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About 70% of more than half a million Implicit Association Tests
completed by citizens of 34 countries revealed expected implicit
stereotypes associating science with males more than with fe-
males. We discovered that nation-level implicit stereotypes pre-
dicted nation-level sex differences in 8th-grade science and math-
ematics achievement. Self-reported stereotypes did not provide
additional predictive validity of the achievement gap. We suggest
that implicit stereotypes and sex differences in science participa-
tion and performance are mutually reinforcing, contributing to the
persistent gender gap in science engagement.

Implicit Association Test � culture � social psychology �
implicit social cognition

The gender gap in interest, participation, and performance in
science is well known and the subject of intense scrutiny.

World-wide, for example, 8th-grade boys show significantly
greater achievement than girls in science (1, 2). Observations of
such differences have reinforced the view that boys are ‘‘natu-
rally’’ better equipped to excel in science and mathematics (3).
However, the size of the sex gap varies, representing a challenge
to that nativist position. For instance, in the 2003 Trends in
International Mathematics and Science Study (TIMSS) (1, 2)
among 34 nations, there was substantial variability in the size of
the sex difference, and 8th-grade girls in 3 nations significantly
outperformed boys in science. For the same sample there was no
overall sex difference in mathematics achievement, with girls
significantly outperforming boys in 7 nations, and boys signifi-
cantly outperforming girls in 5 nations. Beyond data from 8th
graders, a recent review across age groups found that the U.S.
sex gap in math performance has been declining over time (4),
and another study reported that the size of the sex gap in math
performance across countries was related to national indicators
of gender egalitarianism (5). This variability across time and
place suggests that sex differences in math and science achieve-
ment are shaped by socio-cultural factors (4–10).

Stereotypes that men are naturally more talented and inter-
ested in math and science are thought to influence the science,
technology, engineering, and math aspirations and achievements
of boys and girls, men and women (11, 12, 14–16). For example,
women who endorse such stereotypes also report less interest in
math and science, and are less likely to pursue a math or science
degree (17, 18). Also, reminding women of the ‘‘math � male’’
stereotype, or just unobtrusively highlighting their gender, is

sufficient to weaken their performance on a subsequent math or
engineering examination compared with a control group (19–
22). This phenomenon, termed social identity threat, is thought
to occur via increased anxiety, and increased cognitive load
created by such anxiety, that one’s own behavior will potentially
confirm a stereotype about one’s group (23–25).

These examples illustrate that stereotypes can influence indi-
vidual performance in math and science domains. The reverse
causal scenario can also occur. People are sensitive to covaria-
tion in their environment and learn easily by observation or the
testimony of others (10, 26–29). In the case of sex differences in
math and science, the vastly greater presence of men, especially
in the highly visible top echelons of these fields, is likely to be
noticed and the covariation acquired (30–33). In one study,
female science majors who saw a science conference video with
75% male participants (akin to the existing reality in many
scientific fields) felt less belonging, less desire to participate in
the conference, and even more physiological markers related to
threat than female science majors who saw a gender-balanced
conference video (34). Social reinforcements that support the
‘‘boys are better’’ stereotype only add to the blatant fact of visible
covariation.

Applying these bi-directional relations to a cultural level of
analysis, national sex differences in science participation or
performance may create ‘‘science � male’’ stereotypes, and
science � male stereotypes may create national sex differences
in science participation or performance. Mutually reinforcing
mechanisms could lead some cultures to maintain larger sex gaps
in science participation and performance than others. It is
difficult to establish causal relations across cultures because
cultures are not amenable to random assignment of treatments.
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Even so, if a standardized measure of the gender–science
stereotypes were available across multiple countries, then we
could investigate whether there is a performance–stereotype
relationship across nations. The present investigation does ex-
actly that because, for the first time, such a measure was available
from a very large international sample.

Given the foregoing review, it is surprising to note that
relatively few people explicitly endorse gender–science stereo-
types (17, 18). With weak endorsement, it is not obvious how
stereotypes can be importantly related to achievement in math
and science. Based on many decades of research on the limits of
self-report (35, 36), we know that the lack of stereotype en-
dorsement does not therefore imply a lack of its influence on
choices and behavior. For example, the research on social
identity threat, noted earlier, suggests that stereotypes need not
be explicitly endorsed to influence individual behavior. Like-
wise, research relying on the Implicit Association Test (IAT)
(37) shows that most men and women associate male with
science and female with liberal arts more easily than the reverse
(38). The IAT is a behavioral measure in which participants
categorize words into their superordinate categories in 2 differ-
ent sorting conditions. In one condition, participants categorize
items representing male (e.g., he, boy) and science (e.g., physics,
chemistry) with one response key, while categorizing items
representing female (e.g., she, girl) and liberal arts (e.g., arts,
history) by using another response key. In the other opposing
condition (randomly completed before or after the first condi-
tion) (39), participants categorize the same words but they are
paired differently: This time male and liberal arts items are
categorized with one key whereas female and science items
are categorized with the other. Most people are able to catego-
rize the words faster and more accurately in the former condition
(male � science) compared with the latter (female � science).
This differential ease is taken to reflect stronger associations of
science with male than female. We have interpreted this result
as reflecting an implicit gender–science stereotype because
participants do not introspect or express their conscious beliefs
about gender and science. The implicit stereotype may differ
from self-reported stereotype because people are unaware of it,
do not endorse it, or do not wish to reveal that they endorse it.

Individual differences in the tendency to associate male with
science (or math) on the IAT predicts interest, participation, and
performance in scientific domains (14, 40, 41). For example,
women who find it easier to associate men with science (and
women with liberal arts) report less liking for math and science
domains, less interest in pursuing science in the future, perform
worse on standardized math exams like the SAT and ACT, and
are less likely to be a math or science majors compared with
women who do not have that association (41). Also, a prospective
study of women taking college calculus found that, for weakly
gender-identified women, stronger implicit, but not explicit,
math � male stereotyping at the start of a semester predicted
worse final examination performance (14).

We operated a virtual laboratory at which participants could
complete the gender–science IAT described above (https://
implicit.harvard.edu/). The site was available in 17 languages and
attracted a very large and diverse sample. The accumulated
dataset is wholly unique in being a large-scale assessment of
implicit gender–science stereotypes. Across �500,000 com-
pleted tests from around the world, �70% of men and women
showed a tendency to associate male with science and female
with liberal arts more easily than the reverse on the IAT (38), and
the implicit stereotype was relatively weakly related with self-
reported stereotyping (r � 0.22). Even so, there was substantial
variability in implicit stereotyping across individuals and across
cultures. Because of the very large sample size, we could
compute national estimates of implicit gender–science stereo-
types for dozens of countries.

The present research investigated whether implicit gender–
science stereotypes could account for sex differences in science
performance across nations. As a national indicator, implicit
stereotypes may index the extent to which associations of male
with science are manifest in the national culture, even if people
in that society are relatively unwilling to endorse such stereo-
types. Culture is a powerful force for shaping the beliefs and
behavior of its members (42). As such, we hypothesized that the
strength of implicit stereotyping at a national level would be
positively related with the extent to which sex differences in
science performance are observed in that culture. This effect
would suggest that implicit gender–science stereotyping is a
national indicator of gender (in)equality in science achievement.

Results
In 2003, the TIMSS conducted standardized exams of math and
science achievement among representative samples of 8th grad-
ers (43, 44). We used the 34 countries that followed the TIMSS
sampling guidelines as our sample of nations to ensure compa-
rable results (1). Because our implicit stereotype assessment was
specific to science, we began with analysis of the mean science
scores reported for boys and girls in each country (median
country boys’ science score is 516, girls’ is 506, and median
country overall SD � 75). We created an index of national sex
differences in science achievement by subtracting the mean for
girls from that for boys. With a median advantage of 9.5 points
(mean � 8.6), boys averaged significantly higher science achieve-
ment in 65% of the countries. However, cross-country variation
was substantial, ranging from raw score gaps favoring boys of
�27 to 29 (SD � 11.3), and, in terms of Cohen’s d effect sizes,
from �0.31 to 0.40 (SD � 0.15).

For assessment of implicit gender–science stereotypes, we
used IAT (39, 45) data collected at the Project Implicit website
(https://implicit.harvard.edu) (38). Over a half million gender–
science IATs were completed between May 2000 and July 2008.
We focus on the n � 298,846 from citizens of the 34 TIMSS
nations (mean participant age � 27, SD � 11; 65% female).
National indicators of implicit gender–science stereotypes were
operationalized as the mean score of all valid IAT scores of
citizens of each nation (see SI Appendix for details). IAT
participation by nation within the subsample of 34 TIMSS
nations varied widely, with the largest sample coming from the
United States (n � 248,306) and the smallest from Moldova (n �
15). The median sample size was 473.

We tested our hypothesis by regressing the TIMSS 2003
national sex differences in 8th-grade science performance on the
national estimates of implicit stereotyping, first alone and then
including a variety of covariates. Given their variability, the inverses
of the country variances for the implicit stereotype and TIMSS
estimates were averaged and then used as weighting for the
regressions (weighting details are provided in the SI Appendix).

Fig. 1 presents the nation-level scatter plot of the key rela-
tionship: National implicit stereotyping of science as male was
strongly related to national sex differences in 8th-grade science
performance (r � 0.60, 95% confidence interval: 0.31, 0.77). In
terms of regression, the estimated effect of a 1-standard-
deviation increase in implicit stereotyping on the male science
advantage was 6.3 points, P � 0.001 (SD of the sex difference in
achievement scores is 11.3), or a standardized effect (�) of 0.56.
This is the key relationship between implicit stereotypes and sex
differences in science performance. To test the robustness of this
relationship, we subjected the data to an increasingly stringent
series of tests. Given the small sample of nations, this sequence
of regressions provides a very conservative estimate of the
reliability of the relationship. Regression diagnostics identified
1 high leverage outlier. The effect persisted after removing that
outlier, � � 0.66 (P � 0.001). Next, we included in the model 7
country-level covariates derived from TIMSS and Project Im-
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plicit data: TIMSS 2003 8th-grade science mean, mean explicit
(self-reported) science and arts stereotypes, implicit–explicit
science stereotype correlation, mean IAT trial latency across the
task’s response conditions, percentage of IAT sample that was
male, and average participant age of the IAT sample. Implicit
stereotyping remained a uniquely significant predictor (� � 0.55,
P � 0.01) and none of the covariates were significant predictors
(see SI Appendix for details of covariate analyses). Finally,
following Guiso and colleagues (5), we added 2 additional
covariates: national gross domestic product (GDP) and an
indicator of gender equality, the Gender Gap Index (GGI; see
SI Appendix for variable details), the latter of which was not
available for 2 of the TIMSS nations. Despite the reduced sample
size (n � 31) and power (9 covariates), the effect of implicit
stereotyping remained significant (� � 0.71, P � 0.01), with an
estimated effect of 1 standard deviation increase in stereotyping
predicting a 0.7 standard deviation increase in the male 8th-
grade science advantage (see Table 1 for summary of model
tests).

Math achievement was also measured by TIMSS and, although
distinct from science, it is a closely associated discipline. Math is
assumed to be an important component of most science fields,
and a key skill for scientific excellence. We tested whether
implicit gender–science stereotypes would also predict these
national sex differences in math performance. Replicating the
analytic approach as described for the science outcome revealed
the same pattern of results for the math sex gaps: National
implicit science stereotyping was significantly positively related
(� � 0.63, P � 0.0001) and persisted after removing the same
high-leverage outlier (� � 0.52, P � 0.05). In the full multiple
regression model with 9 covariates (except the country 8th-grade
math mean from TIMSS was used instead of the science mean)
and with 2 nations removed that did not have gender gap index
(GGI) data, implicit gender–science stereotyping remained a
significant unique predictor of the math gap (� � 0.67, P � 0.05).

Again, with covariates accounted for, the estimated effect of a
SD increase in implicit science stereotype was a roughly 0.7-SD
increase in the male advantage in 8th-grade math performance.
In summary, variation in science � male IAT scores across 34
nations predicted variation in sex differences in both 2003
science and math performance even after removing 12 degrees
of freedom (1 outlier, 2 with missing data, 9 covariates).

TIMSS conducted another international data collection in
1999, before any of the IAT data had been collected. These data
offered an opportunity for replication when performance had
temporal precedence to stereotyping (see SI Appendix for notes
on 1995 and 4th-grade TIMSS). Only 29 nations participated in
the 1999 TIMSS, reducing statistical power to detect relation-
ships still further. Even so, the implicit science stereotyping and
the earlier science–gender gap were significantly positively
related (� � 0.46, P � 0.01). And, that significant effect persisted
after removing 2 influential outliers (� � 0.43, P � 0.05). With
n now at just 27, the significant contribution of implicit stereo-
typing was lost when the 7 covariates of model M4 were
introduced (see Table 1). However, none of these covariates
alone was significantly related to the TIMSS99 science differ-
ence (see SI Appendix for effects of each covariate alone and in
combination with implicit stereotyping). GGI, added with GDP
in model M5, was the only covariate by itself significantly related
to the TIMSS99 science outcome (and its inclusion further
reduced the sample size to 25). Of note, when implicit stereo-
typing was included in a model with GGI as the lone covariate,
both remained independently predictive of the TIMSS99 sci-
ence-achievement gap, with the estimated effect of stereotyping
at � � 0.48 (P � 0.01). The 1999 math gap was positively related
to implicit science stereotyping (� � 0.37, P � 0.05). However,
that relationship disappeared after removing one influential
outlier (� � 0.06, P � 0.79). The effect did not return to
statistical significance after including the 9 covariates, even
though the effect size estimate was larger than the initial one
(� � 0.41, P � 0.31).

In summary, we observed a positive relationship between
implicit gender–science stereotyping in all 4 comparisons (2003
and 1999 science and math performances). In 3 cases, the effect
was still reliable after removing high-leverage outliers. In 2 cases,
the effect was still reliable even after adding 9 covariates (and
losing an additional 2 countries with missing data on one
covariate). There are multiple possible explanations for the
variation in robustness of the effect. The most likely is statistical
power (see SI Appendix). By using the initial 2003 IAT–science
relationship as a baseline (R2 � 0.35), the power to detect that
effect with � � .05 and 14 degrees of freedom (the final 1999
science df ) was 0.52. To achieve 80% power to detect the original
effect size in the covariate analysis, we would have needed 57
nations in the sample (13).

There may also be substantive reasons for the less robust effect
in the 1999 data compared with the 2003 data. For example,
socio-cultural stereotyping across nations is likely to be shifting
over time. The stereotyping data were collected over an 8-year
span from 2000 to 2008. The 1999 TIMSS data may have a
weaker relationship with the national indicators of implicit
stereotyping because it was temporally before the entire stereo-
type data collection (see SI Appendix). There is not enough data
within each nation to test temporal hypotheses with confidence,
but future investigations may be able to shed light on these and
other possible explanations.

Self-report measures of gender–science stereotyping were also
included at the Project Implicit websites offering an opportunity
to test whether both implicit and explicit stereotyping contrib-
uted to predicting the sex gap in performance. Explicit science �
male stereotyping was significantly correlated with the 2003
TIMSS sex gaps in both science and math (science-weighted: r �
0.39, 95% CI: 0.05, 0.64; math: r � 0.34, 95% CI: 0.00, 0.61), but
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Fig. 1. The relationship between implicit gender–science stereotyping and
national sex differences in science performance for 2003 TIMSS data. Hori-
zontal error bars represent the standard error of the mean for implicit ste-
reotype data. Regression estimated with covariates and reflects weighting
that is detailed in the SI Appendix. Country codes: AUS, Australia; BEL,
Belgium; BGR, Bulgaria; CHL, Chile; CYP, Cyprus; GBR, United Kingdom; HKG,
Hong Kong—China; HUN, Hungary; IDN, Indonesia; IRN, Iran; ISR, Israel; ITA,
Italy; JOR, Jordan; JPN, Japan; KOR, South Korea; LTU, Lithuania; LVA, Latvia;
MDA, Moldova; MKD, Macedonia; MYS, Malaysia; NLD, The Netherlands;
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not with the 1999 TIMSS differences (r � 0.27 and 0.25,
respectively). However, when both implicit and explicit stereo-
types were included in regression models, explicit stereotyping
did not contribute uniquely to the prediction of 2003 science or
math gender differences, but implicit stereotyping continued to
be significantly predictive for both. In other words, explicit
stereotypes uniquely accounted for 2% of variance in the science
sex gap and 1% of the math sex gap, whereas implicit stereotypes
uniquely accounted for 19% and 24%, respectively.

Self-selection of the IAT respondents is a potential threat to
the validity of inference. However, if the same selection pres-
sures are operating across nations, comparisons within the
overall sample would not be undermined. Also, nations self-
selected for participation in the TIMSS data collection. It is
possible that national and individual self-selection factors could
be artificially inflating the observed correlations if those factors
varied systematically with both stereotyping magnitude and
performance differences. Other tasks, beside implicit gender
stereotyping, appeared at the Project Implicit website and were
subject to similar selection influences, and offer an opportunity
to test discriminant validity. We calculated national implicit race
and age bias estimates with tasks that measured associations
between black and white faces (or young and old faces) and good
and bad words (38). Repeating the regressions with covariates,
national implicit race and age bias did not reliably predict sex
differences in TIMSS science or math performance in 2003 or
1999 (all 8 P values � 0.28). Thus, the prediction of TIMSS
science performance was specific to implicit gender–science
stereotypes.

Discussion
We found that a national indicator of implicit gender–science
stereotyping was related to nations’ sex differences in science
and math achievement. National sex differences in science and

math achievement were based on the international TIMSS
standardized examination of 8th graders, whereas estimates of
national implicit gender–science stereotyping were calculated
from IATs completed by a large volunteer sample at Project
Implicit (https://implicit.harvard.edu/). The mean level of im-
plicit stereotyping among national citizens, regardless of age or
gender, predicted the sex differences in TIMSS performance
among the 8th graders of that nation from 2003 and 1999.

The finding is especially compelling given that 2 distinct
samples provided (i) the societal indicators of implicit stereo-
typing and (ii) science and math performance estimates. There
is no reason to expect that members of the IAT sample had any
particular interaction with or specific exposure to 8th graders in
1999 and 2003. Rather, a more likely cause of the relation is that
both the 8th grade test takers and the diverse IAT participants
of a given country are influenced by the same socio-cultural
context. That social context embodies the reciprocal influence of
stereotyped science � male associations and sex differences in
engagement in science and mathematics. This significant rela-
tionship persisted even after accounting for a general indicator
of societal gender inequality, the GGI. Thus, the relation
between implicit gender–science stereotypes and science and
math achievement gaps is specific to science and math domains,
and not simply a consequence of generalized national gender
inequality.

If implicit gender stereotypes and sex gaps in scientific en-
gagement are mutually reinforcing, then national policy initia-
tives addressing both factors simultaneously stand the best
chance to maximize national scientific achievement. Education
campaigns attempting to bolster women’s participation and
performance must overcome the pervasive implicit stereotypes
that are already embodied in individual minds. Likewise, inter-
ventions aimed at altering implicit stereotypes must contend
with the influence of persisting cultural realities that fewer

Table 1. Estimated effects of country-level implicit gender–science stereotype on country male-female score differences in 8th-grade
TIMSS science and math in 2003, 1999, and in aggregate

DVs are 2003 male-female test score differences DVs are 1999 male-female test score differences Aggregate

Science Math Science Math

Regression models df SD
IAT effect,
raw (std) df SD

IAT effect,
raw (std) df SD

IAT effect,
raw (std) df SD

IAT effect,
raw (std)

IAT effect,
std

Unweighted
M1 (all countries)

IAT only
32 11.3 7.3 (0.65) 32 9.5 5.9 (0.62) 27 10.4 5.3 (0.51) 27 8.7 2.6 (0.30) 0.53

Weighted*
M2 (all countries)

IAT only
32 11.3 6.3 (0.56) 32 9.5 6.0 (0.63) 27 10.4 4.8 (0.46) 27 8.7 3.2 (0.37) 0.51

M3 (outliers
dropped) IAT only

31 11.1 7.3 (0.66) 31 8.5 4.4 (0.52) 25 8.4 3.6 (0.43) 26 7.9 0.5 (0.06) 0.43

M3a (outliers
dropped) mid-90%
IAT only

31 11.1 7.5 (0.68) 31 8.5 4.7 (0.55) 25 8.4 3.7 (0.44) 26 7.9 0.6 (0.08) 0.45

M4 � M3 � 7
covariates

24 11.1 6.1 (0.55) 24 8.5 4.6 (0.54) 18 8.4 �0.1 (�0.01) 19 7.9 0.6 (0.08) 0.32

M5 � M4 � 2
covariates, GDP/GGI†

20 11.4 8.1 (0.71) 20 8.8 5.9 (0.67) 14 8.7 1.8 (0.21) 15 8.1 3.3 (0.41) 0.53

Bold font indicates significant IAT parameter estimate, P � 0.05. The 7 covariates of M4 are from either Project Implicit or TIMSS data: (i) explicit �science �
male� and (ii) �liberal arts � female� stereotypes; (iii) correlation of IAT and explicit �science � male� scores; (iv) overall country mean TIMSS 8th-grade score for
given year and test; (v) mean IAT trial latency collapsed across experimental conditions; (vi) percentage of men taking the IAT; and (vii) mean age of Project Implicit
participants. df is the degrees of freedom for the model error term. SD is the standard deviation of country-mean TIMSS male-female score differences for the
given year and test. Raw IAT effect is the estimated change in the given DV for a 1-standard-deviation change in country IAT score; standard (std) IAT effect is
scaled by the SD of the given TIMSS sex difference. Aggregate IAT effect is the mean of the 4 standardized estimates, each weighted by the respective df.
Effect-raw is the estimated effect.
*Regression weighting details are in the SI Appendix.
†GGI was not available for Chinese Taipei and Hong Kong.
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women pursue scientific careers and are in positions of scientific
leadership. Even so, whereas mutually reinforcing influences
make it more difficult to jerk the system out of homeostasis, an
effective intervention that changes implicit stereotypes or the
performance and participation gaps can have cascading influ-
ences. Change on one factor can produce change on the other
and move the system toward a new homeostasis point.

Our findings suggest that a nation’s average implicit stereotyping
(and not explicit) is uniquely related to gender inequality in science
and math achievement and, by extension, to other markers of a
diverse scientific workforce such as interest, participation, and
presence in scientific leadership. Experimental research has fre-
quently demonstrated causal effects of implicit stereotypes on such
inequalities, and suggests that observation of inequalities can
influence stereotypes. Changing implicit stereotypes is not just a
matter of influencing intentions; it also requires consideration of
the social realities that shape minds without intention.

Materials and Methods
Visitors to the Project Implicit website (https://implicit.harvard.edu/) could
complete IATs about a variety of topics including measuring association
strengths between gender (male, female) and academics (science, liberal
arts). The participant sample at Project Implicit consists of unselected
volunteers. IATs, and accompanying materials, were available in 17 lan-
guages during the time frame of data collection. Participants who selected
the gender–science IAT completed the IAT, a short questionnaire measur-
ing beliefs and attitudes about math and science, and a demographics
questionnaire in a randomized order. The study required �10 min to
complete. At the end, participants received a debriefing and information
about their IAT performance and comparison data with other participants.
Additional detail on materials, methods, and analysis are available in the
SI Appendix.
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