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Abstract

Ancient DNA makes it possible to directly witness natural selection by analyzing samples from 

populations before, during and after adaptation events. Here we report the first scan for selection 

using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West 

Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The 

new samples include the first genome-wide data from the Anatolian Neolithic culture whose 

genetic material we extracted from the DNA-rich petrous bone and who we show were members 

of the population that was the source of Europe’s first farmers. We also report a complete transect 

of the steppe region in Samara between 5500 and 1200 BCE that allows us to recognize admixture 

from at least two external sources into steppe populations during this period. We detect selection at 

loci associated with diet, pigmentation and immunity, and two independent episodes of selection 

on height.

 Introduction

The arrival of farming in Europe around 8,500 years ago necessitated adaptation to new 

environments, pathogens, diets, and social organizations. While indirect evidence of this 

adaptation can be detected in patterns of genetic variation in present-day people1, these 

patterns are only echoes of past events, which are difficult to date and interpret, and are often 

confounded by neutral processes. Ancient DNA provides a more direct view, and should be a 

transformative technology for studies of selection just as it has transformed studies of 

history. Until now, however, the large sample sizes required to detect selection have meant 

that ancient DNA studies have concentrated on characterizing effects at parts of the genome 

already believed to have been affected by selection2–5.
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 Genome-wide ancient DNA from West Eurasia

We assembled genome-wide data from 230 ancient individuals who lived in West Eurasia 

from 6500 to 1000 BCE (Fig. 1a, Extended Data Table 1, Supplementary Data Table 1, 

Supplementary Information section 1). To obtain this dataset, we combined published data 

from 67 samples from relevant periods and cultures4–6, with 163 samples for which we 

report new data, of which 83 have never previously been analyzed (the remaining 80 

samples include 67 whose targeted single nucleotide polymorphism (SNP) coverage we 

triple from 390k to 1240k7; and 13 with shotgun data whose data quality we increase using 

our enrichment strategy3,8). The 163 samples for which we report new data are drawn from 

270 distinct individuals who we screened for evidence of authentic DNA7. We used in-

solution hybridization with synthesized oligonucleotide probes to enrich promising libraries 

for more than 1.2 million SNPs (“1240k capture”, Methods). The targeted sites include 

nearly all SNPs on the Affymetrix Human Origins and Illumina 610-Quad arrays, 49,711 

SNPs on chromosome X and 32,681 on chromosome Y, and 47,384 SNPs with evidence of 

functional importance. We merged libraries from the same individual and filtered out 

samples with low coverage or evidence of contamination to obtain the final set of 

individuals. The advantage of 1240k capture is that it gives access to genome-wide data 

from ancient samples with small fractions of human DNA and increases efficiency by 

targeting sites in the human genome that will actually be analyzed. The effectiveness of the 

approach can be seen by comparing our results to the largest previously published ancient 

DNA study, which used a shotgun sequencing strategy5. Our median coverage on analyzed 

SNPs is ~4-times higher even while the mean number of reads generated per sample is 36-

times lower (Extended Data Fig. 1).

 Insight into population transformations

To learn about the history of archaeological cultures for which genome-wide data is reported 

for the first time here, we studied either 1,055,209 autosomal SNPs when analyzing 230 

ancient individuals alone, or 592,169 SNPs when co-analyzing them with 2,345 present-day 

individuals genotyped on the Human Origins array4. We removed 13 samples either as 

outliers in ancestry relative to others of the same archaeologically determined culture, or 

first-degree relatives (Supplementary Data Table 1).

Our sample of 26 Anatolian Neolithic individuals represents the first genome-wide ancient 

DNA data from the eastern Mediterranean. Our success at analyzing such a large number of 

samples is likely due to the fact that at the Barcın site–the source of 21 of the working 

samples–we sampled from the cochlea of the petrous bone9, which has been shown to 

increase the amount of DNA obtained by up to two orders of magnitude relative to teeth (the 

next-most-promising tissue)3. Principal component (PCA) and ADMIXTURE10 analysis, 

shows that the Anatolian Neolithic samples do not resemble any present-day Near Eastern 

populations but are shifted towards Europe, clustering with Neolithic European farmers 

(EEF) from Germany, Hungary, and Spain7 (Fig. 1b, Extended Data Fig. 2). Further 

evidence that the Anatolian Neolithic and EEF were related comes from the high frequency 

(47%; n=15) of Y-chromosome haplogroup G2a typical of ancient EEF samples7 

(Supplementary Data Table 1), and the low fixation index (FST; 0.005–0.016) between 
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Neolithic Anatolians and EEF (Supplementary Data Table 2). These results support the 

hypothesis7 of a common ancestral population of EEF prior to their dispersal along distinct 

inland/central European and coastal/Mediterranean routes. The EEF are slightly more shifted 

to Europe in the PCA than are the Anatolian Neolithic (Fig. 1b) and have significantly more 

admixture from Western hunter-gatherers (WHG), shown by f4-statistics (|Z|>6 standard 

errors from 0) and negative f3-statistics (|Z|>4)11 (Extended Data Table 2). We estimate that 

the EEF have 7–11% more WHG admixture than their Anatolian relatives (Extended Data 

Fig. 2, Supplementary Information section 2).

The Iberian Chalcolithic individuals from El Mirador cave are genetically similar to the 

Middle Neolithic Iberians who preceded them (Fig. 1b; Extended Data Fig. 2), and have 

more WHG ancestry than their Early Neolithic predecessors7 (|Z|>10) (Extended Data Table 

2). However, they do not have a significantly different proportion of WHG ancestry (we 

estimate 23–28%) than the Middle Neolithic Iberians (Extended Data Fig. 2). Chalcolithic 

Iberians have no evidence of steppe ancestry (Fig. 1b, Extended Data Fig. 2), in contrast to 

central Europeans of the same period5,7. Thus, the “Ancient North Eurasian”-related 

ancestry that is ubiquitous across present-day Europe4,7 arrived in Iberia later than in Central 

Europe (Supplementary Information section 2).

To understand population transformations in the Eurasian steppe, we analyzed a time 

transect of 37 samples from the Samara region spanning ~5600-300 BCE and including the 

Eastern Hunter-gatherer (EHG), Eneolithic, Yamnaya, Poltavka, Potapovka and Srubnaya 

cultures. Admixture between populations of Near Eastern ancestry and the EHG7 began as 

early as the Eneolithic (5200-4000 BCE), with some individuals resembling EHG and some 

resembling Yamnaya (Fig. 1b; Extended Data Fig. 2). The Yamnaya from Samara and 

Kalmykia, the Afanasievo people from the Altai (3300-3000 BCE), and the Poltavka Middle 

Bronze Age (2900-2200 BCE) population that followed the Yamnaya in Samara, are all 

genetically homogeneous, forming a tight “Bronze Age steppe” cluster in PCA (Fig. 1b), 

sharing predominantly R1b Y-chromosomes5,7 (Supplementary Data Table 1), and having 

48–58% ancestry from an Armenian-like Near Eastern source (Extended Data Table 2) 

without additional Anatolian Neolithic or Early European Farmer (EEF) ancestry7 

(Extended Data Fig. 2). After the Poltavka period, population change occurred in Samara: 

the Late Bronze Age Srubnaya have ~17% Anatolian Neolithic or EEF ancestry (Extended 

Data Fig. 2). Previous work documented that such ancestry appeared east of the Urals 

beginning at least by the time of the Sintashta culture, and suggested that it reflected an 

eastward migration from the Corded Ware peoples of central Europe5. However, the fact that 

the Srubnaya also harbored such ancestry indicates that the Anatolian Neolithic or EEF 

ancestry could have come into the steppe from a more eastern source. Further evidence that 

migrations originating as far west as central Europe may not have had an important impact 

on the Late Bronze Age steppe comes from the fact that the Srubnaya possess exclusively 

(n=6) R1a Y-chromosomes (Supplementary Data Table 1), and four of them (and one 

Poltavka male) belonged to haplogroup R1a-Z93 which is common in central/south 

Asians12, very rare in present-day Europeans, and absent in all ancient central Europeans 

studied to date.
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 Twelve signals of selection

To study selection, we created a dataset of 1,084,781 autosomal SNPs in 617 samples by 

merging 213 ancient samples with genome-wide sequencing data from four populations of 

European ancestry from the 1,000 Genomes Project13. Most present-day Europeans can be 

modeled as a mixture of three ancient populations related to Mesolithic hunter-gatherers 

(WHG), early farmers (EEF) and steppe pastoralists (Yamnaya)4,7, and so to scan for 

selection, we divided our samples into three groups based on which of these populations 

they clustered with most closely (Fig. 1b, Extended Data Table 1). We estimated mixture 

proportions for the present-day European ancestry populations and tested every SNP to 

evaluate whether its present-day frequencies were consistent with this model. We corrected 

for test statistic inflation by applying a genomic control correction analogous to that used to 

correct for population structure in genome-wide association studies14. Of ~1 million non-

monomorphic autosomal SNPs, the ~50,000 in the set of potentially functional SNPs were 

significantly more inconsistent with the model than neutral SNPs (Fig. 2), suggesting 

pervasive selection on polymorphisms of functional importance. Using a conservative 

significance threshold of p=5.0×10−8, and a genomic control correction of 1.38, we 

identified 12 loci that contained at least three SNPs achieving genome-wide significance 

within 1 Mb of the most associated SNP (Fig. 2, Extended Data Table 3, Extended Data Fig. 

3, Supplementary Data Table 3).

The strongest signal of selection is at the SNP (rs4988235) responsible for lactase 

persistence in Europe15,16. Our data (Fig. 3) strengthens previous reports that an appreciable 

frequency of lactase persistence in Europe only dates to the last four thousand years3,5,17. 

The allele’s earliest appearance in our data is in a central European Bell Beaker sample 

(individual I0112) that lived between approximately 2300 and 2200 BCE. Two other 

independent signals related to diet are located on chromosome 11 near FADS1 and DHCR7. 
FADS1 and FADS2 are involved in fatty acid metabolism, and variation at this locus is 

associated with plasma lipid and fatty acid concentration18. The selected allele of the most 

significant SNP (rs174546) is associated with decreased triglyceride levels18. This locus has 

experienced independent selection in non-European populations13,19,20 and is likely to be a 

critical component of adaptation to different diets. Variants at DHCR7 and NADSYN1 are 

associated with circulating vitamin D levels21 and the most associated SNP in our analysis, 

rs7940244, is highly differentiated across closely related Northern European 

populations22,23, suggesting selection related to variation in dietary or environmental 

sources of vitamin D.

Two signals have a potential link to celiac disease. One occurs at the ergothioneine 

transporter SLC22A4 that is hypothesized to have experienced a selective sweep to protect 

against ergothioneine deficiency in agricultural diets24. Common variants at this locus are 

associated with increased risk for ulcerative colitis, celiac disease, and irritable bowel 

disease and may have hitchhiked to high frequency as a result of this sweep24–26. However 

the specific variant (rs1050152, L503F) that was thought to be the target did not reach high 

frequency until relatively recently (Extended Data Fig. 4). The signal at ATXN2/SH2B3–

also associated with celiac disease25–shows a similar pattern (Extended Data Fig. 4).
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The second strongest signal in our analysis is at the derived allele of rs16891982 in 

SLC45A2, which contributes to light skin pigmentation and is almost fixed in present-day 

Europeans but occurred at much lower frequency in ancient populations. In contrast, the 

derived allele of SLC24A5 that is the other major determinant of light skin pigmentation in 

modern Europe appears fixed in the Anatolian Neolithic, suggesting that its rapid increase in 

frequency to around 0.9 in Early Neolithic Europe was mostly due to migration (Extended 

Data Fig. 4). Another pigmentation signal is at GRM5, where SNPs are associated with 

pigmentation possibly through a regulatory effect on nearby TYR27. We also find evidence 

of selection for the derived allele of rs12913832 at HERC2/OCA2, which appears to be 

fixed in Mesolithic hunter-gatherers, and is the primary determinant of blue eye color in 

present-day Europeans28,29. In contrast to the other loci, the range of frequencies in modern 

populations is within that of ancient populations (Fig. 3). The frequency increases with 

higher latitude, suggesting a complex pattern of environmental selection.

The TLR1-TLR6-TLR10 gene cluster is a known target of selection in Europe, possibly 

related to resistance to leprosy, tuberculosis or other mycobacteria30–32. There is also a 

strong signal of selection at the major histocompatibility complex (MHC) on chromosome 6. 

The strongest signal is at rs2269424 near the genes PPT2 and EGFL8 but there are at least 

six other apparently independent signals in the MHC (Extended Data Fig. 3); and the entire 

region is significantly more associated than the genome-wide average (residual inflation of 

2.07 in the region on chromosome 6 between 29–34 Mb after genome-wide genomic control 

correction). This could be the result of multiple sweeps, balancing selection, or increased 

drift due to background selection reducing effective population size in this gene-rich region.

We find a surprise in six Scandinavian hunter-gatherers (SHG) from the Motala site in 

southern Sweden. In three out of six samples, we observe the haplotype carrying the derived 

allele of rs3827760 in the EDAR gene (Extended Data Fig. 5), which affects tooth 

morphology and hair thickness33,34, has been the subject of a selective sweep in East Asia35, 

and today is at high frequency in East Asians and Native Americans. The EDAR derived 

allele is largely absent in present-day Europe except in Scandinavia, plausibly due to 

Siberian movements into the region millennia after the date of the Motala samples. The SHG 

have no evidence of East Asian ancestry4,7, suggesting that the EDAR derived allele may not 

have originated not in East Asians as previously suggested35. A second surprise is that, 

unlike closely related western hunter-gatherers, the Motala samples have predominantly 

derived pigmentation alleles at SLC45A2 and SLC24A5.

 Evidence of selection on height

We also tested for selection on complex traits. The best-documented example of this process 

in humans is height, for which the differences between Northern and Southern Europe have 

driven by selection36. To test for this signal in our data, we used a statistic that tests whether 

trait-affecting alleles are both highly correlated and more differentiated, compared to 

randomly sampled alleles37. We predicted genetic heights for each population and applied 

the test to all populations together, as well as to pairs of populations (Fig. 4). Using 180 

height-associated SNPs38 (restricted to 169 where we successfully targeted at least two 

chromosomes in each population), we detect a significant signal of directional selection on 
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height (p=0.002). Applying this to pairs of populations allows us to detect two independent 

signals. First, the Iberian Neolithic and Chalcolithic samples show selection for reduced 

height relative to both the Anatolian Neolithic (p=0.042) and the Central European Early and 

Middle Neolithic (p=0.003). Second, we detect a signal for increased height in the steppe 

populations (p=0.030 relative to the Central European Early and Middle Neolithic). These 

results suggest that the modern South-North gradient in height across Europe is due to both 

increased steppe ancestry in northern populations, and selection for decreased height in 

Early Neolithic migrants to southern Europe. We did not observe any other significant 

signals of polygenetic selection in five other complex traits we tested: body mass index39 

(p=0.20), waist-to-hip ratio40 (p=0.51), type 2 diabetes41 (p=0.37), inflammatory bowel 

disease26 (p=0.17) and lipid levels18 (p=0.50).

 Future studies of selection with ancient DNA

Our results, which take advantage of the massive increase in sample size enabled by 

optimized techniques for sampling from the petrous bone as well as in-solution enrichment 

methods for targeted sets of SNPs, show how ancient DNA can be used to perform a 

genome-wide scan for selection, and demonstrate selection on loci related to pigmentation, 

diet and immunity, painting a picture of Neolithic populations adapting to settled agricultural 

life at high latitudes. For most of the signals we detect, allele frequencies of modern 

Europeans are outside the range of any ancient populations, indicating that phenotypically, 

Europeans of four thousand years ago were different in important respects from Europeans 

today despite having overall similar ancestry. An important direction for future research is to 

increase the sample size for European selection scans (Extended Data Fig. 6), and to apply 

this approach to regions beyond Europe and to nonhuman species.

 Methods

 Ancient DNA analysis

We screened 433 next generation sequencing libraries from 270 distinct samples for 

authentic ancient DNA using previously reported protocols7. All libraries that we included in 

nuclear genome analysis were treated with uracil-DNA-glycosylase (UDG) to reduce 

characteristic errors of ancient DNA42.

We performed in-solution enrichment for a targeted set of 1,237,207 SNPs using previously 

reported protocols4,7,43. The targeted SNP set merges 394,577 SNPs first reported in Ref. 7 

(390k capture), and 842,630 SNPs first reported in ref.44 (840k capture). For 67 samples for 

which we newly report data in this study, there was pre-existing 390k capture data7. For 

these samples, we only performed 840k capture and merged the resulting sequences with 

previously generated 390k data. For the remaining samples, we pooled the 390k and 840k 

reagents together to produce a single enrichment reagent. We attempted to sequence each 

enriched library up to the point where we estimated that it was economically inefficient to 

sequence further. Specifically, we iteratively sequenced more and more from each sample 

and only stopped when we estimated that the expected increase in the number of targeted 

SNPs hit at least once would be less than one for every 100 new read pairs generated. After 

sequencing, we filtered out samples with <30,000 targeted SNPs covered at least once, with 
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evidence of contamination based on mitochondrial DNA polymorphism43, an appreciable 

rate of heterozygosity on chromosome X despite being male45, or an atypical ratio of X to Y 

sequences.

Of the targeted SNPs, 47,384 are “potentially functional” sites chosen as follows (with some 

overlap): 1,290 SNPs identified as targets of selection in Europeans by the Composite of 

Multiple Signals (CMS) test1; 21,723 SNPS identified as significant hits by genome-wide 

association studies, or with known phenotypic effect (GWAS); 1,289 SNPs with extremely 

differentiated frequencies between HapMap populations46 (HiDiff); 9,116 immunochip 

SNPs chosen for study of immune phenotypes (Immune); 347 SNPs phenotypically relevant 

to South America (mostly altitude adaptation SNPs in EGLN1 and EPAS1), 5,387 SNPs 

which tag HLA haplotypes and 13,672 expression quantitative trait loci47 (eQTL).

 Population history analysis

We used two datasets for population history analysis. “HO” consists of 592,169 SNPs, 

taking the intersection of the SNP targets and the Human Origins SNP array4; we used this 

dataset for co-analysis of present-day and ancient samples. “HOIll” consists of 1,055,209 

SNPs that additionally includes sites from the Illumina genotype array48; we used this 

dataset for analyses only involving the ancient samples.

On the HO dataset, we carried out principal components analysis in smartpca49 using a set 

of 777 West Eurasian individuals4, and projected the ancient individuals with the option 

“lsqproject: YES”. We carried out ADMIXTURE analysis on a set of 2,345 present-day 

individuals and the ancient samples after pruning for LD in PLINK 1.9 (https://www.cog-

genomics.org/plink2)50 with parameters “-indep-pairwise 200 25 0.4”. We varied the 

number of ancestral populations between K=2 and K=20, and used cross-validation (–cv) to 

identify the value of K=17 to plot in Extended Data Fig. 2f.

We used ADMIXTOOLS11 to compute f-statistics, determining standard errors with a Block 

Jackknife and default parameters. We used the option “inbreed: YES” when computing f3-

statistics of the form f3(Ancient; Ref1, Ref2) as the Ancient samples are represented by 

randomly sampled alleles rather than by diploid genotypes. For the same reason, we 

estimated FST genetic distances between populations on the HO dataset with at least two 

individuals in smartpca also using the “inbreed: YES” option.

We estimated ancestral proportions as in Supplementary Information section 9 of Ref. 7, 

using a method that fits mixture proportions on a Test population as a mixture of N 
Reference populations by using f4-statistics of the form f4(Test or Ref, O1; O2, O3) that 

exploit allele frequency correlations of the Test or Reference populations with triples of 

Outgroup populations. We used a set of 15 world outgroup populations4,7. In Extended Data 

Fig. 2, we added WHG and EHG as outgroups for those analyses in which they are not used 

as reference populations.

We determined sex by examining the ratio of aligned reads to the sex chromosomes51. We 

assigned Y-chromosome haplogroups to males using version 9.1.129 of the nomenclature of 

the International Society of Genetic Genealogy (www.isogg.org), restricting analysis using 
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samtools52 to sites with map quality and base quality of at least 30, and excluding 2 bases at 

the ends of each sequenced fragment.

 Genome-wide scan for selection

For most ancient samples, we did not have sufficient coverage to make reliable diploid calls. 

We therefore used the counts of sequences covering each SNP to compute the likelihood of 

the allele frequency in each population. Suppose that at a particular site, for each population 

we have M samples with sequence level data, and N samples for which we had hard 

genotype calls (Loschbour, Stuttgart and the 1,000 Genomes samples). For samples i=1..N, 

with genotype data, we observe X copies of the reference allele out of 2N total 

chromosomes. For each of samples i=(N+1)…(N+M), with sequence level data, we observe 

Ri sequences with the reference allele out of Ti total sequences. Then, dropping the subscript 

i for brevity, the likelihood of the population reference allele frequency, p given data 

 is given by

where  is the binomial probability distribution and  is a 

small probability of error, which we set to 0.001. We write  for the log-likelihood. To 

estimate allele frequencies, for example in Fig. 3 or for the polygenic selection test, we 

maximized this likelihood numerically for each population.

To scan for selection across the genome, we used the following test. Consider a single SNP. 

Assume that we can model the allele frequencies pmod in A modern populations as a linear 

combination of allele frequencies in B ancient populations panc. That is, pmod=C panc, where 

C is an A by B matrix with rows summing to 1. We have data Dj from population  which is 

some combination of sequence counts and genotypes as described above. Then, writing 

 the log-likelihood of the allele frequencies equals the sum of 

the log-likelihoods for each population.

To detect deviations in allele frequency from expectation, we test the null hypothesis H0 : 

pmod = C panc against the alternative H1 : pmod unconstrainedWe numerically maximize this 

likelihood in both the constrained and unconstrained model and use the fact that twice the 

difference in log-likelihood is approximately  distributed to compute a test statistic and P-

value.

We defined the ancient source populations by the “Selection group 1” label in Extended 

Data Table 1 and Supplementary Table 1 and used the 1000 Genomes CEU, GBR, IBS and 
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TSI as the present-day populations. We removed SNPs that were monomorphic in all four of 

these modern populations as well as in 1000 Genomes Yoruba (YRI). We do not use FIN as 

one of the modern populations, because they do not fit this three-population model well. We 

estimate the proportions of (HG, EF, SA) to be CEU=(0.196, 0.257, 0.547), 

GBR=(0.362,0.229,0.409), IBS= (0, 0.686, 0.314) and TSI=(0, 0.645, 0.355). In practice we 

found that there was substantial inflation in the test statistic, most likely due to unmodeled 

ancestry or additional drift. To address this, we applied a genomic control correction14, 

dividing all the test statistics by a constant, λ, chosen so that the median p-value matched the 

median of the null  distribution. Excluding sites in the potentially functional set, we 

estimated λ=1.38 and used this value as a correction throughout. One limitation of this test is 

that, although it identifies likely signals of selection, it cannot provide much information 

about the strength or date of selection. If the ancestral populations in the model are, in fact, 

close to the real ancestral populations, then any selection must have occurred after the first 

admixture event (in this case, after 6500 BCE), but if the ancestral populations are mis-

specified, even this might not be true.

To estimate power, we randomly sampled allele counts from the full dataset, restricting to 

polymorphic sites with a mean frequency across all populations of <0.1. We then simulated 

what would happen if the allele had been under selection in all of the modern populations by 

simulating a Wright-Fisher trajectory with selection for 50, 100 or 200 generations, starting 

at the observed frequency. We took the final frequency from this simulation, sampled 

observations to replace the actual observations in that population, and counted the proportion 

of simulations that gave a genome-wide significant result after GC correction (Extended 

Data Fig. 6a). We resampled sequence counts for the observed distribution for each 

population to simulate the effect of increasing sample size, assuming that the coverage and 

distribution of the sequences remained the same (Extended Data Fig. 6b).

We investigated how the genomic control correction responded when we simulated small 

amounts of admixture from a highly diverged population (Yoruba; 1000 Genomes YRI) into 

a randomly chosen modern population. The genomic inflation factor increases from around 

1.38 to around 1.51 with 10% admixture, but there is little reduction in power (Extended 

Fig. 6c). Finally, we investigated how robust the test was to misspecification of the mixture 

matrix C. We reran the power simulations using a matrix  for 

where R was a random matrix chosen so that for each modern population, the mixture 

proportions of the three ancient populations were jointly normally distributed on [0,1]. 

Increasing p increases the genomic inflation factor and reduces power, demonstrating the 

advantage of explicitly modeling the ancestries of the modern populations (Extended Fig. 

6d).

 Test for polygenic selection

We implemented the test for polygenic selection described by Ref. 37. This evaluates 

whether trait-associated alleles, weighted by their effect size, are over-dispersed compared to 

randomly sampled alleles, in the directions associated with the effects measured by genome-

wide association studies (GWAS). For each trait, we obtained a list of significant SNP 

associations and effect estimates from GWAS data, and then applied the test both to all 
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populations combined and to selected pairs of populations. We restricted the list of GWAS 

associations to 169 SNPs where we observed at least two chromosomes in all tested 

populations (selection population 2). We estimated frequencies in each population by 

computing the MLE, using the likelihood described above. For each test, we sampled SNPs 

frequency matched in 20 bins, computed the test statistic QX and for ease of comparison, 

converted these to Z scores, signed according the direction of the genetic effects. 

Theoretically QX has a χ2 distribution but in practice, it is over-dispersed. Therefore, we 

report bootstrap p-values computed by sampling 10,000 sets of frequency matched SNPs.

To estimate population-level genetic height in Fig. 4A, we assumed a uniform prior on [0,1] 

for the distribution of all height-associated alleles, and then sampled from the posterior joint 

frequency distribution of the alleles, assuming they were independent, using a Metropolis-

Hastings sampler with a N(0,0.001) proposal density. We then multiplied the sampled allele 

frequencies by the effect sizes to get a distribution of genetic height.

 Code availability

Code implementing the selection analysis is available at https://github.com/mathii/

europe_selection.

 Extended Data

Extended Data Figure 1. Efficiency and cost-effectiveness of 1240k capture
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We plot the number of raw sequences against the mean coverage of analyzed SNPs after 

removal of duplicates, comparing the 163 samples for which capture data are reported in this 

study, against the 102 samples analyzed by shotgun sequencing in ref.5 We caution that the 

true cost is more than that of sequencing alone.

Extended Data Figure 2. Early isolation and later admixture between farmers and steppe 
populations
A: Mainland European populations later than 3000 BCE are better modeled with steppe 

ancestry as a 3rd ancestral population. B: Later (post-Poltavka) steppe populations are better 

modeled with Anatolian Neolithic as a 3rd ancestral population. C: Estimated mixture 

proportions of mainland European populations without steppe ancestry. D: Estimated 

mixture proportions of Eurasian steppe populations without Anatolian Neolithic ancestry. E: 

Estimated mixture proportions of later populations with both steppe and Anatolian Neolithic 

ancestry. F: ADMIXTURE plot at k=17 showing population differences over time and 

space.
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Extended Data Figure 3. Regional association plots
Locuszoom60 plots for genome-wide significant signals. Points show the –log10 P-value for 

each SNP, colored according to their LD with the most associated SNP. The blue line shows 

the recombination rate, with scale on right hand axis. Genes are shown in the lower panel of 

each subplot.
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Extended Data Figure 4. PCA of selection populations and derived allele frequencies for genome-
wide significant signals
A: Ancient samples projected onto principal components of modern samples, as in Fig. 1, 

but labeled according to selection populations defined in Extended Data Table 1. B: Allele 

frequency plots as in Fig. 3. Six signals not included in Fig. 3 – for SLC22A4 we show both 

rs272872, which is our strongest signal, and rs1050152, which was previously hypothesized 

to be under selection – and we also show SLC24A5, which is not genome-wide significant 

but is discussed in the main text.
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Extended Data Figure 5. Motala haplotypes carrying the derived, selected EDAR allele
This figure compares the genotypes at all sites within 150kb of rs3827760 (in blue) for the 6 

Motala samples and 20 randomly chosen CHB (Chinese from Beijing) and CEU (Utah 

residents with northern and western European ancestry) samples. Each row is a sample and 

each column is a SNP. Grey means homozygous for the major (in CEU) allele. Pink denotes 

heterozygous and red homozygous for the other allele. For the Motala samples, an open 

circle means that there is only a single sequence otherwise the circle is colored according to 

the number of sequences observed. Three of the Motala samples are heterozygous for 

rs3827760 and the derived allele lies on the same haplotype background as in present-day 

East Asians. The only other ancient samples with evidence of the derived EDAR allele in 

this dataset are two Afanasievo samples dating to 3300-3000 BCE, and one Scythian dating 

to 400-200 BCE (not shown).

Extended Data Figure 6. Estimated power of the selection scan
A: Estimated power for different selection coefficients for a SNP that is selected in all 

populations for either 50, 100 or 200 generations. B: Effect of increasing sample size, 

showing estimated power for a SNP selected for 100 generations, with different amounts of 
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data, relative to the main text. C: Effect of admixture from Yoruba (YRI) into one of the 

modern populations, showing the effect on the genomic inflation factor (blue, left axis) and 

the power to detect selection on a SNP selected for 100 generations with a selection 

coefficient of 0.02. D: Effect of mis-specification of the mixture proportions. Here 0 on the 

x-axis corresponds to the proportions we used, and 1 corresponds to a random mixture 

matrix.

Extended Data Table 2

Key f-statistics used to support claims about population history.

A B C D
f4(A, B, 

C, D) Z Number of SNPs Interpretation

Anatolia_Neolithic LBK_EN WHG Chimp −0.00114 −6.8 1003751wl Early European 
Farmers had more 
WHG ancestry 
than Anatolian 
Neolithic

Anatolia_Neolithic Hungary_EN WHG Chimp −0.00212 −11.9 929553

Anatolia_Neolithic lberia_EN WHG Chimp −0.00244 −9.6 904437

lberia_EN lberia_Chalcolithic WHG Chimp −0.00311 −10.5 802471

Iberian 
Chalcolithic had 
more WHG 
ancestry than 
Iberian Early 
Neolithic

lberia_MN lberia_Chalcolithic WHG Chimp 0.00010 0.3 779905

Iberian 
Chalcolithic did 
not have more 
WHG ancestry 
than Iberian 
Middle Neolithic

EHG Samara_Eneolithic MA1 Chimp 0.00140 2.3 463388 First dilution of 
Ancient North 
Eurasian ancestry 
(prior to the 
Bronze Age 
Yamnaya culture)

EHG Yamnaya_Samara MA1 Chimp 0.00513 10.6 645211

Samara_Eneolithic Yamnaya_Samara MA1 Chimp 0.00366 7.6 482492

EHG Yamnaya_Samara Armenian Chimp −0.00191 −6.1 547370
Contribution of 
Near Eastern 
ancestry to the 
Bronze Age 
Yamnaya culture

EHG Yamnaya_Kalmykia Armenian Chimp −0.00180 −5.4 536989

Samara_Eneolithic Yamnaya_Samara Armenian Chimp −0.00100 −3.3 405599

EHG Poltavka Armenian Chimp −0.00175 −4.9 541983

Yamnaya_Samara Yamnaya_Kalmykia MA1 Chimp −0.00010 −0.3 675630 Stability of 
Ancient North 
Eurasian ancestry 
between Early 
Bronze Age 
Yamnaya from 
Kalmykia and 
Samara, and the 
Middle Bronze 
Age Poltavka

Yamnaya_Samara Poltavka MA1 Chimp −0.00014 −0.4 673726

Yamnaya_Kalmykia Poltavka MA1 Chimp 0.00012 0.3 659346

Yamnaya_Samara Srubnaya MA1 Chimp 0.00151 5.1 691149 Second dilution of 
Ancient North 
Eurasian ancestry 
(prior to the Late 
Bronze Age 
Srubnaya culture)

Yamnaya_Kalmykia Srubnaya MA1 Chimp 0.00161 4.8 676735

Poltavka Srubnaya MA1 Chimp 0.00164 4.5 674756
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A B C D
f4(A, B, 

C, D) Z Number of SNPs Interpretation

Yamnaya_Samara Srubnaya LBK_EN Chimp −0.00225 −11.4 974659 Arrival of Early 
European Farmer-
related ancestry 
prior to the Late 
Bronze Age 
Srubnaya culture. 
Statistics with 
Anatolia_Neolithic 
instead of 
LBK_EN are 
similar (Z<−8, not 
shown).

Yamnaya_Kalmykia Srubnaya LBK_EN Chimp −0.00264 −11.4 951827

Poltavka Srubnaya LBK_EN Chimp −0.00210 −9.0 948968

EHG Yamnaya_Samara Armenian LBK_EN −0.00080 −5.0 559478 Different source of 
dilution of Ancient 
North Eurasian 
ancestry prior to 
the Yamnaya 
(Near Eastern) vs. 
prior to the 
Srubnaya (Early 
European Farmer-
related)

EHG Yamnaya_Kalmykia Armenian LBK_EN −0.00086 −5.2 548882

EHG Poltavka Armenian LBK_EN −0.00069 −4.1 553996

Yamnaya_Samara Srubnaya Armenian LBK_EN 0.00138 13.1 585240

Yamnaya_Kalmykia Srubnaya Armenian LBK_EN 0.00142 11.3 574333

Poltavka Srubnaya Armenian LBK_EN 0.00134 10.7 577082

Ref1 Ref2 Test
f3(Test; 

Ref 1, 
Ref 2)

Z Number of SNPs Interpretation

WHG Anatolia_Neolithic Hungary_EN −0.00412 −6.7 548445 Early European 
farmers were 
formed by 
admixture 
between Anatolia 
Neolithic and 
WHG (the non-
significant signal 
in the lberian_EN 
may be due to 
genetic drift 
specific to this 
population)

WHG Anatolia_Neolithic LBK_EN −0.00257 −4.6 654357

WHG Anatolia_Neolithic lberia_EN 0.00179 1.4 389101

EHG Armenian Poltavka −0.00539 −3.9 213055 Early and Middle 
Bronze Age 
steppe 
pastoralists were 
formed by 
admixture 
between EHG 
and a population 
of Near Eastern 
ancestry

EHG Armenian Yamnaya_Kalmykia −0.00537 −4.2 213996

EHG Armenian Yamnaya_Samara −0.00586 −6.2 276568

LBK_EN Yamnaya_Samara Srubnaya −0.00630 −11.2 584111

Srubnaya was 
formed by 
admixture 
between 
populations 
related to 
Yamnaya and 
Early European 
Farmers

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Population relationships of samples
A. Locations color-coded by date, with a random jitter added for visibility (8 Afanasievo and 

Andronovo samples lie further east and are not shown). B: Principal component analysis of 

777 modern West Eurasian samples (grey), with 221 ancient samples projected onto the first 

two principal component axes and labeled by culture. Abbreviations: [E/M/L]N Early/

Middle/Late Neolithic, LBK Linearbandkeramik, [E/W]HG Eastern/Western hunter-

gatherer, [E]BA [Early] Bronze Age, IA Iron Age.
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Figure 2. Genome-wide scan for selection
GC-corrected −log10 p-value for each marker (Methods). The red dashed line represents a 

genome-wide significance level of 0.5×10−8. Genome-wide significant points filtered 

because there were fewer than two other genome-wide significant points within 1Mb are 

shown in grey. Inset: QQ plots for corrected −log10 P-values for different categories of 

potentially functional SNPs (Methods). Truncated at −log10(P-value)=30. All curves are 

significantly different from neutral expectation.
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Figure 3. Allele frequencies for five genome-wide significant signals of selection
Dots and solid lines show maximum likelihood frequency estimates and a 1.9-log-likelihood 

support interval for the derived allele frequency in each ancient population. Horizontal 

dashed lines show allele frequencies in the four modern 1000 Genomes populations. 

Abbreviations for ancient populations; AEN: Anatolian Neolithic; HG: hunter-gatherer; 

CEM: Central European Early and Middle Neolithic; INC: Iberian Neolithic and 

Chalcolithic; CLB: Central European Late Neolithic and Bronze Age; STP: Steppe. The 

Hunter-Gatherer, Early Farmer and Steppe Ancestry classifications correspond 

approximately to the three populations used in the genome-wide scan with some differences 

(See Extended Data Table 1 for details).
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Figure 4. Polygenic selection on height
A. Estimated genetic heights. Boxes show 0.05–0.95 posterior densities for population mean 

genetic height (Methods). Dots show the maximum likelihood point estimate. Arrows show 

major population relationships, dashed lines represent ancestral populations. V’s show 

potential independent selection events. B: Z scores for the pairwise polygenic selection test. 

Positive if the column population is taller than the row population. Abbreviations; AN: 

Anatolian Neolithic; HG: hunter-gatherer; CEM: Central European Early and Middle 

Neolithic; INC: Iberian Neolithic and Chalcolithic; CLB: Central European Late Neolithic 

and Bronze Age; STP: Steppe; CEU: Utah residents with northern and western European 

ancestry; IBS: Iberian population in Spain.
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