
Bioinspired micrograting arrays mimicking the 
reverse color diffraction elements evolved by the 
butterfly Pierella luna

Citation
England, G., M. Kolle, P. Kim, M. Khan, P. Munoz, E. Mazur, and J. Aizenberg. 2014. “Bioinspired 
Micrograting Arrays Mimicking the Reverse Color Diffraction Elements Evolved by the Butterfly 
Pierella Luna.” Proceedings of the National Academy of Sciences 111 (44) (October 6): 15630–
15634. doi:10.1073/pnas.1412240111.

Published Version
doi:10.1073/pnas.1412240111

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:27417440

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:27417440
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Bioinspired%20micrograting%20arrays%20mimicking%20the%20reverse%20color%20diffraction%20elements%20evolved%20by%20the%20butterfly%20Pierella%20luna&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=a24bdbb2fa923d5f22755d9721e286c8&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility


Submission PDF

Bio-inspired micro-grating arrays: mimicking the
reverse color diffraction elements evolved by the
butterfly Pierella luna
Grant England*, Mathias Kolle*†§, Philseok Kim‡, Mughees Khan‡, Philip Muñoz*, Eric Mazur* & Joanna Aizenberg*‡§

*School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 †Department of Mechanical Engineering, Massachusetts Institute of
Technology, Cambridge, MA, 02139 ‡Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138 §Corresponding authors

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Recently, diffraction elements that reverse the color sequence nor-
mally observed in planar diffraction gratings have been found in
the wing scales of the butterfly Pierella luna. Here, we describe the
creation of an artificial photonic material mimicking this reverse
color-order diffraction effect. The bio-inspired system consists of
ordered arrays of vertically oriented micro-diffraction gratings.
We present a detailed analysis and modeling of the coupling of
diffraction resulting from individual structural components and
demonstrate its strong dependence on the orientation of the
individual miniature gratings. This photonic material could provide
a basis for novel developments in bio-sensing, anti-counterfeiting
and efficient light management in photovoltaic systems and light
emitting diodes.

Bio-inspired optics | Micro-gratings | Biophotonics

Three-dimensional photonic crystals (1-5), materials with
two-dimensional micro- or nano-sized periodic morphologies (6-
8) and one-dimensional multilayer configurations (9) have been
identified as the primary cause of structural coloration in a wide
variety of non-related biological organisms. In contrast, surface-
confined diffraction elements for the separation of incident light
into specific colors are less abundant in nature and have only been
discovered in a handful of organisms (10), including a fossil poly-
chaete (7), the sea mouse Aphrodita sp. (6) and some flowering
plants (11). Recently, diffraction elements that reverse the color
sequence normally observed in planar diffraction gratings have
been found in the scales of the butterfly Pierella luna (12).

Inspired by this biological light manipulation strategy, we de-
vised an artificial material morphology mimicking the butterfly’s
diffraction effect by creating periodic arrays of vertically oriented
individual micro-diffraction gratings. In addition to the butterfly-
inspired reverse color order diffraction arising from each in-
dividual micro-grating, the periodicity between the individual
gratings causes diffraction on a different length scale, leading
to complex intensity distributions in experimentally measured
angularly resolved reflection spectra. An in-depth analysis of
the observed diffraction phenomenon complemented by optical
modeling revealed a strong dependence of the optical signature
on the orientation of the gratings. Such an effect can only be seen
because of the hierarchical nature of the superposed, orthogonal
grating features. To further elucidate the role of the different
structural components for the emerging reflection spectra, the
initially vertically oriented individual micro-gratings were sub-
jected to a tilt, resulting in a predictable change of the surface's
optical signature.

The dorsal side of the fore and hind wings of P. luna males
are dull brown in diffuse ambient illumination (Fig. 1A, left).
When exposed to directional illumination at grazing incidence,
a coin-sized spot on each forewing displays an angle-dependent
color variation across the whole visible spectrum (Fig. 1A, right).
The color changes from red to blue with increasing observation
angle unlike the variation from blue to red normally observed in
conventional diffraction gratings (13). This reverse color diffrac-

tion effect results from the local morphology of individual scales
within the colored spot on the fore wings (12). The top parts
of the scales are curled upwards, orienting lines of periodically
arranged cross-ribs perpendicular to the wing surface and the
wing surface normal. (Fig. 1C,D). Light incident at an angle onto
the curled parts of the scales is diffracted by the cross-rib structure
acting as a diffraction grating, with a periodicity of ∼400nm. The
alignment of the grating perpendicular to the surface results in the
reverse color sequence that can be observed in angularly resolved
reflection spectra and in the diffraction pattern (Fig. 1E,F).

The identification of this unusual diffraction effect on the
wings of P. luna (12) provided inspiration for the development
of a bio-inspired photonic system that incorporates vertically
oriented micro-diffraction gratings with sub-micrometer peri-
odicity analogous to the key features observed in the natural
structure. In addition, the artificial system displays a periodic
arrangement of the individual vertical gratings in large arrays with
two-dimensional micro-scale periodicity. This structural feature,
which is not found in the natural organism, enriches the optical
signature of the artificial system via coupling of the diffractive
modes of the two present hierarchical morphologies. In the fol-
lowing, we discuss the optical properties of the artificial system
and demonstrate that the modification of either one of the grating
morphologies changes the diffraction signature in predictable
ways.

Significance

In the course of evolution, many organisms have developed
unique light manipulation strategies that rely on intriguing
combinations of a broad range of optical effects generated by
materials with sophisticated multi-scale hierarchical structural
arrangements. By exploiting the optical principles underly-
ing natural structural color, we can generate new photonic
materials. Researchers have only just begun to match na-
ture's morphological and compositional complexity in man-
made materials using nanofabrication. We present a bioin-
spired photonic material that mimics the reverse color order
diffraction found in the butterfly Pierella Luna. Exploiting and
improving the butterfly's strategy, we create new photonic
materials that increase our basic understanding of the optical
interplay of hierarchical structures and provide a platform for
the development of novel photonic devices.

Reserved for Publication Footnotes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

www.pnas.org --- --- PNAS Issue Date Volume Issue Number 1--??

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136



Submission PDF

Fig. 1. Optical properties of the curled scales in buttery Pierella luna. A,
Optical image of P. luna under diffuse lighting (left) and directional lighting
at grazing incidence (right). Scale bar 10 mm. B, Optical micrograph of P.
luna scales under oblique illumination. Scale bar 50 µm. C, Scanning electron
micrograph (SEM) of scales in the colored wing region. Scale bar 50 µm.
White dashed boxes in (B) and (C) mark the curled tops of the scales from
which the color originates. D, Close-up image of the curled region of the
scale from which the color originates. Scale bar 20 µm E, Gray-scale encoded
reflection intensity as a function of wavelength and propagation direction
showing the inverse color order diffraction pattern for 65° light incidence.
The red dashed line indicates the predicted location of the diffraction due to
the cross-rib structures for an orientation of the curled scale sections of -25°
relative to the surface normal and a cross-rib periodicity of 390 nm. The blue
shaded region signifies the angle range for which the diffraction microscopy
image of curled P. luna scales in (F) was obtained. The color bar under the
graph shows the human-eye perceived color for the spectra observed at the
corresponding angles calculated by the CIE 1931 standards [18]. F, Diffraction
microscopy image of the colored spot of a P. luna wing showing multiple
diffracted orders in similar angular locations due to the variation in the
position and angle of the diffracting scales.

The artificial system consists of an array of individual 10 µm
long, 2 µm wide and 18 µm high plates arranged in rows with an
inter-plate spacing of 10 µm and a separation of 5 µm between
individual rows of plates (Fig. 2A). These parameters result in an
overall periodicity of 12 µm in the direction perpendicular to the
plates and 15 µm in the direction collinear with the plane of the
plates and the sample surface. A periodic wave pattern—termed
“scallops”—of ∼500nm pitch runs along the sides of each individ-
ual plate (Fig. 2B).

The bio-inspired diffraction elements are fabricated in a
double-molding procedure. Starting from a silicon master, a peri-
odic array of scalloped micro-plates is first cast into polydimethyl-
siloxane to form a negative mold (14), which is then replicated
with a UV-curable epoxy to produce a positive replica of the
master silicon structure with the original scallops on the indi-

vidual plates well preserved. The silicon master is formed using
the Bosch process (15), in which multiple etching and passivation
steps give rise to the periodic undulations on the micro-plate
surface. The pitch and height of these grating structures can be
controlled by adjusting the etching parameters (16, 17). Here,
they are chosen to be comparable to the spacings and dimensions
of the diffraction-inducing micro-ribs on the P. luna scales (Fig.
2B), and hence are expected to cause a similar diffraction effect.

It is important to notice that in the biological system, the
periodicity of the diffraction grating-supporting scales is of the
order of 80 ± 10 µm along their length and 60 ± 10 µm perpen-
dicular to the scale axis (Fig. 1B). Due to these large distances
between diffraction elements and a non-negligible amount of
irregularity in the location of individual scales, no coherence is ob-
served for light diffracted from adjacent scales. The overall color
splitting only results from the diffraction caused by the cross-rib
gratings on the individual scales, which is confirmed by variable
angle spectroscopy and by diffraction microscopy measurements
(Fig. 1D). Unlike in the biological system, the individual micro-
diffraction gratings in the artificial system are intentionally ar-
ranged in a highly periodic manner, which is expected to result in
a richer diffraction signature and provide additional possibilities
of tailoring the interaction of light beyond the diffraction induced
by the scallops on the plates.

Variable observation-angle spectroscopy performed on the
artificial system serves to spectrally and angularly resolve parts of
the complex diffraction pattern (Fig. 2C). For each measurement
the plane of light incidence is chosen to be perpendicular to the
surface of the individual micro-plates. The light incidence angle
θI is fixed and the observation angle θD is varied in the plane of
light incidence to capture light reflected in an angular range of
±75° around the sample surface normal. Two main features are
observed in these measurements:

(1) Straight lines of higher intensity resulting from diffraction
caused by the inter-plate periodicity represent the individual
diffraction orders; the experimentally observed locations of these
diffraction orders (shown in Fig. 2C,H) can be directly calculated
using the grating equation (13). An example of such a calculation
can be seen in SFig. 1. Due to the large inter-plate pitch of 12
µm the angular separation between adjacent diffraction orders
and the free spectral range of each individual order are small.
For light incident at an angle θI = 45°, eight positive propagating
diffraction orders (left of the 0th order at sin(θ) = ‒0.71 in Fig.
2C) and 53 negative propagating orders are captured with the
highest intensity in the direct reflection (0th order) and in the
adjacent orders.

(2) There is an arc-shaped distribution of intensity maxima
across different diffraction orders (emphasized by dashed red
lines in Fig. 2C).

This anomalous redistribution of light in the diffraction or-
ders is caused by the scallops on each individual plate. To prop-
erly describe the diffraction resulting from the micro-diffraction
gratings oriented normally to the substrate, the grating equation
(13) has to be reformulated taking into account their vertical
orientation for diffraction in the plane of the scallops:

[1]
where d is the grating periodicity, m is the diffraction order,

θI is the light incidence angle and θD is the diffraction angle.
This equation describes the arc shape-like pattern observed in the
experiment under the assumption that the plates are vertical (Fig.
2C red shaded region).

Imaging of the diffraction patterns by diffraction microscopy
provides a direct visualization of the effects observed in the
variable-angle spectroscopy measurements. The angle range that
can be visualized in these measurements is determined by the
numerical aperture of the microscope objective. For a given light
incidence angle θI the diffraction caused by the periodic ensemble
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Fig. 2. Geometry and optical properties of the artificial photonic structure mimicking P. luna with vertically oriented (top row) and tilted (bottom row)
diffraction gratings. A, SEM of the array of scalloped microplates. Scale bar 5 µm. B, SEM of an individual plate with regular scallops. Scale bar 2 µm. C,
Variable angle spectroscopic data for 45° light incidence showing the arc-shaped diffraction pattern caused by the diffraction from the scallops coupled with
the diffraction due to the plates. The measurement geometry is shown in the top right inset. The red overlay displays where the first diffraction order of
the scallops based on the grating equation (eq. 2) is expected for tilt angles of ‒3° to 5°. The color bar under the graph shows the human-eye perceived
color for the spectra observed at the corresponding angles calculated by the CIE 1931 standards (18). D, Diffraction pattern caused by the periodic ensemble
of micro-plates for 45° light incidence. A choice of propagation angles is visualized by the white dashed lines. The diffraction orders within the blue frame
correspond to the diffraction observed in the angular range marked in blue in (C). E, Diffraction pattern resulting from the scallops on individual plates. The
diffraction orders within the yellow frame correspond to the diffraction observed in the angular range marked in yellow in (C). F-K, Same as (A-E), for tilted
gratings. Red overlay in (H) marks the range where higher intensities are predicted by the grating equation for tilt angles between 19° and 27°.

Fig. 3. Modeling of the expected diffraction patterns originating from the
ordered array of gratings with 45° illumination. A, Calculated diffraction
pattern for upright plates with scallops. B, Calculated diffraction pattern
for upright plates without scallops. C, Calculated diffraction pattern for 23°
tilted plates with scallops. D, Calculated diffraction pattern for 23° tilted
plates without scallops.

of plates is most clearly observed when collecting light with the
objective's axis aligned with the specular reflection direction θD =
‒θI (Fig. 2D, with the signal in the blue box corresponding to the
blue shaded spectral range in Fig. 2C). Imaging of the sample's
diffraction in the Littrow mounting (13), where light is incident

Fig. 4. Diffraction discretization. A,1 micron wide unit cell for diffraction
grating simulated via FDTD. B, Reflected spectra calculated from FDTD
simulation of (A) showing bright spots in each diffracted order with discrete
jumps in the diffracted wavelength.

on the sample through the microscope objective, allows for the
capturing of the diffraction component induced by the scallops
on the individual plates (Fig. 2E, with the signal in the yellow
box corresponding to the yellow shaded spectral range in Fig.
2C). This feature is easily distinguished from the diffraction of
the plate ensemble by the wider color spread.

Overall, the measurements provide clear evidence of coupling
between the first order mode of the scallop diffraction and the
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inter-plate periodicity based diffraction modes. The diffraction
coupling can be controlled by adjusting the pitch of the scallops
on individual plates and the inter-plate geometry in the manufac-
turing procedure. Likewise, a change in inclination of the micro-
diffraction gratings with respect to the substrate is expected to be
reflected in a variation of the diffraction patterns. This change
can indeed be observed by imposing a controlled tilt of ∼20° on
the micro-plates by shearing the sample (Fig. 2F,G).

The bending leaves the locations of the diffraction modes
resulting from the inter-plate periodicity largely unaffected. Only
minor wavelength-dependent intensity variations in each diffrac-
tion mode are apparent (Fig. 2H,I). At large angles , measured
from the sample surface normal, a region of higher reflection
intensity appears, which is related to the inclination of the in-
dividual plates, i.e. the blaze of the grating array. By contrast,
the diffraction caused by the scallops on the individual plates is
strongly influenced by the variation in plate tilt angle shifting the
observed arc-shaped pattern in wavelength and angular position
(Fig. 2H,K). For micron-sized diffraction gratings which have a
tilt angle, β, relative to the surface normal, the diffraction grating
equation can be reformulated as:

[2]
By calculating a fit for the arc-shaped intensity distribution

across the different diffraction orders in the variable angle spec-
troscopic data (Fig. 2H, red shaded region), the tilt angle of the
plates relative to the surface normal is found to be β ≈ 23°, in
agreement with the SEM image analysis.

These findings are further supported by Finite Difference
Time Domain simulations (19). By comparing the plates with and
without scalloping, the arc-shaped intensity distribution across
diffraction orders is clearly identified as the diffraction resulting
from the scallops (Fig. 3). Simulations of 23° tilted plates with
45° incident illumination show that this arc-shaped diffraction
pattern gets skewed and spectrally shifted as predicted by Eq. 2
and observed in the experiments; the influence of the blaze of
the regular array of individual gratings, separate from the effect
of the scallops, can also be seen by closely examining Fig. 3 and
noting that the two tilted plate simulations have regions of high
intensity reflection at sin(θ) ≈ 0 where the upright plates do not.
Furthermore, the simulations serve to predict and optimize the
influence of variations in inter-plate geometry, scallop grating
pitch and shape and plate tilt angle prior to the manufacturing
of the system.

While the angular positions of the diffraction modes resulting
from the inter-plate periodicity only vary with the angle of light
incidence θI; for a given θI the diffraction pattern caused by
the regular scallops on individual plates is strongly affected by
a change in tilt of the plates relative to the sample normal. Con-
sequently, a means of reversibly varying the plate tilt angle can
provide the possibility to dynamically tune the diffraction pattern
independent of light incidence. Possible means of achieving such
reversible actuation include embedding the plates in a stimuli-
responsive hydrogel (20-23), using a soft material negative of the
structure and applying shear force to bend the micro-gratings,
modifying the tips of the plates with ferromagnetic particles to
allow for dynamic reconfiguration of the plate geometry using
magnetic fields (24), or implementing tuning mechanisms shown
for simple planar diffraction gratings that rely on electric fields or
mechanical deformation (25-28).

Biological strategies for light manipulation have already been
successfully implemented in nanophotonic devices for applica-
tions in chemically selective vapor sensing, pH determination,
infrared imaging, SERS-based chemical analysis, and localized
heating from infrared absorption (29-34). The rich and tunable
optical signature of our hierarchical bio-inspired diffraction-
based photonic material platform could provide a basis for novel
developments in bio-sensing (35-37), efficient light management

in photovoltaic systems (38-40), enhanced light extraction and
radiation profile shaping in light emitting diodes (41-43) and
optically variable devices in consumer product design and anti-
counterfeiting (44-46).

Our results demonstrate the versatility of a bio-inspired ap-
proach towards the creation of novel photonic systems. The
unique diffraction-inducing nano- and micro-scale architecture
previously discovered in the scales of the male butterfly P. luna
served as inspiration for artificial micro-diffraction grating arrays.
While our photonic system mimics the reverse diffraction color
sequence found upon interaction of light with the butterfly's
scales, it also provides additional complexity in the diffraction
patterns due to a periodic arrangement of the diffraction ele-
ments not found in the natural structure. Such arrays provide
a platform for hierarchical photonic systems displaying unique
diffraction coupling. A detailed optical analysis and modeling of
the diffraction patterns allowed us to observe, understand and
decouple diffraction effects induced by the plate ensemble and
by the regular scalloping of individual plates. A variation of the
light incidence angle results in the expected shifting of the plate
ensemble diffraction modes but does not affect the diffraction
resulting from individual plates. On the other hand, a variation
in plate inclination leaves the inter-plate geometry diffraction
modes untouched but has a strong influence on the scallop-
induced diffraction.

The intensity distribution of the diffraction induced by the
scallops is modulated by the diffraction induced by the plate
ensemble. Where the scallop diffraction arc coincides with a
plate ensemble diffraction order a peak in intensity is observed.
A decrease in the plate ensemble period would result in fewer
propagating plate ensemble diffraction orders with a larger free
angular range in between. This would lead to a discretization of
the scallop diffraction pattern (seen in the FDTD simulation in
Fig. 4) inducing a discrete and easily perceivable color variation
with potential applications in the development of novel optically
variable devices in security printing and consumer product la-
beling. Currently, efforts are underway to fabricate the diffrac-
tion structures in different material combinations that provide
a higher refractive index contrast, thereby strengthening the
diffractive signal.

Materials and Methods
Manufacture of artificial diffraction structures

When Bosch etching (15) is used in conjunction with photolithography,
the multiple etching and passivation steps give rise to a periodicity in
the sidewall of the structures due to the repeated underetching. While,
typically, the goal of this etching method is to create vertical sidewalls, these
undulations in the sidewall can form a diffraction grating similar to that on
the Pierella luna scales if the periodicities are chosen to fall within the range
of optical wavelengths.

Once structures with the correct geometry are created in silicon, they
can be replicated in other materials with better optical properties by using
soft lithographic methods (14). By using soft, transparent materials instead
of silicon, the structures can be bent much more easily and the optical
properties can be changed by applying metal coatings or doping the material
with pigments or other materials with interesting optical properties. The
replication is achieved by using a polydimethylsiloxane (PDMS) mold of the
silicon master and curing an epoxy via UV light before removal from the
mold.

Structural and optical analysis
Once scalloped plate structures are made, optical characterization is

performed for comparison of the structures observed on Pierella luna and
the fabricated systems. Several different types of characterization were em-
ployed, including variable-angle spectroscopy, diffraction microscopy, and
scanning electron microscopy.

For the variable angle spectrometry setup, an Ocean Optics DH-2000
UV-VIS-NIR light source was used to illuminate a small spot (∼1 mm) of
the sample at a given incidence angle θI. For each angle of illumination,
light was collected at half degree increments for ‒75° to +75° relative to
the sample normal and spectrally analyzed using an Ocean Optics Maya Pro
2000 spectrometer.

For the diffraction microscopy images, a Bertrand lens was used to focus
on the back focal plane of the objective of an upright BXFM Olympus optical
microscope. The sample was illuminated either from an external source
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oriented at a 90° angle to the microscope objective with a spot size larger
than the sample field of view, or with a small diameter optical fiber coupled
into the microscope light path (Littrow mounting).

Scanning electron microscopy images were taken on a Zeiss Ultra55 or
a Zeiss Supra55VP SEM after coating the polymer structures with a thin layer
of gold to prevent charging.

Optical modeling
Finite Difference Time Domain (47) methods were employed to numer-

ically simulate the results obtained from the variable angle spectroscopy
measurements. A commercial-grade simulator based on the finite-difference
time-domain method was used to perform the calculations.(19) Perfectly
matched layers (48) were used to prevent reflections from the top and
bottom of the simulation cell, while Bloch boundary conditions were used
for the sides of the simulation cell in order to model light scattering from
a periodic array at non-normal incidence. To simulate broadband angled
scattering, each simulation was repeated for a range of Bloch wavevectors,
which were combined to produce scattered field profiles corresponding to
an incidence angle of 45° ± 1° for wavelengths of 320-800 nm. Far field
projections of the calculated local fields resulted in diffraction patterns (Fig.
3) analogous to the variable angle spectroscopic data.

The diffraction discretization FDTD simulation was similarly performed
in MEEP, a free FDTD software.(49) The use of normal incidence illumination
for this simulation allowed all frequencies and angles to be calculated
without using a sweep of incidence angles.
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