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June 2006

A SEQUENTIAL IMPORTANCE SAMPLING ALGORITHM FOR
GENERATING RANDOM GRAPHS WITH PRESCRIBED DEGREES

By Joseph Blitzstein and Persi Diaconis∗

Stanford University

Random graphs with a given degree sequence are a useful model
capturing several features absent in the classical Erdős-Rényi model,
such as dependent edges and non-binomial degrees. In this paper, we
use a characterization due to Erdős and Gallai to develop a sequential
algorithm for generating a random labeled graph with a given degree
sequence. The algorithm is easy to implement and allows surprisingly
efficient sequential importance sampling. Applications are given, in-
cluding simulating a biological network and estimating the number
of graphs with a given degree sequence.

1. Introduction. Random graphs with given vertex degrees have recently attracted
great interest as a model for many real-world complex networks, including the World Wide
Web, peer-to-peer networks, social networks, and biological networks. Newman [58] contains
an excellent survey of these networks, with extensive references. A common approach to
simulating these systems is to study (empirically or theoretically) the degrees of the vertices
in instances of the network, and then to generate a random graph with the appropriate
degrees. Graphs with prescribed degrees also appear in random matrix theory and string
theory, which can call for large simulations based on random k-regular graphs. Throughout,
we are concerned with generating simple graphs, i.e., no loops or multiple edges are allowed
(the problem becomes considerably easier if loops and multiple edges are allowed).

The main result of this paper is a new sequential importance sampling algorithm for
generating random graphs with a given degree sequence. The idea is to build up the graph
sequentially, at each stage choosing an edge from a list of candidates with probability
proportional to the degrees. Most previously studied algorithms for this problem sometimes
either get stuck or produce loops or multiple edges in the output, which is handled by
starting over and trying again. Often for such algorithms, the probability of a restart being
needed on a trial rapidly approaches 1 as the degree parameters grow, resulting in an
enormous number of trials being needed on average to obtain a simple graph. A major
advantage of our algorithm is that it never gets stuck. This is achieved using the Erdős-
Gallai characterization, which is explained in Section 2, and a carefully chosen order of
edge selection.

∗Research supported by NSF grants DMS 0072360, 1-24685-1-QABKW, and 1088720-100-QALGE.
AMS 2000 subject classifications: 05C07, 05C80, 68W20, 65C05.
Keywords and phrases: graphical degree sequences, random graphs, random networks, randomized gen-

erating algorithms, exponential models, sequential importance sampling.
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2 J. BLITZSTEIN AND P. DIACONIS

For example, the graph in Figure 1 is the observed food web of 33 types of organisms
(such as bacteria, oysters, and catfish) in the Chesapeake Bay during the summer. The
data is from Baird and Ulanowicz [5] and is available online at [77]. Each vertex represents
one of the 33 types of organisms, and an edge between two vertices indicates that one
preys upon the other. We represent this as an undirected graph for this example, though
it is clearly more natural to use a directed graph: it matters whether x eats y or y eats x
(especially to x and y). Nevertheless, we will see in Section 11 that the undirected food
web reveals interesting information about the connectivity and common substructures in
the food web. The blue crab, which is cannibalistic, is represented by vertex 19; we have
omitted the loop at vertex 19, not for any moral reason but because we are considering
simple graphs.
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Fig 1. food web for the Chesapeake Bay ecosystem in summer

The degree sequence of the above graph is

d = (7, 8, 5, 1, 1, 2, 8, 10, 4, 2, 4, 5, 3, 6, 7, 3, 2, 7, 6, 1, 2, 9, 6, 1, 3, 4, 6, 3, 3, 3, 2, 4, 4).

Applying importance sampling as explained in Section 9, with 100,000 trials, gave (1.533±
0.008)× 1057 as the estimated number of graphs with the same degree sequence d.

A natural way to test properties of the food web is to condition on the degree sequence,
generate a large number of random graphs with the same degree sequence, and then see how
the actual food web compares. See Section 11 for details of such a conditional test for this
example, using 6000 random graphs with degree sequence d generated by our algorithm.

Section 3 reviews several previous algorithms for our problem. There has been exten-
sive recent development of algorithms for generating random graphs with a given degree
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distribution or given expected degrees. Britton, Deijfen and Martin-Löf [15] give several
algorithms which they show asymptotically produce random graphs with a given degree
distribution. Chung and Lu [19, 20] analyze random graphs with given expected degrees
(with loops allowed). However, these algorithms and models are not suitable for applica-
tions where exactly specified degrees are desired, such as generating or enumerating random
k-regular graphs or the model-testing applications of Section 11.

Section 4 presents our algorithm, and Section 5 gives a proof that the algorithm works.
The algorithm relies on an extension of the Erdős-Gallai Theorem handling the case where
certain edges are forced (required to be used); this is discussed in Section 6. This is followed
in Section 7 by some estimates of the running time. Section 10 specializes to random trees
with a given degree sequence.

The probability of a given output for our algorithm is explicitly computable. The out-
put distribution is generally non-uniform, but the random graphs produced can be used
to simulate a general distribution via importance sampling. These ideas are discussed in
Section 8, which reviews the literature on importance sampling and sequential importance
sampling and shows how they can be used with our algorithm. Applications to approxi-
mately enumerating graphs with a given degree sequence are then given in Section 9.

Lastly, in Section 11 we describe an exponential family where the degrees are sufficient
statistics, and use the algorithm to test this model on the food web example.

2. Graphical Sequences.

Definition 1. A finite sequence (d1, . . . , dn) of nonnegative integers (n ≥ 1) is called
graphical if there is a labeled simple graph with vertex set {1, . . . , n}, in which vertex i has
degree di. Such a graph is called a realization of the degree sequence (d1, . . . , dn). We will
call the sequence (d1, . . . , dn) a degree sequence regardless of whether or not it is graphical.

Graphical sequences are sometimes also called graphic or realizable. Note that if (d1, . . . , dn)
is graphical, then

∑n
i=1 di is even since in any graph, the sum of the degrees is twice the

number of edges. Also, it is obviously necessary that 0 ≤ di ≤ n− 1 for all i; the extremes
di = 0 and di = n− 1 correspond to an isolated vertex and a vertex connected by edges to
all other vertices, respectively.

There are many well-known efficient tests of whether a sequence is graphical. For ex-
ample, Mahadev and Peled [51] list eight equivalent necessary and sufficient conditions for
graphicality. The most famous criterion for graphicality is due to Erdős and Gallai [27]:

Theorem 1 (Erdős-Gallai). Let d1 ≥ d2 ≥ · · · ≥ dn be nonnegative integers with∑n
i=1 di even. Then d = (d1, . . . , dn) is graphical if and only if

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(k, di) for each k ∈ {1, . . . , n}.
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The necessity of these conditions is not hard to see: for any set S of k vertices in a
realization of d, there are at most

(k
2

)
“internal” edges within S, and for each vertex v /∈ S,

there are at most min(k, deg(v)) edges from v into S. The sufficiency of the Erdős-Gallai
conditions is more difficult to show. Many proofs have been given, including the original
in Hungarian [27], a proof using network flows in Berge [10], and a straightforward but
tedious induction on the sum of the degrees by Choudum [18]. Note that the Erdős-Gallai
conditions can be checked using Θ(n) arithmetic operations and comparisons and Θ(n)
space, as we can compute and cache the n partial sums of the degrees and for each k the
largest i with min(k, di) = k (if any exists), and there are n inequalities to check. The
Erdős-Gallai conditions have been refined somewhat, e.g., it is easy to show that it only
necessary to check up to k = n−1 (for n ≥ 2), and Tripathi and Vijay [76] showed that the
number of inequalities to be checked can be reduced to the number of distinct entries in
d. However, these reductions still require checking Θ(n) inequalities in general. Also note
that d needs to be sorted initially if not already given in that form. This can be done in
O(n log n) time using a standard sorting algorithm such as merge-sort.

Instead of having to test all of the inequalities in the Erdős-Gallai conditions, it is
often convenient to have a recursive test. A particularly simple recursive test was found
independently by Havel [36] and Hakimi [34]. We include the proof since it is instructive
and will be useful below.

Theorem 2 (Havel-Hakimi). Let d be a degree sequence of length n ≥ 2 and let i be a
coordinate with di > 0. If d does not have at least di positive entries other than i, then d
is not graphical. Assume that there are at least di positive entries other than at i. Let d̃ be
the degree sequence of length n−1 obtained from d by deleting coordinate i and subtracting
1 from the di coordinates in d of highest degree, aside from i itself. Then d is graphical if
and only if d̃ is graphical. Moreover, if d is graphical, then it has a realization in which
vertex i is joined to any choice of the di highest degree vertices other than vertex i.

Proof. If d does not have at least di positive entries other than i, then there are not
enough vertices to attach i to, so d is not graphical. So assume that there are at least di

positive entries aside from i. It is immediate that if d̃ is graphical, then d is graphical: take
a realization of d̃ (with labels (1, 2, . . . , i− 1, i + 1, . . . , n)), introduce a new vertex labeled
i, and join i to the di vertices whose degrees had 1 subtracted from them.

Conversely, assume that d is graphical, and let G be a realization of d. Let h1, . . ., hdi
be

a choice of the di highest degree vertices other than vertex i (so deg(hj) ≥ deg(v) for all
v /∈ {i, h1, . . . , hdi

}). We are done if vertex i is already joined to all of the hj , since then
we can delete vertex i and its edges to obtain a realization of d̃. So assume that there are
vertices v and w (not equal to i) such that w = hj for some j, v is not equal to any of
h1, . . . , hdi

, and i is adjacent to v but not to w.
If deg(v) = deg(w), we can interchange vertices v and w without affecting any degrees.

So assume that deg(v) < deg(w). Then there is a vertex x 6= v joined by an edge to w
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but not to v. Perform a switching by adding the edges {i, w}, {x, v} and deleting the edges
{i, v}, {w, x}. This does not affect the degrees, so we still have a realization of d. Repeating
this if necessary, we can obtain a realization of d where vertex i is joined to the di highest
degree vertices other than i itself.

The Havel-Hakimi Theorem thus gives a recursive test for whether d is graphical: apply
the theorem repeatedly until either the theorem reports that the sequence is not graphical
(if there are not enough vertices available to connect to some vertex) or the sequence
becomes the zero vector (in which case d is graphical). In practice, this recursive test runs
very quickly since there are at most n iterations, each consisting of setting a component i
to 0 and subtracting 1 from di components. The algorithm also needs to find the highest
degrees at each stage, which can be done by initially sorting d (in time O(n log n)) and
then maintaining the list in sorted order.

Note that when d is graphical, the recursive application of Havel-Hakimi constructs a
realization of d, by adding at each stage the edges corresponding to the change in the d
vector. This is a simple algorithm for generating a deterministic realization of d. In the
next section, we survey previous algorithms for obtaining random realizations of d.

3. Previous Algorithms.

3.1. Algorithms for random graphs with given degree distributions. In the classical ran-
dom graph model G(n, p) of Erdős and Rényi, generating a random graph is easy: for each
pair of vertices i, j, independently flip a coin with probability of heads p, and put an edge
{i, j} iff heads is the result. Thus, the degree of a given vertex has a Binomial(n − 1, p)
distribution. Also, note that all vertices have the same expected degree. Thus, a different
model is desirable for handling dependent edges and degree distributions that are far from
binomial.

For example, many researchers have observed that the Web and several other large
networks obey a power-law degree distribution (usually with an exponential cutoff or trun-
cation at some point), where the probability of a vertex having degree k is proportional to
k−α for some positive constant α. See [2], [6], [14], [15], [22], and [58] for more information
about power-law graphs, where they arise, and ways of generating them.

Our algorithm can also be used to generate power-law graphs or, more generally, graphs
with a given degree distribution. To do this, first sample i.i.d. random variables (D1, . . . , Dn)
according to the distribution. If (D1, . . . , Dn) is graphical, use it as input to our algorithm;
otherwise, re-pick (D1, . . . , Dn). Recent work of Arratia and Liggett [4] gives the asymp-
totic probability that (D1, . . . , Dn) is graphical. In particular, the asymptotic probability
is 1/2 if the distribution has finite mean and is not supported on only even degrees or on
only odd degrees; clearly, these conditions hold for power-law distributions.

3.2. The Pairing Model. Returning to a fixed degree sequence, several algorithms for
generating a random (uniform or near-uniform) graph with desired degrees have been
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studied. Most of the existing literature has concentrated on the important case of regular
graphs (graphs where every vertex has the same degree), but some of the results extend
to general degree sequences. In the remainder of this section, we will briefly survey these
existing algorithms; more details can be found in the references, including the excellent
survey on random regular graphs by Wormald [83].

The first such algorithm was the pairing model (also known, less descriptively, as the
configuration model). This model is so natural that it has been re-discovered many times in
various forms (see [83] for discussion of the history of the pairing model), but in this context
the first appearances seem to be in Bollobás [13] and in Bender and Canfield [9]. Fix n (the
number of vertices) and d (the degree) with nd even, and let v1, . . . , vn be disjoint cells,
each of which consists of d points (for general degree sequences, we can let vi consist of di

points). Choose a perfect matching of these nd points uniformly. This can be done easily,
e.g., by at each stage randomly picking two unmatched points and then matching them
together. The matching induces a multigraph, by viewing the cells at vertices and putting
an edge between cells v and w for each occurrence of a match between a point in v and a
point in w. Under the convention that each loop contributes 2 to the degree, this multigraph
is d-regular. The pairing model algorithm is then to generate random multigraphs in this
way until a simple graph G is obtained.

Note that the resulting G is uniformly distributed since each simple graph is induced
by the same number of perfect matchings. Some properties of Erdős-Rényi random graphs
have analogues in this setting. For example, Molloy and Reed [56] use the pairing model
to prove the emergence of a giant component in a random graph with a given asymptotic
degree sequence, under certain conditions on the degrees.

Clearly, the probability P (simple) of a trial resulting in a simple graph is critical for the
practicality of this algorithm: the expected number of matchings that need to be generated
is 1/P (simple). Unfortunately, as d increases, the probability of having loops or multiple
edges approaches 1 very rapidly. In fact, Bender and Canfield showed that for fixed d,

P (simple) ∼ e
1−d2

4 as n →∞.

For very small d such as d = 3, this is not a problem and the algorithm works well. But for
larger d, the number of repetitions needed to obtain a simple graph becomes prohibitive.
For example, for d = 8, about 6.9 million trials are needed on average in order to produce
a simple graph by this method (for n large).

3.3. Algorithms Based on the Pairing Model. A sensible approach is to modify the
pairing model by forbidding any choices of matching that will result in a loop or multiple
edges. The simplest such method is to start with an empty graph and randomly add edges
one at a time, choosing which edge to add by picking uniformly a pair of vertices which
have not yet received their full allotment of edges. The process stops when no more edges
can be added. With d the maximum allowable degree of each vertex, this is known as a
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random d-process. Erdős asked about the asymptotic behavior of the d-process as n →∞
with d fixed. Ruciński and Wormald [65] answered this by showing that with probability
tending to 1, the resulting graph is d-regular (for nd even).

A similar result has been obtained by Robalewska and Wormald [63] for the star d-
process, which at each stage chooses a vertex with a minimal current number δ of edges,
and attempts to connect it to d − δ allowable vertices. However, for both the d-process
and the star d-process, it is difficult to compute the resulting probability distribution on
d-regular graphs. Also, although it is possible to consider analogous processes for a general
degree sequence (d1, . . . , dn), little seems to be known in general about the probability of
the process succeeding in producing a realization of (d1, . . . , dn).

A closely related algorithm for d-regular graphs is given by Steger and Wormald [71],
designed to have an approximately uniform output (for large n, under certain growth
restrictions on d). Their algorithm proceeds as in the pairing model, except that before
deciding to make a match with two points i and j, one first checks that they are not in
the same cell and that there is not already a match between a cellmate of i and a cellmate
of j. The algorithm continues until no more permissible pairs can be found. This can be
viewed as a variant of the d-process with edges chosen with probabilities depending on the
degrees, rather than uniformly.

By construction, the Steger-Wormald algorithm avoids loops and multiple edges, but
unlike the pairing model it can get stuck before a perfect matching is reached, as there
may be unmatched vertices left over which are not allowed to be paired with each other.
If the algorithm gets stuck in this way, it simply starts over and tries again. Steger
and Wormald showed that the probability of their algorithm getting stuck approaches
0 for d = o((n/(log3 n)1/11), and Kim and Vu [42] recently improved this bound to
d = o(n1/3/ log2 n). The average running time is then O(nd2) for this case. Empirically,
Steger and Wormald observed that their algorithm seems to get stuck with probability at
most 0.7 for d ≤ n/2, but this has not been proved for d a sizable fraction of n. The output
of the Steger-Wormald algorithm is not uniform, but their work and later improvements
by Kim and Vu [41] show that for d = o(n1/3−ε) with ε > 0 fixed, the output is asymp-
totically uniform. For d of higher order than n1/3, it is not known whether the asymptotic
distribution is close to uniform. Again these results are for regular graphs, and it is not
clear how far they extend to general degree sequences.

There is also an interesting earlier algorithm by McKay and Wormald [53] based on the
pairing model. Their algorithm starts with a random pairing from the pairing model, and
then uses two types of switchings (slightly more complicated than the switchings in the
Markov chain described below). One type of switching is used repeatedly to eliminate any
loops from the pairing, and then the other type is used to eliminate any multiple edges from
the pairing. To obtain an output graph which is uniformly distributed, an accept/reject
procedure is used: in each iteration, a restart of the algorithm is performed with a certain
probability. Let M =

∑n
i=1 di,M2 =

∑n
i=1 di(di − 1), and dmax = max{d1, . . . , dn}. McKay

and Wormald show that if d3
max = O(M2/M2) and d3

max = o(M + M2), then the average
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running time of their algorithm is O(M +M2
2 ). Note that for d-regular graphs, this reduces

to an average running time of O(n2d4) for d = O(n1/3). They also give a version that runs
in O(nd3) time under the same conditions, but Wormald says in [83] that implementing
this version is “the programmer’s nightmare.”

3.4. Adjacency Lists and Havel-Hakimi Variants. Tinhofer [74, 75] gave a general al-
gorithm for generating random graphs with given properties, including given degree se-
quences. This approach involves choosing random adjacency lists, each of which consists of
vertices adjacent to a particular vertex. These are chosen so that each edge is represented
in only one adjacency list, to avoid redundancy. An accept/reject procedure can then be
used to obtain a uniform output. However, this algorithm is quite complicated to analyze,
and neither the average running time nor the correct accept/reject probabilities seem to
be known.

As noted earlier, the Havel-Hakimi Theorem gives a deterministic algorithm for gener-
ating a realization of d. A simple modification to add randomness is as follows. Start with
vertices 1, . . . , n and no edges. At each stage, pick a vertex i with di > 0 and choose di

other vertices to join i to, according to some pre-specified probabilities depending on the
degrees. Obtain d′ from d by setting the entry at position i to 0 and subtracting 1 from
each chosen vertex. If d′ is graphical, update d to d′ and continue; otherwise, choose a dif-
ferent set of vertices to join i to. If favoritism is shown towards higher degree vertices, e.g.,
by choosing to connect i to a legal j with probability proportional to the current degree
of j, then this algorithm becomes similar to the preferential attachment model discussed
in Barabási and Albert [6]. However, we do not have good bounds on the probability of
a chosen set of vertices being allowable, which makes it difficult to analyze the average
running time. Also, to use this algorithm with the importance sampling techniques given
later, it seems necessary to know at each stage exactly how many choices of the di vertices
yield a graphical d′; but it is obviously very undesirable to have to test all subsets of a
certain size.

3.5. Markov Chain Monte Carlo Algorithms. A natural, widely-used approach is to use
a Markov chain Monte Carlo (MCMC) algorithm based on the switching moves used in
the proof of the Havel-Hakimi Theorem. Let d = (d1, . . . , dn) be graphical. We can run a
Markov Chain with state space the set of all realizations of d as follows. Start the chain
at any realization of d (this can be constructed efficiently using Havel-Hakimi). When at
a realization G, pick two random edges {x, y} and {u, v} uniformly with x, y, u, v distinct.
If {x, u} and {y, v} are not edges, then let the chain go to the realization G′ obtained
by adding the edges {x, u}, {y, v} and deleting the edges {x, y}, {u, v}; otherwise, stay at
G. (Alternatively, we can also check whether {x, v} and {y, u} are non-edges; if so and
the other switching is not allowed, then use this switching. If both of these switchings are
possible, we can give probability 1/2 to each.)

The Markov chain using switchings is irreducible since the proof of Havel-Hakimi can be
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used to obtain a sequence of switchings to take any realization of d to any other realization
of d. It is also easy to see that the chain is reversible with the uniform distribution as its
stationary distribution.

Note that in the context of tables, the corresponding random walk on adjacency matrices
uses exactly the same moves as the well-known random walk on contingency tables or zero-
one tables discussed in Diaconis and Gangolli [23], where at each stage a pair of random
rows and a pair of random columns are chosen, and the current table is modified in the four

entries according to the pattern

(
+ −
− +

)
or the pattern

(
− +
+ −

)
, if possible. Diaconis

and Sturmfels [24] have generalized these moves to discrete exponential families, which
provides further evidence of the naturalness of this chain.

For regular graphs, the mixing time of the switchings Markov chain has been studied
very recently by Cooper, Dyer, and Greenhill [21], using a path argument. They also use
the switchings chain to model a peer-to-peer network, which is a decentralized network
where users can share information and resources. The vertices of the graph correspond
to the users, and two users who are joined by an edge can exchange information. Using
random regular graphs is a flexible, convenient way to create such a network.

Practitioners sometimes want to generate only connected graphs with the given degree
sequence. Note that a switching move may disconnect a connected graph. However, if we
accept a switching only if the resulting graph is connected, it follows from a theorem of Tay-
lor [73] that the switchings Markov chain on connected graphs is irreducible. To avoid the
inefficiency of having to check after every step whether the graph is still connected, Gkant-
sidis, Mihail, and Zegura [31] and Viger and Latapy [79] propose heuristic modifications
and give empirical performance data.

For regular graphs, another MCMC algorithm was given by Jerrum and Sinclair [39].
In their algorithm, a graph is constructed in which perfect matchings give rise to simple
graphs. The algorithm then uses a Markov chain to obtain a perfect matching in this
graph. Jerrum and Sinclair showed that this algorithm comes arbitrarily close to uniform in
polynomial time (in n). However, the polynomial is of fairly high order. Their algorithm can
be extended to non-regular graphs, but is only known to run in polynomial time if d satisfies
a condition called P-stability. Intuitively, a class of degree sequences is P-stable if a small
perturbation of a degree sequence d in the class does not drastically change the number
of graphs with that degree sequence. For precise details and conditions for P-stability in
terms of the minimum and maximum degrees, see Jerrum, Sinclair and McKay [40].

4. The Sequential Algorithm. In this section, we present our sequential algorithm
and describe some of its features. In a graph process aiming to produce a realization of a
given degree sequence, the word “degree” could either mean the number of edges chosen
already for some vertex, or it could mean the residual degree, which is the remaining number
of edges which must be chosen for that vertex. In discussing our algorithm, degrees should
be thought of as residual degrees unless otherwise specified; in particular, we will start with
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the degree sequence d and add edges until the degree sequence is reduced to 0.
As we will be frequently adding or subtracting 1 at certain coordinates of degree se-

quences, we introduce some notation for this operation.

Notation 1. For any vector d = (d1, . . . dn) and distinct i1, . . . , ik ∈ {1, . . . , n}, define
⊕i1,...,ikd to be the vector obtained from d by adding 1 at each of the coordinates i1, . . . , ik,
and define 	i1,...,ik analogously:

(⊕i1,...,ikd)i =

{
di + 1 for i ∈ {i1, . . . , ik},
di otherwise,

,

(	i1,...,ikd)i =

{
di − 1 for i ∈ {i1, . . . , ik},
di otherwise.

For example, ⊕1,2(3, 2, 2, 1) = (4, 3, 2, 1) and 	1,2(3, 2, 2, 1) = (2, 1, 2, 1). With this no-
tation, our sequential algorithm can be stated compactly.

Sequential Algorithm For Random Graph with Given Degrees
Input: a graphical degree sequence (d1, ..., dn).
1. Let E be an empty list of edges.
2. If d = 0, terminate with output E.
3. Choose the least i with di a minimal positive entry.
4. Compute candidate list J = {j 6= i : {i, j} /∈ E and 	i,j d is graphical}.
5. Pick j ∈ J with probability proportional to its degree in d.
6. Add the edge {i, j} to E and update d to 	i,jd.
7. Repeat steps 4-6 until the degree of i is 0.
8. Return to step 2.
Output: E.

For example, suppose that the starting sequence is (3, 2, 2, 2, 1). The algorithm starts
by choosing which vertex to join vertex 5 to, using the candidate list {1, 2, 3, 4}. Say it
chooses 2. The new degree sequence is (3, 1, 2, 2, 0). The degree of vertex 5 is now 0, so the
algorithm continues with vertex 2, etc. One possible sequence of degree sequences is

(3, 2, 2, 2, 1) → (3, 1, 2, 2, 0) → (2, 0, 2, 2, 0) → (1, 0, 2, 1, 0) → (0, 0, 1, 1, 0)
→ (0, 0, 0, 0, 0),

corresponding to the graph with edge set

{{5, 2}, {2, 1}, {1, 4}, {1, 3}, {3, 4}}.
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As another example, we show below the first two of 6000 graphs generated using our
algorithm applied to the degree sequence of the food web of Figure 1. Each took about 13
seconds to generate (on a 1.33 GHz PowerBook). Qualitatively, they appear to be more
spread out and less neatly hierarchical than the actual food web. We discuss this more in
Section 11, comparing some test statistics of the actual graph with those of the random
graphs.
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Fig 2. random graph with food web degrees, 1

The algorithm always terminates in a realization of (d1, . . . , dn). The output of the
algorithm is not uniformly distributed over all realizations of (d1, . . . , dn) in general, but
every realization of (d1, . . . , dn) has positive probability. Importance sampling techniques
can then be used to compute expected values with respect to the uniform distribution if
desired, as described in Section 8.

We now make remarks on the specific steps and some ways of speeding up the imple-
mentation of the algorithm.

1. In Step 4, any test for graphicality can be used; Erdős-Gallai is particularly easy to
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Fig 3. random graph with food web degrees, 2

implement and runs quickly.

2. It follows from Theorem 3 that a candidate at a later stage is also a candidate at an
earlier stage, within the same choice of i from Step 3. Thus, in Step 4 it is sufficient
to test the vertices which were candidates in the previous stage, if that stage had the
same choice of i.

3. Let
m = |{j : dj ≥ j − 1}|

be the corrected Durfee number of d. A beautiful result (see Theorem 3.4.1 in Ma-
hadev and Peled [51]) is that d is graphical if and only if it satisfies the first m
Erdős-Gallai inequalities. In many cases the corrected Durfee number m is much less
than n, which greatly reduces the number of inequalities to check.

4. In Step 5, any probability distribution p on J with p(j) > 0 for all j can be used. An
interesting problem here is to find a distribution p which makes the output as close to
uniform as possible. In our empirical tests, choosing a candidate with probability pro-
portional to its degree was significantly better than choosing a candidate uniformly
(see Section 8). But it remains open to prove some sort of optimality here. In the
case of the algorithm for random trees (see Section 10), picking j with probability
proportional to dj − 1 gives an exactly uniform tree.

5. An alternative to Step 4 would be to pick j with {i, j} /∈ E randomly and accept
it if 	i,jd is graphical; otherwise, pick again without replacement. This approach
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runs faster, but has the disadvantage that it becomes very difficult to compute the
sequential probabilities discussed in Section 8.

6. Another alternative would be to connect at each step a highest degree vertex to a
randomly chosen candidate. This has the advantage that it is obvious from Havel-
Hakimi that the algorithm never gets stuck. However, this seems to make it very
difficult to compute the weights c(Y ) needed in Section 8 for importance sampling.
Choosing the maximum vertex on each step involves a lot of jumping around from
vertex to vertex, whereas our main algorithm is more systematic in the sense that it
chooses a vertex to fully connect, then chooses another vertex to fully connect, etc.

5. Proof that the Algorithm Works. The theorem below guarantees that the al-
gorithm never gets stuck, by showing that at least one candidate vertex exists at each
stage.

Theorem 3. Let d = (d1, . . . , dn) be a graphical degree sequence with di > 0, arranged
so that dn = min{d1, . . . , dn}. Let d = d(0), d(1), d(2), . . . , d(j) = d̃ be graphical degree se-
quences of length n (for some j ≥ 1), such that d(i) is obtained from d(i−1) by subtracting
1 at coordinate n and at another coordinate vi not previously changed. That is,

d(i) = 	n,vid
(i−1) for i ∈ {1, . . . , j},

where n, v1, . . . , vj are distinct. Then d has a realization containing all of the edges {n, v1}, . . . ,
{n, vj}, and d̃ has a realization containing none of these edges.

Proof. The desired realization of d immediately yields that of d̃, by deleting the edges
{n, v1}, . . . , {n, vj}, and conversely the desired realization of d̃ immediately gives that of
d. Note that j ≤ dn since the degree of vertex n in d(j) is dn − j. We use a backwards
induction on j, over 1 ≤ j ≤ dn, by showing that the claim is true for j = dn and that if
it is true for j + 1, then it is true for j.

First assume j = dn, and let Gj be a realization of the degree sequence d(j). Note that
vertex n has degree 0 in Gj . Adding edges in Gj from vertex n to each vi, 1 ≤ i ≤ j, yields
a graph with degree sequence d(0) containing the desired edges. Now assume that the result
holds for j + 1, and show it for j, for some fixed j with 1 ≤ j ≤ dn − 1.

Call the vertices v1, . . . , vj touched vertices, and the remaining vertices other than vertex
n untouched. The proof hinges on whether we can find a realization of d(j) where vertex n
is adjacent to an untouched vertex.

Suppose that d(j) has a realization Gj containing an edge {n, x}, with x an untouched
vertex. Deleting the edge {n, x} yields a graph Gj+1 with degree sequence d(j+1) of the form
in the statement of the theorem, with j + 1 in place of j and vj+1 = x. The inductive hy-
pothesis then implies that d(0) has a realization containing the edges {n, v1}, . . . , {n, vj+1}.
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So it suffices to show that d(j) has a realization with an edge {n, x}, with x an untouched
vertex.

Let T consist of the j touched vertices, and decompose T = A ∪ B, where a touched
vertex x is in A iff {n, x} is an edge in some realization of d(j), and B = T \ A. Here B
may be empty, but we can assume A is nonempty, since otherwise any realization of d(j)

has an edge {n, x} with x untouched. Let |A| = a and |B| = b (so a + b = j).
Let x ∈ A and y be an untouched vertex or y ∈ B. Consider a realization of d(j)

containing the edge {n, x}. Note that if the degrees of x and y are equal in d(j), then
they can be interchanged without affecting any degrees, and then {n, y} is an edge (which
contradicts the definition of B if y ∈ B, and gives us the desired edge if y is untouched).
If the degree of x is less than that of y, then we can perform a switching as in the proof of
the Havel-Hakimi Theorem (pick a vertex w 6= x adjacent to y but not adjacent to x, add
edges {n, y}, {x,w}, and delete edges {n, x}, {y, w}), again producing a realization with
the edge {n, y}. So assume that the degree of x is strictly greater than the degree of y in
d(j) for all x ∈ A and y which is either untouched or in B. Then the vertices in A have the
a highest degrees (excluding n itself) in d(j).

Let d′ be the degree sequence with d′n = dn − b, d′y = dy − 1 for y ∈ B, and d′y = dy

otherwise. Note that d̃i ≤ d′i ≤ di for all i, with equality on the left for i ∈ B and equality
on the right for i ∈ A. Also, the assumption dn = min{d1, . . . , dn} implies that d′n =
min{d′1, . . . , d′n} and d

(j)
n = min{d(j)

1 , . . . , d
(j)
n }. We claim that d′ is graphical. Assuming

that d′ is graphical, we can then complete the proof as follows. Note that the vertices in A
have the a highest degrees in d′ (excluding n itself) since this is true for d(j) and in passing
from d(j) to d′, these degrees are increased by 1 while all other degrees aside from that of
vertex n are unchanged. So by the Havel-Hakimi Theorem, d′ has a realization containing
all of the edges {n, x}, x ∈ A (as a ≤ d′n = dn− b, since j < dn). Deleting these edges yields
a realization G(j) of d(j) containing none of these edges. By definition of B, G(j) also does
not contain any edge {n, y} with y ∈ B. Thus, G(j) is as desired. So it suffices to prove
that d′ is graphical.

To show that d′ is graphical, we check the Erdős-Gallai conditions. For k = n, since d is
graphical we have

n∑
i=1

d′i ≤
n∑

i=1

di ≤ n(n− 1).

Assume k < n, and let I ⊆ {1, . . . , n− 1} be an index set for the k largest degrees of d′. If
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k ≤ d′n, then k ≤ d′i ≤ di for all i, and we have∑
i∈I

d′i ≤
∑
i∈I

di

≤ k(k − 1) +
∑
i/∈I

min{k, di}

= k(k − 1) +
∑
i/∈I

k

= k(k − 1) +
∑
i/∈I

min{k, d′i}.

So assume k > d′n (which implies k > d̃n). Then∑
i∈I

d′i = a′ +
∑
i∈I

d̃i,

where a′ ≤ a, since d′ and d̃ differ only on A ∪ {n}. Since d̃ is graphical,

a′ +
∑
i∈I

d̃i ≤ a′ + k(k − 1) +
∑
i/∈I

min{k, d̃i}

= a′ + k(k − 1) + d̃n +
∑

i/∈I,i6=n

min{k, d̃i}

≤ a′ + k(k − 1) + d̃n +
∑

i/∈I,i6=n

min{k, d′i}

= a′ + k(k − 1) + d̃n − d′n +
∑
i/∈I

min{k, d′i}

≤ k(k − 1) +
∑
i/∈I

min{k, d′i}

where the last inequality follows from a′ + d̃n − d′n = a′ + (dn − j)− (dn − b) = a′ − a ≤ 0.
Hence, d′ is graphical.

The above result is false if the assumption dn = min{d1, . . . , dn} is dropped. For a
counterexample, consider the degree sequences

(1, 1, 2, 2, 5, 3), (1, 1, 2, 2, 4, 2), (0, 1, 2, 2, 4, 1).

It is easily checked that they are graphical and each is obtained from the previous one in
the desired way. But there is no realization of the sequence (1, 1, 2, 2, 5, 3) containing the
edge {1, 6}, since clearly vertex 1 must be connected to vertex 5. This would result in the
algorithm getting stuck in some cases if we did not start with a minimal positive degree
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vertex: starting with (1, 1, 2, 2, 5, 3), the algorithm could choose to form the edge {5, 6} and
then choose {1, 6}, since (0, 1, 2, 2, 4, 1) is graphical. But then vertex 5 could never achieve
degree 4 without creating multiple edges.

Using the above theorem, we can now prove that the algorithm never gets stuck.

Corollary 1. Given a graphical sequence d = (d1, . . . , dn) as input, the algorithm
above terminates with a realization of d. Every realization of d occurs with positive proba-
bility.

Proof. We use induction on the number of nonzero entries in the input vector d. If
d = 0, the algorithm terminates immediately with empty edge set, which is obviously the
only realization of the zero vector. Suppose d 6= 0 and the claim is true for all input vectors
with fewer nonzero entries than d. Let i be the smallest index in d with minimal positive
degree. There is at least one candidate vertex j to connect i to, since if {i, j} is an edge
in a realization of d, then deleting this edge shows that the sequence d(1) obtained by
subtracting 1 at coordinates i and j is graphical.

Suppose that the algorithm has chosen edges {i, v1}, . . . , {i, vj} with corresponding de-
gree sequences d = d(0), d(1), . . . , d(j), where j ≥ 1 and d

(j)
i = di − j > 0. Omitting any

zeroes in d and permuting each sequence to put vertex i at coordinate n, Theorem 3 implies
that d(j) has a realization Gj using none of the edges {i, v1}, . . . , {i, vj}. Then Gj has an
edge {i, x} with dx = d

(j)
x , and {i, x} is an allowable choice for the next edge. Therefore, the

algorithm can always extend the list of degree sequences d = d(0), . . . , d(j) until the degree
at i is di− j = 0. Let {i, v1}, . . . {i, vj} be the edges selected (with di− j = 0). Note that if
{i, w1}, . . . {i, wj} are the edges incident with i in a realization of G, then these edges are
chosen with positive probability (as seen by deleting these edges one by one in any order).

The algorithm then proceeds by picking a minimal positive entry in d(j) (if any re-
mains). By the inductive hypothesis, running the algorithm on input vector d(j) termi-
nates with a realization of d(j). Thus, the algorithm applied to d terminates with edge set
E = {{i, v1}, . . . {i, vj}} ∪ Ẽ, where Ẽ is an output edge set of the algorithm applied to
d(j). No edges in Ẽ involve vertex i, so E is a realization of d. Again by the inductive
hypothesis, every realization of d(j) is chosen with positive probability, and it follows that
every realization of d is chosen with positive probability.

Although the algorithm always gives a realization of d, for certain degree sequences a
prohibitive number of trials would be needed for accurate estimation. On the other hand,
for many degree sequences which have arisen in practice, the importance sampling can
easily be done efficiently.

As an extreme example, consider d of the form d = (1, . . . , 1, k) with k ≥ 2, which is the
analogue for graphs of an example recently considered by Bezáková, Sinclair, Stefankovic,
and Vigoda [11] in the context of the Chen, Diaconis, Holmes, and Liu [16] algorithm for
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generating zero-one tables with given row and column sums. Bezáková et al. show that
in certain examples with all but one row sum and all but one column sum equal to 1,
exponentially many trials are needed for the sequential importance sampling estimate to
give a good estimate of the true number of tables. Blitzstein [12] gives explicit variance
calculations for d = (1, . . . , 1, k) with l + 2k 1’s, and the relative standard deviation of the
importance sampling estimator grows rapidly in k once k exceeds a certain threshold value.
For example, when l = 1 and k = 100, the relative standard deviation is 2.2925× 1012, so
over 1024 graphs would be needed to obtain an acceptably low standard deviation. Further
work is required to understand what degree sequences lead to such behavior.

Bayati and Saberi [8] analyze a closely related example for graphs with several
√

n
terms in place of the single k, showing that for the Steger-Wormald algorithm the resulting
distribution is extremely far from uniform. They also show how to obtain an improved
algorithm by re-weighting the edge selection process.

6. Forced Sets of Edges. Theorem 3 is also related to the problem of finding a
realization of a graph which requires or forbids certain edges. To make this precise, we
introduce the notion of a forced set of edges.

Definition 2. Let d be a graphical degree sequence. A set F of pairs {i, j} with
i, j ∈ {1, . . . , n} is forced for d if for every realization G = (V,E) of d, F ∩ E 6= ∅. If
a singleton {e1} is forced for d, we will say that e1 is a forced edge for d.

The one-step case (j = 1) in Theorem 3 gives a criterion for an edge to be forced. Indeed,
for this case the assumption about the minimum is not needed.

Proposition 1. Let d be a graphical degree sequence and i, j ∈ {1, . . . , n} with i 6= j.
Then {i, j} is a forced edge for d if and only if ⊕i,jd is not graphical.

Proof. Suppose that {i, j} is not forced for d. Adding the edge {i, j} to a realization
of d yields a realization of ⊕i,jd. Conversely, suppose that {i, j} is forced for d. Arguing as
in the proof of Theorem 3, we see that i and j must have greater degrees in d than any
other vertex. Suppose (for contradiction) that ⊕i,jd is graphical. Then Havel-Hakimi gives
a realization of ⊕i,jd that uses the edge {i, j}. Deleting this edge gives a realization of d
not containing the edge {i, j}, contradicting it being forced for d.

Beyond this one-step case, an additional assumption is needed for analogous results on
forced sets, as shown by the counterexample after the proof of Theorem 3. Much of the
proof consisted of showing that the set of all “touched” vertices is not a forced set for d̃.
This immediately yields the following result.

Corollary 2. Let d be a graphical degree sequence and d′ = ⊕k
i ⊕j1,...,jk

d for some
distinct vertices i, j1, . . . , jk. Suppose that d′i = min{d′1, . . . , d′n}. Then the set of edges
{{i, j1}, . . . , {i, jk}} is forced for d if and only if d′ is not graphical.
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We may also want to know whether there is a realization of d containing a certain list
of desired edges. This leads to the following notion.

Definition 3. Let d be a graphical degree sequence. A set S of pairs {i, j} with
i, j ∈ {1, . . . , n} is simultaneously allowable for d if d has a realization G with every
element of S an edge in G. If S is a simultaneously allowable singleton, we call it an
allowable edge.

Results on forced sets imply dual results for simultaneously allowable sets and vice versa,
by adding or deleting the appropriate edges from a realization. For example, Proposition 1
above implies the following.

Corollary 3. Let d be a graphical degree sequence and i, j ∈ {1, . . . , n} with i 6= j.
Then {i, j} is an allowable edge for d if and only if 	i,jd is graphical.

Similarly, the dual result to Corollary 2 is the following (which is also an easy consequence
of Theorem 3).

Corollary 4. Let d be a graphical degree sequence and d̃ = 	k
i 	j1,...,jk

d for some
distinct vertices i, j1, . . . , jk. Suppose that di = min{d1, . . . , dn}. Then {{i, j1}, . . . , {i, jk}}
is simultaneously allowable for d if and only if d̃ is graphical.

7. Running Time. In this section, we examine the running time of the algorithm.
Let d = (d1, . . . , dn) be the input. Since no restarts are needed, the algorithm has a fixed,
bounded worst case running time. Each time a candidate list is generated, the algorithm
performs O(n) easy arithmetic operations (adding or subtracting 1) and tests for graph-
icality O(n) times. Each test for graphicality can be done in O(n) time by Erdős-Gallai,
giving a total worst case O(n2) running time each time a candidate list is generated (a
sorted degree sequence also needs to be maintained, but the total time needed for this is
dominated by the O(n2) time we already have).

Since a candidate list is generated for each time an edge is selected, there are 1
2

∑n
i=1 di

candidate lists to generate. Additionally, the algorithm sometimes needs to locate the small-
est index of a minimal nonzero entry, but we are already assuming that we are maintaining
a sorted degree sequence.

The overall worst case running time is then O(n2∑n
i=1 di). For d-regular graphs, this

becomes a worst case of O(n3d) time. Note that an algorithm which requires restarts has
an unbounded worst case running time.

Using Remark 2 after Theorem 3, the number of times that the Erdős-Gallai conditions
must be applied is often considerably less than n. But we do not have a good bound on the
average number of times that Erdős-Gallai must be invoked, so we do not have a better
bound on the average running time than the worst case running time of O(n2∑n

i=1 di).
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8. Importance Sampling. The random graphs generated by the sequential algo-
rithms are not generally distributed uniformly, but the algorithm makes it easy to use
importance sampling to estimate expected values and probabilities for any desired dis-
tribution, including uniform. Importance sampling allows us to re-weight samples from a
distribution available to us, called the trial distribution, to obtain estimates with respect
to the desired target distribution. Often choosing a good trial distribution is a difficult
problem; one approach to this, sequential importance sampling, involves building up the
trial distribution recursively as a product, with each factor conditioned on the previous
choices.

Section 8.1 reviews some previous applications of importance sampling and explains how
they are related to the current work. Section 8.2 then shows how sequential importance
sampling works in the context of random graphs produced by our algorithm.

For general background on Monte Carlo computations and importance sampling, we
recommend Hammersley and Handscomb [35], Liu [47], and Fishman [28]. Sequential im-
portance sampling is developed in Liu and Chen [48] and Doucet, de Freitas and Gor-
don [25]. Important variations which could be coupled with the present algorithms include
Owen’s [60] use of control variates to bound the variance and adaptive importance sam-
pling as in Rubinstein [64]. Obtaining adequate bounds on the variance for importance
sampling algorithms is an open research problem in most cases of interest (see Bassetti
and Diaconis [7] for some recent work in this area).

8.1. Some Previous Applications. Sequential importance sampling was used in Sni-
jders [69] to sample from the set of all zero-one tables with given row and column sums.
The table was built up from left to right, one column at a time; this algorithm could get
stuck midway through, forcing it to backtrack or restart.

Chen, Diaconis, Holmes, and Liu [16] introduced the crucial idea of using a combina-
torial test to permit only partial fillings which can be completed to full tables. Using this
idea, they gave efficient important sampling algorithms for zero-one tables and (2-way)
contingency tables. For zero-one tables, the combinatorial test is the Gale-Ryser Theorem.
For contingency tables, the test is simpler: the sum of the row sums and the sum of the
column sums must agree.

Similarly, our graph algorithm can be viewed as producing symmetric zero-one tables
with trace 0, where the combinatorial test is the Erdős-Gallai characterization. For both
zero-one tables and graphs, refinements to the combinatorial theorems were needed to
ensure that partially filled in tables could be completed and sequential probabilities could
be computed.

Another interesting sequential importance sampling algorithm is developed in Chen,
Dinwoodie and Sullivant [17], to handle multiway contingency tables. A completely different
set of mathematical tools turns out to be useful in this case, including Gröbner bases,
Markov bases, and toric ideals. Again there is an appealing interplay between combinatorial
and algebraic theorems and importance sampling.



20 J. BLITZSTEIN AND P. DIACONIS

These problems fall under a general program: how can one convert a characterization
of a combinatorial structure into an efficient generating algorithm? A refinement of the
characterization is often needed, for use with testing whether a partially-determined struc-
ture can be completed. More algorithms of this nature, including algorithms for generating
connected graphs, digraphs, and tournaments, can be found in Blitzstein [12].

8.2. Importance Sampling of Graphs. When applying importance sampling with our
algorithm, some care is needed because it is possible to generate the same graph in differ-
ent orders, with different corresponding probabilities. For example, consider the graphical
sequence d = (4, 3, 2, 3, 2). The graph with edges

{1, 3}, {2, 3}, {2, 4}, {1, 2}, {1, 5}, {1, 4}, {4, 5}

can be generated by the algorithm in any of 8 orders. For example, there is the order just
given, and there is the order

{2, 3}, {1, 3}, {2, 4}, {1, 2}, {1, 4}, {1, 5}, {4, 5}.

The probability of the former is 1/20 and that of the latter is 3/40, even though the two
sequences correspond to the same graph. This makes it more difficult to directly compute
the probability of generating a specific graph, but it does not prevent the importance
sampling method from working.

Fix a graphical sequence d of length n as input to the algorithm. We first introduce some
notation to clearly distinguish between a graph and a list of edges.

Definition 4. Let Gn,d be the set of all realizations of d and let Yn,d be the set of
all possible sequences of edges output by the algorithm. For any sequence Y ∈ Yn,d of
edges, let Graph(Y ) be the corresponding graph in Gn,d (with the listed edges and vertex
set {1, . . . , n}). We call Y, Y ′ ∈ Yn,d equivalent if Graph(Y ′) = Graph(Y ). Let c(Y ) be the
number of Y ′ ∈ Yn,d with Graph(Y ′) = Graph(Y ).

The equivalence relation defined above partitions Yn,d into equivalence classes. There is
an obvious one-to-one correspondence between the equivalence classes and Gn,d, and the
size of the class of Y is c(Y ). Note that c(Y ′) = c(Y ) if Y ′ is equivalent to Y . The number
c(Y ) is easy to compute as a product of factorials:

Proposition 2. Let Y ∈ Yn,d and let i1, i2, . . . , im be the vertices chosen in the
iterations of Step 3 of the algorithm in an instance where Y is output (so the algo-
rithm gives i1 edges until its degree goes to 0, and then does the same for i2, etc.). Let
d = d(0), d(1), d(2), . . . , d(j) = 0 be the corresponding sequence of graphical degree sequences.
Put i0 = 0. Then

c(Y ) =
m∏

k=1

d
(ik−1)
ik

!.
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Proof. Let Y ′ be equivalent to Y . Note from Step 3 of the algorithm that Y ′ has the
same vertex choices i1, i2, . . . , im as Y . We can decompose Y and Y ′ into blocks corre-
sponding to i1, . . . , im. Within each block, Y ′ and Y must have the same set of edges,
possibly in a permuted order. Conversely, Theorem 3 implies that any permutation which
independently permutes the edges within each block of the sequence Y yields a sequence
Y ′′ in Yn,d. Clearly any such Y ′′ is equivalent to Y .

A main goal in designing our algorithm, in addition to not letting it get stuck, was to
have a simple formula for c(Y ). In many seemingly similar algorithms, it is difficult to find
an analogue of the above formula for c(Y ), making it much more difficult to use importance
sampling efficiently. Before explaining how importance sampling works in this context, a
little more notation is needed.

Notation 2. For Y ∈ Yn,d, write σ(Y ) for the probability that the algorithm produces
the sequence Y . Given a function f on Gn,d, write f̂ for the induced function on the larger
space Yn,d, with f̂(Y ) = f(Graph(Y )).

Note that for Y the output of a run of the algorithm, σ(Y ) can easily be computed
sequentially along the way. Each time the algorithm chooses an edge, have it record the
probability with which it was chosen (conditioned on all of the previously chosen edges),
namely, its degree divided by the sum of the degrees of all candidates at that stage. Mul-
tiplying these probabilities gives the probability σ(Y ) of the algorithm producing Y .

We can now show how to do importance sampling with the algorithm, despite having a
proposal distribution σ distributed on Yn,d rather than on Gn,d.

Proposition 3. Let π be a probability distribution on Gn,d and G be a random graph
drawn according to π. Let Y be a sequence of edges distributed according to σ. Then

E

(
π̂(Y )

c(Y )σ(Y )
f̂(Y )

)
= Ef(G).

In particular, for Y1, . . . , YN the output sequences of N independent runs of the algorithm,

µ̂ =
1
N

N∑
i=1

π̂(Yi)
c(Yi)σ(Yi)

f̂(Yi)

is an unbiased estimator of Ef(G).

Proof. Let Y be an output of the algorithm. We can compute a sum over Yn,d by first
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summing within each equivalence class and then summing over all equivalence classes:

E

(
π̂(Y )

c(Y )σ(Y )
f̂(Y )

)
=

∑
y∈Yn,d

f̂(y)π̂(y)
c(y)σ(y)

σ(y)

=
∑

y∈Yn,d

f̂(y)π̂(y)
c(y)

=
∑

G∈Gn,d

∑
y:Graph(y)=G

f̂(y)π̂(y)
c(y)

=
∑

G∈Gn,d

f(G)π(G)

= Ef(G),

where the second to last equality is because on the set C(G) = {y : Graph(y) = G}, we
have f̂(y) = f(G), π̂(y) = π(G), and c(y) = |C(G)|.

Taking π to be uniform and f to be a constant function allows us to estimate the
number of graphs with degree sequence d; this is explored in the next section. The ratios
Wi = π̂(Yi)

c(Yi)σ(Yi)
are called importance weights. A crucial feature of our algorithm is that

the quantity c(Yi)σ(Yi) can easily be computed on-the-fly, as described above. By taking
f to be a constant function, we see that EWi = 1, so the average sum of the importance
weights in µ̂ is N . Another estimator of Ef(G) is then

µ̃ =
1∑N

i=1 Wi

N∑
i=1

Wif̂(Yi).

This estimator is biased, but often works well in practice and has the advantage that the
importance weights need only be known up to a multiplicative constant. Since in practice
one often works with distributions that involve unknown normalizing constants, having it
suffice to know the importance weights up to a constant is often crucial.

A major factor in the performance of importance sampling is how much variation there is
in the importance weights. Let π be the uniform distribution on Gn,d. We plot in Figure 4 a
histogram of importance weights for 6000 trials with d the degree sequence of the food web
of Figure 1. The weights shown are scaled by dividing by 1052 and omitting the constant
π̂(Y ). The weights vary greatly from a minimum of 2.9× 1052 to a maximum of 2.9× 1058,
but most are between 1.2 × 1056 and 1.9 × 1057. The ratio of maximum to median is 52,
making the largest few weights influential but not completely dominant in importance
sampling estimates.
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Histogram of 100,000 weights
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Fig 4. histogram of 6000 importance weights for the Chesapeake food web

9. Estimating the Number of Graphs. To estimate the number |Gn,d| of realiza-
tions of d, let π be uniform on Gn,d and take f to be the constant function f(G) = |Gn,d|.
By Proposition 3,

E

(
1

c(Y )σ(Y )

)
= |Gn,d|.

Asymptotic formulas for |Gn,d| are available for regular and some non-regular degree
sequences (see Bender and Canfield [9] and McKay and Wormald [52, 54]), but there are
few non-asymptotic closed form expressions.

For the food web example of Figure 1, the estimated size of Gn,d was (1.51±0.03)×1057

using 6000 trials. The asymptotic formulas are not of much use in such an example, with
a fixed n of moderate size (here n = 33).

As an application and test of this method, we estimated the number of labeled 3-regular
graphs on n vertices for various even values of n. The exact values for all even n ≤ 24
are available as Sequence A002829 in Sloane’s wonderful On-Line Encyclopedia of Integer
Sequences [66], and in general they can be computed using a messy recurrence in Goulden
and Jackson [32].

For n = 4, there is only one labeled 3-regular graph on n vertices, the complete graph
K4. Comfortingly, the algorithm does give 1 as its estimate for this case. In general, a
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degree sequence with exactly one realization is called a threshold sequence (see [51]), and
it is easy to see that the algorithm gives 1 as the estimate for any threshold sequence.

The table below gives the estimators µ̂ obtained by the trials for all even n between 6
and 24, along with the number of trials, the correct value µ, and the percent error. The
number after each ± indicates the estimated standard error.

For each of these degree sequences, the coefficient of variation (ratio of standard deviation
to mean) was approximately 0.4, ranging between 0.39 and 0.43. A measure of the efficiency
of an importance sampling scheme is the effective sample size, as given in [44]. The effective
sample size approximates the number of i.i.d. samples from the target distribution required
to obtain the same standard error as the importance samples. The estimated effective
sample sizes for these examples, computed using the coefficients of variation, range between
422 to 434 for 500 runs of the algorithm.

n runs µ̂ µ % error
6 500 71.1± 1.2 70 1.57
8 500 18964± 365 19355 2.06
10 500 (1.126± 0.021)× 107 1.118× 107 0.72
12 500 (1.153± 0.022)× 1010 1.156× 1010 0.26
14 500 (1.914± 0.036)× 1013 1.951× 1013 1.93
16 500 (5.122± 0.093)× 1016 5.026× 1016 1.91
18 500 (1.893± 0.034)× 1020 1.877× 1020 0.85
20 500 (9.674± 0.17)× 1023 9.763× 1023 0.92
22 500 (6.842± 0.12)× 1027 6.840× 1027 0.029
24 500 (6.411± 0.11)× 1031 6.287× 1031 1.97

As a comparison between choosing candidates uniformly and choosing candidates with
probability proportional to their degrees, we generated 50 estimators from each algorithm,
with each based on 100 runs of the algorithm applied to the 3-regular degree sequence with
n = 10. The true value is 11180820 ≈ 1.118× 107. The mean of the estimators for uniform
candidates was 1.137× 107 (an error of 1.7%), while that of the degree-based selection was
1.121× 107 (an error of 0.25%).

For a non-regular example, we tested the algorithm with the graphical degree sequence
d = (5, 6, 1, . . . , 1) with eleven 1’s. To count the number of labeled graphs with this degree
sequence, note that there are

(11
5

)
= 462 such graphs with vertex 1 not joined to vertex 2

by an edge (these graphs look like two separate stars), and there are
(11

4

)(7
5

)
= 6930 such

graphs with an edge between vertices 1 and 2 (these look like two joined stars with an
isolated edge left over). Thus, the total number of realizations of d is 7392.

Running 500 trials of the algorithm gave the estimate 7176 ± 587, an error of 3%. The
algorithm with uniform selection of candidate gave the terrible estimate of 3702 with 500
trials, indicating the importance of choosing a good distribution on the candidate vertices.
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10. Trees. With a minor modification, the sequential algorithm can be used to gen-
erate random trees with a given degree sequence. The tree algorithm is simpler to analyze
and faster than the graph algorithm. Moreover, with an appropriate choice of selection
probabilities, the output is exactly uniform. This section uses some standard properties
of trees and Prüfer codes, which can be found in many good combinatorics books such as
van Lint and Wilson [78].

Throughout this section, let n ≥ 2 and d = (d1, . . . , dn) be a degree sequence (the
case n = 1 is trivial). A tree with n vertices has n − 1 edges, so it is necessary that∑n

i=1 di = 2n− 2 for a tree with degree sequence d to exist. Also, it is obviously necessary
that di ≥ 1 for all i. Conversely, it is easy to check (by induction or using Prüfer codes)
that these conditions are sufficient. So for trees, we can use the simple criterion below in
place of Erdős-Gallai:

Tree Criterion: There is a tree realizing d if and only if
n∑

i=1

di = 2n− 2 and di ≥ 1.

We call a degree sequence satisfying the Tree Criterion arborical (as the term “treeical”
seemed too reminiscent of molasses).

One simple algorithm uses Prüfer codes. Let d be arborical. Generate a sequence of length
n − 2 in which i appears di − 1 times, and take a random permutation of this sequence.
The result is the Prüfer code of a uniformly distributed tree with degree sequence d. Of
course, using this algorithm requires decoding the Prüfer code to obtain the desired tree.

The appearance of i exactly di − 1 times in the Prüfer code motivates the following
modification of our graph algorithm. In the tree algorithm below, we forbid creating an
edge between two vertices of degree 1 (except for the final edge), and choose vertices with
probability proportional to the degree minus 1.

Sequential Algorithm For Random Tree with Given Degrees
Input: an arborical sequence (d1, ..., dn).
1. Let E be an empty list of edges.
2. If d is 0 except at i 6= j with di = dj = 1, add {i, j} to E and terminate.
3. Choose the least i with di = 1.
4. Pick j of degree at least 2, with probability proportional to dj − 1.
5. Add the edge {i, j} to E and update d to 	i,jd.
6. Return to step 2.
Output: E.

We need to show that the restriction against connecting degree 1 to degree 1 does not
allow the tree algorithm to get stuck, and that the output is always a tree.

Theorem 4. Given an arborical sequence d = (d1, . . . , dn) as input, the algorithm
above terminates with a tree realizing d.
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Proof. Note that there is no danger of creating multiple edges since except for the
final edge, each new edge joins a vertex of degree 1 to a vertex of degree greater than 1,
after which the degree 1 vertex is updated to degree 0 and not used again. We induct on
n. For n = 2, the only possible degree sequence is (1, 1), and the algorithm immediately
terminates with the tree whose only edge is {1, 2}. Assume that n ≥ 3 and the claim holds
for n− 1.

The sequence d must contain at least two 1’s, since otherwise the degree sum would be
at least 2n− 1 (trees have leaves!). And d must contain at least one entry greater than 1,
since otherwise the degree sum would be n < 2n − 2. Thus, the algorithm can complete
the first iteration, choosing an edge {i0, j0} where di0 = 1, dj0 > 1. The algorithm then
proceeds to operate on 	i0,j0d.

Let d′ be obtained from 	i0,j0d by deleting coordinate i0, which is the position of the
only 0 in 	i0,j0d. Index the coordinates in d′ as they were indexed in d. Then

∑n−1
i=1 d′i =

2(n− 1)− 2 and d′i ≥ 1, so the inductive hypothesis applies to d′. Running the algorithm
with d′ as input gives a tree T ′ realizing d′, with {i0, j0} not an edge since T ′ does not even
have a vertex labeled i0. Creating a leaf labeled i0 in T ′ with an edge {i0, j0} yields a tree
realizing d. Thus, the algorithm produces a tree of the desired form.

It is well-known and easy to check (again using induction or Prüfer codes; see Equation
(2.4) in [78]) that for any d, the number of labeled trees realizing d is the multinomial
coefficient

Ntrees(d1, . . . , dn) =

(
n− 2

d1 − 1, . . . , dn − 1

)
.

We now show that the tree algorithm produces an exactly uniform tree.

Proposition 4. Let d be an arborical sequence. The output of the tree algorithm is a
tree which is uniformly distributed among the Ntrees(d) trees realizing d.

Proof. Let T be the random tree produced by the algorithm. There is only one order
of edge generation which can produce T because at each stage a vertex of degree 1 is
used. So it suffices to find the probability of the algorithm generating the specific order of
edges corresponding to T . Each vertex i with di > 1 is chosen repeatedly (not necessarily
consecutively) until its degree is reduced to 1, each time with probability proportional to
di − 1. The normalizing constant at each stage (except for the final joining of two 1’s) is∑

i(di− 1), summed over all i with di > 1. This quantity is initially n− 2 and decreases by
1 after each edge is picked, until it reaches a value of 1. Thus, the probability of T being
generated is

(d1 − 1)!(d2 − 1)! · · · (dn − 1)!
(n− 2)!

= 1/

(
n− 2

d1 − 1, . . . , dn − 1

)
,

which shows that T is uniformly distributed.
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11. An Exponential Model. For a labeled graph G with n vertices, let di(G) be the
degree of vertex i. In the preceding sections, we have kept di fixed. In this section, we allow
di to be random by putting an exponential model on the space of all labeled graphs with
n vertices. In this model, the di are used as energies or sufficient statistics.

More formally, define a probability measure Pβ on the space of all graphs on n vertices
by

Pβ(G) = Z−1 exp

(
−

n∑
i=1

βidi(G)

)
,

where Z is a normalizing constant. The real parameters β1, . . . , βn are chosen to achieve
given expected degrees. This model appears explicitly in Park and Newman [61], using the
tools and language of statistical mechanics.

Holland and Leinhardt [37] give iterative algorithms for the maximum likelihood esti-
mators of the parameters, and Snijders [67] considers MCMC methods. Preliminary work
with Persi Diaconis and Sourav Chatterjee seems to give an efficient and accurate method
of computing the MLE of the βi for both directed and undirected cases. Techniques of
Haberman [33] can be used to prove that the maximum likelihood estimates of the βi are
consistent and asymptotically normal as n →∞, provided that there is a constant B such
that |βi| ≤ B for all i.

Such exponential models are standard fare in statistics, statistical mechanics, and social
networking (where they are called p∗ models). They are used for directed graphs in Holland
and Leinhardt [37] and for graphs in Frank and Strauss [29, 72] and Snijders [67, 68],
with a variety of sufficient statistics (see the surveys in [3], [58], and [68]). One standard
motivation for using the probability measure Pβ when the degree sequence is the main
feature of interest is that this model gives the maximum entropy distribution on graphs
with a given expected degree sequence (see Lauritzen [45] for further discussion of this).
Unlike most other exponential models on graphs, the normalizing constant Z is available in
closed form. Furthermore, there is an easy method of sampling exactly from Pβ , as shown
by the following. The same formulas are given in [61], but for completeness we provide a
brief proof.

Lemma 1. Fix real parameters β1, . . . , βn. Let Yij be independent binary random vari-
ables for 1 ≤ i < j ≤ n, with

P (Yij = 1) =
e−(βi+βj)

1 + e−(βi+βj)
= 1− P (Yij = 0).

Form a random graph G by creating an edge between i and j if and only if Yij = 1. Then
G is distributed according to Pβ, with

Z =
∏

1≤i<j≤n

(1 + e−(βi+βj)).
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Proof. Let G be a graph and yij = 1 if {i, j} is an edge of G, yij = 0 otherwise. Then
the probability of G under the above procedure is

P (Yij = yij for all i, j) =
∏
i<j

e−yij(βi+βj)

1 + e−(βi+βj)
.

The denominator in this expression is the claimed Z. The numerator simplifies to e−
∑n

i=1
βidi(G)

since we can restrict the product to factors with yij = 1, and then each edge {i, j} con-
tributes 1 to the coefficients of both i and j.

Note that putting βi = 0 results in the uniform distribution on graphs. Also, it follows
from Lemma 1 above that choosing βi = β for all i, for β = −1

2 log( p
1−p), we recover the

classical Erdős-Rényi model.
Another model with given expected degrees and edges chosen independently is considered

in Chung and Lu [19, 20], where an edge between i and j is created with probability
wiwj/

∑
k wk (including the case i = j), where wi is the desired expected degree of vertex

i and it is assumed that w2
i <

∑
k wk for all i. This has the advantage that it is immediate

that the expected degree of vertex i is wi, without any parameter estimation required. The
exponential model of this section makes it more difficult to choose the βi, but it yields the
maximum entropy distribution, makes the degrees sufficient statistics, and does not require
the use of loops. If loops are desired in the exponential model, they may easily be added
by allowing i = j in Lemma 1. We would like to better understand the precise relationship
between the distribution obtained from the Chung and Lu model and the maximum entropy
distribution of the exponential model.

We remark that the formula for the normalizing constant is equivalent to the identity

∏
1≤i<j≤n

(1 + xixj) =
∑
G

n∏
i=1

x
di(G)
i ,

where the sum on the right is over all graphs G on vertices 1, . . . , n. This identity is closely
related to the following symmetric function identity (which is a consequence of Weyl’s
identity for root systems; see Exercise 9 in Section I.5 of Macdonald [50]):∏

1≤i<j≤n

(1 + xixj) =
∑
λ

sλ,

where sλ is the Schur function corresponding to a partition λ, and the sum on the right
ranges over all partitions λ with Frobenius notation of the form (α1−1 · · ·αr−1|α1 · · ·αr),
with α1 ≤ n − 1. We hope to find (and use) a stochastic interpretation for this Schur
function expansion.

The exponential model given by Pβ is quite rich; it has n real parameters. We can test
the suitability of the model (with unspecified parameters) by conditioning on the degrees
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and using the following lemma (which follows easily from the fact that Pβ(G) depends on
G only through its degrees).

Lemma 2. If a graph G is chosen according to Pβ for any fixed choice of the parameters
β1, . . . , βn, the conditional distribution of G given its degrees d1(G), . . . , dn(G) is uniform
over all graphs with this degree sequence.

Thus, we may test the exponential model Pβ given a specific graph G with degrees
di(G) as follows. First choose any test statistic T (such as the number of triangles, the
diameter, the number of components, or the size of the largest component), and compute
T (G). Then generate a large number of uniform graphs with the same degrees as G, and
compare the observed value of T (G) against the distribution of T obtained from the sampled
random graphs. For history and background on these conditional tests, see Diaconis and
Sturmfels [24]. An alternative approach to testing such a model is to embed it in a larger
family, as in Holland and Leinhardt [37]. Indeed, it is shown in Section 4.4 of Lehmann and
Romano [46] that our proposed test is optimal (UMP unbiased) in the exponential model
extended by adding T (G) to the sufficient statistic (d1(G), . . . , dn(G)).

As an example, we return now to the Chesapeake Bay food web shown in Figure 1. The
graph has 33 vertices including at least one of every degree from 1 to 10, as illustrated
below. Note that the degrees vary widely but do not resemble a power-law distribution.

Fig 5. frequencies of degrees in Chesapeake food web

As a first test statistic, we computed the clustering coefficient of each graph. Intuitively,
the clustering coefficient measures how cliquish a network is, in the sense of how likely it is
for two neighbors of the same vertex to be connected. There are a few different definitions
in use, but we will use the original definition of Watts and Strogatz [80]: for each vertex v
of degree dv ≥ 2, let Cv be the proportion of edges present between neighbors of v out of
the

(dv

2

)
possible edges. Put Cv = 0 if dv < 2. The clustering coefficient of a graph is then

defined to be the average of Cv over all vertices of the graph.
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Using the estimator µ̃ of Section 8.2, the estimated average clustering coefficient for
a graph with the same degrees as the food web is 0.157. A histogram of the estimated
distribution of the clustering coefficient is shown below. To generate each bin, we again
used the estimator µ̃, with f the indicator function of the clustering coefficient falling into
that interval.

Fig 6. histogram of clustering coefficients; real food web value is 0.176

The actual clustering coefficient of the food web is 0.176, slightly above the mean. Thus,
the clustering coefficient agrees well with the predictions of the exponential model.

In an attempt to explain and quantify the observation that the actual food web appeared
more compact and neatly ordered than most of the random graphs such as those shown in
Figures 2 and 3, we decided to look at cycles in the graphs. Specifically, we counted the
number of k-cycles in the real food web and the first 1000 random graphs, for 3 ≤ k ≤ 6.
The cycles are treated as unoriented subgraphs of the graph, i.e., a cycle x → y → z → x
is considered the same cycle as y → z → x → y and x → z → y → x.

The enumeration was done by recursively counting the number of simple paths from v
to v, summing over all v, and dividing by 2k since each cycle can be started at any of its k
vertices and traversed in either direction. Histograms of the numbers of k-cycles are shown
in Figure 7.

For 3-cycles (triangles), the actual value of 18 is extremely close to the estimated mean,
which is 19. This is not surprising, especially since the clustering coefficient is closely related
to the number of triangles.

For 4-cycles though, the actual value of 119 is nearly double the estimated mean of 60.
In fact, the number of 4-cycles in the actual food web is larger than the number of 4-cycles
in any of the 1000 random graphs tested! Explaining this of course requires looking at the
directed graph, but the undirected graph was very helpful in detecting this phenomenon in
the first place. Inspecting the corresponding directed subgraphs, two forms are prevalent:
(1) x and y both eat z and w and (2) x eats y and z, while y and z eat w. Interestingly,
Milo et al. [55] observe that pattern (2) is extremely common in all seven of the food webs
they study. They call a pattern which occurs much more often in real networks of some
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Fig 7. histograms of k-cycle counts; real food web has 18, 119, 153, 582 respectively

kind than in the corresponding random networks a “network motif” (see also Itzkovitz et
al. [38] for more on network motifs). Finding network motifs can reveal structure in the
network which would be missed by taking a highly degree-centric point of view.

In generating random graphs for comparison purposes, Milo et al. use two algorithms.
First, they use the switchings Markov chain discussed in Section 3.5 (adapted for directed
graphs), which is not known to be rapidly mixing for general degree sequences. Second,
they use a variant of the pairing model, modified from an algorithm in Newman, Strogatz
and Watts [59]. Their algorithm sometimes gets stuck and the output is non-uniform, as
explained in King [43]. Our algorithm also has a non-uniform output distribution, but never
gets stuck and makes it easy to estimate with respect to the uniform distribution, provided
that undirected graphs can be used (which depends on the specific application).

Returning to the cycle results, for 5-cycles the actual value is 153, which is significantly
lower than the estimated mean of 191. It is at the 5th percentile of the estimated distribu-
tion.

For 6-cycles, the actual value of 582 is close to the estimated mean of 595. This was
rather surprising, as the intuition that the food web is fairly hierarchical (the big fish eats
the small fish) would suggest that there would be few long or moderately long cycles in the
real graph. A biological interpretation would be welcome for why 4-cycles are extremely
common and 5-cycles are rare, while 6-cycles are close to the middle of the distribution.
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Software. Graphs were drawn using Graphviz [26]. The implementation of the algorithm
and importance sampling computations presented here were done using Mathematica [81]
and R [62] on Mac OS X. Source code for the algorithm is freely available by making an
e-mail request to the first author.
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