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Message From ISCB

Getting Started in Probabilistic
Graphical Models
Edoardo M. Airoldi

P robabilistic graphical models
(PGMs) have become a popular
tool for computational analysis

of biological data in a variety of
domains. But, what exactly are they and
how do they work? How can we use
PGMs to discover patterns that are
biologically relevant? And to what
extent can PGMs help us formulate new
hypotheses that are testable at the
bench? This Message sketches out some
answers and illustrates the main ideas
behind the statistical approach to
biological pattern discovery.

Introduction

Probabilistic graphical models offer
a common conceptual architecture
where biological and mathematical
objects can be expressed with a
common, intuitive formalism. This
enables effective communication
between scientists across the
mathematical divide by fostering
substantive debate in the context of a
scientific problem, and ultimately
facilitates the joint development of
statistical and computational tools for
quantitative data analysis. A number of
success stories have appeared over the
years [1–4]. Today, probabilistic
graphical models promise to play a
major role in the resolution of many
intriguing conundrums in the
biological sciences. The goal of this
short article is to be a dense,
informative introduction to the language
of probabilistic graphical models, for
beginners, with pointers to successful
applications in selected areas of
biology. The exposition introduces the
essential concepts involved in PGMs in
the context of the various stages of a
typical collaboration between natural

and computational scientists, and
discusses the aspects to which each
scientist should contribute to carry out
the data analysis successfully using
PGMs.

Let us start by considering a specific
problem in transcriptional regulation.
Given measurements about the
abundance of gene transcripts in
retinal cells across stages of
development, we would like to discover
which functional processes are relevant
for development, and reveal which
ones are most important at which stage.
To develop a PGM to address this
problem, we begin by identifying the
biological objects that would appear in
a cartoon model of how cellular
development impacts transcription. In
this illustrative example, we have genes
and functional processes/contexts. It is
reasonable to assume that each gene
will participate in multiple functional
processes, although typically in a small
number of them, and that not all
functional processes will be important
at all stages of development. We then
assess what aspects of the problem we
can probe directly, with experimental
techniques, and what aspects we
cannot. In the example, while an
abundance of gene transcripts can be
obtained, for instance, via SAGE (serial
analysis of gene expression), it is harder
to measure functional processes.
However, the latter could be
operationally defined as sets of genes
that share a similar temporal
regulation pattern; this definition has
the advantage of creating a connection
between membership of genes to
functional processes (i.e., an
unobservable mapping) and similarity
of the temporal expression profiles (i.e.,
observable quantities). The
establishment of connections between
those biological objects that we can
probe and those that we cannot ends a
first conceptual effort.

A cartoon model of how cellular
development impacts transcription is
now specified in terms of genes and

their abundance, functional processes,
and membership of genes to functional
processes. Next we translate the
biological players and the connections
we established among them into
mathematical quantities (i.e., random
variables) and connections among
them (i.e., statistical dependencies).
This translation specifies the model
structure. At this stage, we rely on
biological intuitions to fine-tune the
model, for instance, by deciding which
sources of variability in the
measurements carry information about
the latent variables and which do not—
if the temporal expression profiles of
genes A and B are similar on a relative
scale, but their absolute abundance is
quite different, should we believe that
they both participate in the same
functional processes? Last, we assign
numerical values to those quantities
that are unknown in the final model
specifications (i.e., we fit the model to
the data) and we use them to develop
biological intuitions in the context of
the original problem. (Functional
aspects of retinal development, in
mouse, are fully addressed in [5].)

In the following, we briefly introduce
the basic mathematical quantities that
enable the translation of a cartoon
model of biology into a PGM, and we
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review strategies to assign numerical
values to the unknown quantities
underlying any PGM that are most
likely given the observations. We
conclude with an overview of selected
applications, complete with pointers to
published work.

The Basics

A probabilistic graphical model
defines a family of probability
distributions that can be represented in
terms of a graph. Nodes in the graph
correspond to random variables; its
structure translates into statistical
dependencies (among such variables)
that drive the computation of joint,
conditional, and marginal probabilities
of interest [6]. In applications, most of
the (node-specific) random variables
are chosen to express the variability of
an observed quantity, such as the
expression of a specific gene measured
under a certain condition. Some
random variables, however, may specify
unobserved quantities that are believed
to influence the observable outcomes
of a given experiment, such as which
cellular processes were active at the
time measurements were taken. The
(directed or undirected) arcs of the
graph specify the biological hypotheses
about how observable and latent
quantities influence one another. A set
of constants underlying the

distributions of the random variables
completes the picture. These constants
are referred to as parameters in the
frequentist paradigm and as hyper-
parameters in the Bayesian paradigm.
(See [7], pp. 185–189, for a discussion of
when the distinction matters in
practice, with examples.)

Figure 1 shows an example of a
probabilistic graphical model for gene
expression. (We note that there is a
considerable overlap between the class
of probabilistic graphical models and
the class of Bayesian networks. A
number of scholars choose to refer to
PGMs that can be represented as directed
acyclic graphs, with nodes corresponding to
discrete-valued random variables, encoding
observed measurements, and no latent
variables as Bayesian networks.) The
observed expression of a gene, Y(g),
depends on the latent functional
process it is involved in, X(g). The
underlying constants, (a,b), control the
probability that any given functional
process is active and the probability of
observing expression of a certain
magnitude, respectively. The left panel
shows the full model, and the right
panel shows the same model expressed
in compact form.

The likelihood function, or the
probability of the measurements given
the underlying constants, is the main
quantity of interest in PGMs. It

summarizes how well the observations
are explained by the specific PGM that
is identified by a given value of the
underlying constants. The likelihood
can be computed using the structural
hypotheses encoded by the graph, and
the probability distributions specified
for the nodes. Continuing the example,
the likelihood corresponding to the
model in Figure 1 is computed as
follows:

PrðY j a; bÞ ¼
Z

x
PrðY ;Xj a; bÞdX ð1Þ

¼
Z

X

YG

g¼1

½PrðYðgÞjXðgÞ; bÞ

%PrðXðgÞj aÞ&dX
ð2Þ

[ ‘ðY j HÞ; ð3Þ

for H [ (a,b). The joint probability of
measurements and latent variables
given the underlying constants, that is,
the integrand on the right-end side of
Equation 1, is often referred to as the
complete likelihood function in the
literature—an important quantity in
the statistical treatment of PGMs with
latent variables.

Estimation and Inference

A family of PGMs is fit to the data to
find likely values for its underlying
constants and likely distributions for its
latent variables. This process boils
down to an optimization problem
where the objective function is based
on the likelihood. Considered jointly,
the estimation and inference tasks
identify a specific model in the family
of PGMs that is defined by the
assumptions on the graph and the
random variables, which successfully
summarizes the variability of the
observations.

In the language of the statistical
literature, we distinguish the task of
estimating the underlying constants (i.e.,
the parameters in a frequentist
statistical setting, or the hyper-
parameters in a Bayesian statistical
setting) of a probabilistic graphical
model, from the task of inferring the
distributions of the latent variables
given the observations. Let us consider
strategies to address the latter task first.
The choice among the many strategies
available is often informed by the

doi:10.1371/journal.pcbi.0030252.g001
Figure 1. Two Equivalent Representations of the Same Probabilistic Graphical Model
The left panel shows the full model, and the right panel shows the same model expressed in
compact form. Nodes denote random variables; observed random variables are shaded while latent
random variables are not; edges denote possible dependences. The box in the right panel is called
a plate; it denotes independent and identically distributed replicates.
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complexity of the model, and in
particular by whether the integral on
the right-end side of Equation 1 can be
computed in closed form. Exact
inference is available for models that
belong to special families [6]. Focusing
on the biology of the problem,
however, often leads to a model
structure and probabilistic
specifications that cannot be subsumed
under any special family. The
likelihood is intractable in many such
cases—that is, the integral in Equation
1 cannot be solved in closed form—and
we resort to approximations. Below, we
briefly survey the intuitions behind
three popular strategies to perform
approximate inference in PGMs: Monte
Carlo Markov chains (sampling-based),
and expectation–maximization (EM)
and variational methods (optimization-
based).

Monte Carlo Markov chain (MCMC)
techniques such as the Gibbs or
Metropolis-Hastings samplers can be
used to explore the joint posterior
distribution of the latent variables [8,9].
Although the likelihood is intractable,
the complete likelihood Pr (Y,X j a,b)
can be easily computed for the large
majority of PGMs. The main concept
behind MCMC schemes is to work with
the complete likelihood, and to reduce
the full joint posterior to lower-
dimensional conditional
distributions—on individual, or blocks
of latent variables—that we can sample
from. Samples from the joint posterior
are then obtained by composing
conditional samples. The Gibbs
sampler, for instance, requires that one
can sample from all univariate, full-
conditional distributions:

PrðXðgÞjXð'gÞ;Y ; a; bÞ; for g ¼ 1; :::;G;
ð4Þ

where X('g) is the collection of random
variables X without X(g). The
Metropolis-Hastings sampler requires
that one can at least compute a
quantity proportional to the desired
posterior—samples are drawn from an
arbitrary proposal distribution and are
accepted or rejected using a formula
that depends on the proposal. Other
sampling-based algorithms such as
particle filters can be used to perform
inference in PGMs of sequential
observations [10].

The two alternatives to sampling we
survey here aim at approximating the

integral on the right-end side of
Equation 1. The main idea shared by
both approaches is to find a lower
bound for the likelihood, ‘ (Y jH),
making use of Jensen’s inequality and
of an arbitrary distribution on the
latent variables q(X):

log ‘ ðYjHÞ ¼ log
Z

x
PrðY;Xja; bÞdX

¼ log
Z

x
qðXÞ % Pr ðY;Xja; bÞ=qðXÞdX

ðfor any qÞ

(
Z

x
qðXÞ % log PrðY;Xja; bÞ=qðXÞdX

ð Jensen’s inequalityÞ

¼ Eq½log PrðY;XjHÞ& ' log qðXÞ[Lðq;HÞ
ð5Þ

In EM, the lower bound L (q, H) is
iteratively maximized with respect to
H, in the M step, and q in the E step
[11]. In particular, at the t-th iteration
of the E step the q distribution must
satisfy the following equation:

qðtÞ ¼ PrðXjY ;Hðt'1ÞÞ; ð6Þ

That is, we set the arbitrary
distribution q equal to the posterior
distribution of the latent variables
given the data and the estimates of the
parameters at the previous iteration.
Unfortunately, it is not always possible
to express the distribution q(t) in
Equation 6 in analytic form. In such
cases, a variational approximation to
the EM [12] can be obtained by defining
a parametric approximation to the
posterior in Equation 6, denoted by ~q[
qD (X), which involves an extra set of
variational parameters, D, and leads to an
approximate lower bound for the
likelihood LD (q, H). At the t-th
iteration of the E step, we then
minimize the Kullback-Leibler
divergence between q(t) and qðtÞD , with
respect to D, using the data—this is
equivalent to maximizing the
approximate lower bound for the
likelihood, LD (q, H) with respect to D.
The optimal parametric
approximation can be thought of as an
approximate posterior distribution for
the latent variables in the sense that it
depends on the data Y, although
indirectly, q(t) ’ qðtÞD)ðY ÞðXÞ ¼ Pr (X j Y).

Let us now return to the task of

estimating the constants underlying a
PGM; few established strategies exist.
The estimates for the underlying
constants may be chosen, for instance,
to maximize the likelihood, or to match
empirical and theoretical moments of
the random variables that correspond
to measurements ([7], pp. 120–124).
Alternatively, when the likelihood is
too difficult or expensive to compute,
an approximation, LD ’ ‘, or a lower
bound, L * ‘, for the likelihood can be
used as a surrogate. These alternatives
and others are sometimes referred to as
empirical Bayes estimates in the
context of nontrivial probabilistic
graphical models ([13], Chapter 3).

Popular software packages that
implement a language to specify and fit
PGMs are available. For MCMC, see
BUGS [14]; for variational inference,
see VIBES [15].

Applications

With the technical machinery we just
introduced, we are now ready to bring
the biological intuition back into the
picture. Let us continue with the
transcriptional regulation example. In
the PGM of Figure 1, the expression of
gene g may be encoded by a real-valued
random variable Y(g). The mixed
membership of gene g to
nonobservable biological contexts may
be encoded by the nonzero
components of a latent random vector,
X(g). The number of latent biological
contexts we ask the PGM to infer,
denoted by K, is an important quantity
in this model, which we discuss later—
briefly, the value of K specifies the
dimensionality of this PGM, that is, the
number of components of the vector-
valued latent variables, X(g). The two
constants (a,b) may be used to encode
biological constraints. For instance, a
may be used to introduce a notion of
biological parsimony in the form of a
probabilistic (soft) constraint on the
number of biological contexts each
gene may participate in, and b may be
used to specify gene expression
patterns in the form of differential
expression levels across those
experimental conditions for which
microarray measurements were
taken—alternative pattern
specifications and parameterizations
exist [5]. For any given number of
latent biological contexts, K, the PGM
is fit to the data. Estimation and
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inference will assign numerical values
to the unknown quantities (X

!
,a,b).

These quantities provide us with model-
based and observation-induced summaries
of the data. In the example, for
instance, while b summarizes gene
expression patterns that summarize the
main trends of transcription in a
collection of microarrays, the values
assigned to the latent variables, X(g),
provide gene-specific information that
can be used for making fine-grained
predictions.

In the last stage of the analysis, we
assess the biological relevance of the
patterns we inferred from the data
(such as the biological contexts, or gene
coexpression patterns, in the example)
to make sure the model is capturing the
signal we set out to capture, and we use
the inferred patterns to gain insights
into the problem. Assessment of
biological relevance can be qualitative
or quantitative. Qualitative methods
such as visual inspection are typically
useful for focused scientific endeavors;
for instance, whenever a biological
problem targets a small set of genes or
a specific cellular process or
component, or a signaling pathway.
Quantitative methods are necessary for
genome-wide scientific endeavors, and
typically rely on knowledge-based
repositories and ontologies (such as
gene ontology [16]) and bioinformatics
tools to carry out the evaluation [17,18].
Arguably, in any given application, the
more interpretable the patterns are, in
terms of functional processes and other
biological concepts of interest, the
better the family of PGMs captures
some aspects of biology that may be
relevant for the understanding of the
phenomenon under investigation, and
that are not directly measurable with
experimental techniques.

Moving a step forward, the goodness
of model fit is often taken as a measure
of how well the data support structural
biological hypotheses encoded by the
cartoon model of biology that was used
to posit a given family of PGMs.
Measures of goodness of model fit
include the Bayesian information
criterion, the held-out likelihood
obtained using bootstrap or cross-
validation techniques, measures of
predictive power such as the predictive
R2 in linear regression, or other
quantities, depending on the goals of
the analysis. (These measures can also
be used to select the dimensionality, K,

of the PGM in the example.) The
goodness of fit, along with the
substantive value of the inferred
patterns, should inform a critical
review of the biological assumptions
underlying the initial cartoon model,
and possibly suggest new hypotheses—
testable either with new statistical
analyses, or with new experimental
probes at the bench. In this sense,
probabilistic graphical models
contribute to an iterative process of
scientific discovery, where statistical
and biological thinking are intertwined
as both cause and effect.

There is a rich history of applied
research that leverages the
probabilistic graphical models
approach outlined above to problems
in the biological sciences. It includes a
model for inferring the ancestral
population structure of individuals
starting from a collection of multilocus
genotype measurements [2] and a
model for inferring HIV mutation
patterns from longitudinal clonal
sequence data [19]; the former model is
closely related to the classic
probabilistic graphical models to infer
phylogenetic trees [1,20] and to recent
extensions, in particular, that take into
account the dependence among the
bases at neighboring sites [21,22].
Models for sequence analysis are well-
established in the community [4,23];
more recently, the connection between
sequence information and gene
expression has been investigated using
probabilistic graphical models as well
[24,25]. Other applications of this
research include: a model for
predicting the clinical status of breast
cancer using gene expression profiles
[26]; a model for facilitating content
browsing of biomedical literature
about the nematode Caenorhabditis
elegans [27]; a model for inferring the
location of chromosome aberrations
from array-based comparative
genomic hybridization measurements
[28], and an extension that leverages
array-based comparative genomic
hybridization profiles from multiple
individuals to recover shared
aberration patterns [29]; a model for
reconstructing features of the internal
organization of the cell from the
nested structure of observed
perturbation effects, such as those
measured via high-dimensional
phenotype screens [30]; a model for
inferring proteins’ multiple functional

roles from a large collection of
manually curated protein interactions,
as well as cross-talk patterns among
proteins that participate in distinct
functional processes [31]; and a model
for inferring temporal patterns of
coexpressed genes from time-course
expression data measured via SAGE
and microarray technologies [5].

Note that the graphical
representation of a family of PGMs
goes only so far in specifying the
model; it’s informative, but not
exhaustive. Probabilistic assumptions
and some features of the sampling
scheme cannot be specified by the
graph. Such subtle variants typically
make a significant difference in
applications.

Conclusions

Probabilistic graphical models offer
a common conceptual architecture
where biological and mathematical
objects can be expressed with a
common, intuitive formalism. This
enables effective communication
between scientists across the
mathematical divide by fostering
substantive debate in the context of a
scientific problem, and ultimately
facilitates the joint development of
statistical and computational tools for
quantitative data analysis. In other
words, probabilistic graphical models
provide a bridge between biology and
statistical computations. These models
recently earned a spot at the center
stage of modern (computational)
biology by furthering our ability to
probe data for biological hypotheses,
and will undoubtedly play an
important role in resolving many
intriguing conundrums in the
biological sciences, in the future. &
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