Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version

Accessed
September 25, 2017 10:00:31 AM EDT

Citable Link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:27531159

Terms of Use
This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dashboard.current.terms-of-use#OAP

(Article begins on next page)
The Journal of Neuroscience

http://jneurosci.msubmit.net

JN-RM-4067-15R2

Cited2 Regulates Neocortical Layer II/III Generation and Somatosensory Callosal Projection Neuron Development and Connectivity

Jeffrey Macklis, Harvard University
Ryann Fame, Harvard University
Jessica MacDonald, Harvard University
Sally Dunwoodie, University of New South Wales
Emi Takahashi, Boston Children’s Hospital

Commercial Interest:
Cited2 regulates callosal projection neuron development

Abbreviated title: Cited2 regulates callosal projection neuron development

Ryann M. Fame1, Jessica L. MacDonald‡1,4, Sally L. Dunwoodie2, Emi Takahashi3, and Jeffrey D. Macklis1*
‡ These authors contributed equally to this work.

* Corresponding author: jeffrey_macklis@harvard.edu

Author Affiliations:

1Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, 02138, 2Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales, Australia, Faculties of Medicine and Science, University of New South Wales, Kensington, Sydney, New South Wales, 2052 Australia, 3Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School; Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston MA 02115; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, 02129, 4Current address: Department of Biology, Syracuse University, Syracuse, New York, 13244.

Number of pages: 50; Number of figures: 8; Number of tables: 0; Number of multimedia and 3d models: 0; Word counts: Abstract – 201, Introduction – 653, Discussion - 1496

Conflict of Interest: The authors declare no competing financial interests.

Acknowledgements:

We thank members of the Macklis lab for thoughtful discussions and input, and Lincoln Pasquina, Ryan Richardson, Ben Noble, and Ioana Florea for technical assistance. We thank Prof. Klaus-Armin Nave (Max Planck Institute of Experimental Medicine, Goettingen, Germany) for generously providing the NEX-Cre mice. This work and paper were supported by grants from the N.I.H. (R37 NS41590 and NS093376, with additional infrastructure support by NS45523, NS49553, and NS075672), the Jane and Lee Seidman Fund, the Emily and Robert Perlstein Fund, and the United Sydney Association (to J.D.M); National Science Foundation Graduate Research Fellowship Program (GRFP) fellowship, and National Institutes of Health predoctoral NRSA fellowship F31 NS073163 (to R.M.F); Eunice Shriver Kennedy National Institute of Child Health and Human Development (NIH R01HD078561, R21HD069001) (to E.T.); and National Health and Medical Research Council Senior Research Fellowship (ID1042002) (to S.L.D).
Abstract:

The neocortex contains hundreds to thousands of distinct subtypes of precisely connected neurons, allowing it to perform remarkably complex tasks of high-level cognition. Callosal projection neurons (CPN) connect the cerebral hemispheres via the corpus callosum, integrating cortical information, and playing key roles in associative cognition. CPN are a strikingly diverse set of neuronal subpopulations, and development of this diversity requires precise control by a complex, interactive set of molecular effectors. We have identified that the transcriptional co-regulator Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors in the E15.5 SVZ, during the peak of superficial layer CPN birth, with a progressive post-mitotic refinement in expression, becoming restricted to CPN of somatosensory cortex postnatally. We generated progenitor-stage and post-mitotic forebrain-specific Cited2 conditional knockout (cKO) mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. We demonstrate that Cited2 functions in progenitors, but is not necessary post-mitotically, to regulate both 1) broad generation of layer II/III CPN, and 2) acquisition of precise area-specific molecular identity and axonal/ dendritic connectivity of somatosensory CPN. This novel CPN subtype- and area-specific control from progenitor action of Cited2 adds yet another layer of complexity to the multi-stage developmental regulation of neocortical development.

Significance Statement:

This study identifies Cited2 as a novel subtype- and area-specific control over development of distinct subpopulations within the broad population of callosal projection neurons (CPN), whose axons connect the two cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes is specified, and how they
differentiate to form highly precise and specific circuits, is largely unknown. We identified that
Cited2 functions within SVZ progenitors to both broadly regulate generation of superficial layer
CPN throughout the neocortex, and to refine precise area-specific development and connectivity
of somatosensory CPN. Gaining insight into molecular development and heterogeneity of CPN
will advance understanding of both diverse functions of CPN, and the remarkable range of
neurodevelopmental deficits correlated with CPN/CC development.
Introduction:

The neocortex contains hundreds to thousands of distinct neuronal subtypes that enable it to perform remarkably complex tasks. Callosal projection neurons (CPN) are the broad population of commissural neurons whose axons connect the two cerebral hemispheres via the corpus callosum (CC), the largest axonal tract in the mammalian brain. CPN are excitatory pyramidal projection neurons whose cell bodies reside in neocortical layers II/III (~80% in mouse), V (~20%), and a few % in VI (Catapano et al., 2001, Fame et al., 2011, Greig et al., 2013), and play key, diverse roles in complex associative and integrative cognition. CPN are molecularly, morphologically, and functionally diverse between the four primary functional neocortical areas (Lomber et al., 1994, Olivares et al., 2001, Grove and Fukuchi-Shimogori, 2003, Benavides-Piccione et al., 2006, O'Leary et al., 2007). Further, subpopulations of CPN maintain other non-callosal projections to contra- or ipsilateral striatum, primary somatosensory cortex, or frontal areas (Wilson, 1987, Mitchell and Macklis, 2005, Fame et al., 2011). CPN are thus a strikingly heterogeneous set of neuronal subpopulations, requiring precise control over development of their distinct subpopulations by a complex and interactive set of molecular controls.

Currently, how the remarkable diversity of CPN subtypes and connectivity is specified, and how they differentiate to form highly precise and specific circuits, is largely unknown. We previously identified a combinatorially-expressed set of genes that both define CPN as a broad population, and identify novel subpopulations of CPN during development (Molyneaux et al., 2009). \textit{Cited2} encodes a transcriptional co-regulator that is significantly enriched in CPN over other cortical projection neuron subpopulations, with particularly high expression at early stages of CPN development (Molyneaux et al., 2009). CITED2 functions as a transcriptional co-
activator by interacting with CBP/p300 (Bhattacharya et al., 1999, Freedman et al., 2003), or as a transcriptional co-repressor by competing with transcription factors for binding to CBP/p300 (Freedman et al., 2003, Lou et al., 2011). Cited2 is critical for proper development of multiple systems, including heart, lung, lens, placenta, and blood, in addition to neural tube closure (Bamforth et al., 2001, Barbera et al., 2002, Bamforth et al., 2004, Weninger et al., 2005, Withington et al., 2006, Chen et al., 2008, Xu et al., 2008, Chen et al., 2009, Kranc et al., 2009).

Although Cited2 function has not been investigated in cortical development, in these other systems CITED2 interacts with or regulates transcription factors known to function critically in cortical specification and development, including LHX2 (Glenn and Maurer, 1999), PAX6 (Chen et al., 2008, Chen et al., 2009), and AP2γ (Bamforth et al., 2001).

Here, we demonstrate that Cited2 regulates and refines two stages of CPN development. Cited2 is expressed broadly by progenitors of the E15.5 SVZ, during the peak of superficial layer CPN birth, with a progressive post-mitotic refinement in expression to CPN of somatosensory cortex postnatally. We generated progenitor-stage and post-mitotic forebrain-specific Cited2 conditional null (cKO) mice, using the Emx1-Cre and NEX-Cre mouse lines, respectively. In progenitor-stage cKO, we identify broad reduction of TBR2-positive progenitors at E15.5 across the neocortex, resulting postnatally in both reduced thickness of superficial layers and a highly area-specific reduction of layer II/III somatosensory neocortical length. Importantly, loss of Cited2 function does not disrupt the barrel field, resulting instead in an unprecedented misalignment of molecular areal identity between layer II/III and layer IV. Further, we identify area-specific disruption of dendritic complexity and precise axonal connectivity of somatosensory CPN. Cited2 is not required post-mitotically for these functions even though some processes, like arealization and dendritic arborization, are completed post-mitotically.
Taken together, our results demonstrate that *Cited2* functions differently from previously described mechanisms to regulate two stages of precise CPN development, acting in neocortical progenitors to both broadly regulate generation of superficial layer CPN throughout the neocortex, and in an areally-restricted manner to refine the distinct identity and precise connectivity of somatosensory CPN. This novel subtype- and area-specific control from progenitor action adds yet another layer of complexity to the multi-stage development of the neocortex.

Materials and Methods:

Mice

C57Bl/6 wildtype mice were obtained from Charles River Laboratories (Wilmington, MA, USA) for retrograde labeling, Western blotting, and determining gene expression. *Cited2* conditional floxed mice (C2f) (Preis et al., 2006), *Lmo4* conditional floxed mice (L4f) (Deng et al., 2010), and *NEX-Cre* (Goebbels et al., 2006) were previously described. *Emx1-Cre* mice were generated by (Guo et al., 2000) and obtained from The Jackson Laboratory (Bar Harbor, Maine, USA), strain number 005628. To avoid non-specific cre recombinase activity in oocytes (Hayashi et al., 2003), all conditional knockouts were generated by crossing fl females with fl; cre+ males, and no offspring from fl; cre+ dams were analyzed. The morning of the day of the appearance of the vaginal plug was defined as E0.5. The day of birth was designated P0. All animal procedures were approved by Massachusetts General Hospital and/or Harvard University IACUCs.
In Situ Hybridization and Histology

Postnatal tissue was fixed overnight in 4% paraformaldehyde (PFA)/PBS at 4°C; for flatmount analysis, cortices were flattened and fixed three days in 4% PFA/PBS at 4°C. Fixed tissue was sectioned on a vibrating microtome for in situ hybridization. Embryonic tissue was flash frozen in 2-methyl butane, embedded in TBS, and cryosectioned. In situ hybridization was performed as previously described (Cederquist et al., 2013). The probes were synthesized as described in previous publications: Cited2 (Molyneaux, et al. 2009); Rorβ ephrinA5 ((Allen Brain Atlas Resources, http://www.brain-map.org)); EphA7 (Mori, et al. 1995); Cadh8 (Joshi, et al. 2008).

Immunocytochemistry and Western Blotting

Brains were post-fixed overnight in 4% PFA/PBS at 4°C, then were sectioned on a VT1000S vibrating microtome (Leica Microsystems). Sections were incubated in primary antibody dilutions at 4°C overnight, and appropriate secondary antibodies were selected from the Molecular Probes Alexa series (Invitrogen, Carlsbad, CA). Antigen retrieval methods were required to expose antigens for some of the primary antibodies. Sections were incubated in 0.1M citric acid (pH=6.0) for 10 min. at 95-98°C. Primary antibodies were used as follows: goat anti-LMO4 (Santa Cruz Biotech SC-11122), rat anti-TBR2 (eBioscience 14-4875), rabbit anti-TBR2 (Abcam ab23345), rabbit anti- PAX6 (Millipore Ab2237), goat anti-BHLHB5 (Santa Cruz Biotech SC-6045), goat anti-CUX1 (Santa Cruz Biotech SC-13024), mouse anti-PH3 (Abcam ab14955), rabbit anti-PH3 (Upstate 06-570), mouse anti- βIII Tubulin (TUJ1) (Covance mms-435P), mouse anti-PCNA (Sigma WH0005111M2), rat anti-CTIP2 (Abcam ab18465), rabbit anti-Ki67 (Abcam ab15580), rabbit-anti RORβ (a generous gift from the Stunnenberg lab),
rabbit anti-5HT (Immunostar 20080), mouse anti-MBP (Chemicon MAB387), and rabbit anti-GFP (Invitrogen A-11122). Immunocytochemistry was performed as previously described (Cederquist et al., 2013).

Immunoblotting was performed as previously described (Macdonald et al., 2010). Briefly, neocortical tissue was isolated, and protein homogenates were separated by 4-20% SDS–PAGE, and transferred to nitrocellulose membrane (Bio-Rad Trans-Blot). Membranes were incubated for 12–20 hours at 4 °C in rabbit anti-CITED2 (Abcam ab108345) primary antibody diluted in 2% milk/TBS, and developed with goat anti-rabbit HRP IgG (BioRad) diluted in 2% milk/TBS, and signals were detected with chemiluminescence (Pierce, Rockford, IL).

Quantification of Neocortical Length and Thickness

All length and thickness measurements were performed with images of matched sagittal 50μm sections using ImageJ to trace the curvature of the neocortical surface. Areas were delineated using the noted marker gene expression. Deep layers (V-VI) were identified as those including cells expressing high levels of CTIP2 and deeper. Superficial layers (II-IV) were identified as those superficial to high level CTIP2 expression. p-values were calculated using the unpaired two-tailed Student’s T-Test using GraphPad Prism for Mac (GraphPad Software, San Diego California USA, www.graphpad.com). A robust regression outliers (ROUT) test (Q=0.5%) was performed for all data sets with an N equal to or less than 10 (Motulsky and Brown, 2006). No outliers were discovered.

Golgi Staining and Dendritic Complexity Analysis

P22 mouse brains were immersed in freshly prepared impregnation solution (FD Rapid
GolgiStain kit; FD Neurosciences), and processed according to the protocol provided by the company. Neurons were imaged, and then traced blinded to genotype. Dendritic complexity was quantified using Sholl analysis (Sholl, 1953) employing ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA) with the Sholl Analysis Plugin (v1.0) (Ghosh Lab, http://labs.biology.ucsd.edu/ghosh/software/). The following parameters were used for dendrite analysis: step= 10 μm, beginning radius= 20 μm, final radius= 200 μm.

High Angular Resolution Diffusion Imaging (HARDI) and Tractography Reconstruction

Adult (9 week old) mouse brains were perfused and fixed for an additional week in 4% paraformaldehyde solution containing 1 mM gadolinium (Gd-DTPA) MRI contrast agent to reduce the T1 relaxation time while ensuring that enough T2 -weighted signal remained. Brains were then scanned on a 4.7T Bruker Biospec MR system. The pulse sequence used for HARDI acquisition was a 3D diffusion-weighted spin-echo echo-planar imaging (EPI) sequence (Tuch et al., 2003) with a spatial resolution of 175 × 175 × 175 μm, sixty diffusion-weighted measurements (high b-value 4,000 sec/mm²). Diffusion Toolkit and TrackVis (http://trackvis.org) were used to reconstruct and visualize tractography pathways that crossed the midline and passed through both the right and left neocortical hemispheres using an angle threshold of 45°. Tractography was initiated from each voxel within the brain mask, which limits the number of streamlines. Rather than use an FA threshold, brain mask volumes generated from Diffusion Toolkit were used to terminate tractography pathways, because brain abnormalities can result in low FA values that may potentially incorrectly terminate tractography tracing (Takahashi et al., 2010, Rosen et al., 2013, Song et al., 2015). Streamline length was not limited in the analyses. The regions of interest and exclusion were manually drawn from the MRI. We
included all tracts that crossed the midline and passed through both the right and left neocortical hemispheres. Any tract that passed through the anterior commissure was excluded, ensuring that other fiber pathways were not contributing to our analyses.

Anterograde and Retrograde Axonal Labeling

P6 pups were anesthetized by hypothermia, somatosensory neocortex was injected stereotaxically with a pulled glass micropipette (tip diameter 80-100μm), and cell bodies were infected with either AAV-eGFP (Maguire et al., 2013), or the beta subunit of cholera toxin (CTB) labeled with alexa dyes, respectively. Cells were labeled from this boundary area with four tightly clustered injection sites, each consisting of 5 injections of 4.6 nl each at a depth of 250μm. Only brains with matched injections were included in the analysis. Mice were transcardially perfused for analysis at 6 weeks, as outlined previously.

Injection area and contralateral CPN projection spread were analyzed using ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA.) Fluorescence intensity was measured in a defined box across the injection in a sagittal section. Total pixels were binned in 100μm bins extending rostrally and caudally from the center of the injection. Fluorescence pixel intensity was calculated as a function of distance from the center of injection within superficial layers of both the injected hemisphere of neocortex and the matched contralateral region. p-values for each bin were calculated using the Bonferroni post-test on the unpaired two-tailed Student’s T-Test using GraphPad Prism for Mac. Axonal distribution was divided into 3 regions (anterior tail: -1400μm to -800μm; center: -700μm to 700μm, and posterior tail: 800μm to 1400μm) and two-way ANOVA analysis was performed for each regional distribution using GraphPad Prism for Mac (GraphPad Software, San Diego California
USA, www.graphpad.com). A robust regression outliers (ROUT) test (Q=0.5%) was performed for all data sets with an N equal to or less than 10 (Motulsky and Brown, 2006). No outliers were discovered.

Cell Counts and Density Quantification

E15.5 mouse neocortices were sectioned sagitally, imaged with confocal microscopy at three distinct rostro-caudal positions, and individual cells were quantified based on PAX6-, TBR2-, and PCNA-positivity. Change in basal cell divisions was evaluated by position of pH3-positive mitotic cells. p-values were calculated using the Student’s t-test. Neocortical cellular density at P3 was measured in matched sagittal 14 μm cryosections stained for DAPI to mark nuclei, and immunolabeled for LMO4 and CTIP2 to mark areas and laminae. Boxes of standard width were digitally placed over images, and volume was calculated using 14 μm section thickness, measured orthogonal laminar thickness for each sample, and the 280 μm wide box; density is expressed as cells/100 μm³. p-values were calculated using the unpaired two-tailed Student’s t-test. A robust regression outliers (ROUT) test (Q=0.5%) was performed for all data sets with an N equal to or less than 10 (Motulsky and Brown, 2006). No outliers were discovered.

Microscopy and Image Analysis

Tissue sections were imaged on a Nikon 90i microscope using a 1.5 megapixel cooled CCD digital camera (Andor Technology, Dublin, Northern Ireland), or a 5 megapixel color CCD digital camera (Nikon Instruments, Melville, NY). Images were collected and analyzed with
Elements acquisition software (Nikon Instruments, Melville, NY). Laser confocal analysis was performed using a BioRad Radiance 2100 confocal microscope with LaserSharp2000 imaging software (BioRad Laboratories, Hercules, CA). Images were processed using a combination of functions provided by Elements analysis software (Nikon Instruments, Melville, NY), ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA), and Adobe Photoshop/ Illustrator software packages (Adobe, San Jose, CA).

Results:

Cited2 is expressed in the SVZ at E15.5 and, postnatally, by a restricted population of somatosensory CPN

The transcriptional co-regulator *Cited2* (CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich C-terminal domain 2) is more highly expressed by CPN relative to other cortical projection neuron subpopulations (in particular, corticospinal motor neurons, CSMN) in the developing neocortex, with peak differential expression at E18.5, the earliest time point at which CPN and CSMN can be purified by retrograde labeling (Molyneaux et al., 2009) (Figure 1A). We confirmed and more broadly investigated the neocortical expression of CITED2 protein by Western blotting from the developing neocortex, revealing high CITED2 expression beginning at E15.5, and decreasing postnatally (Figure 1B). In situ hybridization reveals that there is minimal pallial expression of *Cited2* at E13.5, but *Cited2* is
highly expressed in progenitor regions throughout the subventricular zone (SVZ) of developing neocortex during superficial layer CPN generation at E15.5 (Figure 1C,D), with expression decreasing as differentiation proceeds. Postnatally, total expression levels of Cited2 decrease, and its neocortical expression strikingly refines to layers II/III, V, and VI of somatosensory areas, mirroring the laminar distribution of CPN (Figure 1E,F). To further investigate this refinement of Cited2 expression, we examined Cited2 expression in sagittal preparations (Figure 1G-H). Embryonically, Cited2 is expressed across the rostro-caudal extent of the neocortex (Figure 1G). Postnatally, Cited2 expression becomes progressively restricted to CPN (in layers II/III, V, and VI) of somatosensory neocortex by P3, in keeping with the known refinement of molecular areal boundaries (Figure 1H). This broad early SVZ progenitor expression across areas, with postnatal areal refinement to somatosensory CPN, led us to hypothesize two stages of function for Cited2 in neocortical, and specifically CPN, development: broadly in generation of superficial layers, and area-specifically in maturation of somatosensory CPN.

The SVZ is largely composed of intermediate progenitor cells (IPCs; or basal progenitors), which are transit amplifying progenitors that arise from asymmetric divisions of radial glial cells (RGCs) of the VZ, and which undergo a limited number of symmetric divisions before generating pairs of post-mitotic neurons (Haubensak et al., 2004, Miyata et al., 2004, Noctor et al., 2004). Although IPCs give rise to projection neurons of all laminae, at E15.5, the peak of Cited2 expression, they largely generate superficial layer projection neurons (Sessa et al., 2008, Kowalczyk et al., 2009), of which CPN are the predominant population. The high Cited2 expression throughout the SVZ suggests a potential Cited2 function in IPCs at E15.5. At E15.5, Cited2 is most highly expressed in the laminar domain that overlaps with TBR2-expressing (TBR2+) IPCs of the SVZ, extending into the early post-mitotic neurons of the intermediate
zone, but it is mostly excluded from the region containing PAX6+ RGCs of the VZ (Figure 1I, J). The SVZ region expressing Cited2 includes both proliferating and non-proliferating populations, as assessed by the mitotic markers Ki67 and phosphorylated histone H3 (pH3) (Figure 1I, K). Taken together, these data suggest that CITED2 functions in SVZ IPCs as they transition from cycling progenitors to post-mitotic neurons across all areal anlagen at E15.5, when superficial neocortical neurons are being generated.

Cited2 controls TBR2+ IPC number and proliferation in E15.5 neocortex

To investigate developmental requirements for Cited2 in neocortical generation and precise CPN maturation, we generated mice null for Cited2 in the neocortex. To bypass a set of early patterning defects in homozygous Cited2 null mutants (Bamforth et al., 2001), and any confounding role Cited2 might have in the subpallial domain, we generated pallial cortex-specific conditional knockouts using Emx1-promoter driven cre-recombinase (Emx1-Cre) (Guo et al., 2000, Jin et al., 2000). In all experiments, we compared Cited2^{−/−}; Emx1-Cre⁺ conditional knockout mice (cKO) to littermate controls, both Cited2^{−/−}; Emx1-Cre[−], and Cited2^{+/+}; Emx1-Cre⁺. Because no significant differences were observed between the two control genotypes, they were combined as Cited2 WT in analyses. We verified that these cKO mutants are viable and healthy, and confirmed that early cortical neurogenesis, preceding onset of pallial Cited2 expression, is not affected in Cited2 cKO brains, as assessed by VZ (Cited2 WT = 2694±36μm, Cited2 cKO = 2683±56μm; N = 10 WT and 5 cKO, p = 0.87) and cortical plate length (Cited2 WT = 3163±33μm, Cited2 cKO = 3093±75μm; p = 0.33) and thickness at E15.5 across the rostro-caudal axis (medial: Cited2 WT = 317±6μm, Cited2 cKO = 297±12μm; p = 0.12).
Because *Cited2* is highly expressed throughout the SVZ at E15.5, we specifically investigated whether the population of TBR2+ IPCs is altered in the absence of *Cited2* function. In the setting of a broadly well-patterned and laminated E15.5 neocortex, there is a highly specific ~20% reduction of TBR2+ IPCs in *Cited2* cKO mice (**Figure 2B**), while the number of PAX6+ RGCs is not altered (**Figure 2A**). At this age, only a small fraction of TBR2+ IPCs are actively proliferating, as assessed by PCNA; however, there is a significant decrease in the number of PCNA+ IPCs in *Cited2* cKO mice (**Figure 2C**). The total number of PCNA+ cells, largely PAX6+ RGCs, is not altered in *Cited2* cKO mice (*Cited2* WT = 115±2 PCNA+ cells / 100μm, *Cited2* cKO = 113±2 PCNA+ cells / 100μm; N = 10 WT and 6 cKO, p = 0.67). We directly investigated the population of actively proliferating IPCs as basal mitotic pH3+ progenitors (**Figure 2D**). While there is not a general disruption in mitotic progenitors, there is a specific reduction in basally-located mitotic progenitors, indicating a specific requirement for *Cited2* in IPC proliferation, but not that of RGC.

In addition to perturbed proliferation, a reduction in TBR2+ IPCs might also result from cell death. We directly investigated this possibility by assessing apoptosis at E15.5 using activated caspase 3 (aC3+). We identified a significant increase in aC3+ cells in *Cited2* cKO neocortex, both proliferating progenitors (PCNA+) and post-mitotic neurons (**Figure 2E**). This significant increase in apoptosis among progenitors likely contributes to the substantial decrease in TBR2+ progenitors in *Cited2* cKO neocortex.

The reduction in PCNA+/TBR2+ IPCs and basally-located mitotic progenitors in the *Cited2* cKO neocortex suggests that *Cited2* is necessary for expansion of the IPC population. To directly investigate whether *Cited2* cell-autonomously regulates proliferation of IPCs, we electroporated Cre recombinase into progenitors of *Cited2*fl/fl and *Cited2*fl/wt littermates at E14.5,
to excise Cited2 in a small subpopulation of neocortical progenitors. We co-electroporated GFP to identify progenitors that were cycling at E14.5 and were electroporated, and we employed a BrdU pulse at E15.5 and immunocytochemistry for Ki67 at E16.5 to identify progenitors that continued to proliferate (Figure 2 F-F‴). We identified a significant reduction both in the number of Cited2-null (Cited2fl/fl; Cre+) progenitors that incorporated BrdU at E15.5 and in the number of Cited2-null (Cited2fl/fl; Cre+) progenitors that were Ki67+ at E16.5. Further, there was a significant reduction in the number of cells proliferating at E15.5 that were still cycling at E16.5 (BrdU/Ki67 double-positive). Additionally, we employed immunocytochemistry for activated caspase 3 (aC3) at E16.5, and did not identify a significant change in the number of Cited2-null (Cited2fl/fl; Cre+) progenitors that were dying at E16.5. These analyses demonstrate that Cited2-null IPCs are less likely to re-enter the cell cycle than their heterozygous counterparts, further supporting the conclusion that Cited2 cell-autonomously contributes to regulation of IPC proliferation, and that this reduction in basal progenitor proliferation contributes to the reduction in TBR2+ progenitors in Cited2 cKO neocortex at E15.5.

The later areal refinement of Cited2 expression raises the hypothesis that CITED2 function in the SVZ is areally restricted based on overlapping, intersectional expression of co-regulators. For example, the known CITED2 interactor AP2γ (Bamforth et al., 2001) is broadly expressed across the ventricular zone; however, it regulates specification of TBR2+ IPCs and generation of superficial layers only in the occipital cortex (Pinto et al., 2009), presumably through an area-restricted co-regulator. To investigate whether Cited2 functions in an areally-restricted manner within SVZ progenitors, we analyzed IPC numbers in three presumptive areal regions, and determined that the progenitor abnormality is uniform across the extent of the developing neocortex (Tbr2+ cells/100μm: rostral- WT = 76.7 ± 1.6, cKO = 61.7 ± 3.4, p =
0.0004; medial- WT = 69.5 ± 1.9, cKO = 52.2 ± 3.7, p = 0.0003; caudal- WT = 63.7 ± 2.9, cKO = 47.3 ± 5.5, N = 10 WT and 6 cKO, p = 0.01 Student’s t-test;), indicating that the function of Cited2 in IPC proliferation and survival is not areally restricted.

Cited2 regulates neocortical size, including superficial layer thickness and neocortical surface length

Superficial layer CPN arise predominantly from IPCs (Sessa et al., 2008, Kowalczyk et al., 2009); therefore, we investigated whether this significant, broad reduction of IPCs in the Cited2 null neocortex at E15.5 causes a reduction in superficial layer CPN, presenting as a change either radially in thickness of the superficial layers, and/or tangentially in the cortical length. Cited2 is not required for gross neocortical development or laminar organization. At postnatal day (P) 6, the Cited2 cKO neocortex is smaller than WT littermate controls, but both CPN (SATB2+) and CSMN (CTIP2+) are present and appropriately positioned (Figure 3A). Anterograde labeling with DiI, and retrograde labeling with fluorescently-conjugated Cholera toxin B (CTB), demonstrate that CPN are present and are appropriately targeting axons to the contralateral hemisphere in Cited2 cKO neocortex (Figure 3B, C). However, both the distribution of retrogradely-labeled CPN (Figure 3C), and CUX1 and CTIP2 immunocytochemistry (Figure 3D), indicate that superficial layers are reduced in thickness in Cited2 cKO cortex, while deep layers are not changed in thickness.

Quantitative analysis of neocortical layer thickness at P3 reveals a significant ~20% reduction in superficial layer thickness (layers II/III and IV, as delineated as cells superficial to CTIP2 expression) across multiple neocortical areas, including rostral motor cortex, the primary somatosensory area, and caudal visual cortex. There is no significant change in deep layer
thickness (layer V and VI) in any region, where CPN account for only a minority of projection neurons (Figure 3E). To directly investigate whether the reduced superficial layer thickness identified in *Cited2* cKO neocortex is due to reduced cell number and/or increased cell packing, we quantified cell density within the reduced superficial layers. There is no significant difference in cell density in layers II/III of motor or visual cortices, and a modest, but significant, increase in cell density in layer II/III of somatosensory cortex, where the greatest reduction in thickness is observed (motor: *Cited2* WT = 369±128 cells/100μm³, *Cited2* cKO = 462±30 cells/100μm³; p = 0.44; somatosensory: *Cited2* WT = 652±66 cells/100μm³, *Cited2* cKO = 803±26 cells/100μm³; p = 0.01; visual: *Cited2* WT = 590±35 cells/100μm³, *Cited2* cKO = 608±7 cells/100μm³; p = 0.55; N = 6 WT and 3 cKO). Additionally, the reduction in superficial laminar thickness in *Cited2* cKO neocortex persists at P6 (Figure 3D) and into adulthood. These data indicate that the reduction in the number of TBR2+ IPCs observed early in the development of *Cited2* null neocortex results in a significant reduction in the number of superficial layer CPN throughout the neocortex. Interestingly, the findings regarding cell density indicate a further area-specific requirement for *Cited2* in development of layer II/III neurons of somatosensory neocortex.

In addition to the observed reduction in radial thickness in *Cited2* cKO neocortex, early loss of TBR2+ progenitors might also result in an overall decrease in neocortical length on the tangential axis (Sessa et al., 2008, Kowalczyk et al., 2009, Tuoc et al., 2013). We measured cortical surface length at P3, identifying an ~5% smaller diagonal cortical length, and an ~10% reduction in rostro-caudal neocortical surface length in P3 *Cited2* cKO neocortex, measured across multiple medio-lateral sagittal sections (Figure 3F,G). These data indicate that there is both significant reduction in cortical thickness as a result of *Cited2* loss of function, and significant reduction in neocortical tangential length. This reduction of cortical length does not
normalize over time; at P21, Cited2 cKO neocortex is still significantly shorter than that of WT littermates (Cited2 cKO normalized to Cited2 WT littermates = 90.9±3% neocortical length; p = 0.005, N = 6 WT and 3 cKO), indicating that the reduction is not simply a delay in maturation, but, rather, a persistent reduction of ~10% of the neocortical rostro-caudal surface length.

Cited2 refines the boundary of areal molecular identity of layer II/III somatosensory CPN

Progressive post-mitotic refinement of Cited2 expression to somatosensory cortex led us to hypothesize that CITED2 might have a second phase of function in areal-specification of CPN. Dual functions of Cited2 have previously been identified in eye development, in which Cited2 acts upstream of Pax6 to regulate lens morphogenesis, and negatively regulates HIF-1 signaling to regulate hyaloid vasculature formation (Chen et al., 2008). Therefore, we assessed whether specification and development of somatosensory CPN are specifically disrupted in Cited2 cKO neocortex, beyond the broad reduction in IPCs and superficial layer generation. First, we investigated whether all neocortical areas are uniformly reduced in Cited2 cKO neocortex, or whether the cortical length reduction is areally restricted.

Strikingly, analysis based on three broad cortical areas distinguished by LMO4 expression at P3 (Joshi et al., 2008) indicates that there is a highly specific and substantial (~35%) reduction in the rostro-caudal length of somatosensory cortex in Cited2 cKO, versus no significant change in motor or caudal cortex (Figure 4A-C). A similar reduction in somatosensory cortex is observed by expression of BHLHB5 (Figure 5F, H), which has a largely complementary expression to LMO4, and is highly expressed by CPN of somatosensory neocortex (Joshi et al., 2008, Cederquist et al., 2013). Thus, the entire 10% neocortical tangential
length reduction occurs in the somatosensory region in which $Cited2$ is normally expressed postnatally.

Because $Cited2$ expression progressively refines to CPN of somatosensory cortex during the first postnatal days, we investigated when the area-specific function of $Cited2$ arises. At P0, before motor and somatosensory cortical areas are fully refined, there is a reduction in both motor and somatosensory cortical lengths, as delineated by LMO4 immunostaining (cKO relative length: mot = 0.89 ± 0.04, p = 0.037; SS = 0.83 ± 0.047, p = 0.018; vis = 0.99 ± 0.046, N = 6 WT and 3 cKO, p = 0.89, Student’s t-test). The reduction in $Cited2$ cKO cortical length progressively becomes restricted to somatosensory cortex by P3 (cKO relative length: mot = 0.94 ± 0.046, p = 0.13; SS = 0.64 ± 0.13, p = 0.0005; vis = 1.02 ± 0.029, N = 8 WT and 4 cKO, p = 0.32, Student’s t-test) as wildtype expression of $Cited2$ becomes restricted to somatosensory cortex; this specificity for $Cited2$ function in somatosensory cortex is maintained at P8 (cKO relative length: SS = 0.73 ± 0.06; N = 10 WT and 5 cKO, p<0.0001, Student’s t-test).

We confirmed the somatosensory-specific reduction of cortical length in P3 $Cited2$ cKO mice using the expression of multiple overlapping and/or complementary molecular markers that, in combination, delineate cortical areas at P3 (Dye et al., 2011). Strikingly, layer II/III measurements of somatosensory cortex length by $Cadh8$, $EphrinA5$, and $EphA7$ expression confirm the reduced length observed with Lmo4 measurements (Figure 4D-F). Consistent with the CPN subtype-specific expression of $Cited2$, this areal-specific reduction is also layer specific, with no significant difference in length of acallosal layer IV, by expression of $EphrinA5$ and $Ror\beta$ in somatosensory cortex in $Cited2$ cKO mice (Figure 4F-G). In addition, loss of $Cited2$ function does not disrupt somatosensory barrel morphology, size, or placement (data not shown).
These results indicate highly specific and significant disruption of layer II/III somatosensory cortex in the absence of Cited2 function. Taken together, these data suggest that Cited2 is selectively necessary for acquisition of molecular areal identity of layer II/III somatosensory CPN, but not generally for somatosensory neocortical arealization. In P3 WT neocortex, molecular markers of layer IV primary somatosensory cortex (e.g. Rorβ) and layer II/III somatosensory neocortex (e.g. BHLHB5) align to indicate the boundary between motor and somatosensory cortices (Figure 4H-H‴). Notably, upon loss of Cited2 function, the rostral boundary of Rorβ expression is no longer aligned with BHLHB5 expression, (Figure 4I-I‴), but, rather, extends further rostral than the molecularly-identified somatosensory region in layer II/III, indicating an unprecedented misalignment of molecular areal identity between layer II/III and layer IV in the Cited2 cKO. This neuronal subtype-specific areal misalignment could result in columnar wiring irregularities, the functional consequences of which would be intriguing to investigate in the future.

Cited2 and Lmo4 cooperatively control CPN areal identity

The above evidence indicates functions for Cited2 in specific acquisition of somatosensory CPN identity, leading to the hypothesis that Cited2 might act as part of a molecular network to generate neuronal areal identity; additional molecular controls might function in acquisition of other CPN areal identities, interacting with Cited2 at the boundaries to define these sub-populations. Lmo4 is a particularly compelling candidate to function in CPN of motor cortex, and to interact with Cited2 at the motor-somatosensory cortex boundary. Lmo4 has reciprocal areal expression in the neocortex compared with Cited2, and has been shown to have areally-restricted roles in neocortical projection neuron subtype identities and connectivity.
Cited2 interacts genetically with Lmo4, and Lmo4 can partially functionally compensate for Cited2 in thymus development (Michell et al., 2010). This knowledge led us to hypothesize that Lmo4 might be performing a parallel, areal-specific function in motor cortex CPN, intersecting with Cited2 in areal boundary regions. Its maintained expression in motor cortex might underlie some of the CPN areal differences observed with Cited2 loss-of-function.

To test this hypothesis, we generated cortex-specific Lmo4/Cited2 double conditional knockout (dcKO) mice using Emx1-Cre recombinase. While LMO4 plays broader roles in defining neocortical areas and barrel cortex (Kashani et al., 2006, Huang et al., 2009, Cederquist et al., 2013), we focused our analyses on motor and somatosensory superficial layer CPN. Because the Lmo4 floxed line is maintained on a mixed (C57Bl/6 and S129S6) genetic background, we confirmed that Cited2 cKO on this background demonstrates the same radial and tangential reductions in neocortical size as identified on a pure C57Bl/6 background. In all analyses, we compared control (Emx1-Cre negative), Lmo4 cKO (Cited2^{+/+};Lmo4^{fl/fl};Emx1^{Cre/+}), Cited2 cKO (Cited2^{fl/fl};Lmo4^{+/+};Emx1^{Cre/+}), and double cKO (Cited2^{fl/fl};Lmo4^{fl/fl};Emx1^{Cre/+}) littermates.

We identified that the additional loss of Lmo4 function does not alter the laminar thickness reduction of Cited2 cKO motor or visual cortex, but does lead to an increase in superficial layer thickness in somatosensory cortex (Figure 5A-C). Further, additional loss of Lmo4 function does not alter the overall tangential neocortical surface length (Cited2 cKO = 6204 ± 88μm, double cKO = 6453 ± 117 μm; N = 8 Cited2 cKO and 9 double cKO, p = 0.09), as predicted from the post-mitotic restricted expression of LMO4 (Azim et al., 2009, Cederquist et
Therefore, *LMO4* and *Cited2* do not genetically interact in the neocortex to control neocortical size. Additionally, mis-expression of *Cited2* does not repress expression of *Lmo4* in motor cortex, nor induce *Lmo4* expression in somatosensory cortex (data not shown). Because *LMO4* is not expressed in neocortical progenitor regions, the maintenance of the reduced neocortical size of *Cited2* cKO cortex in *Lmo4/Cited2* dcKO cortex suggests that the reduction in neocortical size in *Cited2* cKO neocortex results from broad *Cited2* function within the SVZ progenitors.

Strikingly, *Lmo4/Cited2* dcKO neocortex, while exhibiting the same reduction in overall length as *Cited2* cKO cortex, has the same somatosensory cortex size as control, exhibiting neither reduction in somatosensory length as exhibited by *Cited2* cKO, nor increase in somatosensory length as seen in *Lmo4* cKO (Kashani et al., 2006, Huang et al., 2009) (Figure 5D-H, schematized in Figure 5I-L). Importantly, the shifts in areal boundaries that occur with single and double loss of *Cited2* and *Lmo4* function are restricted to the motor-somatosensory boundary, with the length of the visual cortex remaining the same across all genotypes. In the context of reduced total neocortical length with loss of *Cited2* function, additional loss of *Lmo4* function results in a rostral shift of the motor-somatosensory boundary (to restore somatosensory cortex length), and reduction in motor cortex length. Taken together, these data indicate that *Cited2* and *Lmo4* participate in a network of compensatory and opposing molecular controls over subtype and specific areal identity within superficial layer CPN of somatosensory and motor cortex. Loss of *Lmo4* function can rescue the superficial layer CPN arealization phenotype found in *Emx1-Cre* driven *Cited2* cKO neocortex.

Cited2 is not required post-mitotically for CPN areal identity
Somatosensory-specific postnatal phenotypes of Cited2-null CPN might be dependent on progenitor function of Cited2, or they could be fully independent phenotypes, indicating a biphasic function for Cited2 during CPN development. To investigate potential post-mitotic requirements for Cited2 in acquisition of superficial layer CPN areal identity, we generated mice null for Cited2 in early post-mitotic neocortical pyramidal neurons using NEX-promoter driven cre-recombinase (NEX-Cre). In this mouse line, Cre recombinase is expressed specifically in post-mitotic pyramidal neurons of the neocortex and is absent from progenitors, interneurons, oligodendroglia, and astrocytes (Goebbels et al., 2006). Using a highly sensitive cre recombinase reporter (adenovirus GFP), Goebbels, et al. (2006) report that a small number of proliferating cortical cells were observed at E15.5, indicating that there is a very small window of time, if any, between cell cycle exit and onset of NEX-cre expression. In Cited2;NEX-cre cKO mice, there is highly efficient expression of a β-gal reporter across the postnatal neocortex, indicating highly efficient Cited2 excision (data not shown).

We find that post-mitotic loss of Cited2 function in the neocortex (with NEX-cre excision) does not overtly disrupt neocortical development or laminar organization (Figure 6A). Further, there is no reduction in neocortical surface length or laminar thickness in Cited2;NEX-cre cKOs (Figure 6B-C‘’), indicating that the reduction in superficial layer CPN observed in the postnatal Cited2; Emx1-cre cKO results entirely from Cited2 function in IPCs. We next investigated whether refinement of layer II/III somatosensory areal identity is disrupted following post-mitotic Cited2 loss-of-function, as it is following Emx1-mediated Cited2 excision. Interestingly, there is no disruption in somatosensory length in P3 Cited2; NEX-cre cKO neocortex (Figure 6D-E). Taken together, these results indicate that the reduction in acquisition
of layer II/III somatosensory areal identity results from Cited2 function in neocortical progenitors, and it is not a fully independent post-mitotic function of Cited2.

Disruption of area-specific CPN dendritic complexity following excision of Cited2 in progenitors

Cited2 functions broadly in early IPCs to both regulate generation of neocortical superficial layer CPN broadly, and to control acquisition of somatosensory molecular areal identity by layer II/III somatosensory CPN specifically. Somatosensory CPN have unique connectivity features, both in their afferent and efferent connections (Innocenti and Price, 2005, Benavides-Piccione et al., 2006). We therefore directly investigated potential functions of Cited2 in central properties of their specific connectivity that govern the unique functionality of somatosensory CPN. We first examined neuronal soma size across all lamina and areas of Cited2; Emx-cre cKOs to determine if Cited2 loss-of-function disrupts overall size or growth of cortical projection neurons. Using NeuN to mark neuronal somata, we found no change in neuronal soma size (average soma cross-sectional area) at P21 in either deep or superficial layers (Figure 7A). These results indicate that the reduced superficial layer thickness (Figure 3) is not due to decreased CPN soma size.

We then investigated dendritic complexity of layer II/III CPN by Golgi staining and Sholl analysis in multiple neocortical areas (Figure 7). While there is no significant change in layer II/III CPN dendritic complexity within motor or visual cortex in the Cited2; Emx1-cre cKO mice, there is a significant increase in CPN dendritic complexity in somatosensory cortex (Figure 7B-D). In Cited2 WT neocortex, dendritic complexity of layer II/III CPN is distinct across different neocortical areas (Figure 7E), with decreasing complexity rostral to caudal, as
has been shown previously (Benavides-Piccione et al., 2006). Interestingly, there is a shift in
total dendritic arbor distribution in Cited2; Emx1-cre cKO somatosensory cortex CPN to more
closely resemble CPN in motor cortex, with more dendrites close to neuronal cell bodies (Figure
7F). Taken together these results indicate that dendritic complexity is specifically increased in
somatosensory CPN in Cited2; Emx1-cre cKO cortex, perhaps suggesting that Cited2-null CPN
might be partially ‘motorized’ with respect to dendritic complexity.

Because dendritic arborization occurs post-mitotically, we investigated whether dendritic
development of somatosensory CPN is also perturbed following post-mitotic-specific Cited2
loss-of-function, or whether it is dependent on the reduction in acquisition of layer II/III
somatosensory areal identity that results from Cited2 function in neocortical progenitors. We
find that NEX-cre mediated excision of Cited2 does not alter CPN soma size (data not shown) or
CPN dendritic complexity in any area (Figure 7G-I). Together, these data indicate that
continuous post-mitotic expression of Cited2 in somatosensory CPN is not required for
development of areal subpopulation-appropriate CPN size and dendritic complexity; rather,
alterations in CPN generation and areal identity acquisition arising from Cited2 function in
progenitors disrupts development of somatosensory-specific CPN dendritic complexity.

Cited2 is required for precise, homotopic CPN axonal connectivity

In addition to area-specific dendritic complexity, we investigated potential Cited2
function in CPN axonal connectivity, both broadly and in an area-specific manner. High-angular
resolution diffusion imaging (HARDI) tractography based on magnetic resonance imaging
(MRI) reveals that there are fewer correlated pathways passing throughout the corpus callosum
(CC) of adult Cited2 cKO mouse brains as compared to control (Figure 8A-B), consistent with
the overall reduction in superficial layer thickness and CPN number. The reduced CC is confirmed by examining myelinated fibers in mid-sagittal sections labeled with myelin basic protein (MBP), revealing a significantly smaller CC area (Figure 8C-D). Overall forebrain and midbrain area is not reduced in Cited2 cKO mice, as measured on these mid-sagittal sections (WT = 38.6 ± 0.7 μm², cKO = 37.0 ± 0.8 μm²; N = 3 WT, 4 cKO; p = 0.18), and Cited2 cKO CC area is reduced relative to brain area (p = 0.04). Neocortical area, on the other hand, is reduced in Cited2 cKO mice (WT = 11.5 ± 0.3 μm², cKO = 10.1 ± 0.3 μm²; N = 3 WT, 4 cKO; p = 0.02), suggesting that the reduced CC area in Cited2 cKO mice results from the reduced number of CPN. Of particular note, HARDI reveals an apparent additional disruption in callosal fibers in mid-CC, even though the CC is overall present, but reduced, by MBP staining, suggesting localized axonal disorganization in addition to fewer fibers (Figure 8A’-B’).

We directly investigated precision of CPN projections at the border between motor and somatosensory cortical areas, which is especially molecularly disrupted in Cited2; Emx1 cKO mouse cortex during development. Precisely matched, focal AAV-GFP anterograde labeling demonstrates that Cited2; Emx1 cKO somatosensory CPN project contralateral axons imprecisely, with a bimodal distribution of axonal projections covering a more expansive target area on the contralateral hemisphere than the tightly delineated homotopic areas targeted by WT CPN (Figures 8E-K). Taken together, these data indicate that Cited2 is required for precise areal-specific connectivity of somatosensory CPN, both afferent and efferent.
Discussion:

CPN are a remarkably diverse set of neuronal subpopulations, requiring precise control over development of these subpopulations for proper organization and function. This study demonstrates that the transcriptional co-regulator CITED2 regulates two aspects of precise CPN development in mouse. Cited2 functions broadly in embryonic progenitors of the SVZ to regulate generation of superficial layer CPN throughout the neocortex. Cited2 also functions within progenitors to establish the distinct identity and development of somatosensory CPN, in an areally restricted manner. Understanding molecular controls over development of CPN subpopulations, such as CITED2 control over somatosensory layer II/III CPN, will advance understanding of diverse system functions of CPN, and the broad range of neurodevelopmental disorders with associated abnormalities of CPN / corpus callosum development – both overt and subtle.

Cited2 regulates the precise number of TBR2+ IPCs generating layer II/III CPN

The SVZ has expanded concomitantly with the expansion of the cerebral cortex during mammalian evolution, suggesting that an increase in IPCs contributes substantially to the evolutionary expansion of the neocortex (Kriegstein et al., 2006, Martinez-Cerdeno et al., 2006, Molnar et al., 2006, Noctor et al., 2008, Betizeau et al., 2013). Disrupting the IPC population results in reduced cortical thickness of all layers, and reduced cortical surface area (Sessa et al., 2008, Kowalczyk et al., 2009, Tuoc et al., 2013), with superficial layers most significantly impacted (Pontious et al., 2008). Expression of Cited2 in the SVZ peaks during generation of superficial layers, and loss of Cited2 function disrupts generation of superficial layers specifically. CUX2 similarly is expressed by IPCs only during late neurogenesis, and its loss
perturbs superficial layer neuron production specifically (Cubelos et al., 2008), further highlighting the increased molecular regulation, in which *Cited2* has a substantial role, controlling the production of this set of neuronal populations.

The reduction in *Cited2; Emx1-cre* cKO neocortical superficial layers arises from a significant reduction of TBR2+ IPCs at E15.5, the peak of superficial layer neuron birth. This reduction in TBR2+ IPCs likely results from both an increase in basal progenitor death, and a decrease in IPC proliferation /cell cycle re-entry. We identified an approximately 2-fold increase in cell death in *Cited2* cKO neocortex, including both progenitors and post-mitotic cells. Increased apoptosis is also evident in the midbrain of *Cited2-/-* embryos during neural tube closure (Bamforth et al., 2001, Barbera et al., 2002), and *CITED2* regulates death of cortical neurons *in vitro* after induced DNA damage (Gonzalez et al., 2008).

In addition to increased apoptosis, there is a significant reduction in the number of proliferating IPCs at E15.5, and cell-autonomous *Cited2* loss-of-function results in reduced cell cycle re-entry between E14.5 and E16.5, suggesting that *Cited2* function is required to maintain and expand these transit-amplifying progenitors. In line with this interpretation, *Cited2* is highly up-regulated by actively proliferating transit amplifying progenitors during induced regeneration in the olfactory epithelium (Shetty et al., 2005). Further, *CITED2* controls proliferation in fibroblasts (Kranc et al., 2003), hematopoietic stem cells (Du and Yang, 2013), and non-small-cell lung cancer cells (Chou et al., 2012). Taken together, the reduction in TBR2+ IPCs in E15.5 *Cited2* cKO SVZ is likely due, at least in large part, to reduced proliferation within this progenitor population, in addition to the identified apoptosis increase.

Cited2 functions in concert with distinct transcriptional regulators
Transcription factors that play roles in both areal and laminar identity have been identified. For example, TBR1 functions in post-mitotic neurons to regulate the appropriate differentiation of layer VI broadly, as well as the establishment of frontal cortex identity (Hevner et al., 2001, Bedogni et al., 2010), and PAX6 functions in progenitor cells to both regulate neurogenesis and promote rostral identity (Bishop et al., 2002, Schuurmans et al., 2004). The dual functions of Cited2 in CPN development appear to be quite different from these previously described mechanisms, however. Cited2 functions broadly in SVZ progenitors to regulate the generation of (primarily) layer II/III neurons; Cited2 also has a progenitor function leading to the acquisition of appropriate areal identity of a subpopulation of superficial layer CPN. Unlike areal identity genes, such as PAX6, Bhlhb5, and TBR1 (Joshi et al., 2008, Bedogni et al., 2010), loss of Cited2 function does not disrupt establishment of areal identity, per se. This is demonstrated by the apparently normal development of the barrel field, the hallmark of the primary somatosensory cortex, in the context of an areal disruption in somatosensory layer II/III. These results strongly suggest that CITED2 functions as part of a complex network of transcriptional co-regulators that interact, compete, and compensate to regulate and refine appropriate acquisition of areal identity within a particular projection neuron subpopulation, layer II/III CPN of somatosensory cortex.

We hypothesized that the transcriptional co-regulator LMO4 might function as part of this network, regulating the acquisition of areal identity of layer II/III CPN of motor cortex. We identified that additional removal of Lmo4 from Cited2 cKO neocortex results in a balanced reduction of molecularly defined motor and somatosensory areas within layer II/III, compared to the specific reduction in layer II/III somatosensory area with loss of Cited2 alone, and increase in layer II/III somatosensory area with loss of Lmo4 alone. Loss of Cited2 and Lmo4 function,
alone and in combination, does not result in complete loss of areal identity; rather, areal boundaries shift, highlighting that these transcriptional co-regulators provide a mutually dependent and partially antagonistic level of precise regulation of neuronal subtype-specific areal identity acquisition.

Precise connectivity of somatosensory CPN

Laminar composition and circuit organization is distinct within the primary somatosensory neocortex compared with other neocortical areas (Polleux et al., 2001, Rash and Grove, 2006, Dehay and Kennedy, 2007, O'Leary et al., 2007). The unique misalignment of layer II/III somatosensory neocortex relative to layer IV barrel cortex in Cited2 cKO neocortex likely profoundly perturbs this precise circuitry, as evidenced, in part, by the disrupted dendritic complexity and precise axonal connectivity of Cited2 cKO CPN. Dendritic complexity of layer II/III CPN is specific to each neocortical area in mice, with dendritic arbors becoming progressively more complex from caudal to rostral areas (Benavides-Piccione et al., 2006). CPN of Cited2-null somatosensory cortex display increased dendritic complexity that highly resembles that normally found in CPN of motor cortex. This is despite the fact that CPN from the motor / somatosensory border regions, where molecular boundaries are shifted during development, were excluded from this analysis. Layer II/III CPN that are within the molecularly defined somatosensory cortex (i.e. BHLHB5+/LMO4-) of Cited2 cKO mice develop dendritic morphology of CPN of normal motor cortex, indicating critical roles for Cited2 in somatosensory CPN afferent connectivity.

Within young adult Cited2 cKO neocortex, CPN projections from the disrupted motor / somatosensory region are also quite imprecise, demonstrating a bimodal distribution of
projections rostro-caudally within somatosensory cortex. Further, high-angular resolution diffusion imaging (HARDI) identifies reduced callosal connectivity, particularly in mid-callosum, correlating with somatosensory cortex. Normally, ectopic CPN projections are eliminated through activity-dependent mechanisms over the first postnatal weeks (Innocenti and Price, 2005, Luo and O'Leary, 2005, Mizuno et al., 2007, Wang et al., 2007, Zhou et al., 2013). The atypical projections identified in adult Cited2 cKO neocortex might be aberrantly maintained, and might indicate earlier disrupted neuronal activity of Cited2-null CPN during somatosensory cortex development. It has recently been shown that balanced thalamic input regulates targeting of callosal projections in somatosensory cortex (Suarez et al., 2014). Even though post-mitotic loss of Cited2 does not disrupt the metrics assessed here in somatosensory CPN, it would be of interest in future studies to assess whether Cited2 might be induced or maintained in post-mitotic somatosensory CPN in response to such balanced activity, leading to specific acquisition of other somatosensory CPN features.

In humans, even subtle disruptions in callosal connectivity are associated with defects in abstract reasoning, problem solving, and generalization (Paul et al., 2007), as well as with multiple neurodevelopmental disorders, including autism spectrum disorders (ASD) (Egaas et al., 1995, Piven et al., 1997, Herbert and Kenet, 2007, Frazier and Hardan, 2009, Hardan et al., 2009), attention deficit hyperactivity disorder (Hynd et al., 1991, Roessner et al., 2004, Seidman et al., 2005), Tourette's syndrome (Plessen et al., 2006), and schizophrenia (Swayze et al., 1990, Tibbo et al., 1998, Innocenti et al., 2003, Wolf et al., 2008). Further, perturbed dendritic complexity of layer II/III CPN is observed in multiple neurodevelopmental disorders, including Rett syndrome (Armstrong et al., 1995, Kishi and Macklis, 2004), ASD (Mukaetova-Ladinska et al., 2004, Srivastava et al., 2012), and schizophrenia (Broadbelt et al., 2002). Greater
understanding of molecular regulation of precise temporal and area-specific development of diverse CPN subpopulations might elucidate perturbations underlying such complex neurodevelopmental disorders.

Conclusions

Taken together, our results demonstrate that Cited2 functions differently from previously described mechanisms to regulate two stages of precise CPN development, acting in neocortical progenitors to both broadly regulate generation of superficial layer CPN throughout the neocortex, and in an areally-restricted manner to refine the distinct identity and precise connectivity of somatosensory CPN. This novel biology of Cited2 adds yet another layer of complexity to the multi-stage control and regulation of neocortical development.
Author Contributions

R.M.F, J.L.M, and J.D.M. designed the experiments. R.M.F. and J.L.M. performed all of the experiments, except the DSI/HARDI imaging; E.T. performed imaging for the DSI/HARDI experiments. S.L.D. provided Cited2 mouse lines and developed specialized genotyping protocols. R.M.F, J.L.M, and J.D.M. wrote the manuscript, with input from E.T. and S.L.D.

References:

Figure Legends:

Figure 1: Cited2 is expressed broadly by CPN progenitors at E15.5, with expression refining to CPN of somatosensory cortex by P3

(A) Cited2 is highly expressed by callosal projection neurons (CPN; red) relative to corticospinal motor neurons (CSMN; blue) at critical times during development, as detected by microarray analysis of FACS-purified CPN and CSMN. Error bars denote SEM (Molyneaux et al., 2009). (B) Western blot analysis showing that CITED2 protein is highly expressed as early as E15.5 in the neocortex, with expression decreasing postnatally, relative to a ß-actin loading control. (C) Expression of Cited2 is largely restricted to subpallial progenitors at E13.5, but (D) Cited2 is highly expressed in the cortical subventricular zone (SVZ) at E15.5, the peak of superficial layer CPN birth, with (E-F) expression maintained in layers II/III, and V postnatally. (G) Embryonically, Cited2 is expressed uniformly across the neocortex, detected across the SVZ at E18.5 (arrowheads), and across the cortical plate (CP). (H) In the first days postnatally, however, its expression refines and becomes restricted to somatosensory cortex (arrows) by P3. (I) At E15.5, Cited2 is highly expressed in the subventricular zone (SVZ), extending into the intermediate zone (IZ). (J) Cited2 (blue) is largely excluded from PAX6+ (green) radial glial progenitors of the ventricular zone (VZ), but is highly expressed by TBR2+ (red) intermediate progenitor cells (IPCs) of the SVZ. (K) Cited2 is largely excluded from the highly proliferative, Ki67+ (green) VZ and apical mitotic cells, as indicated by pH3 (red), but is expressed by basally-proliferating IPCs of the SVZ and IZ, VZ = ventricular zone; SVZ = subventricular zone; IZ = intermediate zone; CP = cortical plate. Scale bars in (C-F) = 500μm; (G, H, I) = 1mm (C’,-H’, J-K) = 100μm; (I’)=200μm. Dotted lines in J and K indicate apical, ventricular surface.
Figure 2: Loss of Cited2 function results in specific reduction of TBR2+ IPCs in E15.5 neocortex

(A-A") At E15.5, the peak of Cited2 expression, there is no change in the overall number of (PAX6+) radial glial progenitors in Cited2;Emx1-Cre conditional knockout neocortex (cKO) compared to control littermates (WT). (B-B") There is, however, a significant reduction in the number of TBR2+ intermediate progenitor cells (IPCs), which largely give rise to superficial layer CPN at this stage of development. Reduction in TBR2+ IPCs might result from (C-C") reduced proliferation of IPCs, as indicated by proliferating cell nuclear antigen (PCNA, red) and TBR2 (green) double positivity (N = 11 WT, 6 cKO for A-C); (D-D") specific reduction in basal cell divisions, as indicated by position of pH3-positive mitotic cells (N = 10 WT, 5 cKO); and/or (E) increased cell death, as indicated by expression of activated caspase-3+ (aC3). There is increased apoptotic cell death in Cited2 cKO neocortex, both within the progenitor population and post-mitotically (N = 11 WT, 6 cKO). (F-F") To directly investigate whether Cited2 cell-autonomously regulates proliferation of IPCs, we electroporated Cre recombinase and GFP into VZ progenitors of Cited2^fl/fl and Cited2^fl/wt littermates at E14.5, to excise Cited2 in a small subpopulation of neocortical progenitors. We employed a BrdU pulse at E15.5, and immunocytochemistry for Ki67 at E16.5 to identify progenitors that continued to proliferate. There is a significant reduction in the number of Cited2-null (Cited2^fl/fl; Cre+) progenitors that incorporate BrdU at E15.5, or express Ki67+ at E16.5, demonstrating that Cited2-null IPCs are less likely to re-enter the cell cycle than their heterozygous counterparts. There is no change in the number of aC3+ cells in the Cited2-null progenitors at E16.5. (N = 4 Cited2^fl/wt; 5 Cited2^fl/fl). Scale bars = 100μm. Error bars denote SEM. * p<0.05; ** p<0.001 (Student’s t-test)
Figure 3: Loss of Cited2 function results in reduced superficial layer thickness and total neocortical length at P3

(A) At P6, Cited2 cKO neocortex is smaller than in WT littermate controls, but both CPN (SATB2+) and CSMN (CTIP2+) are present and appropriately positioned. (B) Anterograde labeling with DiI and (C) retrograde labeling with CTB demonstrate that CPN are present and are targeting the contralateral hemisphere in Cited2 cKO neocortex. However, both the distribution of retrogradely-labeled CPN (C), and (D) CUX1 (red, superficial layers) and CTIP2 (green, deep layers) immunocytochemistry, indicate that superficial layers are reduced in thickness in the Cited2 cKO neocortex, while deep layers are not changed in thickness (N = 4-5 per genotype for A-D). (E) Quantitative analysis of neocortical layer thickness at P3 reveals that superficial layers (II-IV; LMO4, red) are significantly reduced in thickness in motor, somatosensory, and visual neocortical areas of P3 Cited2 cKO, in comparison to control littermates. There is no change in deep layer thickness (V-VI; CTIP2, green) in any region (N = 8 WT, 4 cKO). (F) Cited2 cKO cortex is visibly smaller than in control littermates at P3, both in wholemount view and in sagittal sections. (G) There is a significant reduction in total neocortical surface rostrocaudal length of approximately 10%, as measured on four sagittal sections across the medio-lateral axis (N = 8 WT, 4 cKO). Scale bar in A = 1mm, B = 50μm. Error bars denote SEM. * p < 0.05; ** p < 0.001 (Student’s t-test)

Figure 4: Neocortical surface length reduction is restricted to layers II/III of somatosensory cortex in P3 Cited2 cKO neocortex

(A-C) Analysis of three broad neocortical areas identified by LMO4 expression at P3 indicates a highly specific and substantial reduction (~30%) in rostro-caudal surface length of the somatosensory
area (blue) in Cited2 cKO neocortex, entirely accounting for the total cortical surface length reduction (N = 8 WT, 4 cKO). (D-G) Reduced somatosensory cortex length (black arrowheads) was confirmed via expression of multiple genes either excluded from superficial layers of somatosensory cortex (D,E; Cadh8, EphA7), or specifically expressed in somatosensory cortex (F; ephrinA5). Measurements of acallosal layer IV somatosensory cortex (black arrows), in contrast (F,G; ephrinA5, Rorβ), reveals that there is no significant difference in non-CPN somatosensory cortex length in Cited2 cKO compared to WT (N = 8 WT, 4 cKO). (H-H’’) In P3 Cited2 WT neocortex, molecular markers of layer IV (green, RORβ; bracket) and somatosensory cortex in layers II/III (red, Bhlhb5; white line) align at the motor / somatosensory border, shown in sagittal view (rostral to left). (I-I’’’) In P3 Cited2 cKO neocortex, in contrast, the boundary of layer II/III expression of Bhlhb5 (white line, with additional low-level expression indicated by dashed line) is located caudal to layer IV RORβ expression (bracket), resulting in a misalignment of molecular areal boundaries between CPN of layer II/III and acallosal layer IV (schematized in H’’’ and I’’’) (N = 4-5 per genotype). Scale bar in D-G = 500μm, H-I = 200μm. Error bars denote SEM. * p < 0.05; ** p < 0.001 (Student’s t-test)

Figure 5: Additional loss of Lmo4 function does not alter Cited2 cKO neocortical thickness, but does reestablish layer II/III somatosensory neocortical length at the expense of motor cortex.

(A-C) Additional loss of Lmo4 function in Cited2 null neocortex (Cited2-/-;Lmo4-/-;Emx1Cre/+ does not alter the reduced reduction in superficial layer thickness of Cited2 null motor or visual cortex, but does increase superficial layer thickness in somatosensory cortex. Additional loss of Lmo4 function does not alter the overall reduction in total neocortical length (data not shown).

(D-G) Additional loss of Lmo4 function does, however, reestablish layer II/III somatosensory neocortical length (as measured by Bhlhb5 expression) to normal control length, at the expense
of layer II/III motor cortex. (H) Length of motor (rostral to Bhlhb5 layer II/III expression), somatosensory (Bhlhb5 layer II/III positive), and visual (caudal to layer II/III Bhlhb5 expression) cortical areas was measured in control (Emx1-cre negative), Lmo4 cKO (Cited2+/+;Lmo4+/+;Emx1cre/+), Cited2 cKO (Cited2fl/fl;Lmo4+/+;Emx1cre/+), and double cKO (Cited2fl/fl;Lmo4fl/fl;Emx1cre/+) littermates. (I-L) In the context of the shortened neocortical surface length in Cited2 cKO mice, additional loss of Lmo4 function reestablishes the length of the somatosensory area boundary, at the expense of motor cortex length. Loss of Lmo4 function has no effect on the overall reduced neocortical length or layer II/III thickness of Cited2 cKO neocortex, in contrast. Scale bars in (C) = 100\,\mu m; (D-G) 1mm. For each neocortical area, data were analyzed by a one-way ANOVA with Tukey post-test. For all experiments, N = 14 controls, 7 Lmo4 cKO, 7 Cited2 cKO, and 8 double cKO. Error bars denote SEM. * p < 0.05, **p < 0.001, ***p < 0.0001.

Figure 6: Excision of Cited2 post-mitotically via NEX-Cre does not alter neocortical laminar thickness or neocortical area lengths.

(A) NEX-Cre mediated post-mitotic excision of Cited2 does not visibly alter brain morphology or neocortical laminar development at P6 (as indicated by DAPI nuclear staining), and (B) there is no significant difference in P3 neocortical length between Cited2; NEX-Cre cKO mice and control littermates. Further, (C-C’’) there is no change in the overall neocortical laminar thickness of superficial or deep layers in P3 Cited2; NEX-cre cKO neocortex, nor (D-E) is there a change in the length of motor, somatosensory, or visual neocortical area lengths in Cited2; NEX-Cre cKO neocortex. For all experiments, N = 4 WT, 4 cKO. Scale bar in A = 1 mm, C = 100 \, \mu m. Error bars denote SEM.
Figure 7: Loss of Cited2 function results in aberrant dendritic complexity of superficial layer somatosensory CPN

(A-A’) Neuronal soma size (NeuN area) is not affected by loss of Cited2. Increased neuronal density is evident here, consistent with the modest, but significant, increase in cell density in layer II/III of somatosensory cortex (23% increase, p=0.01) quantified at P6 (see Results text). N = 3 WT, 3 cKO. (B-D) Dendritic complexity of layer II/III pyramidal neurons (primarily CPN) was analyzed at P22 by Golgi staining and Sholl analysis in Cited2;Emx1-cre cKO neocortex, in comparison to control littermates. There is no significant difference in dendritic complexity of layer II/III CPN in (B-B’) motor cortex or (D-D’) visual cortex of Cited2; Emx1-cre cKO mice, compared to littermate controls. (C-C’) There is, however, a significant increase in dendritic complexity of layer II/III CPN in somatosensory cortex of Cited2;Emx1-cre cKO (two-way ANOVA p < 0.0001). (E) CPN of motor cortex are more complex than CPN of somatosensory or visual cortex (two-way ANOVA p < 0.0001). (F) In Cited2; Emx1-Cre cKO mice, dendritic complexity of somatosensory CPN is not significantly different from CPN of motor cortex (two-way ANOVA p = 0.16), suggesting that somatosensory CPN might be partially “motorized” in the absence of Cited2 function. (G-I) Dendritic complexity of layer II/III CPN was analyzed at P22 by Golgi staining and Sholl analysis in Cited2;NEX-Cre conditional knockout neocortex, in comparison to control littermates. Following this post-mitotic loss of Cited2 function, there is no change in dendritic complexity of superficial layer pyramidal neurons in any of the primary areas examined (motor, somatosensory, or visual).

Scale bars = 50μm. * p < 0.05, ** p < 0.01, *** p < 0.001, Bonferroni post-test in B, C, D, E, F, G).

(B-E) Motor: N = 17 WT, 12 cKO; Somatosensory: N = 27 WT, 14 cKO; Visual: N = 18 WT, 9
cKO. (G-I) Motor: N = 38 WT, 34 cKO; Somatosensory: N = 37 WT, 20 cKO; Visual: N = 34 WT, 19 cKO.

Figure 8: Interhemispheric CPN axonal connectivity is disrupted in adult Cited2 cKO neocortex

(A-B) HARDI tractography analysis of interhemispheric connections demonstrates a significant reduction in the size of the corpus callosum (CC), and in the number of callosal fibers in juvenile/young adult (9wks) Cited2; Emx1 cre cKO neocortex, compared to littermate controls, particularly within the mid-CC (corresponding to somatosensory cortex). Reconstructed pathways are superimposed on the mean diffusion-weighted magnetic resonance image of the brain. Pathways running between right and left are red; dorsal and ventral are green; and anterior and posterior are blue. The images do not include anterior commissure or olfactory bulb fibers; these were removed a priori to focus on the CC. Images in A’ and B’ similarly exclude hippocampal commissure fibers. N = 2 WT, 2 cKO. (C-D) Staining for myelin basic protein in sagittal sections of Cited2 WT and cKO brains followed by measurement of midsagittal CC area (D) identifies a reduction in CC area in Cited2 cKO brains, but demonstrates the structural integrity of the CC throughout all areas. N = 3 WT, 4 cKO. (E-K) To investigate precision of callosal projections in the absence of Cited2 function, a focal injection of the anterograde tracer AAV-GFP was made in somatosensory (extending into motor) neocortex at P6, and contralateral callosal projections were analyzed at 6 weeks of age. In contrast to the precise homotopic projections observed in Cited2 WTss (G), callosal projections in Cited2 cKO somatosensory neocortex are diffuse (J). (K) Relative GFP fluorescence intensity was measured in matched sagittal sections of the left, injected neocortical hemisphere, and in the same region in the
contralateral, projection hemisphere, demonstrating consistent caudal spread of callosal
projections in *Cited2* cKO neocortex. N = 3 WT, 3 cKO. ANOVA analysis finds no change in
the anterior tail (-1400μm to -800μm) or center (-700μm to 700μm) regions, but the posterior tail
(800μm to 1400μm) of the cKO distribution is significantly different than that of the WT (p <
0.0001). Error bars denote SEM. * p < 0.05, (Student’s t-test) in C. * p < 0.001 (Bonferroni-post
test) in K. Scale bar in A-B = 1.5mm, C,D, F,G, I,J = 1mm, G’,J’ = 500μm.