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Abstract

Predicting dynamics of host-microbial ecosystems is crucial for the rational design of bacteriotherapies. We present
MDSINE, a suite of algorithms for inferring dynamical systems models from microbiome time-series data and
predicting temporal behaviors. Using simulated data, we demonstrate that MDSINE significantly outperforms the
existing inference method. We then show MDSINE’s utility on two new gnotobiotic mice datasets, investigating
infection with Clostridium difficile and an immune-modulatory probiotic. Using these datasets, we demonstrate new
capabilities, including accurate forecasting of microbial dynamics, prediction of stable sub-communities that inhibit
pathogen growth, and identification of bacteria most crucial to community integrity in response to perturbations.

Background
Increasing evidence indicates that the microbiota is critical
to normal host physiology and a driver of human
disease when it is disrupted to cause dysbiosis. The
microbiota is inherently dynamic [1, 2], starting with
successive colonization of the infant and demonstrating
day-to-day variability in the healthy adult due to envir-
onmental and other factors. These dynamics are driven
by networks of multispecies interactions that involve
competition for limited nutrients and attachment sites
[3], direct killing via bacteriocins [4], growth support
through secretion of extracellular enzymes or metabolites
that other species can cross-feed on [5], and a variety of
other mechanisms.
Therapeutic manipulation of the microbiota is currently

an area of intense investigation as a possible treatment for
infectious [6], autoimmune, and other diseases. However,
these efforts are hampered by limited methodologies for

predicting dynamic behaviors of the microbiota when
subjected to perturbations, including dietary changes,
infections, and antibiotics. These perturbations can lead
to dramatic shifts in microbial composition and even
community collapse, which cannot be predicted with-
out advances on existing computational analysis tools.
Standard computational analysis methods for analyzing
microbial community structures do not explicitly account
for time-varying behavior, typically using correlational
techniques [7] to find undirected connections among bac-
teria, which cannot be used to predict dynamic behaviors
of the ecosystem.
Dynamical systems models provide an alternative and

powerful framework for analyzing microbiome time-series
data [8–10], with significant advantages over correlational
techniques [7], including the capability to forecast future
system behaviors, to characterize formal properties
such as stability, and to infer directed and causal relation-
ships [1, 2, 11]. With standard numerical integration tech-
niques [12], however, these models are computationally
intractable on large datasets. We previously presented an
algorithm [8] that does not require extensive or explicit
numerical integration for inferring parameters of a dy-
namical systems model, the generalized Lotka-Volterra
(gLV) differential equations, and demonstrated for the first
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time the capability to accurately forecast gut microbiota
dynamics in animal and human studies [8, 10]. The gLV
model was subsequently successfully applied by other
groups to analyzing microbiome time-series data [9, 13].
Despite these prior innovations, existing algorithms suffer
from major shortcomings, including their inability to
estimate confidence in predictions and their lack of
models of the statistical properties of high-throughput
microbiome sequencing data [14]; moreover, complete
software packages have not been made available to the
community.
Here we present the Microbial Dynamical Systems

INference Engine (MDSINE), an open source software
package that performs all analysis steps from reading
data files through to the generation of figures (Fig. 1).
MDSINE significantly extends our prior work by imple-
menting: (a) a new technique for accurate estimation of
microbial growth trajectories and gradients, specifically
tailored for microbiome sequencing data that may be
noisy and irregularly/sparsely sampled in time; (b)
Bayesian [15] methods for estimation of confidence in

parameters, including connectivity in microbial inter-
action networks; and (c) biologically realistic constraints
on model parameters. The software package provides
users with several alternative inference algorithms and
analysis options, enabling both exploratory and focused
analyses. In the remainder of this article, we describe the
MDSINE algorithms, demonstrate the performance of
MDSINE on data simulated to mimic key properties of
real microbiome studies, and finally apply our method to
analysis of two new in vivo experimental datasets, illus-
trating the utility of our method for predicting the dynam-
ics of infection with an enteric pathogen and investigating
the stability of a probiotic cocktail.

Results
Overview of algorithms implemented in the software
The MDSINE software (Fig. 1) provides a comprehen-
sive toolbox for dynamical systems analyses of micro-
biota time-series data. MDSINE requires two inputs: (1)
data measuring abundances of microbes over time in
the ecosystems of interest, typically consisting of counts
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Fig. 1 Schematic of the MDSINE software, which provides a comprehensive toolbox for dynamical systems analyses of microbiota time-series
data. MDSINE implements a new algorithm, Bayesian Adaptive Penalized Counts Splines (BAPCS), for estimating microbial growth concentrations
(trajectories) and their changes over time (gradients) from sequencing data; optionally, gradients can instead be estimated using our previously
described first-order difference method. The software implements three new algorithms for dynamical systems inference: maximum likelihood
constrained ridge regression (MLCRR), Bayesian adaptive lasso (BAL), and Bayesian variable selection (BVS). Our previously published method [8], the
maximum likelihood unconstrained ridge regression algorithm (MLRR), is also implemented in MDSINE for comparison
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(e.g., high-throughput 16S rRNA sequencing data) that
may be irregularly sampled temporally; and (2) data
measuring overall microbial biomass over time in the
ecosystem (e.g., universal 16S rRNA quantitative PCR
(qPCR) data). The user may also optionally specify the
temporal profiles of one or more experimental pertur-
bations, such as a dietary change or antibiotic treat-
ment. Note that data may include measurements for
multiple subjects and subjects do not need to be sam-
pled at the same time points. The same microbial taxa
need not be present in all subjects, although a sufficient
number of data points measuring dynamics of each
taxon must be provided for accurate inference (see
“Discussion” section).
MDSINE estimates microbial growth concentrations

(trajectories) and their changes over time from the input
data. These estimates are then used to infer the parame-
ters of an extended gLV nonlinear ordinary differential
equations model (see “Methods”). Inferred parameters
are then used to make predictions, including forecasts of
microbial growth trajectories given starting microbe
concentrations specified by the user, directed microbe–
microbe interaction and perturbation effect networks,
formal stability analyses providing predictions of which
combinations of microbes will stably coexist and at what
concentrations, and keystoneness analyses providing a
quantitative measure of the marginal importance of each
species in the ecosystem.
In order to evaluate the performance of several alter-

native parameter inference approaches, we implemented
four different algorithms in MDSINE (Additional file 1:
Table S1). Two of the algorithms estimate model param-
eters using maximum likelihood-based techniques. The
first of these algorithms, maximum likelihood ridge re-
gression (MLRR) was previously presented by us [8]; it is
the only scalable and documented published method for
microbial dynamical systems inference but was yet to be
included in a publicly available software package. The sec-
ond of the maximum likelihood-based algorithms, max-
imum likelihood constrained ridge regression (MLCRR), is
a novel extension of the MLRR method that constrains
bacterial growth rates and self-inhibition terms in the
model to biologically realistic settings and uses an efficient
method for inference based on quadratic programming
(see “Methods”).
We developed novel Bayesian inference algorithms

that provide additional functionality that the maximum
likelihood-based techniques do not, namely: (1) esti-
mates of error in inferences of dynamical systems pa-
rameters; and (2) statistical modeling of high-throughput
sequencing count-based data over time. The first feature,
as we demonstrate below, is particularly important for
interpreting the relevance of microbial interactions and
predictions of dynamics inferred from real microbiome

time-series datasets. The second feature builds on sub-
stantial work by others demonstrating that greater accur-
acy can be achieved in analyses of high-throughput
sequencing data by directly modeling count data [14, 16].
Our approach, Bayesian Adaptive Penalized Counts
Splines (BAPCS), uses a method similar to that employed
by DESeq2 [14] but extended for time-series data and
allowing for irregular temporal sampling. The BAPCS
algorithm is used to denoise the input microbiome
time-series data, estimating the underlying growth tra-
jectories and their gradients. These estimates then serve
as input into two alternative Bayesian dynamical sys-
tems inference algorithms. The first of the two Bayesian
inference algorithms, Bayesian Adaptive Lasso (BAL), is
a regularization-based approach conceptually similar to
the maximum likelihood ridge regression-based algo-
rithms (MLRR and MLCRR) described above, but can:
(a) potentially discriminate true interactions from noise
better because it provides more shrinkage for coeffi-
cients that are close to zero [17]; (b) is more flexible, as
it allows for different degrees of regularization on each
interaction coefficient [9]; and (c) is fully Bayesian, pro-
viding estimates of variability for all parameters in the
model. The second of the two Bayesian inference algo-
rithms, Bayesian Variable Selection (BVS), uses an alter-
native approach to the regularization-based methods
(MLRR, MLCRR, and BAL) by directly modeling the
presence/absence of microbe–microbe interactions or
microbe–perturbation effects. We were interested in
evaluating a variable selection approach against the
regularization-based methods, as variable selection
techniques have been shown to reduce bias in model
estimates in many settings [18]. Moreover, our BVS al-
gorithm allows for direct inference of the underlying
qualitative network of bacterial interactions that is of
biological interest. See “Methods” and Additional file 2
for a complete description of the Bayesian algorithms.

Validation on simulated ground-truth data
Ground-truth information is necessary for fully bench-
marking the inferential and predictive capabilities of an
algorithm. However, the availability of such data is cur-
rently too limited for microbial dynamical systems.
Thus, we simulated data from an in silico microbial
dynamical systems model that captures key features of
real microbiome experiments to benchmark and validate
MDSINE (see “Methods” for complete details). Briefly, we
mimicked key features of real microbiome time-series data
including noisy count-based measurements with different
sequencing depths and assuming compositionality of data
[19, 20], variability among subjects, limited temporal sam-
pling resolutions, and a pathogen being introduced into a
pre-existing microbiota. Repeated random sampling was
used to generate different initial conditions and to add
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noise to the simulated measurements. The simulated data
were then used to evaluate several metrics of algorithm
performance, including: (a) accuracy of growth rates and
interaction coefficients estimates; (b) accuracy of inference
of presence/absence of microbial interactions (network
structure); and (c) accuracy of prediction of microbial
concentrations over time given initial conditions not pre-
viously seen by the algorithm.
Overall, the three new MDSINE algorithms (MLCRR,

BAL, and BVS) outperformed our previous method
(MLCRR) on all metrics (Fig. 2). The two Bayesian al-
gorithms (BAL and BVS) showed the greatest robust-
ness to lower sequencing depths and lower resolutions
of temporal sampling and demonstrated particularly
strong performance on inferring microbial interaction
parameters and the underlying network. In contrast,
both MLRR and MLCRR as well as standard Spearman
correlation analyses (area under the curve (AUC) of
0.53 in the best case) had very poor performance on
the underlying network inference task for all simulation
regimes (Fig. 2d).
Performance on the microbial concentration prediction

task was most affected by sequencing depth and temporal
sampling resolution for all the MDSINE algorithms,
whereas estimation of growth rates and interaction coeffi-
cients were less affected. To investigate the effects of read

depth further, we performed simulations over a range
of read depths from 200 sequences per sample (very
suboptimal) to 25,000 sequences per sample. These
simulations (Additional file 3: Figure S1) showed that
performance on all metrics, and in particular the mi-
crobial concentration prediction metric, did improve
with greater read depths for all MDSINE algorithms
but essentially saturated at 5000 sequences per sample.
These results suggest that the MDSINE inference pro-
cedures are robust to compositionality constraints in
data and, moreover, maintain robustness even at low
sequencing depths. This robustness may in part be due
to MDSINE’s capability to leverage continuity over time
to compensate for noise in data.
We also investigated whether connectivity (in-degree)

or growth rates of the simulated taxa affected the micro-
bial concentration prediction task. No clear relationship
was evident in the case of in-degree. Positive correlations
between growth rates of taxa and the ability to forecast
their concentrations were seen for all the MDSINE
algorithms, suggesting that the algorithms may predict
trajectories of faster-growing bacteria with more accur-
acy in some ecosystems. However, these correlations
did not reach statistical significance (Spearman correl-
ation, p values for BAL, BVS, MLRR, and MLCRR of
0.30, 0.35, 0.33, and 0.30, respectively).
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Fig. 2 New inference algorithms in MDSINE outperform our previously published method on simulated data. Data were simulated to capture key
features of real microbiome surveys, including noise and compositionality. Simulations assumed an underlying dynamical systems model with ten
species observed over 30 days and an invading species at day 10. The number of time points sampled was varied between 8 and 27 to mimic
common experimental designs and sequencing depths of 1000 or 25,000 reads were evaluated. Performance of the four MDSINE inference
algorithms, maximum likelihood ridge regression (MLRR), maximum likelihood constrained ridge regression (MLCRR), Bayesian adaptive lasso
(BAL), and Bayesian variable selection (BVS), were compared. Algorithm performance was assessed using four different metrics: root mean square
error (RMSE) for microbial growth rates (a); RMSE for microbial interaction parameters (b); RMSE for prediction of microbe trajectories on held-out
subjects given only initial microbe concentrations for the held-out subject (c); and area under the receiver operator curve (AUC ROC) for the
underlying microbial interaction network (d). Lower RMSE values indicate superior performance, whereas higher AUC ROC values indicate
superior performance
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Validation against new experimental datasets
We next validated the performance of MDSINE on two
new experimental datasets with several necessary or
desirable properties for algorithm evaluation. First, fre-
quent temporal sampling (26–56 time points) was per-
formed to support accurate inference of dynamics [2].
Second, microbial ecosystems were perturbed rather
than just observed over time. Third, concentrations of
bacteria were measured rather than just relative abun-
dances; these measurements are particularly important
for studying infections and other perturbations that
may alter the bacterial biomass [1, 2]. Finally, although
not essential for application of our method, we used
gnotobiotic experimental systems to ensure that strains
could be tracked unequivocally in vivo over time.

Clostridium difficile infection experiments
Our first experimental dataset evaluated the dynamics
of infection with Clostridium difficile [10] (Additional
file 4: Figure S2), a pathogen that causes significant
morbidity and mortality in humans. We employed a
gnotobiotic mouse model in which animals were pre-
colonized with human commensal bacterial type strains,
termed the GnotoComplex microflora, chosen to capture
the phylogenetic diversity and key physiologic capabilities
of a native gut microflora, including metabolism of com-
plex polysaccharides and bile acid transformations (see
Additional file 1: Table S2 and “Methods” for details).
After allowing 28 days for the commensal microbiota to
establish, we infected mice with C. difficile spores and
monitored the animals for an additional 28 days. Mice had
diarrhea and showed signs of moderate distress within
3 days of C. difficile infection but all exhibited full clinical
recovery within 10 days. Throughout the 56-day experi-
ment, 26 fecal samples per mouse were collected and
interrogated via high-throughput 16S rRNA sequencing to
determine abundances of species and 16S rRNA qPCR
using universal primers to estimate the total bacterial bio-
mass present.
The temporal sampling scheme for this experiment

was designed based on our prior experience with kinet-
ics of enteric infections in mouse models [21] and re-
sponse of the microbiota to perturbations [22, 23]. Our
analyses of these prior studies using our MC-TIMME
algorithm indicated that OTUs that change in abun-
dance after a perturbation will generally first show de-
tectable changes within a window of 1–3 days and
reach steady-state within 2 weeks. Thus, our general
approach to designing time-series studies of the micro-
biota, subject to economic and logistic constraints that
prevent sampling every day over the entire time course,
is to sample at least daily for 4 days post-perturbation,
then reduce sampling to every 2 days up to 2 weeks

post-perturbation, and then reduce sampling to every
3–4 days thereafter until the next perturbation (if any).
We assessed predictive performance of MDSINE on the

C. difficile infection data using a hold-one-subject-out
cross-validation procedure. In this procedure, MDSINE
was run on all data from all but one of the mice (the
held-out subject) and model parameters were inferred.
Using the inferred model parameters and the measured
concentrations of the microbiota at an initial time point
for the held-out mouse, the trajectory of concentrations
of C. difficile for that mouse was then forecast for all
the remaining time points using numerical integration.
This procedure was repeated for each mouse in turn
and predictive performance was evaluated as the root
mean square error (RMSE) between the predicted tra-
jectory and the actual data (see “Methods” for details).
The new algorithms in MDSINE outperformed our pre-
vious method on this task, with the Bayesian algorithms
showing the strongest performance (Additional file 1:
Table S3) with RMSEs of 0.56 and 0.66 colony forming
units (CFUs)/g stool. These error rates in predictions,
corresponding to about a half log in CFU/g, are close
to variability in measurements we have observed with
traditional culture-based techniques and due to differ-
ences in sample handling [21] and thus represent
strong predictive performance in terms of realistic bio-
logical systems.
We next used MDSINE to infer the underlying quali-

tative network of microbe–microbe interactions from
the complete dataset (Fig. 3a). The resulting network
strongly predicts the presence of 23 interactions among
species (Bayes factor ≥10), including inhibition of C.
difficile by Clostridium scindens and Roseburia hominis.
A C. scindens inhibitory effect against C. difficile medi-
ated by the alteration of host bile acid composition has
previously been demonstrated in conventional mice
[10], providing confirmatory evidence that MDSINE
can detect causal interactions from longitudinal micro-
biota data.
In order to predict which bacterial compositions opti-

mally confer resistance against C. difficile infection, we
used MDSINE to predict the stability and C. difficile
inhibitory capacity of all subsets of the commensal
strains (Fig. 3b). We began by calculating which of the
213 − 1 possible bacterial combinations were predicted
to have biologically meaningful steady-state concentra-
tions (non-negative values). Steady states with a prob-
ability of stability >90 % were further analyzed using
numerical integration starting with the predicted con-
centrations and adding a simulated C. difficile challenge
of 105 CFU/g, corresponding to a high infectious dose
(see “Methods” for details). Combinations of bacteria
displayed in Fig. 3b represent those (for all strains in
the defined microbiota down to one strain) that led to
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the minimal median predicted concentrations of C.
difficile at 28 days, the duration of our actual experi-
ment. Intriguingly, MDSINE predicted that the smallest
stable sub-community capable of excluding C. difficile
with probability >90 % requires just three organisms (R.
hominis, B. fragilis, and C. hiranonis). Interestingly,
although MDSINE predicts similar colonization resist-
ance for larger communities (all of them including the
stable three-species sub-community), the stability prob-
ability decreases somewhat for the larger communities.
It is of interest to understand whether bacterial biomass

data are necessary for inference of bacterial interaction
networks, or at least if less frequent biomass measure-
ments would suffice, given that biomass has not been rou-
tinely measured in many microbiome studies. To test the
necessity of biomass data for the C. difficile experiments,
we replaced biomass measurements with the average value
across all mice and all time points, hence providing no
useful information on biomass to MDSINE. This “no bio-
mass” inference resulted in an AUC value of 0.76 when
compared with the “reference” network inferred using all
biomass data. The “no biomass network” had no incoming
edges for C. difficile with strong evidence (Bayes factors
≥10) but edges for C. scindens and R. hominis interactions
still had borderline Bayes factors of 7.7 and 3.0, respect-
ively. We additionally tested whether our BAPCS algo-
rithm could be used to improve network inference, by

interpolating bacterial biomass values, in the scenario in
which bacterial biomass was sampled less frequently than
bacterial relative abundances. For this test, we hid either
six or ten biomass measurements, with time points chosen
using the scheme discussed above that prioritizes sam-
pling around perturbations. When six biomass measure-
ments were hidden, the inferred bacterial interaction
network was almost identical to the “reference” network
(AUC= 0.93), whereas when ten biomass measurements
were hidden, performance degraded to the level of the “no
biomass” network (AUC= 0.74). These results suggest that
many edges of the bacterial interaction network can still
be accurately inferred in the absence of biomass data but
that biomass data do provide important additional infor-
mation. Further, our method can be used to interpolate
biomass measurements to some extent, allowing for less
frequent biomass sampling, but performance dropped off
dramatically beyond about 25 % missing measurements.

Probiotic cocktail colonization and stability experiments
Our second experimental dataset evaluated the dy-
namics of colonization of gnotobiotic mice with a pro-
biotic bacterial cocktail and subsequent effects of a
dietary perturbation (Additional file 5: Figure S3). We
recently described a set of Clostridia strains (VE-202)
that are potent inducers of regulatory T cells (Tregs)
and suppressors of inflammation [24] and are now
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being investigated for treatment of inflammatory bowl dis-
eases. To characterize stability and robustness properties
of the VE-202 cocktail, we colonized germ-free mice with
13 members of the cocktail and alternated mice between a
standard high-fiber diet and a low-fiber dietary perturb-
ation. These dietary shifts were enforced for two reasons.
First, accurate model inference requires a sufficient num-
ber of non-equilibrium observations, which we expected
to achieve with a short dietary perturbation per our previ-
ous work demonstrating broad responses to dietary shifts
in the microbiota with taxon-dependent kinetics [22]. Sec-
ond, we were interested in whether abundances of the
probiotic cocktail organisms would be appreciably shifted
with a change to a low-fiber diet, which more closely
mimics aspects of a human diet.
Over the nine-week experiment, 56 fecal samples per

mouse were collected (daily sampling with some excep-
tions for logistical reasons). Bacterial concentrations
were measured using strain-specific qPCR primers to
estimate concentrations of the microbes (see “Methods”;
Additional file 1: Table S4). Note that for these experiments
total bacterial biomass was not measured independently,
unlike for the C. difficile infection experiments that

combined taxa relative abundance data from 16S rRNA
amplicon sequencing with total bacterial biomass esti-
mated using 16S rRNA universal primers.
We again evaluated the ability of MDSINE to predict

microbial growth concentrations using a hold-one-
subject-out cross-validation procedure. In this proced-
ure, MDSINE was run on all data from all but one of
the mice (the held-out subject) and model parameters
were inferred. Using the inferred model parameters (in-
cluding for the applied dietary perturbation) and the
measured concentrations of the microbiota at an initial
time point for the held-out mouse, the trajectories of
concentrations of the microbiota for that mouse were
then forecast for all the remaining time points using
numerical integration. Figure 4a, b and Additional file
6: Figure S4 display examples of inferred parameter dis-
tributions and predicted trajectories. Interestingly, for
this dataset we found no significant differences between
the new MDSINE algorithms and our prior algorithm
with respect to prediction error (Table S3).
We used MDSINE to predict the contribution of each

member of our bacterial probiotic cocktail to the mainten-
ance of stability and community structure in the presence
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Fig. 4 Application of MDSINE to an experimental dataset evaluating stability of a probiotic cocktail in gnotobiotic mice. Germ-free mice were
inoculated with 13 Clostridia strains from the VE-202 cocktail, a mixture of bacteria previously shown to be Treg inducers [24]. Over the 9-week
experiment, mice were alternated between a standard high-fiber diet and a low-fiber dietary perturbation. We collected 56 fecal samples per
mouse and these were interrogated using strain-specific qPCR primers to estimate strain concentrations. a Example of inferred growth and interaction
parameters and their variability. The top grid displays mean parameter estimates and the bottom grid displays standard deviations of parameter
estimates. Strains are ordered by their mean estimated growth rates on the standard diet. Pert. perturbation effect, St. strain. b Example forecasts of
microbial concentration trajectories. Forecasts were obtained using a hold-one-subject-out procedure. Briefly, MDSINE was run on all data from all but
one of the mice (the held-out subject) and model parameters were inferred. Using the inferred model parameters (including for the perturbation) and
the measured concentrations of the microbiota at an initial time point for the held-out mouse, the trajectories of the microbiota for the held-out
mouse were then forecast for all the remaining time points; the procedure was repeated for each mouse. Solid lines denote predicted trajectories and
circles denote data. c Keystoneness analyses for high-fiber (top) and low-fiber (bottom) diets. Rows represent all possible stable states in which each
strain has been removed in turn and the others are present (if that configuration is stable). The grid displays predicted steady-state concentrations of
strains (log10 ng strain DNA/μg total fecal DNA), with white entries indicating absent strains. Ky keystoneness, a measure assessing the marginal
predicted quantitative effect of removing each strain from the full community, with larger values indicating greater effects on the overall ecosystem
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and absence of the dietary perturbation. Intriguingly,
we found that while the low-fiber diet clearly alters the
concentrations of many strains in the cocktail, this
perturbation does not significantly change the overall
stable biodiversity profile of the cocktail (Additional file
7: Figure S5). To quantify the importance of each strain
in maintaining stable community structure, we applied
a new measure that we term keystoneness (Fig. 4c).
This measure assesses the marginal predicted quantita-
tive effect of removing each strain from a bacterial
community (see “Methods” for details). On the high-
fiber diet, strain 15 (closest known taxon, Clostridium
asparagiforme) exhibited the largest keystoneness value
(Fig. 4c, top). Interestingly, MDSINE predicts that, for
the low-fiber diet, strain 15 cannot be present if the
community is to remain stable and strain 14 (closest
known taxon, Ruminococcus sp. ID8) attains the highest
keystoneness value (Fig. 4c, bottom). We note that
strains 14 and 15 do not have significantly greater con-
nectivity in the inferred qualitative network structure
(Additional file 8: Figure S6), suggesting that the central
roles of these species would not be uncovered using
standard qualitative measures for finding keystone spe-
cies [13].

Discussion
Studies of temporal dynamics of the microbiota
coupled to experimental interventions are essential to
move beyond descriptive associations to causal mecha-
nisms and, ultimately, to rationally design approaches
to manipulate the microbiota to achieve precise and
durable therapeutic benefits. However, analysis of data
from such studies has been hampered by a lack of
appropriate computational tools. In this work, building
on our previous research, we present a set of new
algorithms implemented in an open-source, actively
maintained software package that allows users to infer
dynamical systems models from high-throughput
microbiome data and generate precise quantitative pre-
dictions about the temporal dynamics and stability of
the microbial ecosystems.
To showcase the potential of our method for generat-

ing quantitative predictions and testable hypotheses in
the context of enteric infections and probiotic cocktail
design, we applied our framework to two new datasets
generated in our labs. For the first dataset, we conducted
massive simulations to determine microbiota combina-
tions predicted to maximize inhibition of the pathogen,
C. difficile. MDSINE predicted that a community as
small as three species, R. hominis, B. fragilis, and C. hira-
nonis, has the capacity to provide colonization resistance
against C. difficile. This result highlights the importance of
considering quantitative and indirect effects in microbial
interaction networks [25] as only R. hominis is predicted

to directly inhibit C. difficile whereas the other species
in the sub-community are predicted to indirectly sup-
port growth of R. hominis (Fig. 3a). Interestingly,
MDSINE predicts that larger communities have some-
what lower stability probabilities than the three-species
community, suggesting that larger communities may
have greater numbers of destabilizing interactions in
the network. Overall, these results, which suggest new
strategies for rational design of bacteriotherapies [6]
for C. difficile infection, demonstrate the unique prob-
abilistic and quantitative predictive capabilities of the
MDSINE framework.
For our second experimental dataset, we evaluated the

stability to dietary changes of a probiotic commensal
bacterial cocktail under investigation for treatment of
inflammatory bowel disease (IBD). Diet is an acknowl-
edged but poorly defined modulator in IBD, with dietary
factors directly interacting with both epithelial and im-
mune cells and indirectly affecting immune homeostasis
by modulating the intestinal microbiota [26]. Moreover,
dietary treatments for IBD are often recommended by
clinicians or self-initiated by patients [27]. For these rea-
sons, any probiotic cocktail for IBD treatment must be
capable of withstanding changing dietary regimes. Appli-
cation of MDSINE to data from our gnotobiotic mouse
model measuring changes in concentrations of strains in
a probiotic cocktail subjected to dietary shifts intri-
guingly suggests different ecological roles of the strains
in maintaining community structure depending on the
dietary context. These results highlight the complexity
of probiotic design and showcase the unique capabilities
of MDSINE for this application to exploit dynamical sys-
tems methods to tackle a per se combinational design
problem to efficiently and rationally choose among pro-
biotic compositions.
On both simulated and real experimental data, our new

algorithms generally outperformed our previous method.
Our new algorithms all constrain model parameters to
biologically realistic values (non-negative growth rates and
negative self-regulation effects), which accounts for some
of the improvements in performance, particularly between
the MLCR and MLCRR algorithms that differ only in this
aspect. The algorithms also handled compositionality of
data well, even with quite low read depths, which is likely
due in part to their ability to exploit time-series informa-
tion fully to estimate microbial populations (e.g., tempor-
ally adjacent samples can compensate for error), in
contrast to standard static analysis methods that effect-
ively treat each sample separately.
The Bayesian algorithms generally exhibited superior

performance, likely due to a combination of their dir-
ectly modeling noisy count data and their using inference
methods that help to reduce bias in parameter estimates.
Additionally, we found that the Bayesian methods provided
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much more reliable estimates of variability in parameters,
particularly for the task of inferring underlying bacterial
interaction networks. In principle, parameter variability
can be estimated within maximum likelihood-based frame-
works (Additional file 2), but we found these estimates to
be quite poor. Interestingly, on one task, prediction of
held-out trajectories for our probiotic stability dataset, the
Bayesian algorithms did not have significantly better per-
formance than the other methods. This dataset had very
dense (daily or every other day) temporal sampling and
used qPCR measurements to quantify strain concentra-
tions. As discussed, the Bayesian methods were specifically
designed to handle irregularly and sparsely temporally
sampled sequencing count data and so apparently lost
some of their advantages when these features were not
present. However, the capability of the Bayesian methods
to estimate parameter variability for this dataset was still
important, as demonstrated with the keystoneness/stability
results that use this information to substantially limit the
number of states considered.
MDSINE models concentrations of micro-organisms ra-

ther than relative abundances, which requires estimates of
the total microbial biomass in the ecosystem under study.
In our C. difficile infection or probiotic cocktail experi-
ments, we estimated total bacterial biomass via qPCR
either with 16S rRNA universal primers or with strain-
specific primers. These methods are susceptible to primer
bias and other PCR-related issues; alternative methods,
such as flow cytometry [28], could overcome some of
these difficulties. However, most existing microbiome
studies do not include any measurement of total microbial
biomass. Can MDSINE still be applied to these data? In
some cases, total microbial biomass is unlikely to change
appreciably over the course of a study, such as in adult
populations undergoing mild dietary shifts. For these
cases, MDSINE can be run on just relative abundance data
(e.g., 16S rRNA amplicon sequencing data) with the as-
sumption that biomass is constant. In other cases, such as
studies of initial colonization of the gut, total microbial
biomass is assuredly changing and the assumption of con-
stant total microbial biomass would be erroneous. For
other studies, such as antibiotic exposures, infections, or
major dietary shifts, the effect on total microbial biomass
is not clear a priori. For our C. difficile infection dataset,
as described in the “Results” section, many bacterial inter-
actions could still be inferred under the assumption of
constant bacterial biomass, but some key interactions
were lost or evidence of their existence was substantially
weakened. For these reasons, we would advocate for
measuring total bacterial biomass in future longitudinal
microbiome studies, at least in pilot phases, to determine
whether biomass changes significantly.
In terms of runtime, the algorithms in MDSINE can

feasibly scale to ecosystems with considerably more taxa

than analyzed in the present work because they approxi-
mate the dynamical systems inference problem with
linear systems of equations. The challenge of scaling to
more complex ecosystems, therefore, is not primarily
computational but is limited by data: an ecosystem with
N taxa has N2–N potential interactions, requiring O(N2)
informative data points to reliably estimate parameters
in the absence of regularization or sparsity assumptions.
Regularization and sparsity techniques implemented in
MDSINE reduce these data requirements, as demon-
strated in our simulation studies showing negligible loss
of inference accuracy on key metrics even with >50 %
data reduction. However, it is important to understand
that measurements must be obtained under perturba-
tions of the ecosystem, as multiple measurements at the
same steady-state value will not contribute multiple
highly informative data points [2]. For these reasons, as
a broad guideline and assuming reductions in data re-
quirements from regularization or sparsity assumptions
as described, we recommend studies include perturba-
tions and collect a minimum of N2/2 total data points
(e.g., for a study with five subjects and 13 OTUs to be
modeled, at least 17 time points per subject). For users
of MDSINE studying complex microbial ecosystems
with larger numbers of OTUs, we suggest modeling a
smaller number of key OTUs or higher taxonomic
groups (e.g., 10–20); we and others have successfully
demonstrated this approach using the gLV model in
prior publications [8–10].
Our approach has several limitations that suggest

areas for future work. First, the underlying gLV dynam-
ical systems model for MDSINE captures only pairwise
microbe–microbe interactions and the effects of defined
perturbations with relatively simple kinetics. Despite
these limitations, we and others have demonstrated the
surprisingly good performance of this model for analyz-
ing complex host–microbial ecosystems [8–10, 13].
Moreover, the inference framework for MDSINE is quite
general and could in the future support richer models of
dynamics that incorporate factors such as host immune
responses, metabolites, environmental effects, and non-
parametric models of dynamics. Second, our method
relies on a series of approximations to the underlying
dynamical systems model. Our simulation studies dem-
onstrate that this approximation generally works well;
however, techniques to further improve these approxi-
mations, such as the use of Gaussian Processes [29], are
an interesting area for future work on MDSINE. Third,
we demonstrated application of MDSINE to gnotobiotic
animal datasets with microbiota of limited diversity. As
discussed, these datasets provided important features
that facilitated evaluation of our algorithms and inter-
pretability of the results. However, the microbiota of
humans and conventional animals are considerably more
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complex and present additional analytical challenges. Ex-
tensions to MDSINE to automatically reduce the com-
plexity of these ecosystems—for instance, by grouping
together OTUs with similar dynamics while still maintain-
ing predictive accuracy—is an interesting direction for fu-
ture research. Finally, our experimental datasets rely on
fecal sampling, which may not accurately reflect microbial
populations in the gut, in particular for species that pre-
dominantly reside in regions upstream of the colon [21].
Measurements of total bacterial biomass from fecal sam-
ples also may not be representative of biomass in the gut
if the density of stool changes significantly throughout the
experiment, such as with severe diarrhea. There is also in-
creasing recognition of the importance of the spatial
organization of the microbiota (e.g., [30]) that will not be
reflected in fecal samples. Future studies that obtain longi-
tudinal samples of tissues in different regions of the gut
will be important to more fully model and understand
these incredibly rich ecosystems.

Conclusions
MDSINE provides a new toolbox that will have broad
applicability to studies of microbial dynamics, enabling
robust analyses based on quantitative predictions and for-
mal dynamical systems theory as demonstrated on our
simulated and new experimental validation datasets. Our
open-source software package implements new methods
that not only outperform previous approaches but also
provides novel functionality, including capabilities to esti-
mate confidence in model parameters and predicted
dynamics. Application of MDSINE to two new gnotobiotic
experimental datasets demonstrates the capability to
generate predictive hypotheses that standard micro-
biome analysis methods cannot and, moreover, suggests
new strategies for rational design of bacteriotherapies.

Methods
Software availability
The Microbial Dynamical Systems INference Engine
(MDSINE) is available as an open-source package in-
cluding MATLAB source code and standalone execut-
ables for Mac OS X, Linux and Windows. The software
reads formatted input data (strain counts table, total
bacterial biomass measurements, and relevant meta-
data; see the repository instructions and manual for fur-
ther details—links provided in the “Availability of data
and materials” section), then infers dynamical systems
models. Further analyses using the inferred models are
supported in MDSINE, including predictions of qualita-
tive interaction networks, trajectories, stable states, and
keystoneness. R-utility scripts are provided in the pack-
age for visualizations of these analyses.

Mathematical model overview
We use the extended generalized Lotka-Volterra (gLV)
equations as previously described [8] for the underlying
model of microbial dynamics. For the gLV model for L
OTUs measured in S subjects, the rate of change of the
concentration of OTU l in subject s is expressed as:

df ls
dt

¼ αl f lsðtÞ þ
XL

j¼1

βljf lsðtÞf jsðtÞ þ
XP

p¼1

γlpf lsðtÞupðtÞ

The α parameters represent unbounded growth rates,
the β parameters represent pair-wise microbe-microbe
interactions, and the γ parameters represent effects of P
perturbations. The functions up(t) are binary-valued, in-
dicating if the given perturbation is present at time t.
Unlike in our previous approach [8], which did not as-
sume constraints on the parameters, here we assume
positive growth rates and negative self-interaction rates,
i.e., α > 0 and βll < 0. These constraints enforce the bio-
logically realistic assumption of logistic growth in the
absence of interactions, i.e., growth up to a finite carry-
ing capacity of the ecological system.
We use a “gradient matching” approach to estimate

the ODE parameters. The concept underlying this ap-
proach is that if estimates of the gradient and trajectory
values are available, parameters can be estimated by so-
lution of systems of equations rather than systems of dif-
ferential equations. In the case of the gLV model, the
“gradient matching” system of equations is linear, and
can be written as:

df ls
dt

≈ f^lst′ ≈αlf^lst þ
XL

j¼1

βljf
^
lst f

^
jst þ

XP

p¼1

γlpf
^
lstupðtÞ

Here, f^lst represents an estimate of the concentration

of OTU l in subject s at time point t and f^lst′ represents
the corresponding gradient estimate. These estimates are
derived from data as described in the sections below and
detailed in Additional file 2. We assume we have mea-
surements of counts Ylst (i.e., obtained via 16S rRNA se-
quencing) for each OTU l in subject s at time point t,
where there are L OTUs, S subjects and Ns time points
per subject. We also assume we have measurements of
total bacterial biomass Wst (e.g., obtained via qPCR) for
each time point t in each subject s.
The reduction of the gLV differential equations to a

linear system of equations via the “gradient matching”
approach enables application of statistical models for
linear regression. However, we are still faced with esti-
mating L2 + L + LP parameters, which will result in an
under-determined system for typical datasets. We thus
developed several algorithms that use regularization or vari-
able selection techniques during the parameter inference
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process. These algorithms are described below and detailed
in Additional file 2.

Maximum-likelihood constrained ridge regression (MLCRR)
algorithm
The overall objective of the MLCRR algorithm is to
infer point-estimates of growth, interaction, and per-
turbation effect parameters for the gLV model from
high-throughput 16S rRNA gene sequencing data and
measurements of microbial biomass. As described above,
typical microbiome time-series datasets will not have
enough observations relative to potential microbe–mi-
crobe interactions and perturbation effects, resulting in
an under-determined system. We solve this problem by
employing an L2-regularization approach (also known
as Tikhonov regularization or ridge regression [31])
with cross-validation to set the regularization parameters.
The MLCRR algorithm extends our prior maximum
likelihood-based algorithm MLRR [8] to constrain growth
rates to positive values and self-interaction parameters
to negative values. We developed an efficient quad-
ratic programming-based approach for inferring pa-
rameters in the constrained problem, which is detailed
in Additional file 2.

Bayesian algorithms
The overall objective of the MDSINE Bayesian algo-
rithms is to infer distributions of growth, interaction,
and perturbation-effect parameters for the gLV model
from high-throughput 16S rRNA gene sequencing data
and measurements of microbial biomass. Inferred dis-
tributions of parameters are then used to compute
summary measures, including median predicted trajec-
tories for OTUs, as well as measures of variability and
strength of model selection evidence. As with the
MLCRR maximum likelihood-based method, we use a
“gradient matching” approach to infer parameters for
the gLV model.
For the MDSINE Bayesian algorithms, we use a two-

step estimation procedure. First, we estimate trajector-
ies and gradients of OTU concentrations directly from
sequencing counts and biomass data using our Bayesian
Adaptive Penalized Counts Splines (BAPCS) method
described below. Then, we use the estimated trajector-
ies and gradients to infer the gLV parameters using
Bayesian linear modeling techniques, Bayesian Adaptive
Lasso (BAL) or Bayesian Variable Selection (BVS), each
described below. For both steps, we use custom Markov
Chain Monte Carlo (MCMC) algorithms detailed in
Additional file 2.
The Bayesian Adaptive Penalized Counts Splines

(BAPCS) algorithm in MDSINE estimates OTU con-
centration trajectories and gradients from data consisting
of time series of noisy counts. Our formulation of the

problem explicitly models differing numbers of sequen-
cing reads between samples, overdispersion of counts, and
irregular temporal sampling. We assume that counts data
follow the Negative Binomial Distribution (NBD), which
we and others have previously employed for modeling mi-
crobial sequencing counts data [16, 23]. For modeling the
NBD dispersion parameter, we employ a method similar
to that used by DESeq2 [14] but extended for time-series
data. We model the continuous-time trajectory function
for the NBD mean for each OTU in each subject using
cubic B-splines [32], which provide an efficient and flex-
ible framework for modeling time-series data that we and
others have demonstrated yield accurate predictions for
large-scale longitudinal biological datasets [33]. A chal-
lenge with B-spline methods is specifying the position and
number of basis functions (break points); these choices
influence the amount of smoothing applied to the data.
To overcome this challenge, we use a penalized spline
framework [32] with an adaptive Bayesian regularization
approach. Our approach places the break points uniformly
at a high frequency (default of every 2 days) and then
adaptively regularizes the spline coefficients in nearby
temporal regions to encourage minimal changes in the
trajectory over time unless larger deviations are warranted
by the data. To achieve this, we use a hierarchical adaptive
Bayesian lasso-style [17, 34] model. See Additional file 2
for a complete description of the BAPCS model and infer-
ence algorithm.
The Bayesian Adaptive Lasso (BAL) algorithm in

MDSINE uses an adaptive L1 or “lasso”-type regularization
technique for inferring the distribution over microbial
growth, interaction, and perturbation effect parameters in
the gLV model. The BAL algorithm is adaptive in the
sense that it allows for different degrees of regularization
on each coefficient, i.e., each OTU has a different prior
amount of interaction parameter shrinkage that is learned
from the data. See Additional file 2 for complete details
on the BAL model and inference algorithm.
The Bayesian Variable Selection (BVS) algorithm in

MDSINE also infers the distribution over microbial
growth, interaction, and perturbation effect parameters in
the gLV model. However, in this approach we use a vari-
able selection technique that directly models the presence
or absence of microbe–microbe interactions or perturb-
ation effects. Our model effectively learns a qualitative
interaction network on the OTUs and perturbation ef-
fects as well as a quantitative interaction and perturb-
ation effects matrix. Stated another way, the MLCRR
and BAL regularization-based approaches in MDSINE
assume all edges are present in the network, whereas
the BVS approach additionally learns the presence/ab-
sence of the edges. The BVS algorithm also allows us to
readily calculate Bayes factors [35], which provide a
formal method for comparing two alternative models
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given evidence (data). For MDSINE, we use Bayes fac-
tors to assess alternative models indicating the presence
or absence of an interaction or perturbation effect
given the data. See Additional file 2 for complete details
on the BVS model, the inference algorithm, and calcu-
lations of Bayes factors from the model.

Benchmarking with simulated data
We used the C. difficile infection dataset to obtain
rough estimates of the scale and variability of growth
rates, interaction coefficients, and initial concentrations
of microbes. Estimates were obtained by solving the
“gradient-matching” linear regression system using the
pseudoinverse solution and forcing growth and self-
interaction parameters to be positively and negatively
valued, respectively. These estimates were then used to
randomly sample growth and interaction parameters
for a hypothetical 10-OTU system assuming a 20 %
probability of interaction between OTU pairs (roughly
what we observed in the C. difficile infection data).
To obtain dynamical systems models for testing sim-

ulations, we required that all OTUs be present at steady
state and have coefficients of variation for their trajec-
tories >0.25 for 75 % of initial concentrations tested
(evaluated by randomly generating initial conditions
numerous times and numerically integrating the gLV
equations for each initial condition). The resulting
dynamical systems model parameters were then used to
generate simulated data for benchmarking. These simula-
tions involved random sampling of initial concentrations
of OTUs for ten “subjects” and numerical integration of
the gLV equations using the initial concentrations to gen-
erate noise-free trajectories. We investigated different time
point sampling resolutions, with designs of 27, 18, 12, or 8
time points chosen to mimic real experimental designs for
in vivo microbiome time-series datasets. See Additional
file 2 for complete details on the data simulations.
Noisy count data and biomass data were then simulated

from noise-free trajectories using Dirichlet Multinomial
Distribution (DMD) [19, 20] and Normal Distribution
models, respectively. The dispersion parameter for the
Dirichlet Multinomial distribution was estimated from
the C. difficile infection experimental data (16S rRNA
amplicon sequencing counts) using a maximum likeli-
hood procedure implemented in the MGLM toolkit
[36]. Note that the DMD model assumes composition-
ality of data (counts sum to a fixed constant for each
sample), with over-dispersion of counts. MDSINE uses
an alternative noise model based on the Negative Binomial
Distribution (NBD), which also assumes over-dispersion
of counts but does not assume compositionality of data
(counts are generated independently for each sample
conditional on a shared intensity parameter). Note that we
intentionally tested performance of MDSINE on data

generated with the DMD, a different noise model than im-
plemented in MDSINE, to evaluate robustness of our
method to compositionality of data.
We evaluated simulated results for each of the algo-

rithms implemented in the MDSINE package using the
following metrics: (a) the root mean square error
(RMSE) of the estimated growth rates compared with
ground-truth growth rates; (b) the RMSE of the estimated
interaction parameters compared with ground-truth inter-
action parameters; (c) the area under the receiver operator
curve (AUC ROC) for presence/absence of interactions,
for inferred interaction networks compared with the
ground-truth network; (d) the RMSE of the predicted
OTU trajectories compared with the ground-truth trajec-
tories on unseen initial conditions (i.e., training on n − 1
subjects and prediction of the held-out subject given ini-
tial conditions for that subject). The above metrics were
computed on 400 samples for each of the regimens de-
scribed above. See Additional file 2 for complete details
on the evaluation procedure.

C. difficile infection resistance predictions
In order to predict which bacterial compositions optimally
confer resistance against C. difficile infection, we began by
calculating which of the 213 − 1 possible bacterial combi-
nations were predicted to have biologically meaningful
steady-state levels (i.e., concentrations of species ≥0) and
were stable (i.e., all the eigenvalues of the Jacobian matrix
evaluated in the steady state have negative real part [8];
see Additional file 2 for further details). Steady-state con-
centrations and stability determinations were made from a
subsample of MCMC samples obtained from running the
BVS inference algorithm (1125 MCMC samples, using a
thinning rate of 20 from the full 22,500 MCMC samples).
States with a very high confidence of stability (estimated
probability of stability >0.9) were retained. Starting from
the predicted concentration profile of each stable MCMC
sample, we simulated a C. difficile infection challenge of
105 CFU/g, corresponding to a high infectious dose ex-
perimentally. We numerically integrated the correspond-
ing gLV system for 28 days and determined for each
microbiota state the level of C. difficile infection at the
end of the numerical experiment as the median concen-
tration across the corresponding MCMC samples. We
then determined which states (for 1 through all species in
the defined microbiota) led to the minimal median C.
difficile concentrations at 28 days.

Prediction of stable steady state profiles for probiotic cocktail
In order to determine if switching to a dietary regime
with low-fiber content would lead to a reduced number
of admissible steady states as well as to reduced
biodiversity, we estimated which of the 213 − 1 possible
bacterial combinations had a stable and biologically
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meaningful density profile in high- and low-fiber diet
conditions. To determine the stability profiles in the
presence of the low-fiber perturbations, we calculated
the net growth parameter for each strain i as the sum
of its inferred growth rate αi and its susceptibility to
low-fiber diets γi (perturbation effect parameter). We
repeated this analysis using 1125 MCMC samples (with
a thinning rate of 20 from the full 22,500 MCMC sam-
ples) obtained from running the BVS inference algo-
rithm. We then determined the number of predicted
stable steady states in each condition and tested the
null hypothesis of equal numbers of stably coexisting
strains within stable states under both dietary regimens
by applying a Wilcoxon rank sum test.

Prediction of keystoneness of species
To investigate the importance of specific strains in the
Clostridia community from our probiotic dataset, we de-
veloped a quantitative measure of “keystoneness” in the
MDSINE package. The measure starts from the commu-
nity composition that allows the largest number of
strains to stably coexist, and then removes each strain
from the community in turn. Steady-state concentra-
tions are calculated as described in the above subsection.
The Euclidean distance between the concentrations of
the starting profile and that of each of the profiles with
one strain removed is then calculated, with the calculation
excluding the contribution of the removed strain. The
strains are then ranked based on the magnitude of the dis-
tances obtained as a consequence of their removal.

C. difficile infection in gnotobiotic mice
Commensal bacterial cultures
We developed a set of defined human commensal bac-
teria, which we term the GnotoComplex flora, based on
extensive review of the literature [37–52]. Strains were
chosen to approximate phylogenetic diversity and key
roles of the microbiota in the host, including the ability to
transform bile acids and degrade a variety of dietary com-
pounds (Additional file 1: Table S2). The GnotoComplex
bacteria were also selected so that they are all distinguish-
able at the V4 region of the 16S rRNA gene (three or more
nucleotide differences in the region) to ensure that the
strains can all be differentiated with our high-throughput
sequencing method. The GnotoComplex bacterial strains
were purchased from either the American Type Culture
Collection (ATCC) or the Leibniz Institute DSMZ-
German Collection of Microorganisms and Cell Cultures
(DSMZ) and propagated according to the propagation
procedure on the product sheet for each strain (Additional
file 1: Table S2). Aliquots were prepared and stored at
−80 °C until needed for the preparation of the bacterial in-
oculum. An aliquot from each bacterial strain was re-
moved from the −80 °C freezer and plated for isolation

onto either Tryptic Soy base with 5 % sheep blood agar
(TSA) for the aerobic strains or pre-reduced Brucella
base blood agar containing 5 % sheep blood, hemin,
and vitamin K (BMB) for the anaerobic strains. The
TSA plates were incubated at 37 °C in ambient air
while the BMB plates were incubated at 37 °C in an an-
aerobic chamber containing an atmosphere of 10 %
hydrogen, 10 % carbon dioxide and 80 % nitrogen. The
plates were inspected for purity and Gram stains were
performed. Brain Heart Infusion broth (BHI; 5 mL; An-
aerobe Systems) was inoculated with a single colony of
each bacterial strain and incubated overnight under ap-
propriate conditions. The OD600 was determined and
the suspensions diluted with BHI if necessary. The bac-
terial inoculum for mice was prepared by combining
the individual bacterial strains based on their OD to en-
sure that each strain was equally represented.

Clostridium difficile culture
C. difficile strain 43255 was purchased from the ATCC
and propagated according to the product sheet. For the
preparation of spores, C. difficile was plated onto BMB
to produce a lawn of growth and incubated in an anaer-
obic chamber for 10 days. The bacteria were recovered
from the plate using a sterile cotton swab that had been
pre-moistened with sterile phosphate-buffered saline
(PBS). The bacteria were suspended in 15 mL of PBS.
The suspension was heated in an 80 °C water bath for
10 min to kill the vegetative cells. Aliquots (1 ml) were
prepared, flash frozen using liquid nitrogen, and stored
at −80 °C. One aliquot was removed from the −80 °C
freezer and serially diluted with PBS and plated onto
BHI agar plates containing hemin, vitamin K, and 0.1 %
(w/v) of taurocholate. The plates were incubated in an
anaerobic chamber for 96 h and the spore concentration
determined.

Gnotobiotic mouse experiments
Germ-free mice were bred and maintained in isolators in
the Massachusetts Host-Microbiome Center at Brigham
and Women’s Hospital. Five individually caged, male, 8–
10-week-old, germ-free C57BL/6 mice were orally gavaged
at day 0 with 200 μl of the GnotoComplex bacterial mix-
ture for a total inoculum of ≈ 108 CFU per mouse. Fecal
pellets were collected at 0.75, 1, 2, 3, 4, 6, 8, 10, 14, 17, 21,
24, and 28 days post-inoculation with the GnotoComplex
strains and stored at −80 °C in 10 % PBS buffer. After fecal
sample collection on day 28, mice were orally gavaged
with 5 × 103 C. difficile spores. Fecal pellets were collected
at 0.75, 1, 2, 3, 4, 6, 8, 10, 14, 17, 21, 24, and 28 days post-
infection with C. difficile and stored at −80 °C in 10 % PBS
buffer.
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16S rRNA sequencing
Bacterial genomic DNA was extracted using the Mo Bio
Power Fecal DNA Isolation kit (Mo Bio Laboratories)
according to the manufacturer’s instructions for high
yields of DNA. To increase the DNA yields, the follow-
ing modifications were used. An additional bead beater
step using the Faster Prep FP120 (Thermo) at 6 m/s for
1 min was used instead of vortex agitation. Incubation
with buffers C2 and C3 was increased to 10 min at 4 °C.
Starting nucleic acid concentrations were determined by
a Qubit Fluromoter (Life Technologies). A multiplexed
amplicon library covering the 16S rDNA gene V4 region
was prepared using the protocol of [53] with dual-index
barcodes. The aggregated library pool was size selected
from 300–500 bp on a pippin prep 1.5 % agarose cas-
sette (Sage Sciences) according to the manufacturer’s in-
structions. The concentration of the pool was measured
by qPCR (Kapa Biosystems) and loaded onto the MiSeq
Illumina instrument (300 bp kit) at 6–9 pM with 40 %
phiX spike-in to compensate for low base diversity ac-
cording to Illumina’s standard loading protocol. Sequences
were deposited in the NIH Sequence Read Archive (SRA
accession SRP065075).

Bioinformatic processing of sequences
Raw sequencing reads were processed using custom Py-
thon scripts, which perform denoising, quality filtering,
and alignment against the 16S rRNA gene sequences of
the species in the defined community. To reduce align-
ment error, low quality bases (Q < 35) were trimmed using
a sliding window (window size = 50 nucleotides). Reads
with ambiguous characters or shorter than 250 nucleo-
tides after trimming were removed. Finally, trimmed reads
were aligned against a custom database of 16S rRNA
sequences using blastn (ncbi-blast-2.2.29+) with default
parameters. The blastn database was built using full-
length 16S rRNA sequences of the GnotoComplex strains,
which were extracted from genome reference sequences
in National Center for Biotechnology Information (NCBI;
http://www.ncbi.nlm.nih.gov/) or downloaded nucleotide
sequences from NCBI for cases in which reference se-
quences were not available. After the alignment, sequen-
cing reads were assigned to species using the criteria: best
hit with identity ≥99 %, alignment length ≥250 nucleo-
tides, no gaps, mismatches ≤2 nucleotides, and all bases
aligned within the V4 hypervariable of the database se-
quences. To identify the V4 hypervariable region for the
species in the defined community, the full-length 16S
rRNA sequences were aligned against the Silva database
[54] of the V4 region using nhmmer [55].

Quantification of bacterial biomass via qPCR
The universal 16S rRNA qPCR primer (16S-F1048, GTG
STG CAY GGY TGT CGT CA; 16S-R1175, ACG TCR

TCC MCA CCT TCC TC) was used. The reaction mix-
ture for the SYBR Green assay contained 2U SYBR
Green PCR Master Mix (PE Applied Biosystems), 20
pmol of forward and reverse primer and 8 μl of 1:100 di-
luted extracted DNA. The qPCRs were run on a Bio Rad
CFX96 Real time PCR system under standard thermal-
cycling conditions, consisting of an initial 10 min of
denaturation at 95 °C, followed by 39 cycles of 15 s of
denaturation at 95 °C and 60 °C for 60 s of annealing/
extension. To quantify bacterial biomass, standard curves
were prepared using genomic DNA purified from germ-
free mouse stool spiked with serial tenfold dilutions of
quantified Escherichia coli.

Probiotic stability experiments in gnotobiotic mice
Bacterial cultures and gnotobiotic experiments
Germ-free IQI mice were purchased from Sankyo Labora-
tories, Japan and maintained in germ-free vinyl isolators
in the animal facility of RIKEN. Thirteen Treg-inducing
Clostridia strains (strains 1, 3, 8, 18 were omitted from the
previously reported VE202 cocktail consisting of 17 Treg-
inducing strains [24]) were individually cultured in modi-
fied Eggerth Gagnon (EG) broth under strictly anaerobic
conditions (80 % N2, 10 % H2, 10 % CO2) at 37 °C in an
anaerobic chamber (Coy Laboratory Products) to conflu-
ence. The cultured bacterial strains were then mixed at
equal amounts of media volume and the mixture of 13
strains were orally inoculated into seven IQI germ-free
adult mice. Five of the mice were fed with a gamma ray-
sterilized high-fiber diet (CMF chow, Oriental Yeast
Japan) for 5 weeks, then switched to a low-fiber diet
(AIN93G-fomula diet, Oriental Yeast Japan) for 2 weeks,
and returned to and maintained on the CMF high-fiber
diet for 2 weeks. Two of the mice were maintained on the
high-fiber diet for 5 weeks and were not switched to the
low-fiber diet. Fecal samples were collected daily or every
other day. Fecal pellets were collected at days 1–21 (daily),
23, 25, 27, 29, 31, 33, 35–60 (daily), 62, 63, and 65 for the
five mice receiving the dietary perturbation and at days 1–
21 (daily), 23, 25, 27, and 29 for the two mice not receiv-
ing the perturbation.

Quantification of bacterial concentrations via qPCR
Bacterial genomic DNA was extracted from 1–2 fecal
pellets using QIAamp DNA Stool Mini Kit (Qiagen).
The amount of DNA was quantified using a Qubit
dsDNA HS assay kit and Qubit fluorometer (Invitrogen).
DNA was then subjected to qPCR using Thunderbird
SYBR qPCR Mix (TOYOBO) and a LightCycler 480
(Roche) with primers specific to 16S rRNA genes of the
13 Clostridia strains (see Additional file 1: Table S4).
Quantification of each strain in each sample was accom-
plished using standard curves of known concentrations
of DNAs purified from each strain individually cultured
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in vitro. Strain densities in each sample were calculated
by dividing the above absolute quantification numbers
by the weight of the extracted fecal DNA.

Additional files

Additional file 1: Tables S1–4. Supplemental tables. (DOCX 21 kb)

Additional file 2: Supplemental methods. (PDF 372 kb)

Additional file 3: Figure S1. Performance of the MDSINE inference
algorithms on simulated data with different sequencing depths.
Simulations assumed an underlying dynamical systems model with ten
species observed over 30 days with 27 time points sampled and an
invading species at day 10. Performance of the four MDSINE inference
algorithms, maximum likelihood ridge regression (MLRR), maximum
likelihood constrained ridge regression (MLCRR), Bayesian adaptive lasso
(BAL), and Bayesian variable selection (BVS), were compared. Algorithm
performance was assessed using four different metrics: (a) root mean-
square error (RMSE) for microbial growth rates; (b) RMSE for microbial
interaction parameters; (c) RMSE for prediction of microbe trajectories on
held-out subjects given only initial microbe concentrations for the held-
out subject; and (d) area under the receiver operator curve (AUC ROC) for
the underlying microbial interaction network. Lower RMSE values indicate
superior performance, whereas higher AUC ROC values indicate superior
performance. (PDF 182 kb)

Additional file 4: Figure S2. Experimental design for Clostridium difficile
infection studies in gnotobiotic mice. Five adult germfree mice were
gavaged with 23 human commensal bacterial type strains, chosen to
capitulate the phylogenetic diversity and key physiologic capabilities of a
native gut flora (see “Methods” for details). After allowing 28 days for the
commensal flora to establish, mice were gavaged with C. difficile spores
and monitored for an additional 28 days. Fecal pellets were collected at
days 0.75, 1, 2, 3, 4, 6, 8, 10, 14, 17, 21, 24, and 28 of the initial
colonization and at days 0.75, 1, 2, 3, 4, 6, 8, 10, 14, 17, 21, 24, and 28
post-infection with C. difficile. Fecal samples were interrogated via high-
throughput 16S rRNA sequencing to determine abundances of species
and 16S rRNA qPCR using universal primers to estimate the total bacterial
biomass present. After bioinformatics processing (see “Methods”), 13
strains were found to be consistently detectable in pre-infection stool
samples. (PDF 87 kb)

Additional file 5: Figure S3. Experimental design for probiotic stability
studies in gnotobiotic mice. Seven adult germ-free mice were gavaged
with 13 Clostridia strains from the VE202 probiotic cocktail [24]. Five mice
were maintained on a standard high-fiber diet for 5 weeks, after which
mice were switched to a low-fiber diet for 2 weeks and then switched
back to the high-fiber diet for another 2 weeks; an additional two mice
were inoculated with the same strains but were not subjected to the
low-fiber dietary perturbation. Fecal pellets were collected at days 1–21
(daily), 23, 25, 27, 29, 31, 33, 35–60 (daily), 62, 63, and 65 for the five
mice receiving the low-fiber dietary perturbation and at days 1–21
(daily), 23, 25, 27, and 29 for the two mice not receiving the perturbation.
(PDF 42 kb)

Additional file 6: Figure S4. Forecasts of microbial concentration
trajectories for the gnotobiotic mice probiotic stability experiments.
The forecasts were obtained using a hold-one-subject-out procedure.
Briefly, MDSINE was run on all data from all but one of the mice (the held-
out subject) and model parameters were inferred. Using the inferred
model parameters (including for the perturbation) and the measured
concentrations of the microbiota at an initial time point for the held-
out mouse, the trajectories of the microbiota for the held-out mouse
were then forecast for all the remaining time points; the procedure was
repeated for each mouse in turn. Solid lines denote predicted trajectories
and symbols denote actual data. (PDF 7552 kb)

Additional file 7: Figure S5. Predicted stability and steady state
concentrations (log10 ng strain DNA/μg total fecal DNA) for all
combinations of the 13 Clostridia strains in mice fed either high-fiber
(standard) or low-fiber diets in the probiotic stability experiment. Columns
and rows were ordered using hierarchical clustering using Euclidean

distance with Ward linkage. No significant differences were found in the
predicted stable biodiversity profiles between the high-fiber and low-
fiber dietary regimes (number of strains across all predicted stable states
was not significantly different; Wilcoxon rank sum test p value = 0.096).
(PDF 4845 kb)

Additional file 8: Figure S6. Directed microbe–microbe and microbe–
perturbation effect network for the gnotobiotic mice probiotic stability
experiment. Edge thickness denotes the magnitude of the evidence
favoring presence of the interaction (Bayes factor). Only edges with
strong evidence (Bayes factor ≥10) are displayed. (PDF 230 kb)
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