the transformation.  For the 

addition transformation, the experimenter then added more objects to the array to double 

the number while saying “Look, I’m putting these sheep on the tray.”  For the subtraction

transformation, the experimenter removed half of the objects from the tray while saying 

“Look, I’m taking these sheep off the tray.”  The rearrangement transformation matched 

the other transformations in duration: the experimenter arranged the objects on the target 
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tray into a row while narrating ("Look, I'm putting all these sheep in a row”).  Then, on 

all trials, the experimenter removed her hands from the trays and asked the child to point 

to the tray with either a different or the same number of objects (e.g., “Can you point to 

the tray with ten/five sheep?”).  The different number word corresponded to the number 

of objects in the non-target set on no-change and rearrangement trials, and in the target 

set on addition and subtraction trials. 

Analyses.   Children’s responses were coded as proportion of trials on which the 

child chose the originally named array.  Responses were first analyzed by a 2 (question: 

same vs. different) x 2 (condition: known vs. unknown numbers) x 4 (transformation: no-

change, addition, subtraction, or rearrangement) mixed-factor overall ANOVA with the 

last factor between subjects.  Further analyses then focused separately on transformation 

trials with known vs. unknown numbers, by 3 (transformation:  addition, subtraction, or 

rearrangement) by 2 (sex) x 2 (question: same vs. different) mixed-factor ANOVAs with 

the first two factors between subjects.  Performance on the No-change transformations 

was analyzed separately by a 2 (condition: known vs. unknown numbers) x 2 (question: 

same vs. different) x2 (sex) mixed-factor ANOVA with the last factor between subjects.  

Finally, two-tailed t-tests compared responses to the same and different number words for

each transformation and each condition.

Results  

Pretests.  On the counting pretest, all children counted correctly at least to 10.  On

the give-a-number pretest, 5 of the 40 children were 1-knowers, 15 were 2-knowers, 17 

were 3-knowers, and 3 were 4-knowers.  One-way ANOVAs comparing number knower 

status and highest counted word (with no mistakes) across the four conditions revealed no

differences between conditions (both Fs (3,36)<1.22, NS). 

Main experiment.  Results are shown in terms of the proportion of trials on which 

children correctly applied the number word for each type of transformation, for known 

and unknown numbers (Figure 4).   The overall ANOVA revealed the expected three-way
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interaction of condition, question, and transformation (F (3,36)=4.046, p<.05).   Children 

showed high success on the no-change condition with both known and with unknown 

numbers (85% and 78% correct, respectively, when tested with the same number word, 

and 87% and 73% correct when tested with the different number word).  Children altered 

their choice dramatically, and appropriately, when asked to point to the same vs. different

number (for known numbers, t(9) = 4.97, p<.001; for unknown numbers, t (9) = 4.70, 

p<.001). The analysis of performance in this condition revealed a main effect of question 

type (F (1,8)=30.74, p<.001, h2=0.793), reflecting the fact that children chose the 

originally named array more often when asked for the original number than when asked 

for a different number. 

Children also showed high success on the three transformations with known 

numbers:  On same and different questions, respectively, their performance was 88% and 

100% correct for the addition transformation, 97% and 97% correct for the subtraction 

transformation, and 100% and 80% correct for the rearrangement transformation.  In all 

three cases, children responded differently, and appropriately, when asked for the same 

vs. different number (all ts(9) >9.80, p<.001).  The analysis of performance in these three

transformation conditions revealed a main effect of question (F (1,24)=75.15, p<.001, 

h2=0.758), qualified by an interaction between question and transformation (F 

(2,24)=211.89, p<.001, h2=0.946).  Children chose the originally named array when 

asked for the same number word (and rejected the originally named array when asked for 

a different number) after the rearrangement transformation more than after the addition 

and subtraction transformations.

In contrast, children performed poorly on the addition, subtraction, and 

rearrangement transformations with unknown numbers in their count list. When asked for

the array designated by the original number word, children correctly avoided the target 

array on 55% of addition trials and 30% of subtraction trials (42.5% correct 

performance).  They showed the same rate of pointing to the originally named array on 
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rearrangement trials as on subtraction trials (70% choice of that array).  When asked for 

the array designated by the new number word, children pointed to the original array on 

73% of addition trials (correct) and 90% of subtraction trials (correct), but also on 76% of

rearrangement trials (incorrect).   The analysis of performance with unknown number 

words in these three conditions revealed a main effect of question (F (1,24)=5.45, p<.05, 

h2=0.185), reflecting children's slightly greater choice of the target for different questions 

than for same questions (79% vs. 62%, respectively) across all three transformations.   

Importantly, however, there was no interaction of question by transformation (F 

(2,24)=0.60, NS).  Children did not apply unknown number words differently for 

transformations that changed numerosity (doubling and halving the set of objects), 

relative to a transformation that preserved numerosity (rearranging objects in a line). 

Discussion

  The findings of Experiment 6 replicate and extend those of the previous 

experiments.  Children judged reliably that a set that does not change at all should still be 

labeled with the same unknown number word and should not be labeled with a different 

unknown number word.  This pattern replicates the findings of Experiment 1 and 

provides evidence that children remembered the number words and were motivated to use

them systematically.  In contrast, children failed to show the same pattern of number 

word usage when the objects in a set were rearranged.  Moreover, children failed to judge

that an unknown number word no longer applied to a set after the set was transformed by 

addition or subtraction.   These failures cannot be attributed to any confusion between the

transformations, because each child in this study viewed only a single transformation on 

every trial, and children responded to the transformation successfully when tested with 

known numbers.  Children’s failures also cannot be attributed to motivational problems  

or cognitive overload caused by the use of large numbers, because children succeeded on 

large-number trials in the no-change condition.  Although some of the items in the study 

queried children about number words whose application had not previously been 
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indicated (the different-word trials of the unknown number condition), children 

performed no worse on these questions (62% correct) than on questions using number 

words whose reference was indicated (the same-word trials of the unknown number 

condition:  52% correct).  Finally, the failures cannot be attributed to the use of a 

heterogeneous population of children who varied in counting skill and number word 

knowledge, because performance was equivalent in children with higher vs. lower 

counting skill and number word knowledge (see supporting online materials).  Children’s

failure to distinguish number-relevant and number-irrelevant transformations on the trials

with unknown numbers therefore suggests that children fail to understand that the 

application of their counting words to arrays of objects changes when the arrays change 

in number.  Although unknown number words contrast in meaning for young children, 

the children do not appear to appreciate that the relevant contrast is numerical. 

General Discussion

Verbal counting is intimately connected to natural number:  each counting word 

designates one cardinal value, and the counting procedure serves to enumerate sets whose

cardinality is too large to be determined, with precision, by nonsymbolic processes.  But 

what is the nature of the relationship between the system of natural number concepts, on 

one hand, and the system of number words and verbal counting, on the other?  The 

present research provides evidence that natural number concepts emerge in children 

along with or after, rather than prior to, the acquisition of language.  These concepts 

likely emerge, in part, as a consequence of children’s efforts to make sense of number 

words and to learn to use the counting routine to represent number:  achievements that 

the children in the present experiments had not yet attained.

Evidence for this conclusion comes from three findings.  First, every child in the 

present studies had mastered the reference of “one” sufficiently to produce a single object

when asked for “one,” to label arrays containing a single object as “one,” and even to 

label as “one” the hidden contents of a box into which two objects were placed and one 
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object was removed (Experiment 4).  Further studies provide evidence that children who 

have gained the ability to apply “one” appropriately to arrays of objects also are able to 

apply the word appropriately to sequences of sounds and actions (Huang, Snedeker, & 

Spelke, 2005).  

Thus, the children in the present studies had mastered the abstract meaning of at 

least one word in their count list, and children likely had mastered aspects of the 

application of the other number words as well.  Because Wynn’s give-a-number task is 

relatively stringent, it is likely that children who fail to demonstrate understanding of 

“two” by this task nevertheless use “two” appropriately in certain limited contexts (see 

Mix et al., 2005).  Nevertheless, learning the meaning of “one,” or even of “one,” “two,” 

and “three,” does not suffice to bring mastery of the meanings of the other words in the 

child’s counting routine.

Second, children take all the words in their count list to contrast in reference both 

with their known number words (a finding previously shown by Wynn, 1990, 1992) and 

with one another (Experiment 1).  Children appreciate that a single array of toy animals, 

that undergoes no change, cannot be said to consist of both “five sheep” and “ten sheep.” 

Moreover, the contrast is specific to number words:  children appreciate that such an 

array can be said to consist of both “five sheep” and “some sheep,” or “hungry sheep.” 

The children in Experiments 1, 6, and B (see supporting online materials) used the

contrasting reference of number words in order to answer questions that otherwise would 

be unanswerable.  When a two-knower is told that one array has “five sheep” and then is 

asked which array has “ten sheep,” a reasonable response would be to plead ignorance, 

for the child has not mapped “ten” even to an approximate numerical magnitude 

(Experiments 2 and 3).  Nevertheless, children used the contrasting reference of the 

number words to solve this task:  When asked for “ten sheep,” they pointed 

systematically to the array that had not been labeled as “five.”
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If such children possessed a full set of natural number concepts, then the above 

abilities should be sufficient for children to induce that each word in the count list picks 

out a specific, unique number.  Just as children learn new color words by contrast with 

terms already mastered, children should learn new number words by contrast with “one,” 

“two,” and “three.”  Contrary to this prediction, the third finding of the present 

experiments is that children who have learned the application of the first words in their 

count list still fail to appreciate that the other words in their count list refer to cardinal 

values.  

Children’s failure to endow the later words in their count list with numerical 

content was shown in four ways.  First, children fail to appreciate that the words in their 

count list refer to approximate numerosities.  Presented with arrays of five and ten 

objects, children who could count to ten failed to choose the set of five objects when 

asked for “five,” even though they succeeded with large-number words when the 

contrasting set contained a known number of objects.  Second, children fail to appreciate 

that words occurring later in their count list pick out larger cardinal values.  Children 

failed to judge that “ten objects” is more than “five objects,” even though they correctly 

placed “five” before “ten” in their recitation of the count list, and they correctly judged 

that “ten objects” was more than “two objects.”  Third, children who heard a number 

word like “five” applied to a set of objects failed to appreciate that the word should 

continue to apply to the set if the objects were rearranged, with no objects added or 

removed.  Fourth, children failed to appreciate that "five" should no longer apply to the 

array after the array was transformed by addition or subtraction.  

Children’s failure to make these inferences truly would be puzzling if they 

possessed the system of natural number concepts.  Given that children understand that 

“two” refers to the cardinal value two (and thus no longer applies to a set labeled “two” 

after the set is doubled) and that “five” contrasts with “two” in meaning, how could they 

fail to understand that “five” refers to a cardinal value as well (and thus no longer applies 
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to a set labeled “five” after the set is doubled)?  Children’s patterns of success and failure 

in the present studies provides evidence that the unitary system of natural number 

concepts plays no role in children’s efforts to understand number words and verbal 

counting.  This system likely emerges as a consequence of learning to count.

The above findings accord with recent findings from two other laboratories.  The 

tasks of Sarnecka and Gelman (2004) have revealed a dissociation between 3-year-old 

children’s judgments of numerical equality and children’s application of number words:  

children who judged that two sets had the same number and who were told that one set 

had “five” objects failed to judge that the other set had five objects, even though the sets 

were presented in rows that highlighted one-to-one correspondence.  These findings 

accord with the findings of Experiments 5 and 6 and provide evidence that children fail to

understand that unknown number words refer to specific cardinal values.

Our findings also accord with new research by LeCorre and Carey (in press), in 

which 3-year-old children are presented with brief views of pictured sets and asked to 

guess the cardinality of the sets without counting.  Children successfully produced 

number words corresponding to the approximate number of items in the pictured set up to

the level of their highest known number word, but not beyond.  Based on this production 

task, LeCorre and Carey (in press) conclude that children have not yet mapped the 

unknown number words in their count list onto approximate numerosities.  Their 

conclusion accords with the conclusions from our comprehension tasks in Experiments 2 

and 3.

Although the children in the present studies appear to lack the system of natural 

number concepts, studies of number representations in prelinguistic human infants and 

nonlinguistic nonhuman primates suggest they have two other systems of numerical 

representation: a system for representing exact numbers of individuals with a set size 

limit of 3-4, and a system for representing large, approximate numerical magnitudes with 

a set size ratio limit of about 2:1 in infants (e.g., Xu, 2003) and about 5:4 in preschool 
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children (e.g., Barth, LaMont, Lipton, & Spelke, 2005).  These two systems have been 

found to have dissociable properties in animals and in infants (see Brannon et al., 2004; 

Feigenson, Dehaene, & Spelke, 2004).  Although the small-number system allows 

children to represent numbers exactly, it is subject to a set size limit of 3 or 4 that 

precludes representations of larger numbers (Feigenson & Carey, 2005) and that 

predisposes infants to form summary representations of non-numerical attributes of an 

array such as its total area or contrast (Clearfield & Mix, 1999; Feigenson, Carey, & 

Spelke, 2002).  The large-number system allows children to represent larger cardinal 

values, independently of and in preference to summary representations of continuous 

quantitative variables (Brannon et al., 2004; Xu et al., 2005).  Nevertheless, the ratio limit

to this system does not allow children to discriminate these cardinal values exactly.  

Neither system, therefore, suffices to represent exact numbers like seven.  Moreover, the 

existence of two systems of numerical representation, rather than one, may obscure the 

unity of the natural number system and the relationship between the meanings of words 

for small vs. large numbers.

Further properties of the exact, small number system may explain why children 

have trouble mastering the reference of “one,” “two,” and “three.”  The exact, small 

number system allows young children to focus attention on multiple individuals at once 

and to form summary representations of a group of individuals, such as the total amount 

of contrast they create or substance they contain (Clearfield & Mix, 1999; Feigenson et 

al., 2002).  This system does not, however, readily allow young children to represent the 

cardinality of a set of individuals.  Infants who view two dogs, followed by two cups and 

then two shoes do not readily extract, from these arrays, the common cardinal value two 

(Feigenson et al., 2002; see also Mix et al., 2002).  Children only begin to respond to 

these abstract cardinal values when they learn the corresponding number word (Mix et 

al., 2002).  With no explicit and accessible, language-independent representation of 
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cardinality, young children have no clear basis for discovering the relevant contrast 

between arrays designated by the words “one,” “two” and “three.”

Cardinal representations are more readily extracted from the large number system.

Infants presented with sets of objects larger than four respond to the cardinal values of 

the sets and not to continuous quantitative variables like contrast or summed area 

(Brannon et al., 2004; Xu et al., 2005).  Indeed, infants do not appear to be sensitive to 

these continuous variables in large-number arrays (Brannon et al., 2004), as they are for 

small-number arrays (Clearfield & Mix, 1999).  Because infants extract different 

quantitative information from arrays containing small vs. large numbers of elements, 

however, they have no single system of numerical representations that can serve to relate 

the meaning of “seven” to that of “two.”  Children who have learned that “seven” and 

“two” contrast in meaning may have no basis for appreciating the numerical nature of this

contrast.

The above considerations may explain why children have difficulty learning the 

meanings of the words in their count list, but they fail to explain how children eventually 

succeed at this task.   Because the present experiments focused on children who have not 

yet made this induction, answering this question lies beyond the scope of the present 

research.  Nevertheless, the findings from our experiments support some suggestions.  

First, the findings of Experiment 4 provide evidence that before children come to 

understand counting, they learn that adding a single object to a set labeled “one” yields a 

set labeled “two,” and that adding a single object to a set labeled “two” yields a set 

labeled “three.”  This learning likely depends on inductions over representations from the

small, exact number system, and it has a natural interpretation in the operation, within 

that system, of marking the entry of a new object or the occurrence of a new event 

(LeCorre & Carey, in press).  

Second, the findings of Experiments 1, 5 and 6 provide evidence that children 

understand that an unknown number word continues to apply to a set if nothing happens 
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to the set--its application is stable.  Moreover, two distinct number words do not apply to 

the same set if nothing happens to it--the application of number words is contrastive.  

Stability and contrast also characterize the children’s application of their known number 

words, and they may allow children to take the first steps toward working out the 

counting system.  

The critical remaining steps may require a reanalysis of all the number word 

meanings so that properties that are represented for small sets are applied to large sets, 

and the reverse.  Children may need to discover that the known words “one” to “three” 

pick out distinct cardinal values, and that the higher number words change their 

application systematically with the addition of one.  By integrating the small-number and 

large-number systems, and constructing representations of all number words as referring 

to distinct sets of individuals, children may build system of numerical concepts to which 

their counting words can apply (Spelke, 2000). 

All of human science and technology, and much of human culture, depend on the 

development of symbolic number and mathematics.  That development, in turn, begins 

with the acquisition of verbal counting.  Although young children’s emerging counting 

and number concepts have been studied systematically for almost a century, 

psychologists and educators still do not know how children gain these uniquely human 

abilities, or what cognitive primitives they build on.  Based on the present findings, we 

hypothesize that the counting routines of specific human cultures engender spontaneous, 

constructive processes within the child, and that these processes build a unitary system of

natural number concepts from a set of conceptual primitives delivered by distinct, core 

cognitive systems.   This suggestion, however, is far from proven.  Further studies of 

children on the cusp of mastering verbal counting are needed to test it, especially through 

training interventions that probe the process by which children learn new number words 

at and beyond the limit of three.  We hope that such studies will benefit from the 

characterization of children’s partial knowledge that the present studies afford.
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Footnotes

1 On the give-a-number pretest, children who could successfully produce any 

number requested (up to 15) were considered to be “at ceiling.”  These children typically 

responded to a request for any number word by counting out fish with perfect one-to-one 

correspondence, a strategy they could also have used to answer the test session questions.

Because the present studies are concerned with children who have partial knowledge of 

the words in their count lists, children who performed at ceiling on the give-a-number 

pretest were not included in the analyses.
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