The impact of sodium contamination in tin sulfide thin-film solar cells

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>10.1063/1.4941713</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:27531387</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>

The impact of sodium contamination in tin sulfide thin-film solar cells

Vera Steinmann1a, Riley E. Brandt1, Rupak Chakraborty1, R. Jaramillo1, Matthew Young2, Benjamin K. Ofori-Okai1, Chuanxi Yang3, Alex Polizzotti1, Keith A. Nelson1, Roy G. Gordon3 and Tonio Buonassisi1

avsteinma@mit.edu

1Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2National Renewable Energy Laboratory, Golden, Colorado 80401, USA
3Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA

Through empirical observations, sodium (Na) has been identified as a benign contaminant in some thin-film solar cells. Here, we intentionally contaminate thermally-evaporated tin sulfide (SnS) thin-films with sodium and measure the SnS absorber properties and solar cell characteristics. The carrier concentration increases from 2×10^{16} cm$^{-3}$ to 4.3×10^{17} cm$^{-3}$ in Na-doped SnS thin-films, when using a 13 nm NaCl seed layer, which is detrimental for SnS photovoltaics applications but could make Na-doped SnS an attractive candidate in thermoelectrics. The observed trend in carrier concentration is in good agreement with DFT calculations, which predict an acceptor-type Na$_{\text{Sn}}$ defect with low formation energy.
Thin-film photovoltaic (PV) technologies have the potential to become cost-effective alternatives to silicon PV.1,2 Despite decades of research, only a small number of Earth-abundant thin-film technologies have exceeded 5\% laboratory efficiencies to date.3 Many of the new-emerging polycrystalline thin-film absorbers suffer from high recombination losses in the bulk and at grain boundaries.

Major device efficiency improvements have been empirically observed in some inorganic thin-film technologies (\textit{e.g.}, CdTe,4-6 CuIn\textsubscript{x}Ga\textsubscript{1-x}Se\textsubscript{2},7-9 and Cu\textsubscript{2}ZnSnS\textsubscript{4}10-12) when contaminated with alkali metals. Those additives were found to stimulate grain growth in polycrystalline films and passivate grain boundaries. In Cu\textsubscript{2}ZnSnS\textsubscript{4} solar cells in particular, sodium (Na) additives were found to enhance grain growth and passivate grain boundaries, reducing charge carrier recombination losses.12

In this study, we test the hypothesis that alkali metal additives, specifically sodium following the example of the Cu\textsubscript{2}ZnSnS\textsubscript{4} study by \textit{Gershon et al.}, also improve the device performance of tin sulfide (SnS) thin-film solar cells. SnS is considered a promising Earth-abundant PV material because of its high absorption coefficient,13-15 tunable majority carrier (holes) concentration (1015-1018 cm-3)13,16, high hole mobility16,17 and its potential for low-cost manufacturing.18 In recent years, efficiency improvements from 1.3\%13 to 4.36\%19 have been achieved by engineering the SnS bulk (\textit{i.e.}, grain growth through post-deposition H\textsubscript{2}S annealing)18-20 and the absorber/buffer layer interface (\textit{i.e.}, tuning band offset and carrier concentration in the buffer layer)21,22. The SnS device performance to date is believed to be predominantly limited by charge-carrier recombination in the absorber bulk. In previous work, relatively short charge-carrier diffusion lengths of \textasciitilde200 nm were estimated, compared to the SnS film thickness of 1\textmu m.17,23

When comparing the thermally evaporated SnS solar cell characteristics of intentionally Na-doped devices to undoped references devices, no statistically significant difference is observed. We verify sodium diffusion into the SnS bulk from an underlying NaCl seed layer via secondary ion mass spectrometry (SIMS). To understand the role of sodium in SnS thin-film solar cells, we study the structural and electronic properties of intentionally Na-doped SnS thin-films in comparison to undoped reference SnS thin-films. We compare our experimental observations to calculations by density functional theory (DFT) on SnS.24,25
Finally, we perform SCAPS 1D device simulations26 to guide the discussion on the impact of Na contamination in SnS thin-film solar cells.

SnS thin-film solar cells were fabricated following the recipe published in references18,27. For the Na-doped SnS solar cells, we thermally evaporated a thin layer of NaCl (13±2 nm) on top of the molybdenum metal back contact prior to the SnS deposition. The device stacks for the reference SnS device and the Na-doped SnS device are illustrated in Fig. 1a and 1b, respectively.

The solar cells were characterized at room temperature (24.9°C) by current density-voltage (J-V) and external quantum efficiency (EQE) measurements, using a Keithley 2400 sourcemeter. The standard illumination of 100 mW cm-2 was generated by a Newport Oriel 91194 solar simulator with a 1300 W Xe-lamp using an AM1.5G filter, and a Newport Oriel 68951 flux controller calibrated by an NREL-certified silicon reference cell equipped with a BK-7 window. A shadow mask of 0.25 cm2 area was used to mask the illuminated area during J-V measurements on SnS devices. The EQE measurements were performed with a PV Measurements Model QEX7 tool.

The sodium content in the reference SnS thin-film and the Na-doped SnS thin-film was measured via SIMS (CAMECA IMS). The morphology of reference SnS thin-films and Na-doped SnS thin-films was imaged by field-emission scanning electron microscopy (FESEM, Zeiss, Ultra-55). The crystal structure and texture of the films were analyzed by X-ray diffraction (XRD, Rigaku SmartLab) with Cu Kα radiation using a θ-2θ scan. SIMS, FESEM and XRD measurements were performed on H\textsubscript{2}S annealed SnS thin-films (1 µm thickness) on Si/SiO\textsubscript{2}/Mo and Si/SiO\textsubscript{2}/Mo/NaCl stacks, respectively.

The majority carrier concentration and mobility were determined from Hall Effect measurements. Reference SnS thin-films were fabricated on 8 × 8 mm2 insulating Si/SiO\textsubscript{2} substrates. Na-doped SnS thin-films were fabricated using Si/SiO\textsubscript{2} substrates coated with 13 nm of NaCl. Au top contacts were deposited by e-beam evaporation. The minority carrier lifetime was determined from free carrier absorption measurements, using time-resolved optical terahertz (THz) probe spectroscopy.28 This measurement
required the fabrication of SnS thin-films on transparent quartz substrates. Na-doped SnS thin-films were fabricated by depositing a 13 nm thin NaCl layer prior to the SnS deposition. All specialized reference and Na-doped SnS thin-film samples were fabricated as “sister” samples to the reference and Na-doped device samples; meaning that all reference SnS samples and all Na-doped SnS samples were batch-processed, being exposed to the same SnS deposition and H$_2$S annealing treatment.

In Fig. 2, the J-V and EQE data of a representative SnS reference thin-film solar cell (grey lines) and a representative Na-doped SnS device (black lines) are compared. The solar cell characteristics of both devices appear to be very similar, suggesting that the intentional Na-doping has little to almost no effect on the overall device performance. We observe a small reduction in the leakage current density in the dark (see dashed lines) and a small increase in the mean short-circuit current density (J_{SC}) under illumination (see solid lines) for the Na-doped device. We attribute the leakage current to shunting in the SnS thin-film devices which is caused by through-thickness voids in the SnS absorber layer. The observed small difference in J_{SC} is in agreement with the observed EQE response. The Na-doped device yields an enhanced EQE response at longer wavelengths (800–950 nm), which could be attributed to enhanced long-wavelength absorption or improved charge-carrier collection. UV-Vis data may suggest a slight (1.1x) increase in long-wavelength absorption (between 850-900 nm) in Na-doped SnS samples. However, this change in absorption is within the experimental error. Further, reflectivity data indicate no difference in reflectance between Na-doped SnS and SnS reference devices in the long-wavelength range (800-900 nm). The mean values for the Na-doped and the undoped reference devices are statistically indistinguishable within a 95% confidence interval, when taking into account the spread in solar cell performance across ten individually measured devices.

To check whether sodium has diffused into the SnS bulk upon H$_2$S annealing, we perform SIMS measurements on a representative SnS reference thin-film and a representative Na-doped SnS thin-film, respectively. Fig. 3 reveals the SIMS data on both samples, verifying that sodium has diffused from the NaCl seed layer into the SnS bulk. As Na ionizes more readily than S or Sn, its signal intensity is not a
direct measure of concentration, but can be compared between the two different samples. Note that we also detect sodium in the reference SnS thin-film (Figure 3a). The intentionally Na-doped SnS thin-film has a factor of 36 greater sodium concentration than the reference film. In both samples, sodium appears to be evenly distributed in the SnS bulk (0.1–0.8 µm depth, see Figure 3). However, a significantly higher sodium density (~1000×) is detected near the back contact (0.8–0.9 µm depth, see Fig. 3). This suggests that not all sodium atoms have diffused from the NaCl seed layer into the SnS bulk, but instead have formed clusters or small crystallites near the back contact. Note that we cannot make any statements regarding chlorine remnants in the Na-doped SnS thin-film sample because the positively charged primary ion beam is unlikely to ionize the negatively charged Cl⁻.

From these SIMS measurements, we conclude that excessive sodium is present in the intentionally doped SnS solar cell. Still, no statistically significant impact of sodium additives on the overall device performance is observed. We hypothesize that the excess sodium may cause several counterbalancing effects on absorption and/or charge transport characteristics. In the following, we investigate the structural and electronic properties of reference SnS thin-films and Na-doped SnS thin-films to analyze the impact of sodium contamination on the SnS absorption and charge transport characteristics.

We first consider structural changes in the Na-doped SnS thin-film, which may affect the absorption characteristics. We study the morphology and structure of annealed SnS thin-films with and without Na-doping, using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Fig. 4 reveals SEM plan-view and cross-section images as well as the XRD patterns of a representative reference SnS thin-film and a representative Na-doped SnS thin-film, respectively. The SEM images indicate no morphological changes when introducing sodium additives in the SnS thin-film. No large NaCl clusters are observed in the SnS bulk or at the Mo back contact. We further observe in XRD that the Na-doping reveals no impact on the preferred SnS grain orientation. Hence, we find no evidence of structural changes in the Na-doped SnS absorber layer, which would affect the SnS absorption characteristics.
We then consider possible changes in the electronic properties, affecting charge collection in the Na-doped SnS device. Previous SnS device studies indicate that the J_{SC} of the reference SnS device is predominantly limited by recombination losses in the absorber bulk.\cite{18,22,23,28} Changes in the charge carrier mobility-lifetime product may be directly reflected in the J_{SC} measurement.

We measure the majority carrier (hole) concentration and mobility via Hall Effect measurements, as well as the minority carrier (electron) lifetime via free carrier absorption measurements for SnS thin-films with and without intentional Na-doping. The results are displayed in Table I.

Table I Hole concentration p and mobility μ_h are determined from Hall Effect measurements in the reference SnS thin-film and the Na-doped SnS thin-film, respectively. The minority carrier lifetime τ_e is determined from free carrier absorption measurements.\cite{28} Note that the Hall measurements were performed on insulating Si/SiO$_2$ substrates, whereas the free carrier absorption measurements required the use of transparent quartz substrates. The influence of the underlying substrate on the SnS bulk properties has not been subject to this study.

<table>
<thead>
<tr>
<th>Material</th>
<th>p [$\times 10^{16}$ cm$^{-3}$]</th>
<th>μ_h [cm2/V/s]</th>
<th>τ_e [ps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference SnS thin-film</td>
<td>2.0 ± 0.5</td>
<td>38 ± 2</td>
<td>38 ± 1</td>
</tr>
<tr>
<td>Na-doped SnS thin-film</td>
<td>43.0 ± 3.0</td>
<td>7 ± 1</td>
<td>21 ± 1</td>
</tr>
</tbody>
</table>

We observe an increase in majority carrier concentration in the Na-doped sample. This is in good agreement with DFT calculations by Malone et al.\cite{25} which predict sodium to form an acceptor-type Na$_{3}$Sn defect (i.e., p-type dopants) at low formation energy in SnS. Note that the tin atoms in SnS are present in the Sn$^{2+}$ state. This is in contrast to e.g., CuIn$_{x}$Ga$_{(1-x)}$Se$_2$ and Cu$_2$ZnSnS$_4$, where sodium is assumed to form cation-antisite defects.\cite{29,30} Hall Effect measurements indicate an increase in hole concentration by a factor of 20 and a decrease in hole mobility by a factor of 5 in the SnS thin-film with increased sodium concentration. Free carrier absorption measurements suggest minority carrier lifetimes of 38 ps and 21 ps in the undoped and Na-doped SnS thin-films, respectively. However, the device efficiency is not expected to strongly correlate with the minority carrier lifetime when the absolute change in lifetime is that small.\cite{28}

We conclude that the obtained results from Hall Effect measurements cannot explain the observed trend in device performance. Device simulations would suggest that a decrease in charge carrier mobility results in a decrease in J_{SC} as well. While we do not have a direct measure of the electron mobility, a possible
correlation between the hole and electron mobility can be made through effective masses. Using the measured hole mobility and the effective mass ratio $m_h/m_e^{21,22}$, the electron mobility is estimated to be 94 cm²/Vs in the reference SnS thin-film and 17 cm²/Vs in the Na-doped SnS thin-film, respectively.

The present study may help to explain why previous experiments on controlling the intrinsic point-defect density by H₂S annealing did not result in any changes in carrier concentration,³¹ and suggest that future efforts to control doping in thin-film semiconductors must strongly consider the background impurity concentrations.

The origin of the sodium in the SnS reference sample is still unknown. We synthesize thermally evaporated SnS thin-films from commercially available SnS feedstock of ≥99.99% elemental purity. SnS thin-films are processed following best practices to reduce contamination sources. The presented SIMS scan only accounts for sodium present in the SnS bulk, but these thin-films may contain other potentially lifetime limiting contaminants (e.g., metals), which have not been identified yet. Note that the impact of impurities is well studied in silicon,³²–³⁵ and has recently been explored in Cu₂ZnSnS₄.³⁶ To conduct well controlled contamination studies in SnS, a reference SnS sample of higher purity will be required. We are currently exploring approaches to purify the SnS feedstock and to identify lifetime limiting contaminants in SnS.

In summary, we evaluated the effects of intentionally sodium doping thermally evaporated SnS films during growth. Carrier concentrations are observed to increase by over an order of magnitude, to 4.3×10^{17} cm⁻³, when using a 13 nm thick NaCl seed layer. In principle, carrier concentrations in the range of $10^{18} \sim 10^{19}$ cm⁻³ should be attainable as the sodium doping concentration in the SnS bulk is further increased. This could make Na-doped SnS an attractive candidate material for thermoelectric applications. The thermoelectric potential of SnS has been previously addressed in the literature.³⁷,³⁸

While comparison with a sodium-free SnS reference is not possible based on the present data, nevertheless, Hall Effect and free carrier absorption measurements indicate a change in the SnS thin-film electronic properties with increasing sodium concentration in the SnS bulk. Interestingly, the addition of Na-doping
at the levels investigated in this study does not affect the performance of SnS thin-film solar cells appreciably, in contrast to other better-studied chalcogenide materials systems.

ACKNOWLEDGEMENTS

The authors thank M. L. Castillo for her help with substrate preparation and J. R. Poindexter for fruitful discussions. This work is supported by the U.S. Department of Energy through the SunShot Initiative under contract DE-EE0005329 and the National Science Foundation Grant No. CHE-11115577. V. Steinmann, R. E. Brandt and B. K. Ofori-Okai, R. Chakraborty and R. Jaramillo acknowledge the support of, the Alexander von Humboldt foundation, an NSF GRFP Fellowship, a MITei TOTAL fellowship and a DOE EERE Postdoctoral Research Award, respectively. This work made use of the Center for Materials Science and Engineering at MIT which is supported by the National Science Foundation (NSF) under award DMR-08-19762, and the Center for Nanoscale Systems at Harvard University which is supported by NSF under award ECS-0335765.
REFERENCES

