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ABSTRACT
Motivation: The heterogeneity of cancer cannot always be
recognized by tumor morphology, but may be reflected by the
underlying genetic aberrations. Array-CGH methods provide high-
throughput data on genetic copy numbers, but determining the
clinically relevant copy number changes remains a challenge.
Conventional classification methods for linking recurrent alterations
to clinical outcome ignore sequential correlations in selecting relevant
features. Conversely, existing sequence classification methods can
only model overall copy number instability, without regard to any
particular position in the genome.
Results: Here we present the Heterogeneous Hidden Conditional
Random Field, a new integrated array-CGH analysis method for
jointly classifying tumors, inferring copy numbers, and identifying
clinically relevant positions in recurrent alteration regions. By
capturing the sequentiality as well as the locality of changes, our
integrated model provides better noise reduction, and achieves more
relevant gene retrieval and more accurate classification than existing
methods. We provide an efficient L1-regularized discriminative
training algorithm, which notably selects a small set of candidate
genes most likely to be clinically relevant and driving the recurrent
amplicons of importance. Our method thus provides unbiased starting
points in deciding which genomic regions and which genes in
particular to pursue for further examination. Our experiments on
synthetic data and real genomic cancer prediction data show that our
method is superior, both in prediction accuracy and relevant feature
discovery, to existing methods. We also demonstrate that it can be
used to generate novel biological hypotheses for breast cancer.
Contact: Olga G. Troyanskaya (ogt@cs.princeton.edu)

1 INTRODUCTION
One of the major challenges in the management of cancer is
its heterogeneity: cancer patients with the same stage of disease
can have markedly different treatment responses and survival
outcomes. This heterogeneity cannot always be recognized by tumor
morphology, but may reflect the complexity of underlying genetic
aberrations.

Depending on the instability present in the tumor and the
selection environment, tumor cells may acquire alterations, called

aneuploidies, ranging from large segments with single copy
number alterations to narrow homozygous deletions or high level
amplifications (Heim and Mitelman, 1989). Array comparative
genomic hybridization (array-CGH) is a technique by which it is
possible to detect and map genetic changes that involve gain or
loss of segments of genomic DNA. Downstream analyses involve
classifying the samples and finding copy number alterations that
are associated with known biological markers. Finding regions of
recurrent aneuploidy, called amplicons, for a tumor type can reveal
candidate cancer genes that have undergone selection for altered
expression associated with tumor growth (Albertson et al., 2000;
Snijders et al., 2005; Brown et al., 2006).

Although recent developments have enabled experiments to
measure copy number on a genome scale with high genomic
resolution, individual point measurements are still noisy, making the
crucial separation of signal from noise difficult. A point deviation
in array-CGH measurements can be due to a true difference in
copy number, or a measurement artifact. A key factor for filtering
out noise is to note the strong sequential correlation in copy
numbers throughout the genome, and numerous methods have
been successfully applied to sequentially detect regions of constant
aneuploidy (see Lai et al., 2005, for a survey).

Performing sequential aneuploidy detection on an individual
genome, however, with no regard to recurrent patterns across
different genomes, ignores correlations among similar tumor
samples. In particular, if genomes in a sample set have been
differentially labeled with a clinical target attribute (e.g. grade,
subtype, recurrence, survival), then a supervised (label-aware)
analysis can focus directly on the potentially clinically relevant
patterns of aneuploidy, rather than relying solely on unsupervised
sequential correlation. In addition to providing a direct predictive
model for clinical diagnostic or prognostic applications, a
supervised model can distinguish biomarker genes possibly relevant
to tumor development from clinically irrelevant copy number
changes.

Several studies have demonstrated the importance of supervised
methods on CGH data for tumor classification, prognosis, and
candidate gene search (see van Beers and Nederlof, 2006, for
a recent survey). However, the all-purpose predictive models
that have been used for analysis, such as naı̈ve-Bayes (Wessels
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et al., 2002), Support Vector Machines (Jonsson et al., 2005) and
various conventional statistics, all ignore the sequential information
captured by unsupervised aneuploidy detection methods. This
simplistic order-insensitive interpretation of array-CGH data is
likely to cause the statistical bias of known correlations to be
accounted for as variance, discarding clinically relevant signals as
noise.

Only the recent H-HMM (Shah et al., 2007) and Fused
SVM (Rapaport et al., 2008) models demonstrate the benefits
of supervised sequential array-CGH analysis over many tumor
samples for identifying clinically important regions of aneuploidy,
but identifying the causal genes within these amplicons remains an
open challenge. Thus, no existing method can perform a supervised
identification of the clinically relevant genes in the process of
extracting copy number profiles for tumor classification.

In this work, we present a method that combines a sequential
representation of copy numbers with outcome-related gene selection
to build a supervised predictor for a clinical variable by selecting
clinically relevant genes that “drive” recurrent amplicons. Our
method combines the sequential de-noising and the classification
aspects in one integrated supervised architecture, so that they can
cooperatively learn a better overall predictive model, without loss of
relevant signal to either. We provide an efficient, regularized training
algorithm that finds a sparse interpretable solution that directly
identifies cancer-related genes. We extensively evaluate this method
on both synthetic data and four biological datasets of breast, uveal
melanoma, and bladder tumors. We demonstrate that our method is
substantially better than state-of-the-art methods and can be used to
make new biological and clinically relevant hypotheses.

2 METHOD
2.1 Probabilistic Model
Our model explicitly represents the discrete copy number at a probe
location as a latent random variable. Each array-CGH measurement is an
observed variable sampled exclusively from its underlying copy number’s
measurement level mean with a random noise distribution. The sequentiality
of copy numbers is represented by pairwise correlations between adjacent
latent variables.

The entire sequence has a clinical label to be predicted, which in our
model is affected directly by the discrete copy number profile. The real-
valued observations relate to the sequence label only through the latent copy
numbers variables, making the sequence label conditionally independent
of the observed measurements given the copy numbers. This decoupling
reflects our explicit modeling of the observations as noisy representations
of copy number levels: if we already knew the true copy numbers, the noisy
observations would no longer be relevant to the prediction label. The model
is illustrated in Figure 1.

Furthermore, we assume the sequence label to be directly affected by
only a small subset of positions in the copy number profile. Part of the
learning process is the selection of these positions, the cancer-related loci,
by applying a sparse regularization on the ci − s edges in Figure 1.

The method first learns the model’s parameters on a training dataset
of array-CGH sequences with known sequence labels. A regularization
parameter determines how many cancer-related positions are selected. Once
the model is built, it can be used to predict the most likely sequence labels
for new sequences. Discrete copy number profiles can also be queried as the
most likely assignments of the latent copy number variables given observed
data. For evaluations, a cross-validation or held-out samples protocol is used.

s

c1 c2 · · · cN

x1 x2 · · · xN

Fig. 1. The Hidden Conditional Random Field model. The variables xi are
observed, ci are hidden, and the sequence label s is only observed during
training. An exponential model for p(s, c|x) is tuned to maximize the class-
conditional likelihood p(s|x) of training data.

For a particular training example, let s be the clinical label of the whole
sequence, let xi denote the observation, and ci the latent variable at position
i ∈ {1, . . . , N} whose value can be one of C different copy number states.

Given the observations x for an example, we use an exponential model
for the conditional probability of the other variables:

pθ (s, c|x) =
1

Zθ (x)
exp (θ · f(s, c, x)) (1)

where Zθ(x) is a normalization factor, θ = (ρ, λ, ω) are the model
parameters, and f is a vector of features. In principle, the features could
be any relevant real-valued functions of s, c, and x, but in our model, we
consider features of only three types corresponding to the three edge types
in Figure 1. Thus,

θ · f(s, c,x) =ρ ·
NX

i=2

fpair(ci−1, ci, s)

+
NX

i=1

λi · flocal(ci, s) (2)

+ ω ·
NX

i=1

fobs(ci, xi).

The pairwise features fpair and the corresponding parameters ρ model
the sequence-wide correlation of adjacent nodes for each class. The local
features flocal and their parameters λi model the correlation of latent
variable ci and the label s. And the observation features fobs and their
parameters ω model the correlation of latent variable ci and its noisy
observation xi.

For discrete latent variables and class label, the feature functions fpair

and flocal are typically defined to be 1 for a particular combination of
arguments and 0 otherwise. The pairwise parameters ρ then correspond
to (unnormalized) log-probabilities of a homogeneous HMM’s hidden state
transitions. For real valued observations, fobs(c, x) can be defined as
(1, x, x2) if c = c′ (and zero otherwise) for each latent variable value c′,
the sufficient statistics for Gaussian distributions.

The position-dependent local parameters, which make the model
heterogeneous, allow the model to interpolate between a homogeneous
sequence-wide hypothesis and one that ignores correlations. If all local
parameters are made zero, the model is a fully homogeneous random field,
and classification only depends on sequence-wide stability of latent state.
Conversely, if they are unconstrained and allowed to overpower the pairwise
component, classification will depend almost fully on them, and the model
will be akin to logistic regression. In our model, we constrain the L1 norm of
the local parameters λ to adjust this tradeoff, which also encourages sparsity
and results in an interpretable solution.
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2.2 Training
The model is trained discriminatively, minimizing the conditional negative
log-likelihood of labels over the empirical distribution p̃(x, s) of the training
data:

Lθ = −
X

x,s

p̃(x, s) log pθ(s|x) (3)

subject to the regularization constraint ||λ||1 ≤ β.
We use a gradient-based procedure to solve the optimization problem. The

partial derivative of the objective loss with respect to any parameter θk is:

∂L
∂θk

=
X

s

p̃(s)
X

c

pθ(s, c|x)fk −
X

x,s

p̃(x, s)
X

c

pθ(c|s,x)fk

= p̃(s)pθ(s,c|x)[fk] − p̃(x,s)pθ(c|s,x)[fk]. (4)

Although pθ(s|x) in (3) and the expectations in (4) call for marginalizing
pθ (s, c|x) as defined in (1) over the exponentially many value combinations
of the latent variables c, a dynamic programming solution exists, similar to
the forward-backward procedure for HMMs, scaling linearly with sequence
length.

2.3 Gradient LASSO
To satisfy the regularization constraint ||λ||1 ≤ β, we incorporate
the Gradient LASSO algorithm (Kim and Kim, 2004), with a minor
modification.

Gradient LASSO is an interior point method for optimizing a
differentiable function subject to L1 constraints. It maintains an explicitly
sparse current solution, alternating between a coordinatewise gradient step,
which may add a new non-zero parameter, and a multivariate gradient step
over the non-zero parameters, which may make one of them zero. The
constraints are always kept satisfied, by starting inside the constraint simplex
and bounding step sizes. When the current parameters satisfy the constraint
by equality and local gradient descent is about to violate it, the gradient is
projected onto the boundary, and linearity of L1 constraint boundaries make
line search along the boundary possible.

Our version of Gradient LASSO (summarized in Algorithm 1) differs
slightly from the original presented by Kim and Kim (2004): in the deletion
step, if the current solution is not on the constraint boundary, we use a less
conservative maximum step size ∆ to accelerate learning, without affecting
the final solution of the algorithm.

2.4 Unconstrained Parameters
The unregularized parameters of our model (ρ, ω) are optimized after
each two-step Gradient LASSO iteration, using the gradient-based L-BFGS
algorithm (Nocedal, 1980), a limited-memory quasi-Newton method for
unconstrained optimization, while the regularized parameters λ are kept
unchanged.

Note that the unconstrained optimization step causes the constrained
problem objective L(λ) to change between iterations, and therefore
the optimality of its current solution. The two-step Gradient LASSO
algorithm, by adding newly relevant features and deleting obsolete features
as necessary, is able to robustly cope with this concept drift without
compromising sparsity, which would not have been possible with strictly
growing or shrinking algorithms.

In our implementation, we constrained ρ to be diagonal to reduce model
complexity, and used k-means clustering to initialize ω to good starting
values for faster convergence. Since our model is in exponential form,
Gaussian parameters found by clustering observations can be multiplied
out from exp

ˆ
−(x − µ)2/(2σ2)

˜
to get feature coefficients for the form

exp(ω1 + ω1x + ω1x2) for each copy number state.

2.5 Evaluation with Synthetic Data
To assess the performance of our method under different controlled
conditions, we created synthetic datasets reflecting key properties of array-
CGH microarrays using the following process.

Algorithm 1 Gradient LASSO (modified)
Objective: min L(λ) s.t. ||λ|| ≤ β
repeat

Addition step:
Compute gradient ∇ = (∂L/∂λ1, . . . , ∂L/∂λd)
Choose coordinate k = arg maxi |∇i|
hk = −βsign(∇k); hi = 0 for all i $= k
α̂ = arg minα∈[0,1] L((1 − α)λ + αh)
λ ← (1 − α̂)λ + α̂h

Deletion step:
Compute gradient ∇ = (∂L/∂λ1, . . . , ∂L/∂λd)
Let σ = {i : λi $= 0}
Let p = ∇ · z where zi = sign(λi)

hj =

8
<

:

0 if j /∈ σ
−∇j + pzj/|λj | if j ∈ σ, p < 0 and ||λ||1 = β
−∇j if j ∈ σ, otherwise

∆ =


minj∈σ{−λj/hj : λjhj < 0} if ||λ||1 = β
(β − ||λ||1)/||h||1 if ||λ||1 < β

α̂ = arg minα∈[0,∆] L(λ + αh)
λ ← λ + α̂h

until converged

In accordance with laboratory evidence suggesting that amplicons are
selected based on certain underlying driver genes (Albertson, 2006), 5
“oncogene” positions were randomly chosen for each dataset of fixed
sequence length N . Then, amplicons of width ∼ N (15, 5) and uniform
random offset were created to contain each oncogene position with
probability 1 − ε for positive examples and ε for negative examples (i.e.,
the inversion noise ε decreases the correlation of amplicon existence and
positive label). Copy number levels were limited to normal (ratio = 1) and
amplified (ratio = 1.5, reflecting tumor sample heterogeneity).

Realistic microarray measurement noise was then added, according to
the exponential model proposed by Rocke and Durbin (2001) and using
parameters estimated by Myers et al. (2004) from real human breast cancer
array-CGH data. The “clean” versions of all datasets, prior to microarray
measurement noise addition, were also stored for comparison.

We generated 10 instances of 1000-sequence datasets for each
combination of N ∈ {100, 1000} and ε ∈ {0, 0.25}, with even
positive/negative ratio. For each 1000-sequence instance, 50 examples were
used for training and 950 for test.

Over the 10 instances for each setting, we ran our Heterogeneous Hidden
Conditional Random Field (HHCRF) model with C = 2 states (“normal”
and “amplified”) and β ∈ {5, 10, 20} for 100 iterations, and compared it to
a purely non-sequential Logistic Regression (LR) model tuned by gradient
descent with learning rate 0.1 and momentum 0.5 over 100 iterations.

As a sparsely regularized model for comparison, we used Lp-regularized
Logistic Regression (LpLR) (Liu et al., 2007) whose effectiveness has
been demonstrated on expression microarray data. We used the parameters
p = 0.1 and γ = 10−4 as suggested (though we did try other combinations
with less success), and regularization weight β ∈ {0.1, 0.3, 0.5, 1, 3, 5},
gradient-optimized with learning rate 0.1 and momentum 0.5 over 500
iterations.

In addition, as a means of taking sequential correlations into account
for noise reduction, we also ran LpLR after preprocessing the data with a
moving average of window size 50 (LpLRw50).

3 EXPERIMENTAL RESULTS
We evaluate our method on a range of synthetic datasets modeled
after real cancer microarrays, and then on four biological datasets
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Fig. 2. Synthetic data classification accuracies (with std. dev. error bars)
for sequence length N and inversion noise ε over 10 instances of
50-training/950-test-example runs for the best cross-validated parameter
settings of each model, for logistic regression (LR), with Lp regularization
(LpLR), preprocessed with a moving average of sequence window size 50
(LpLRw50), HHCRF, and results on data without simulated microarray
measurement noise (LR-clean, HHCRF-clean).

of breast, uveal melanoma, and bladder tumors. The results
demonstrate that our method performs substantially better than
state-of-the-art classification methods, and is able to make new
clinically relevant predictions for key amplicons and candidate
marker genes.

3.1 Synthetic Data
3.1.1 Classification In synthetic experiments with data generated
to resemble real microarray data (Rocke and Durbin, 2001,
Methods), HHCRF consistently achieved significantly (by Student’s
paired t-test with p < 10−4; i.e. confidence > 99.99%) higher
classification accuracy as compared to logistic regression (LR), Lp-
regularized logistic regression (LpLR), and Lp-regularized logistic
regression preprocessed with a moving average of window size 50
(LpLRw50) (Figure 2).

We also ran LR and HHCRF on the “clean” versions (without
microarray measurement noise) of the datasets (the other models
were omitted since sparsity and smoothing became irrelevant in the
absence of noise variance). Still, HHCRF performed better than LR,
especially for the datasets with inversion noise (ε = 0.25), which
suggests that HHCRF’s pairwise parameters ρ capture sequence-
wide stability properties and contribute to the classification task
beyond simply filtering out observation noise.

Indeed, HHCRF accuracy on noisy data is comparable to the
“clean” data accuracy of LR, and indeed significantly better on
the more difficult ε = 0.25 datasets (with 96% confidence for
N = 1000, ε = 0.25), demonstrating the extent to which HHCRF
is able to cope with experimental microarray noise.

Table 1. Synthetic Data Amplification Results

N εinv Accuracy Precision Recall

100 0 76.1 52.9 98.2
1000 0 90.3 25.9 96.2
100 0.25 84.3 67.9 87.3
1000 0.25 88.6 21.7 86.2

Synthetic data amplification discovery statistics for the
HHCRF models in Figure 2 over all genes in all test
examples. True positives are amplified genes that were
correctly inferred as amplified, and false positives are
unamplified genes inferred by the model as amplified.

3.1.2 Copy Number Inference The integral copy numbers for the
classified sequences are the by-product of our model’s classification
task, obtainable by an efficient Viterbi-like max-product algorithm.
Having the true underlying copy number states (normal versus
amplified) for the synthetic data, we compared the states inferred
by HHCRF to the true values. Note that the other models in
the comparison cannot infer actual copy numbers at all. Table 1
summarizes the recovery of the true amplification states over all
genes of all test sequences, where true positives are amplified
genes inferred as amplified, and false positives are unamplified
genes inferred as amplified. The high recall (TP/[TP+FN]) and
comparatively lower precision (TP/[TP+FP]) reveal a tendency
to avoid false negatives, not surprising considering that the
discriminative loss is incurred only through selected oncogenes
(non-zero local parameters) which are much more likely to be
amplified than other genes, making false negatives more costly than
false positives. In this situation, suggesting the biologist a more
extensive candidate list is important, as additional information such
as known oncogene status can be used to filter candidates. Thus
our algorithm is effective in suggesting potential causative gene
hypotheses that the user can examine for biologically interesting
possibilities to follow up on.

3.1.3 Oncogene Discovery Comparing the sparse set of “pre-
dicted oncogenes” selected by the model to the underlying
true oncogenes requires a soft measure of overlap, both in
set membership and also in terms of gene similarity, because
Gradient LASSO reports only one in a group of genes that are
always amplified together. For this purpose, we define a co-
amplification matrix between the predicted oncogenes (rows) and
the true oncogenes (columns), with entries denoting the correlation
coefficients of the two genes’ true copy numbers over test data.
In practice, this copy number correlation provides a useful post-
processing step to retrieve other candidate genes highly co-amplified
with those selected by the model.

We then define co-precision as the mean of row maximums
(average co-amplification of a predicted oncogene with the closest
true oncogene) and co-recall as the mean of column maximums
(average co-amplification of a true oncogene with the closest
predicted oncogene). Thus, a model that returns only some of the
true oncogenes, but no false predictions, will have high co-precision
and low co-recall. Conversely, if all true oncogenes are found, but
with many other spurious predictions, then co-recall will be high,
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Fig. 3. Synthetic data oncogene discovery statistics (with std. dev. error
bars) for HHCRF with β ∈ {5, 10, 20} over the 10 instances of each
dataset. Bold labels indicate the β values with the highest classification
accuracies in Figure 2. #selected (on the right x-axis) is the number of
predicted oncogenes, compared to the 5 true oncogenes. Co-precision, co-
recall, and co-F -measure are percentages defined on the co-amplification
matrix between the predicted and true oncogenes.

and co-precision low. As desired, these measures are not affected
much if several highly co-amplified genes are returned for one true
oncogene.

These statistics, along with their harmonic mean (co-F -measure),
are shown for the HHCRF models on the synthetic datasets in
Figure 3.

The high co-recall values demonstrate successful recovery of
most true oncogenes, decreasing with sequence length and ε
difficulty, while the co-precision values indicate that the numbers
of spurious predicted oncogenes were limited.

Also observable in Figure 3 is the effect of the regularization
weight β on model complexity, directly increasing the number of
predicted oncogenes.

3.2 Breast Cancer Data
We applied our method to two breast cancer datasets for the task
of identifying amplicons and potential causative genes predictive
of high tumor grade. In both experiments, HHCRF successfully
classified held-out examples significantly more accurately than a
non-sequential SVM model, and made candidate gene predictions
for relevance to tumor grade.

3.2.1 Pollack et al. (2002) Breast Tumor Data On the 6691-gene
human breast tumor array-CGH data from Pollack et al. (2002),
we applied HHCRF with C = 4 copy number levels to classify
tumors with histological grade 3-versus-all (17 positives out of
42). Over 5-fold cross-validation, held-out classification accuracies
(mean±std.dev.) for β ∈ {5, 10, 20} were 76 ± 7%, 67 ± 10%,
and 64 ± 7% respectively, compared to 60 ± 20% for a linear SVM.
In addition to lower variance, HHCRF with β = 5 was statistically
significantly more accurate (with 96% paired t-test confidence) than
the SVM.

Table 2. Selected Genes for Pollack et al. (2002) Data

Index Name Weight Evidence

98 ARID1A +0.61↑ Huang et al. (2007)
353 VDUP1 +1.30↓ Han et al. (2003)
4505 co-amplified with CUL4A −0.69↓ Nag et al. (2004)
5289 H. sapiens clone 23596 +1.14↑ Yi et al. (2007)
5634 FLJ23403 −1.26↓ Beitzinger et al. (2008)

Positive weights make a positive (high-grade) label more likely when amplified
(↑) or deleted (↓), and negative weights make a negative label more likely.
Microarray feature 4505 does not have a gene name, but it is highly co-amplified
(corr.coeff.=0.69) with nearby feature 4515 (CUL4A).

We then trained HHCRF with β = 5 on all 42 sequences, and
examined the chosen genes. Table 2 shows the selected genes and
their non-zero local weights. Among the selected genes, several
have known connections to tumorigenesis. ARID1A has been
identified as a presumptive tumor suppressor (Huang et al., 2007),
and VDUP1 is a known tumor suppressor (Han et al., 2003). “Homo
sapiens clone 23596 mRNA sequence” has been observed to be
highly expressed in breast cancer cell lines (Yi et al., 2007), and
downregulation of FLJ23403 (alias FAM38B) has been linked to
human cancers (Beitzinger et al., 2008).

Due to the non-grouping character of L1 regularization, finding
a relevant gene can suppress the subsequent detection of similar
genes. In particular, Gradient LASSO picks only one gene out of a
region that is always amplified together. To circumvent this effect, a
correlation-based post-processing step can be applied after learning,
to retrieve other relevant genes whose inferred copy numbers are
highly correlated with the representative ones that were found by
Gradient LASSO. For example, in Table 2, microarray feature
4505 does not match to a named gene, but its highest correlation
(coefficient 0.69) in copy number is with the nearby feature 4515
(CUL4A), a known breast cancer-associated amplification (Nag
et al., 2004).

3.2.2 Chin et al. (2006) Breast Tumor Data The human breast
tumor array-CGH data from Chin et al. (2006) has measurements
for 2149 probe positions, not mapping directly to individual genes.
Again, we ran HHCRF experiments with C = 4 for grade 3-
versus-all (69 positives out of 141). The 5-fold cross validation
classification accuracies for β ∈ {5, 10, 20} were 70 ± 12%,
71 ± 12%, and 67 ± 07% respectively, compared to 68 ± 10% for
a linear SVM. HHCRF with β = 10 was more accurate than the
SVM with 83% paired t-test confidence. As before, we then trained
HHCRF with β = 10 on all 141 sequences for novel prediction, and
Table 3 shows the selected probes.

Figure 4 shows part of a copy number profile extracted for high-
grade breast tumor sequence b0499. In addition to determining the
amplified and deleted regions, our model selected position 953 as
a clinically relevant locus in determining tumor grade, predicted to
correspond to the “driver” gene for the 942..975 amplicon.

3.3 Institut Curie Melanoma and Bladder Data
We also obtained successful results by applying our model on uveal
melanoma and bladder tumor data from Institut Curie, used in the
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Table 3. Selected Probes for Chin et al. (2006) Data

Index chr Clone Name Weight

262 3 RP11-129P2 −1.19↑
566 5 CTD-2004C12 +1.68↓
657 6 RP11-47E20 −1.25↓
883 8 RP11-116F9 +1.34↓
953 8 RP11-44N11 +1.25↑

1725 16 RP11-52E21 −0.90↓
1738 16 RP11-140K16 −0.38↓
1780 17 DMPC-HFF#1-61H8 +0.09↑
2078 22 RP1-238C15 −1.33↓
2086 22 RP11-35I10 −0.59↓

Positive weights make a positive (high-grade) label more
likely when amplified (↑) or deleted (↓), and negative
weights make a negative label more likely.

evaluation of the Fused SVM algorithm in Rapaport et al. (2008).
HHCRF classification performance exceeded (uveal melanoma
tumors) or was comparable to (bladder tumors) that of Fused SVM
in these results. HHCRF produces a more interpretable model,
outputting a specific set of outcome-related “amplicon-driving”
genes.

It should be noted Fused SVM does not limit the amplitudes
of altered regions to a shared set of copy number levels; this
may provide a better fit in the presence of high variance in tumor
heterogeneity across many samples. Alternatively, if the effects of
tumor heterogeneity and normal cell contamination have already
been normalized out by the increasingly popular flow cytometric
sorting techniques, HHCRF assumptions will hold stronger. In
practice, model selection should ultimately be guided by application
objectives and the particular data at hand.

3.3.1 Uveal Melanoma Tumors The uveal melanoma tumor
dataset has array-CGH profiles with 3649 probes on non-sex
chromosomes. Classifying by whether liver metastasis occurred
within 24 months versus not (35 positives out of 78 tumors),
HHCRF with C = 5 states made a total of 10 test errors (87%
accuracy) over 10 cross-validation folds for β = 5, 11 errors (86%
accuracy) for β = 10, and 8 errors (90% accuracy) for β = 20,
compared to the best 10-fold cross-validation results from Fused
SVM at 17 errors (78% accuracy).

3.3.2 Bladder Tumors The bladder carcinoma dataset contains
array-CGH profiles with 2143 probes on non-sex chromosomes. On
classification by tumor stage Ta-versus-T2+ (16 “stage Ta” positives
out of 48 tumors with stage labels), HHCRF with C = 5 states made
a total of 7 test errors (85% accuracy) over 10 cross-validation folds
for β = 5 and β = 10, and 8 test errors (83% accuracy) for β = 20.
The best HHCRF error is on par with the best leave-one-out estimate
of Fused SVM (7 errors) reported in Rapaport et al. (2008).

Classifying by tumor grade 1-versus-higher (12 “grade 1”
positives out of 57 tumors), HHCRF with C = 5 states made a
total of 10 test errors (82% accuracy) over 10 cross-validation folds
for β = 5, 9 errors (84% accuracy) for β = 10, and 11 errors (81%
accuracy) for β = 20, compared to the best leave-one-out estimate
reported by Fused SVM (7 errors).
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Fig. 4. Aneuploidies detected in a high-grade breast tumor from Chin et al.
(2006). Our method detects the amplified and deleted regions, and also
pinpoints probe 953 (!) in the 942–975 amplicon as one of the ten clinically-
important positions selected for relevance to high tumor grade, by analyzing
across all tumor profiles in the dataset. The shaded area shows copy number
correlations with the selected probe.

4 EXTENSIONS
The correlation-based post-processing step, retrieving similar genes
from the selected oncogenes, can be necessary because of the L1

loss minimized by Gradient LASSO: if two or more genes are
equally important, picking only one of them is L1-optimal for the
algorithm. The desired grouping effect can be provided by a hybrid
L1+L2 extension of Gradient LASSO, analogous to the Elastic Net
(Zou and Hastie, 2005) extension of LASSO (Tibshirani, 1996),
which will select all similarly important genes simultaneously due
to the L2 component.

Several other extensions are possible. If both array-CGH and
expression microarray data are available for a dataset, HHCRF can
use them together, by simply adding a new set of observed variables
stemming from the same latent copy numbers. If information is
available on the varying physical spacing of individual probes along
the genome, it can be directly encoded into the pairwise features
of HHCRF, as in the HMM model by Rueda and Diaz-Uriarte
(2007). Although using a finite set of possible copy number levels
may be sufficient in practice, incorporating hierarchical Dirichlet
processes can allow copy numbers to grow arbitrarily (Teh et al.,
2006). Then array-CGH measurements can also be modeled to have
an explicitly linear dependency on copy number, further reducing
model complexity. Replacing maximum likelihood training with a
Bayesian treatment, working with posterior distributions of model
parameters (similar to Qi et al., 2005) can reduce overfitting during
training. Maximizing the classification margin (similar to Taskar
et al., 2004) may also improve generalization.

We also implemented a generative version of our model, explicitly
assuming p(xi|ci) to be Gaussian (as in Shah et al., 2007) and
modeling the joint probability pθ(s, c,x) to maximize the joint
likelihood. The observation parameters, updated relatively slowly
in the discriminative model, are tuned more directly by the joint
gradient, and are expected to be less sensitive to initial values.
However, the generative updates proved to be too aggressive in our
experiments, overpowering the effect of the supervision label on
loss. A discriminative training scheme, optimizing the conditional
likelihood on the generative model, remains to be explored.

5 CONCLUSION
We presented the Heterogeneous Hidden Conditional Random
Field, an array-CGH analysis method for jointly classifying tumors
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by clinical label, extracting copy number profiles, and identifying
clinically relevant genes. We demonstrated its effectiveness on
synthetic and real datasets, and described a generative variation and
other extensions.

A particularly important feature of our method is to estimate
the clinical significance of detected copy number changes. When
the genome-wide profile is scanned for potentially new regions of
interest, quantitative statistics about the aberrations are critical in
order to decide which region to pursue for further examination. Our
model highlights the most clinically relevant aneuploidy regions
as those containing the predictive genes it has selected. The
method also allows prioritization of genes harbored within the
chromosomal regions of interest, starting with the explicitly selected
genes and extending to others in similarity by co-amplification. In
previous studies, prior biological knowledge was heavily used to
infer causal genes in amplified regions, and thus, many known or
putative oncogenes were credited as the driver genes, while some
potentially novel cancer-driving genes may have been overlooked.
In contrast, in addition to detecting aneuploidies, our method
explicitly identifies both amplicons and individual genes whose
copy numbers are the most discriminative of the clinical label,
suggesting specific targets for further biological investigation.
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