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Abstract

Background: Complex diseases may have multiple pathways leading to disease. E.g. coronary artery disease evolves
from arterial damage to their epithelial layers, but has multiple causal pathways. More challenging, those pathways are
highly correlated within metabolic syndrome. The challenge is to identify specific clusters of phenotype characteristics
(composite phenotypes) that may reflect these different etiologies. Further, GWAS seeking to identify SNPs satisfying
multiple composite phenotype descriptions allows for lower false positive rates at lower α thresholds, allowing for the
possibility of reducing false negatives. This may provide a window into the missing heritability problem.

Methods: We identify significant phenotype patterns, and identify fuzzy redescriptions among those patterns using
Jaccard distances. Further, we construct Vietoris-Rips complexes from the Jaccard distances and compute the
persistent homology associated with those. The patterns comprising these topological features are identified as
composite phenotpyes, whose genetic associations are explored with logistic regression applied to pathways and to
GWAS.

Results: We identified several phenotypes that tended to be dominated by metabolic syndrome descriptions, and
which were distinct among the combinations of metabolic syndrome conditions. Among SNPs marking the RAAS
complex, various SNPs associated specifically with different groups of composite phenotypes, as well as distinguishing
between the composite phenotypes and simple phenotypes. Each of these showed different genetic associations,
namely rs6693954, rs762551, rs1378942, and rs1133323. GWAS identified SNPs that associated with composite
phenotypes included rs12365545, rs6847235, and rs701319. Eighteen GWAS identified SNPs appeared in
combinations supported in composite combinations with greater power than for any individual phenotype.

Conclusions: We do find systematic associations among metabolic syndrome variates that show distinctive genetic
association profiles. Further, the systematic characterization involves composite phenotype descriptions that allow for
combined power of individual phenotype GWAS tests, yielding more significance for lower individual thresholds,
permitting the exploration of SNPs that would otherwise show as false negatives.
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Background
Coronary artery disease (CAD) is a multifactorial disease
with inherited and behavioral components. Disease pro-
gression starts with any of a diverse set of injuries to
arterial epithelial layers, which may take years to develop.
These pathways lead to distinctive patterns of damage,
e.g. with diabetes damage distinct in character from focal
plaques associated with cholesterol. CAD risk factors
cluster in highly correlated conditions called metabolic
syndrome with distinct etiologies and pathways. Yet, the
odds ratio associated with a pathway producing CAD
is identical to the odds ratio that CAD was caused by
that specific pathway, leading to diluted signals. Genome
Wide Association Studies (GWASs) promised to reveal
which Single Nucleotide Polymorphisms (SNPs) are clear
causes of CAD and other diseases. Yet, identified SNPs
only account for around 10% of CAD, leaving 90% of the
heritability component unexplained [1–3]. One possible
gap is the rather large possibility of false negatives given
the high threshold excluding false positives in genome-
wide surveys. Also, to isolate SNPs specific to a condition,
genome-wide logistic regressions explicitly subtract the
effects of other risk factors by including “adjustments”.
Therefore, isolating genetic impact specific to CAD
excludes the genetics of pathway-induced pathogenic
etiology.
In this study, we sought associations connecting groups

of phenotypic descriptions together against which we
sought genome wide associations [4]. We identified sig-
nificant phenotypic associations using pattern discovery
to select combinations of factors appearing more or less
often than expected by chance [5, 6]. Logistic regressions
applied to such patterns then yield significant associa-
tions.
Pathwaymechanisms create associations such that some

phenotype condition A implies the presence of condition
B, or A ⇒ B, and therefore also that A = A ∧ B. There-
fore, the list of subjects S(A) associated with condition
A will be the same as the list S(A ∧ B) = S(A) ∩ S(B).
Therefore, the list of subjects S(A) associated with condi-
tion A will be the same as the list S(A∧ B) = S(A) ∩ S(B).
This implies two important points. First, it is important
to identify patterns. Second, given patterns, we want to
identify patterns that apply to the same sets of subjects,
e.g. that satisfy S(A ∧ B) = S(A). Further, patterns with
meaningful content are those for which P(A|B) �= P(A),
which may be distinguished from chance by application
of a statistical test, such as a binomial test of P(A ∧
B) �= P(A)P(B). If the sample space does not resolve
these features with sufficient power to distinguish from
random sampling variation, associations between A ∧ B
and other patterns that might be revealed by clustering
are not likely to be meaningful. It would be expected that
any pattern that is significant will also reveal significant

contributions in more detailed analyses such as logistic
regression, or information-based tests to identify asso-
ciations where Simpson’s Pardox may be present [7], or
other tests to clarify the content of these composite pat-
terns. Secondly, those associations are also characterized
by uncertainty in sampling, misclassification errors, and
variability in the physiological progression of disease. This
implies that the equality must be interpreted in a sense
that allows for statistical variation. Therefore, we sought
clusters of patterns identified by the same sets of subjects
measured by Jaccard distances within a threshold typical
of the variability expected for odds ratios describing the
patterns. Such clusters represent the same groups of sub-
jects that can be identified by any of a number of different
patterns, or “fuzzy redescriptions”, [8] reflecting under-
lying pathway-specific etiology. As such, the patterns
each become multicomponent phenotypes suitable for a
genome-wide p-value threshold = 6.338 × 10−7.
In the search for SNPs that may be relevant to spe-

cific pathways, these compound statements of phenotypes
provide two benefits. First, they offer greater specificity
identifying subgroups of subjects that are distinct from
other subgroups. It is important to emphesize that while
these subgroups are distinct, they may share some sub-
jects in common with other subgroups characterized by
other groups of subjects. If these patterns identify path-
ways, then we should be able to identify greater power for
some SNPs being identified with these compound phe-
notypes. Second, since these compound phenotypes, and
each pattern in the cluster, provides multiple tests for
each SNP, the chances that a GWAS SNP would emerge
by random sampling variation for these multiple tests is
greatly reduced. Essentially, the threshold is equivalent to
the product of the thresholds α for each of the individ-
ual tests. This reduces the level of threshold required to
exclude false positivies for each individual phenotype test,
which implies that those candidate SNPs excluded as false
negatives for a single phenotype GWAS test with Bonefer-
roni correction have a chance to be reconsidered multiple
times at lower thresholds.
The structure of these clusters was further explored

using computational topological analysis [9], seeking to
identify Vietoris-Rips complexes, where the patterns are
vertices, the Jaccard distances provide the filtration, and
the lifetimes of the generators of interest are within the
Jaccard threshold, employing JavaPlex [10] to compute
annotated persistent homologies. The generator com-
plexes are also candidate phenotypes.
We applied logistic regression to SNPs drawn from the

RAAS complex, as well as GWAS predicting these com-
posite phenotypes. We also identified SNPs individually
predicting all conditions comprising composite pheno-
types, requiring the joint significance to be genome wide.
This greatly increases sensitivity, reducing the threshold



Platt et al. BMC Systems Biology 2016, 10(Suppl 1):10 Page 109 of 119

excluding false negatives, but at the cost of requiring
significance of for multiple factors.

Results and discussion
Figure 1 shows a two-way biclustering of the binary
coded thresholded clinical variables, and a rainbow coded
plot (red smallest, blue largest) of Euclidean distances
between enrollees based on the binary coded clinical val-
ues without scaling. Given the relatively strong association
between clinical risk factors among metabolic syndrome
patients, and that enrollees were all in a group for which
an invasive coronary catheterization was deemed appro-
priate by physicians and therefore likely shared metabolic
syndrome risk factors, it is notable that so many local-
ized blocks of patients share features (larger red squares
on the diagonal), but only moderate to low similarity
connect blocks off-diagonal. The grey two-way cluster
plot gives more of a sense of how the enrollees’ vari-
ables are organized within and around those blocks.
This strongly suggests significant sub-organization within
metabolic syndrome. Interestingly, there is not real evi-
dence in this data set of an overall metabolic syndrome.
Perhaps this is not surprising since all the subjects had
been enrolled from a population of catheterized subjects,
catheterization is an invasive procedure requiring ade-
quate justification, and most subjects will have a history
of metabolic syndrome as a part of their history justifying
the catheterization.
Logistic regression is a very common tool employed to

assess the odds ratios of various risk factors in predict-
ing disease, and especially for sorting out dependencies
and interactions among risk variables in defining these
associations. These interactions are graphically visible in
the two-way heirarchical clustering map. This strongly
suggests that a pattern discovery algorithm as described
above may identify variable configurations likely to yield
significant logistic regressions. Further, the relationships
among patterns based on their enrollee sets may be
used to recognize relationships among clinical variables
describing the disease processes, and possibly pathways
and stages. Figure 2 shows an example patterns, along
with how the patterns cluster according to the Jaccard
distances between the lists of enrollees matching the pat-
terns. A total of 397 patterns were generated. Figure 3
shows the Jaccard distances displayed by heatmap orga-
nized according to single linkage hierarchical clustering.
The sidebar colors mark the seven leading redescription
clusters (nerves), at a Jaccard threshold of 0.30.
Figure 4 shows a barcode plot of generators, and

an exerpt from the report of barcode correspondences
indexed by the IDs of the patterns shown in Fig. 2. It
is clear that the identified generators contained within
the filtration of the nerve from Fig. 2 are subsets of the
nerves. At larger filtration values, the barcodes tend to

combine nerves. At those ranges, redescription clusters
start to merge, with lower significance relating patterns
to each other. The Jaccard distance measures the fraction
of members of the two enrollee lists that are not shared
between the patterns. So a distance exceeding 0.5 repre-
sents a situation where any given enrollee has less than
fifty percent chance of being in both clusters, which is
weak for inferring clinical relationships among patterns.
Table 1 shows prediction of complex phenotypes

by RAAS complex and cytochrome gene SNPs. These
include NPPA (rs5065), REN (rs6693954), AGT (rs699),
ADRB2 (rs1042713), CYP1A2 (rs762551, rs1378942,
rs1133323), and ACE (rs4343). The RAAS complex is a
target of a number of common drugs targeting hyper-
tension, such as angiotension-converting-enzime (ACE)
inhibitors, angiotensin-receptor-blockers (ARBs), direct
renin inhibitors target this complex. A number of SNPs
show activity in a number of complex phenotypes includ-
ing rs6693954, rs762551, rs1378942, and rs1133323. Of
these, rs6693954 shows a slightly stronger odds ratio for
the DxHT cluster than for DxHT, rs762551 and rs1378942
show stronger odds ratios for DxT2D and DxHT clusters
than for their simple counterparts.While rs1133323 is sig-
nificant for the DxT2D cluster, it is pretty clear that the
cluster dilutes the simple DxT2D association. This is even
more clear since the rest of the DxT2D cluster is identi-
cal to the DxHT cluster, and rs1133323 is not significant
for DxHT or its cluster. This is somewhat striking in com-
parison to rs762551. The subcluster of patterns associated
with the DxT2D cluster complex phenotype both identi-
fies a number of different ways to identify the same set of
enrollees, which suggests there is an underlying mecha-
nism tying them together, and there are some SNPs that
relate more positively to this cluster than just to the sim-
ple phenotype form. The relationship of this cluster to the
DxHT cluster explored is also informative: they are dis-
tinct, and some SNPs more strongly associate with the
complex DxHT phenotype than the simple phenotype.
SNPs rs6693954 and rs1133323 show a highly sig-

nificant protective association against the simple T2D,
but the compound phenotype shows a weaker associa-
tion. Interestingly, rs6693954 had shown a non-significant
HT association, but became significant when considering
the compound phenotype. SNPs rs762551 and rs1378942
showed stronger associations for compound T2D and
hypertension phenotypes than the simple phenotypes.
These features indicate the compound phenotypes are
resolving differences in how SNPs impact physiology in
this population.
GWAS was applied to the dataset with composite phe-

notypes yielding the results in Table 2. It is interesting to
note that, though rs12365545 (MAML2) appears in both
DxT2D and DxHT results, it appears this may be dom-
inated by association with DxCAD with Age ≥ 60. That
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Fig. 1 Two-way hierarchical clustering of binary threshold values of clinical variables with white positive, and distances plotted in section of rainbow
from red to blue
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%Cluster  0
0;  [67]  1.05673e-14,  2594.57  <  2914:  Age60  =  2  &  DxHT  =  2
0;  [145]  4.17786e-30,  2501.21  <  2973:  Age60  =  2  &  Smoke  =  1
0;  [172]  1.76366e-07,  2760.79  <  2976:  DxHT  =  2  &  Smoke  =  1
0;  [174]  2.74854e-61,  1534.18  <  2136:  Age60  =  2  &  DxHT  =  2  &  Smoke  =  1
0;  [260]  9.4911e-17,  2414.6  <  2753:  Age60  =  2  &  DxHT  =  2  &  Exercise  =  1
0;  [288]  2.31702e-31,  2327.72  <  2802:  Age60  =  2  &  Smoke  =  1  &  Exercise  =  1
0;  [304]  2.92661e-08,  2569.29  <  2795:  DxHT =  2  &  Smoke  =  1 &  Exercise  =  1
0;  [367]  1.2128e-12,  2880.2  <  3179:  Age60  =  2  &  CAD  =  2
0;  [392]  3.76515e-34,  1766.64  <  2226:  Age60  =  2  &  DxHT  = 2  &  CAD  =  2
0;  [417]  5.91092e-37,  1703.07  <  2177:  Age60  =  2  &  Smoke  = 1  &  CAD  =  2
0;  [426]  9.93166e-09,  1879.82  <  2094:  DxHT  =  2  &  Smoke  =  1  &  CAD  =  2
0;  [428]  9.67807e-69,  1044.62  <  1604:  Age60  =  2  &  DxHT  =  2  &  Smoke  =  1

&  CAD  =  2
0;  [441]  1.8772e-13,  2680.42  <  2986:  Age60  =  2  &  Exercise  = 1  &  CAD  =  2
0;  [456]  1.41134e-34,  1644.1  <  2096:  Age60  =  2  &  DxHT  =  2  &  Exercise  =  1

&  CAD  =  2
0;  [464]  5.90999e-36,  1584.94  <  2041:  Age60  =  2  &  Smoke  =  1  &  Exercise  =  1

& CAD = 2
0;  [468]  4.31351e-09,  1749.43  <  1964:  DxHT  =  2  &  Smoke  =  1  &   Exercise  =  1

&  CAD  =  2
...
%Cluster  2
0;  [38]  0.0337293,  2503.32  >  2428:  GenderF  =  1  &  DxHL  =  2
0;  [86]  4.76951e-14,  2282.36  <  2584:  DxHL  =  2  &  DxHT  =  2
0;  [248]  0.00171293,  2329.68  >  2212:  GenderF  =  1  &  DxHL  =  2  &  Exercise  =  1
0;  [271]  2.59223e-14,  2124.05  <  2423:  DxHL  =  2  &  DxHT  =  2  &  Exercise =  1
0;  [385]  1.73949e-06,  2533.62  <  2726:  DxHL  =  2  &  CAD  =  2
0;  [387]  6.35428e-10,  1704.5  <  1929:  GenderF  =  1  &  DxHL  =  2  &  CAD  = 2
0;  [398]  9.23069e-29,  1554.06  <  1955:  DxHL  =  2  &  DxHT  =  2  &  CAD  =  2
0;  [451]  6.06477e-06,  2357.88  <  2536:  DxHL  =  2  &  Exercise  =  1  &  CAD  =  2
0;  [452]  2.56499e-07,  1586.27  <  1767:  GenderF  =  1  &  DxHL  =  2  &  Exercise  =  1

&  CAD  =  2
0;  [458]  8.66409e-28, 1446.26 < 1830: DxHL = 2 & DxHT = 2 & Exercise = 1

&  CAD  =  2
%Cluster  3
0;  [20]  0.0010124,  1314.79  <  1418:  Age60  =  2  &  DxT2D  =  2
0;  [77]  1.29603e-24,  806.457  <  1093:  Age60  =  2  &  DxT2D  =  2 &  DxHT  =  2
0;  [157]  1.82727e-18,  777.439  <  1017:  Age60  =  2  &  DxT2D  =  2 &  Smoke  =  1
0;  [240]  9.55131e-06,  1223.59  <  1363:  Age60  =  2  &  DxT2D  =  2 &  Exercise  =  1
0;  [267]  4.73591e-29,  750.518  <  1056:  Age60  =  2  &  DxT2D  =  2 &  DxHT  =  2

&  Exercise  =  1
0;  [298]  2.57815e-21,  723.513  <  976:  Age60  =  2  &  DxT2D  =  2  &  Smoke  = 1

&  Exercise  =  1
0;  [377]  2.86232e-20,  895.239  <  1163:  Age60  =  2  &  DxT2D  =  2  &  CAD  =  2
0;  [447]  2 .36237e-23,  833.141  <  1115:  Age60  =  2  &  DxT2D  =  2  &  Exercise  =  1

&  CAD  =  2
...
%Cluster  5
0;  [76]  1.08515e-18,  1451.24  <  1759:  DxT2D  =  2  &  DxHT  =  2
0;  [266]  5.86915e-22,  1350.58  <  1679:  DxT2D  =  2  &  DxHT  =  2  &  Exercise  =  1
0;  [376]  6.85351e-11,  1611.01  <  1844:  DxT2D  =  2  &  CAD  =  2
0;  [394]  9.25943e-35,  988.149  <  1365:  DxT2D  =  2  &  DxHT  =  2  &  CAD  =  2
0;  [446]  9.16748e-13,  1499.26  <  1749:  DxT2D  =  2  &  Exercise  =  1  &  CAD  =  2
0;  [457]  6.64746e-38,  919.607  <  1304:  DxT2D  =  2  &  DxHT  =  2  &  Exercise  =  1

&  CAD  =  2
%Cluster  6
0;  [137]  9.26651e-07,  1379  <  1542:  DxHL  =  2  &  Obese  =  2
0;  [141]  5.63167e-26,  845.842  <  1147:  DxHL  =  2  &  DxHT  =  2  &  Obese  =  2
0;  [283]  1.73262e-07,  1283.35  <  1453:  DxHL  =  2  &  Obese  =  2  &  Exercise  =  1
0;  [286]  3.81453e-27,  787.171  <  1087:  DxHL  =  2  &  DxHT  =  2  &  Obese  =  2

&  Exercise  =  1
0;  [413]  2.6795e-08,  938.959  <  1099:  DxHL  =  2  &  Obese  =  2  &  CAD  =  2
0;  [462]  4.69692e-09,  873.828  <  1038:  DxHL  =  2  &  Obese =  2  &  Exercise  =  1

&  CAD  =  2
%Cluster  7
0;  [156]  0.00827527,  1399.02  <  1481:  DxT2D  =  2  &  Smoke  =  1
0;  [178]  7.10827e-22,  858.124  <  1133:  DxT2D  =  2  &  DxHT  = 2  &  Smoke  =  1
0;  [297]  0.000659579,  1301.98  <  1409:  DxT2D  =  2  &  Smoke  = 1  &  Exercise  =  1
0;  [306]  1.84063e-24,  798.601  <  1083:  DxT2D  =  2  &  DxHT  = 2  &  Smoke  =  1

&  Exercise  =  1
0;  [421]  5.4056e-09,  952.593  <  1122: DxT2D =  2  &  Smoke = 1 & CAD = 2
0;  [466]  1.5331e-10,  886.517  <  1068:  DxT2D  =  2  &  Smoke  =  1  &  Exercise  =  1

&  CAD  =  2
...
%Cluster  9
0;  [45]  3.19714e-13,  1156.58  <  1388:  DxT2D  =  2  &  DxHL  =  2
0;  [90]  3.10701e-44,  709.416  <  1087:  DxT2D  =  2  &  DxHL  =  2  &  DxHT  =  2
0;  [254]  8.6377e-16,  1076.35  <  1326:  DxT2D  =  2  &  DxHL  =  2  &  Exercise  =  1
0;  [388]  4.70882e-28,  787.514  <  1093:  DxT2D  =  2  &  DxHL  =  2  &  CAD  =  2
0;  [453]  1.14527e-29,  732.888  <  1039:  DxT2D  =  2  &  DxHL  =  2  &  Exercise  =  1

&  CAD  =  2
...

Fig. 2 Patterns with redescription cluster identifications. First number is Fisher test for pattern list vs. cluster intersection. Second: pattern reference
id. Third: binomial p-value. Fourth: expected count observed vs. observation marking khe tail of the binomial test evaluated. Last: list of columns and
values. The Jaccard threshold was 0.25
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Fig. 3 Distance clustering of the redescription Jaccard distances for significant patterns. This also serves as the filtration distance in the construction
of the persistent homology analysis. Sidebar colors mark six redescription clusters. Red is Cluster 3 (Age ≥ 60 ∧ DxT2D ∧ DxCAD), Orange is Cluster
5 (DxT2D ∧ DxHT ∧ DxCAD), Yellow is Cluster 7 (DxT2D wedge non-smoker wedge DxCAD), Green is Cluster 0 (Age ≥ 60 ∧ DxHT ∧ DxCAD), Cyan is
Cluster 2 (male ∧ DxHL ∧ DxCAD), and Blue is Cluster 6 (Obese ∧ DxHL ∧ DxHT ∧ DxCAD)

association is a component of both, with OR = 1.42 (95 %
CI 1.24 − 1.62), p-value = 3.604 × 10−7. Yet, when pre-
dicting DxCAD by itself (no age threshold), the p-value is
0.00298. MAML2 is mastermind-like 2 (Drosophila). It is
implicated in several B cell-derived lymphomas, mucoepi-
dermoid carcinomas, and chronic lymphocytic leukemia.
It plays a role in regulation of ICN notch proteins, which
have been implicated in T2D. rs6847235 (GLRA3) is

intronic in glycine receptor alpha 3 which is a member
of the ligand-gated ion channel protein family. rs701319
(intergenic) has no known clinical significance.
Table 3 shows leading composite phenotypes. The

“composite p-value” is the probability that uncorrelated
random samples of null associations would have pro-
duced the pattern by chance. The “pattern p-value” is
the actual logistic regression p-value for that SNP for the
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...
Dimension: 1
[0.175, 0.2): [377,447] + [20,377] + [20,240] + [240,447] (Cluster 3)
[0.2, 0.225): -[254,453] + [45,388] + [388,453] + [45,254] (Cluster 9)
[0.2, 0.25): [76,266] + [394,457] + [76,394] + [266,457] (Cluster 5)
[0.225, 0.25): -[260,456] + [67,260] + [392,456] + [67,392] (Cluster 0)
[0.25, 0.275): [394,457] + [446,457] + [376,446] + [376,394] (Cluster 5)
[0.25, 0.275): [141,286] + [283,286] + [137,283] + [137,141] (Cluster 6)
[0.275, 0.300): [20,157] + [20,240] + [157,298] + [240,298] (Cluster 3)
...

Fig. 4 Persistent homology barcode plot of generators and an exerpt of the generator simplices from dimension 1

associated pattern. The SNP with the strongest pattern
association in this group is rs12101936 (intergenic).
rs17107637 (SMOC1) is intronic. SMOC1 is SPARC
related modular calcium binding 1, which appears to
have a role in ocular and limb development. rs3759658
(CGRRF1) is in the cell growth regulator with ring fin-
ger domain 1 gene. rs6926556 (intergenic), rs8113086
(intergenic), and rs878643 (intergenic) show no known
clinical association. rs3019548 (CD6) is possibly asso-
ciated with multiple sclerosis. CD6 encodes a protein
found in the outer membrane of T-lymphcytes and
some other immune cells, important for continuation
of T cell activiation, contains three scavenger recep-
tor cysteine-rich domains, and has a binding site for
activated leukocyte cell adhesion molecule. rs6807700
(PLSCR5) is in phospholipid scramblase family, member
5, with no known clinical significance. rs 118800382 is
in ZNF331 (Taneera), which has been implicated in a
T2D gene expression pathway analysis. rs2088354 is in
the SLC2a13 intron, a glucose transporter. rs2992100 is in
MIR4500, a non-coding region. rs3781788 is in MMP20,
a matrix metalloproteinase. rs6080252 is in KIF16B, cod-
ing a kinisen-like motor protein, involved with plus end

motility of early endosomes and the balance between
recycling and degredation of receptors, such as EGFR,
FGFR. rs6984384 is in LOC101929576 - an uncharacter-
ized RNA gene. rs701133 is in GPR149 - a G protein-
coupled receptor. rs818710 is in BSPRY, B Box and SPRY
Domain Containing Protein. rs17077265 and rs522264
are intergenic. rs6727857 is in SCN2A, Sodium Channel,
Voltage-Gated, Type II, Alpha Subunit. All snps were sig-
nificant, though not genome wide significant, except for
rs8113086.
The contrast between Tables 2 and 3 shows that stan-

dard GWAS, even treating compound phenotypes as sim-
ple phenotypes, picks out different SNPs than considering
multiple tests applied by each of the compound phenotype
components. This gives strong evidence that the com-
pound approach yields SNPs that are false negatives that
would otherwise be discarded as false positivies. While
the p-values of some of the patterns (“pattern p-value”)
are not as strong as might be suggested by the compos-
ite of individual phenotypes comprising the compound
phenotype (“composite p-value”), there are a number of
highly significant SNPs worth considering that standard
methods miss.
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Table 1 Odds ratio logistic regression associations of RAAS complex SNPs with RAAS and cytochrome P450 1A2

Locus DxT2D DxT2D DxHT DxHT DxHL DxHL

cluster cluster cluster

rs5065 0.93 0.94 1.01 0.99 0.96 0.96
G (0.77–1.12) (0.82–1.08) (0.88–1.16) (0.87–1.12) (0.82–1.10) (0.84–1.09)

0.443 0.378 0.863 0.836 0.542 0.553

rs6693954 0.80 0.74 0.84 0.91 0.88 0.91
A (0.66–0.98) (0.63–0.85) (0.72–0.99) (0.79–1.05) (0.76–1.03) (0.79–1.06)

0.029 6.22 × 10−5 0.0321 0.221 0.120 0.221

rs699 0.84 0.89 0.94 0.96 0.92 0.92
A (0.67–1.06) (0.75–1.06) (0.79–1.13) (0.81–1.13) (0.77–1.10) (0.78–1.09)

0.138 0.182 0.541 0.632 0.366 0.333

rs1042713 0.93 0.94 0.99 1.01 0.98 1.03
A (0.80–1.09) (0.84–1.05) (0.88–1.12) (0.91–1.13) (0.87–1.11) (0.93–1.15)

0.376 0.277 0.895 0.798 0.763 0.564

rs762551 1.42 1.23 1.28 1.17 0.93 0.94
C (1.19–1.69) (1.08–1.39) (1.12–1.47) (1.03–1.33) (0.81–1.07) (0.83–1.07)

8.21 × 10−5 0.00203 0.000375 0.0188 0.297 0.332

rs1378942 1.33 1.19 1.27 1.22 0.97 0.99
C (1.11–1.59) (1.05–1.34) (1.11–1.46) (1.07–1.38) (0.84–1.11) (0.87–1.12)

0.00154 0.00706 0.000672 0.00288 0.633 0.899

rs1133323 0.80 0.78 1.00 0.92 1.11 1.01
A (0.66–0.97) (0.68–0.90) (0.86–1.16) (0.80–1.06) (0.96–1.30) (0.88–1.16)

0.0245 0.00758 0.983 0.235 0.164 0.884

rs4343 1.04 0.94 0.98 0.93 1.07 0.98
A (0.90–1.20) (0.87–1.09) (0.88–1.10) (0.84–1.04) (0.95–1.20) (0.88–1.09)

0.618 0.646 0.785 0.200 0.273 0.698

Entries show locus w/ minor allele, and the odds ratio, 95 p-value for the SNP vs. the phenotype. DxT2D cluster = DxT2D ∧ Age ≥ 60 ∧ DxHT ∧ DxCAD, DxHT cluster = Age
≥ 60 ∧ DxHT ∧ DxCAD, DxHL cluster = DxHL ∧ Male ∧ DxCAD

Conclusions
Associations between RAAS SNPs and metabolic
syndrome characters, both clustered and singly, show
specificity for conditions (e.g. rs1133323 for DxT2D
clustered and unclustered, rs1378942 and rs762551 for
DxT2D clustered and unclustered, and DxHT clustered
and unclustered), and some specific to the complex
phenotype (e.g. rs6693954 for DxHT clustered, but not
DxHT) but not the single form, suggesting that the
complex phenotypes convey more pathway specific
information than individual simple phenotypes do by
themselves.
GWAS applied to combined tests from the composite

phenotype components shows significant lowering of the
threshold for individual tests required to identify SNPs
that are significant in multiple metabolic syndrome con-
ditions, allowing for the possibility of relieving exclusion
of some of the false negatives. The SNPs identified in
individual tests are distinct from composite tests, indi-
cating that different components of the sample space
are probed by applying tests for each of the phenotypes
represented in a composite pattern.

Table 2 Odds ratio logistic regression associations GWAS on
compound phenotypes. Entries show locus w/ minor allele, and
the odds ratio, 95% confidence interval, and p-value for the SNP
vs. the phenotype

Locus Association OR

Minor Allele (95% CI)

p-value

rs12365545 DxT2D 1.69
A (1.38–2.07)

4.434 × 10−7

rs12365545 DxHT 1.44
A (1.24–1.67)

8.329 × 10−7

rs6847235 DxHL 1.45
A (1.25–1.68)

5.344 × 10−7

rs701319 DxHL 0.57
T (0.46–0.71)

6.821 × 10−7

Genome wide p-value threshold = 6.338 × 10−7
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Several things may be explored in greater detail later.
These include richer phenotype sets and more patterns.
Another aspect is that the homology groups typically
produced are sets of surfaces enclosing empty volumes,
namely Hn = ker(∂n)/Im(∂n+1), including the subset
Im(∂n+1)/Im(∂n+1) � {0}. These show the most topolog-
ically interesting features with conserved Betti numbers.
However, other structures may be physiologically infor-
mative, such as Cn/ker(∂n), which would represent forms
that sprawl and do not enclose volumes.

Materials andmethods
Datasets
Seven thousand six hundred thirteen subjects were
selected from Lebanese patients enrolled as part of
a multi center cross-sectional study for the FGENT-
CARDConsortium (http://www.well.ox.ac.uk/fgentcard/)
[11] in a cross-sectional study. Patients were recruited
from catheterized patients at the Rafic Hariri University
Hospital and the Centre Hospitalier du Nord in Lebanon
between May 2007 and June 2010. A questionnaire devel-
oped to measure the impact of CAD risk factors and
family history was collected after informed consent was
obtained from participants prior to conducting the study,
as approved by the Lebanese American University institu-
tional review board. Annotations were coded from med-
ical charts for data such as laboratory tests, prescribed
medications, and presence of other clinical conditions.
Venous blood samples were drawn on EDTA. Of these, 6
were excluded due to missing information on age or sex,
leaving 7607.
Nine hundred and ninety eight Lebanese Type II Dia-

betes (T2D) study participants were all of Lebanese origin
and were recruited. A first recruitment campaign, con-
ducted with the collaboration of the Lebanese University
Medical Center, led to the recruitment of 506 subjects
from the suburbs of Beirut, the capital of Lebanon. In a
second campaign conducted in North Lebanon, 492 sub-
jects were successfully recruited. Research was carried out
in compliance with the Helsinki Declaration and with the
approval of the LAU institutional review board and local
ethics committees on human research (Reference number
SMPZ08072010-4). All participants signed an informed
consent and data and blood samples were obtained from
each individual. By taking part in the two recruitment
campaigns, participants (1) answered a detailed question-
naire, (2) gave a blood sample for DNA analysis and (3)
gave a blood sample for HbA1C, fasting blood glucose
(FBS), and lipid profile measures after 12 hours fasting. In
this analysis, the T2D clinical data were not employed. Th
e SNP data was used only to improve imputation analysis.
DNAwas extracted using a standard phenol-chloroform

extraction procedure. Two thousand seven hundred fifty
two CAD study samples were analyzed on a number of

platforms: 48 subjects’ DNA samples were analyzed using
Human610-Quad beadchip and Illumina (582.775); 1055
subjects were analyzed using Human610-Quad beadchip
and Illumina (582.892); 928 subjects were analyzed using
Human Omni EXP – 12v1 multi-use; 706 with Illumina
Human 660W Quad Beadchip; 7 with HumanOmniEXP-
12v1 Multi-use + Human610-Quad Beadchip and Illu-
mina (582.892); and 8 with HumanOmniEXP-12v1
Mullti-use + Illumina Hujan660W-Quad Beadchip. The
538 T2D DNA analyses were performed using Human
Omni EXP – 12v1 multi-use. Seven hundred eighty
nine thousand SNPs passed QC using PLINK 2 [12],
(https://www.cog-genomics.org/plink2) for data manage-
ment and quality control, keeping samples with call rate
ge 95%, SNPs call rate ≥ 90%, MAF ge 1%. BEAGLE ver
4.0 [13], (http://faculty.washington.edu/browning/beagle/
beagle.html) was employed to impute SNPs among
inconsistent chip SNP sets. SNPs with more than 2 alleles
were removed.
Descriptors were coded for analysis as follows. DxT2D

indicates diagnosis of type II diabetes. DxHT indicates
diagnosis of hypertension. DxHL indicates a diagnosis of
hyperlipidemia. Age60 marks age 60 years or older. SexF
marks female. Obese indicates BMI levels in excess of 30.
Smoker implies heavy cigarette smoking or hookah. Exer-
cise marks regular intensive exericse. CAD marks greater
than 70% occlusion.

Demographics notes
Metabolic syndrome, CAD, and T2D prevalences are
rapidly increasing in the Middle East, linked to recent
changes in diet and activity in the population as a whole
[14]. This rapid emergence argues for the possibility of
age-structured changes in dietary habits and risk factors.
There may be a delay of some years between earliest
epithelial damage leading to CAD, or for progression
from insulin resistance to full T2D. Further, emergence
of CAD, hypertension (HTN), T2D and other metabolic
syndrome conditions is strongly age and sex associated,
while some risk behaviors are gender and age specific
associated.

Analysis
Metabolic syndrome is characterized by the strong associ-
ation between obesity, hypertension, dyslipidemia, coro-
nary artery disease, and type II diabetes mellitus. Many of
these conditions emerge in older age. Among catheterized
subjects, expectation would be that variables describ-
ing these conditions would cluster in well-defined pat-
terns. To that end, hierarchical 2-way clustering was per-
formed using R’s [15] heatmap function, invoking hclust()
for clustering, and unscaled Euclidean distances between
enrollees across clinical variables, and between clinical
variables across enrollees. Also, heatmap was used to

http://www.well.ox.ac.uk/fgentcard/
https://www.cog-genomics.org/plink2
http://faculty.washington.edu/ browning/beagle/beagle.html
http://faculty.washington.edu/ browning/beagle/beagle.html
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Table 3 SNPs present in each of the component phenotypes in compound sets, with composite p-value computed from individual
phenotype components, pattern p-value computed on the compound phenotype members, odds ratio logistic regression
associations GWAS for each phenotype set. Entries show locus w/ minor allele, and the odds ratio, 95% confidence interval, and
p-value for the SNP vs. the phenotype

Locus Composite Pattern DxT2D DxHT DxCAD ∧
Minor Allele p-value p-value Age ≥ 60

rs12101936 1.079 × 10−9 4.961 × 10−5 0.76 0.78 0.80
A (0.64–0.89) (0.67–0.90) (0.69–0.93)

0.000628 0.000615 0.002796

rs17107637 1.872 × 10−8 0.002181 1.41 1.37 1.29
G (1.14–1.75) (1.13–1.67) (1.06–1.57)

0.00135 0.00140 0.00992

rs3759658 8.914 × 10−8 0.0304 1.34 1.33 1.35
A (1.08–1.66) (1.09–1.61) (1.11–1.65)

0.00733 0.00455 0.00267

rs6926556 9.205 × 10−9 0.0341 0.74 0.72 0.76
C (0.60–0.91) (0.60–0.86) (0.63–0.92)

0.00438 0.000457 0.00460

rs8113086 2.853 × 10−7 0.0936 0.75 0.77 0.75
T (0.60–0.93) (0.64–0.93) (0.62–0.92)

0.00841 0.00760 0.00447

rs878643 4.254 × 10−8 0.04394 0.764 0.800 0.819
A (0.65–0.90) (0.69–0.93) (0.70–0.96)

0.00841 0.00760 0.00447

rs11880382 1.518 × 10−7 0.005167 0.733 0.901 0.889
C (0.64–0.84) (0.79–1.03) (0.78–1.01)

1.669 × 10−5 0.118 0.077

rs2088354 3.133 × 10−8 0.0144 1.679 1.357 1.175
T (1.31–2.15) (1.09–1.68) (0.95–1.46)

3.856 × 10−5 0.00557 0.146

rs2992100 4.162 × 10−8 0.06262 0.559 0.772 1.282
A (0.43–0.73) (0.60–0.99) (1.00–1.64)

2.35 × 10−5 0.0379 0.0468

rs3781788 4.837 × 10−8 0.001568 1.907 1.015 1.436
T (1.44–2.52) (0.77–1.34) (1.09–1.89)

5.527 × 10−6 0.913 0.00959

rs6080252 6.587 × 10−8 0.002838 1.623 1.303 1.279
A (1.28–2.06) (1.03–1.65) (1.02–1.61)

6.277 × 10−5 0.0284 0.0370

rs6984384 3.906 × 10−8 4.502 × 10−5 0.742 0.840 0.895
T (0.65–0.86) (0.74–0.96) (0.79–1.02)

4.886 × 10−5 0.008405 0.09511

rs701133 3.865 × 10−7 0.002081 1.547 1.206 1.160
T (1.25–1.91) ( 1.00–1.46) (0.96–1.41)

5.57 × 10−5 0.054 0.129

rs3019548 3.905 × 10−7 0.009792 1.541 1.483 –
G (1.20–1.98) (1.18–1.86)

0.000643 0.000607

rs6807700 1.061 × 10−7 0.0002289 – 1.46 1.49
C (1.18–1.80) (1.20–1.85)

0.000400 0.000265

rs17077265 2.80144 × 10−7 0.0131 – 1.409 1.062
T (1.23–1.61) (0.93–1.21)

7.423 × 10−7 0.377

rs522264 2.53 × 10−7 2.238 × 10−5 – 0.638 0.734
T (0.51–0.79) (0.59–0.91)

5.567 × 10−5 0.00455

rs6727857 4.819 × 10−7 0.000935 – 0.660 0.932
G (0.56–0.78) (0.79–1.10)

1.173 × 10−6 0.411

Genome wide p-value threshold = 6.338 × 10−7
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display unscaled Euclidean distances between enrollees
mapped to a rainbow segment from red through blue.
The 2-way hierarchical clustering identifies blocks of

relationships among descriptors shared among groups of
subjects. The structure of those blocks may be explored in
greater detail. Each descriptor d in the set of descriptors
D has associated with it an alphabet Ad of values that d
assumes among the set of subjects S. Each subject sinS has
a descriptor tuple q(s) ∈ Q = ×d∈DAd. The tupple mem-
ber corresponding to d ∈ D is qd(s) ∈ Ad (pulldown). For
each a ∈ Ad, it is possible to identify the set of subjects
Sa = q−1

d (a) ⊂ S that “have” that value a of the descriptor.
The patterns r ∈ R are comprised tuples similar

to the subject tuples except that the alphabet is aug-
mented by a wild card "*" such that q−1

d (∗) = S. Then
R ⊂ ×d∈D (Ad ∪ {∗}). Using the symbol rd for the descrip-
tor d ∈ D on R (pulldown), it is possible to identify rd(r) ∈
Ad∪{∗}. Then it is possible to identify a set of subjects S(r)
“matching” a pattern r as S(r) = ⋂

d∈D q−1
d (rd(r)) The

total number of possible patterns is then
∏

d∈D(|A(d)| +
1) − 1, where the pattern comprised entirely of wild cards
is excluded.
Blocks that appear in multiple descriptors horizontally

across the plot in the two-way hierarchical clustering
may be significant, and correspond to some S(r) for r ∈
R. It is expected that biological processes will tend to
correlate descriptors among the sampled subjects. The
difficulty is that such correlations may appear simply by
chance. One way to exclude chance is to consider the
fraction p of samples that would be expected given no
correlation in some pattern r: p(r) = ∏

d∈D
|Srd||S| . Then

the chances of finding more than |Sq| by variation in
random sampling would be binomially distributed with
P = ∑

n≥|S(r)|
(|S|
n
)
p(r)n(1 − p(r))|S|−n. Likewise, if the r

are anticorrelated, then the probability of finding fewer
by chance due to random sampling variation would be
P = ∑

n≤|S(r)|
(|S|
n
)
p(r)n(1 − p(r))|S|−n.

Such patterns were identified using a pattern recogni-
tion algorithm defined in Fig. 5.
The use of a support threshold acknowledges that

lower support patterns will tend to have lower statis-
tical power. Discarding low support is an option that
limits the number of weak patterns that are carried
along in the computation. There are two significance
levels. It is conceivable that some complex patterns
may have a stronger significance level than some of
the intermediate patterns. Allowing two support lev-
els permits the retention of weaker patterns which are
removed at the endwith the stronger and final significance
threshold.
If two patterns A = A ∩ B, then A ⊆ B, or A ⇒ B.

Sets of patterns that yield equal sets of enrollees are called
“redescriptions” [8]. Obviously, these redescriptions imply

more complex relationships among patterns and possi-
ble underlying disease mechanisms and processes. Since
thresholds may not be perfect, misclassification errors,
disease progression changes, etc, tends to inject variability
into the analysis. Association studies may show significant
association and still allow for substantial amounts of vari-
ance. For this reason, Jaccard distances measured on the
list of enrollees for each pattern are computed as dissimi-
larities that satisfy metric conditions. Assignment of near-
est neighbors by Jaccard distance below some threshold
yields pairwise connectivity, from which clusters are con-
structed using an algorithm resembling floodfill. These
clusters are “fuzzy redescriptions”. Their utility emerges
only if the threshold is low enough so that it would be
unlikely for random processes to have constructed such
clusters by chance. Fisher exact tests may be applied to
assess whether random processes could have produced
pairs by chance, and have been applied here between any
pattern in the cluster against the intersection of all cluster
members.
Rediscriptions also relate patterns to each other, some

according to implications, or perhaps more generally in
terms of shared physiology related to a disease process.
Coronary artery disease is a “complex disease”, with mul-
tiple possible pathways leading to epithelial damage in
arteries, and ultimatley to formation of plaques. These
clusters of descriptions may pick out phenotypic char-
acterization of underlying pathways at specific stages of
pathogenic development.
Since we have a set of patterns with a well-defined met-

ric distance between them, it is also possible to use the
Jaccard distance as a filtration index in a persistent homol-
ogy computation. In this context, the fuzzy redescription
clusters defined above correspond to a “nerve”. One point
worth noting is that the whole range of persistence is not
necessarily interesting; once distances are long enough
that the chances that clusters formed by chance is rel-
atively high, there is really no information from which
relationships between patterns (e.g. corresponding to A =
A ∩ B) may be derived.
Within the persistent homologies, the generators carry

information about topological structures within the
nerves that may reveal yet more detail about pathological
development specific to disease pathways.
Given that each pair of patterns has associated with it a

Jaccard distance, it is possible to think of each statement
as a vertex in a simplicial complex. Each vertex is a point,
in our case representing a pattern with its descriptors
and list of matching subjects. Given a threshold distance,
line segments connecting these vertices may be drawn if
the Jaccard distance is less than the threshold distance.
Those line segmentsmay connect to close triangles, which
then may be filled. If all the surfaces of adjacent trian-
gles form a tetrahedron, then the volume may be filled.
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Fig. 5 Algorithm used to generate patterns

This can be extended to higher dimensions. Connected
segments, areas, and volumes form chains. The set of
complexes of dimension n is called Cn. In this context,
for a given threshold, the redescription clusters become
nerves. There is a map ∂n+1 that extracts the boundaries
of the areas in Cn+1 and identifies those boundaries in
Cn. The list C∗ of all the chains Cn of dimension n is
called a simplicial complex. It is possible for closed sur-
faces to enclose a region, yet for there to be no verticies
within that region allowing for the surface to be filled.
The sets of surfaces enclosing empty volumes are Hn =
ker(∂n)/Im(∂n+1) form the homology of the simplicial
complex, and (loosely) represents the hollow patterns.
The Jaccard distances become the basis of a “filtra-

tion” given a set of distance thresholds at which the Cn’s

and Hn’s are evaluated. Shapes, unfilled volumes, etc that
persist over some range of thresholds may reveal infor-
mation about the stability of the relationships among
redescription structures and their associated underlying
pathological processes, yielding a finer-grained view of the
structure of phenotype spaces.
Therefore, we start by computing patterns, and

associate these compound patterns with phenotypes
possibly marking specific processes. We compute fuzzy
redescription clusters in terms of a connectivity associ-
ated with a threshold applied Jaccard distances between
pattern enrollees. These redescriptions reveal relation-
ships among patterns that may describe disease pro-
cesses and pathways at specific times of development.
Further, information about their topological relationships
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derived from persistent homology computations also
reveal substructures within redescription sets (nerves).
All of these pattern relationships were used to character-
ize phenotypes that used in logistic regressions using glm
from R [15] applied to SNPs derived from RAAS complex,
and to GWAS logistic regressions performed using PLINK
2.0 [12] to identify genetics related to these patterns.
We sought to test whether the compound pheno-

type patterns resolved evidence of pathway mechanisms
more clearly than simple phenotypes. To achieve this, we
applied the RAAS SNPs as described, contrasting results
for compound phenotypes were more specific or less
specific than the simple phenotypes for three groups of
phenotypes, namely type II diabetes, hypertension, and
hyperlipidemia. Second, we applied a GWAS to the com-
plex phenotypes in the standard one-test method, and
contrasted that to the list of SNPs identified through the
combinatorial multi-test method.
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