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Abstract 

 

Life creates some of its most robust, extreme surface materials not from solids but from 

liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous 

plant leaves ultra-slippery, the eye optically perfect and dirt-resistant, our knees 

lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. 

Novel liquid surfaces based on this idea have recently been shown to display 

unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive 

properties. In this Perspective, we present a framework and a path forward for developing 

and designing such liquid surfaces into sophisticated, versatile multifunctional materials. 

Drawing on concepts from solid materials design and fluid dynamics, we outline how the 

continuous dynamics, responsiveness, and multiscale patternability of a liquid surface 

layer can be harnessed to create a wide range of unique, active interfacial functions - able 

to operate in dynamic, extreme environments - not achievable with static solids. We 

discuss how, in partnership with the underlying substrate, the liquid surface can be 

programmed to adaptively and reversibly reconfigure from a defect-free, molecularly 

smooth, transparent interface through an infinite range of finely tuned liquid topographies 

in response to environmental stimuli. With nearly unlimited design possibilities and 

unmatched interfacial properties, liquid materials - as long-term stable interfaces yet in 

their fully liquid state - are likely to transform surface design everywhere from medicine 

to architecture to energy infrastructure. 
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1. Introduction 

 

A living organism can pack, orient, weave, and sculpt some of the most intricately 

structured optical, mechanical, and multifunctional solid materials known. But sometimes 

nature takes a break and appears to forget about solids altogether. Instead, it meets some 

of life’s toughest challenges with surface materials made entirely of liquids tumbling and 

sliding over the surface, constantly moving, bouncing randomly between the bulk and the 

surface, with no fixed molecular positions at all (Figure 1). A purely liquid layer creates 

the ultra-slippery slide into carnivorous plants’ stomachs, remaining sturdy as a parade of 

insects, even lizards, land and skid down1. The liquid film on our eyes provides a 

perfectly smooth refractive surface, is continuously adjustable just by squinting, and at 

the same time keeps away dirt and bacteria2. Tear films work equally well for fish 

swimming through salty, sandy oceans with no eyelids3, a single design handling rapid 

pressure changes as they poke their heads above the surface or scan for predators with 

eyes half in, half out4. A thin liquid film on pounding knees is all it takes to keep our 

bones gliding smoothly past each other5, while insects can grip and run along any terrain 

thanks to the infinitely adaptable shape of a liquid film on the soles of their feet6. A 

similar liquid film on tree frogs’ toes simultaneously adjusts to changing surfaces and 

hopping impacts and even makes it possible to climb over dripping leaves and flooded 

rocks7. 

But just microns or less from the pounding, shearing, and other forces outside, the 

liquid’s other side is attuned to a completely different set of forces. Integrated into an 
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intricate underworld of micro- and nanoscale labyrinths, networks, and pores, sculpted 

into tiny liquid architectures, its inner surface is acutely sensitive to capillary, 

electrostatic, van der Waals, and osmotic forces arising from its contacts with the 

underlying solid (Figure 1, insets). An optically perfect tear film belies a cornea packed 

with folds, ridges, and projections patterned by habitat: dense, interconnected labyrinths 

and whorls stabilize fish films against aquatic pressures3, with especially dense 

structuring for species that go in and out4. Even as cells die, forests of microvilli on the 

mammalian cornea orchestrate the disturbance into localized pattern, density, and 

chemical changes8, enabling the liquid to handle the rest by flowing into the gaps to 

maintain an intact outer surface. Joint fluid subjected to bone on one side is infused in an 

elastic cartilage network on the other – under pressure, the film deforms the cartilage, 

deformation changes the microscale roughness, and the fluid flows over, in, and out of 

the network, the cooperative endeavor coordinating the outer surface’s response5. An 

insect’s foot film balances capillary forces from the outer terrain with those inside an 

underlying elastic cuticle network, precisely regulating the film’s outer topography and 

minimizing liquid lost as footprints6. But always, through everything, the liquid’s 

molecules are continuously tumbling, shuttling between the underlying network, the 

film’s interior, and the outer surface, uniting them through constant motion. 

Clearly liquid surfaces play an indispensable role in living systems, and produce a 

wide spectrum of multifunctional, dynamic properties that have eluded synthetic 

technologies, even “fluid-like” molecular and nanofibrous coatings9-14. We use liquid 

layers all the time for lithographic printing, coating, device fabrication, heat transfer, and 

lubrication, but these ultimately dry, cure, evaporate, or remain enclosed; when it comes 
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to structural and long-term surface components, we prefer materials that are solid, static, 

and therefore highly predictable and manufacturable. The problem long keeping liquids 

as structural materials off our materials radar screen, of course, is that their dynamics are 

extremely complex and sensitive to environmental conditions. However, it’s not obvious 

that life handles liquids fundamentally differently from any of its other materials. 

Molecules turning over on various time scales are the norm in living systems: at surfaces 

and everywhere else, “materials” consist of proteins continuously associating and 

dissociating, DNA winding and unwinding, membranes pinching and fusing, cell 

structures collapsing and reforming, even bone matrix forming and dissolving, with 

liquids and solids structured together and moving in tune with each other. Indeed, many 

of our bioinspired strategies for designing solid materials already demonstrate fine 

control over liquids, since liquids are almost invariably present in these systems and the 

process often turns out to be an exercise in controlling their flow, capillary forces, surface 

tension, and structuring15-19. While microfluidics, nanofluidics, and thin film dynamics 

aren’t geared toward developing liquids as long-term surface materials, these burgeoning 

fields are also providing theoretical and experimental insights into how a rich range of 

controlled liquid behaviors can be generated in the context of structurally and chemically 

tailored solid substrates20-22. 

With these ideas, tools, and needs converging from all directions, the time is ripe 

for liquids to enter the scene as full-fledged dynamic surface materials. Indeed, several 

very recent studies of omniphobic, self-healing, anti-ice, antifouling, optical, and 

adaptive liquid surfaces have already begun to transform materials fields across the 

board23-31. In this Perspective, building on the insights and intriguing questions arising 
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from this work as well as concepts from solid self-assembly, tribology, and fluid 

mechanics, we outline a framework and a path forward for developing, designing, and, 

not least, even thinking about liquids as complex functional materials. To start, we 

present an operating definition of bottom-up design, a strategy that as commonly 

understood makes no sense for liquids but which is crucial for conceiving and realizing 

their full functional potential. We then discuss liquids as dynamic, active surface 

materials, and identify the fundamental tasks design must address to develop this core 

property into increasingly sophisticated functions operating in changing, often harsh 

environments. At the heart of design, we discuss how structural and chemical features of 

a solid substrate can be tailored to “template” or shape the liquid’s multiscale dynamics 

and responsiveness, and how making the template itself dynamic expands the possibilities 

for adaptive, responsive behaviors even further. The concepts developed in turning 

liquids into versatile surface materials expand our thinking about solid materials design 

as well, deepening our vision for integrated dynamic, multifunctional materials built from 

solids and liquids working together. 

 

2. Defining “bottom-up” for a liquid  

 

Taking a “bottom-up” approach to materials design – building on and taking 

advantage of the starting components’ most basic properties – has proven transformative 

across many fields as a way to engineer diverse and previously unimaginable materials 

properties from first principles. This concept is essential to thinking about any new 

material – it allows us to see as far and wide as possible the potential for what the 
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material can be and how to go about designing and constructing it to make the most of its 

unique possibilities. But in practice, it also immediately lands us in a quandary if our 

material is a liquid. Building from the bottom up has almost invariably come to mean 

progressing from small to large and dynamic to static: starting from molecular or 

nanoparticle components and ordering and assembling them in different ways to create 

different fixed, final products32. But this approach would obviously defeat the purpose of 

using a liquid – if we were to progressively order, assemble, and immobilize its 

molecular components, we would lose, not build on, the intrinsic, ongoing dynamics that 

inspired us to develop it as a material in the first place. 

Certainly we can make some headway toward designing a liquid surface’s 

properties by specifying its molecular composition, but this alone won’t get us very far 

toward developing it as a viable or interesting material. To consider what it might look 

like to design, tailor, and optimize a full splendor of liquid surface material properties, we 

therefore take a deeper look at what bottom-up design consists of. As mentioned, 

“bottom” traditionally refers to the shape and other properties of the system’s 

components. But more fundamentally, what these properties actually do is collectively 

determine how the system takes various driving forces and translates them into a 

response. This can be the association and ordering of the components, but from a system 

perspective it could be any change in shape or motion, within the internal fine structure, 

as a whole, or both. This broader operating definition of bottom can cover not only 

liquids but also the design of dynamic solids – and may also relate to how life handles its 

gamut of dynamic liquid and solid materials. Here, we define the bottom for a liquid not 

as any particular shape or form but as its continuous thermal responsiveness and mobility. 
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This is the basic starting point we build on, and is the property that gives liquid materials 

their unique behaviors and ultimately makes them more, not less, designable. 

 Following this framework, we define “up” as evolving not toward a particular 

final structure but toward more sophisticated responsiveness to various forces. This can 

mean, for example, responding to pressure or temperature gradients or dragging feet with 

specific types of small-scale flows. But just as importantly, it can also mean designing the 

system not to respond to certain forces, such as gravity or shear. In general, then, design 

focuses on organizing how the liquid moves and doesn’t move on different scales in the 

context of the many forces it encounters – hence tailoring it for a variety of functions that 

make full use of its dynamic capacities yet simultaneously making it robust enough to act 

as a strong, stable material. In practice, this version of bottom-up design is facilitated by a 

solid substrate similar to the architectures that underlie the liquid surfaces in the living 

systems. As we discuss in Section 4, the substrate works somewhat analogously to the 

template in other self-organizing systems, but the liquid material can be redesigned at any 

time, for example if the substrate itself changes. 

 

3. Cultivating perfection 

 

3.1 From the bottom: dynamic perfection  

 

 Right from the start, a liquid’s “bottom” state brings an intrinsic property almost 

no other material can achieve: defect-free perfection. With continuous molecular 

mobility, a liquid on a solid substrate – with the exception of highly viscous or semi-
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crystalline fluids - is free to organize its surface into a molecularly smooth, 

homogeneous, energy-minimized state, avoiding the kinetic traps that almost inevitably 

produce defects in solid materials. As on the eye, a liquid surface can be smooth down 

past the smallest wavelengths of light: with no defects to scatter light at the interface, a 

liquid film on an index-matched substrate is perfectly transparent to all visible (Figure 

2A) as well as IR wavelengths24,29,33. Moreover, robust self-healing is built into the 

definition of this dynamic form of perfection. Since perfection is an active process – with 

the surface continuously forming and regenerating – it naturally restores itself through 

molecular turnover and local flow. Following even macroscale damage to the interface or 

the underlying substrate, a liquid surface instantly self-heals, erasing any sign of the 

disturbance within milliseconds24 (Figure 2B).  

 Surface perfection, not to mention self-healing, is of course highly coveted in 

nearly every field: even tiny chemical and topographic defects can have a major impact 

on liquid pinning and drag10,34,35, ice adhesion36, bacterial colonization37,38, dirt buildup, 

and just about any other dynamic process taking place at the interface. But as soon as we 

start interfacing such processes with the liquid surface, its ability to act as a defect-free 

interface in practice potentially becomes more complicated. The surface now has to act 

perfect in the face of things exerting nontrivial forces – sliding, dragging, poking, and 

stepping on it. Certainly the liquid surface’s ability to actively and continuously restore 

itself should serve it well in this context, but it’s no longer necessarily enough for it to 

regain its function even milliseconds after any of these assaults.   

 And yet it does act defect-free (Figure 2C). On recently reported liquid interfaces, 

droplets of all different sizes, surface tensions, compositions, and interfacial tensions 
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slide freely, with tilt angles of just a few degrees, minimal contact angle hysteresis, and 

none of the pinning or stick-slip behavior seen with even molecular scale defects23,24,39. 

Complex substances such as ketchup and blood – each a distinct mix of fluids, polymers, 

and particles – similarly slide unimpeded24, despite the complicated slew of multiscale 

forces and interactions all acting on the surface at once. Likewise chunks of solid ice can 

easily slide or be dragged along the interface24,27 – if the raindrops and condensation have 

time to freeze at all before escaping. Even bacteria26 and insects24, notorious for their 

exceptional ability to colonize and attach to any surface, find no way to adhere, as they 

poke, prod, and attempt to grasp the liquid interface using various appendages and 

molecular attachment mechanisms. Furthermore, the surface can manage all of this 

against a backdrop of shear flow, changing temperatures, high atmospheric or submerged 

pressures, or other forces from the environment. These displays of robustness and 

negligible resistance are rarely seen in traditional synthetic or even natural materials, 

individually let alone all at once.  

 

3.2 The task for design: perfection as responsiveness 

 

Herein begins the task for design. To make use of a liquid’s inherent perfection in 

the context of so many dynamic functions, we can’t take it for granted – the system must 

be designed to actively cultivate it and adapt to the changing environment. As we 

discussed in Section 2, this is where the solid substrate comes into play. In practice, even 

the basic smooth surface and its robust self-healing depend on the liquid’s ability to wet 

and spread on the solid. But, as we might expect, it turns out that a flat chemically 
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tailored substrate isn’t sufficient in the more complex situations described above: for the 

liquid interface to act perfect toward dynamic droplets, bugs, and substances, we need to 

give the underlying substrate an appropriate 3D nano/microstructure as well23,24,26-28,33,40. 

As in the living systems, the material’s function relies on balancing forces at its outer 

interface with forces from its inner surface contacts.  

 Moreover, several lines of evidence suggest that, far from being just a prerequisite 

for maintaining topographic and chemical homogeneity under duress, the responsive 

dance between the surface and everything on it may be the heart of how perfection works. 

Ants can adhere to a highly smooth surface with forces one hundred times their body 

weight41 but can’t stand still on the liquid film; bacteria rapidly overgrow virtually every 

solid surface42, with the static state nearly the only criterion, but show practically zero 

growth or even attachment here; a sliding droplet’s contact line is thought to be actively 

moved along by the dynamic functional groups on fluid-like monolayers43. Thus liquid 

surfaces may achieve functional perfection by an inherently dynamic, responsive 

mechanism that requires us to reconsider what it means to be a perfect surface. An 

essential component of design, then, may be to begin to understand what kinds of 

motions matter – for example, how far the liquid is carried along, and how this is 

balanced with stabilizing the surface against loss. Understanding such features of material 

function may in turn provide even greater opportunities to design not only “perfect” but 

directed, selective functions as well. 

 

4. Templating a material in perpetual motion 
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 For perspective on how to design liquid materials, we go back for a moment to 

consider how living and bioinspired systems achieve precise, detailed control over the 

assembly of solid materials. In many cases a structured template – similar to the 

microarchitectures underlying biological liquid surfaces – has been shown to play a 

crucial role in shaping these systems’ dynamics44-49. Although not a direct blueprint – the 

components’ own attractions and bulk mechanics do most of the work – the template 

participates in shaping the flows, gradients, and motions of chemical species and particles 

by modifying the forces they feel. It does this by several means. First, it presents specific, 

often spatially patterned, surface chemistries. Strictly speaking, these functional groups 

only contact a tiny fraction of the components at the interface, but they can profoundly 

influence intramolecular dynamics and mobility throughout the rest of the system, as well 

as impose constraints on the mechanical behavior. Controlling the surface-to-volume 

ratio via micro/nanostructuring can further amplify the influence of the direct template 

interactions relative to the system’s internal and outside forces. In particular, structured 

micro/nanoenvironments – with geometry, size, and spacing that complement the 

system’s intramolecular effects and bulk mechanics – can produce a phenomenal range of 

specific, complex dynamics, with local control and multiscale patterning. As we will see, 

these principles can be carried over almost directly to the design of robust yet 

continuously mobile liquid materials.  

 

4.1 Thin film dynamics, manipulation, and dilemmas 
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 On a flat substrate, liquids already display a fascinating repertoire of dynamic 

behaviors as thin films. At only microns or nanometers thick, thin films have been shown 

to display exquisite sensitivity to a variety of forces, responding with intricately patterned 

multiscale motions and flows (Figure 3). Gravity, thermocapillary forces, elasticity, 

chemical interactions with the substrate, or substances moving on the surface produce 

unique forms of instabilities that can propagate in two or even three dimensions – 

transiently creating, for example, local regions of patterned surface contour or focused 

thinning21,50-54.  Extensive study and modeling of these phenomena, fundamentally and in 

the context of printing, coating, and other applications, has produced a diversity of 

approaches to manipulating these dynamics down to the nanoscale. Chemically patterned 

substrates have been used to create a wide range of thin film behaviors by imposing 

complex wettability gradients55-57, while combining surface patterning with thermally 

imposed shear stresses at the liquid-air interface has been shown to generate controlled 

flow and wetting behaviors54,58,59. These approaches have been complemented by the 

manipulation of film energetics and morphology by electric fields60,61. Complex 

molecular interactions of polymer films at the liquid-substrate interface, as well as 

evaporative convection patterns of multicomponent liquids, are yet another source of 

diverse behaviors62,63. The short distance between the film’s two interfaces – substrate 

and outer – combined with its own minimal thickness leads to an especially sensitive 

dynamic coupling between bulk, substrate, and surface forces21. For example, a fluid 

flowing over the outer surface induces coupled motion of the film surface, leading to 

local thinning and enhancing sensitivity to substrate interactions, which modifies the 

film’s local mobility and in turn modifies the motion of the flowing fluid.  
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 These responsive dynamics coupled to the properties of an underlying substrate 

suggest abundant possibilities for design, but a flat “template” nevertheless has 

substantial limits. With two-dimensional surface chemistry as the only means of built-in 

control, the system is stymied by several dilemmas. First, dynamics and stability are 

directly opposed to each other: stabilizing the film against gravity and other body and 

surface forces, as by making it thinner, comes at the cost of increasingly solid-like 

behavior64. In addition, although a thinner film is more stable against gravity, its 

increasing sensitivity to molecular interactions with the substrate can simultaneously 

make it more vulnerable to dewetting or rupture if its chemical wettability is any less than 

perfect51. The two-dimensional system also puts conflicting demands on the liquid’s 

surface tension: the surface tension must be low to keep the film flat rather than beaded, 

but at the same time it should be high to resist the deformations associated with gravity or 

shear-induced flow. Since all of these dilemmas place strong restrictions on the choice of 

liquid chemistry, they also restrict the capacity to specify how the liquid interacts with 

the many different substances that contact its surface in an open environment. 

 

4.2 Resolving in 3D 

 

Micro/nanostructuring the liquid’s substrate interface in 3D makes it possible to 

resolve these dilemmas by introducing complexity, compartmentalization, and 

micro/nanoscale effects while maintaining a continuous film on the outside22,39,65,66. A 

structured substrate provides a common mechanism to enhance both stability and 

dynamics at once: infusion into underlying pores allows greater bulk dynamics by locally 
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increasing the thickness, but also stabilizes the film through capillary effects67. 

Roughness can also simultaneously decrease susceptibility to both gravity and dewetting, 

since the apparent contact angle of an infused liquid approaches zero even if chemically 

the liquid is only partially wetting, introducing a so-called superlyophilic state. 

Structuring also effectively buffers the delicate balancing act for surface tension, by not 

relying on chemistry to do all the work in keeping the outer surface shape stably 

molecularly smooth and defect-free. Micro/nanostructuring the film’s underside, then, 

frees us to think much more broadly about specifying the liquid’s interactions with 

substances on the surface. Like the 2D wettability gradients introduced by chemical 

patterning, 3D topographic parameters have been modeled and used to manipulate thin 

film flow and morphology68, with additional complexity introduced by thermally induced 

surface forces69, greatly enhancing the possibilities for precise control and design. 

 Structuring also directly unites liquid materials design with the vast array of 

strategies for designing solid micro- and nanoarchitectures – many of them intricately 

patterned and controlled by bioinspired systems themselves (Figure 4). Random fibrous 

networks as common as Teflon, or even polymer gels, can, if chemically functionalized, 

provide the porous texture to hold an infused liquid24,70. Uniformly nanoscale texture can 

be created directly on a wide range of surfaces by a simple reaction that produces 

nanocrystalline metal oxides, such as aluminum oxy hydroxide, boehmite (AlO(OH))28,71, 

with many options for varying the crystalline properties and photo-patterning the 

surface28. But we can also introduce precise, highly ordered, yet practically unlimited 

geometries with controlled shape, periodicity, anisotropy, defects, and hierarchy by 

methods built on high-aspect-ratio anchored fiber arrays or colloidal crystal synthesis. 
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Fiber arrays can be created and replicated in materials from ceramics to soft polymers, 

even further sculpted into arbitrary shapes and surface-wide gradients via polymer 

electrodeposition, and/or self-assembled – through dynamic interplay with liquids – into 

chiral, hierarchical structures72,73. Highly ordered inverse colloidal monolayers provide 

closed-cell geometries and uniform pore sizes, with options for introducing controlled 

defects and patterning through topographic templating and for spatially patterning the 

surface chemistry33. Once functionalized with liquid-specific surface chemistries, any of 

these substrates can form a basic template to hold a liquid layer – providing a library of 

possibilities to systematically study and optimize how different features translate into 

liquid dynamics, responses to different forces, and functions of the outer interface. 

 

4.3 Micro/nanostructuring liquid functional behavior 

 These architectural strategies, combined with the wealth of insights into liquid 

behavior coming from the fields of fluid mechanics, microfluidics, and tribology, provide 

an extremely rich source of tools and concepts, which potentially enable us to intricately 

shape how the infused liquid confined in the underlying solid will function and respond 

when continuously subjected to diverse environments and substances. The possibilities 

have only begun to be tapped, but the early work demonstrates that the robust behavior as 

a stable surface material can be achieved by incorporating the full diversity of ideas into 

materials design. 

For example, the substrate’s geometry, dimensions, defects, and multiscale 

organization can, together with chemistry, radically alter the specific deformations a 

response to specific shear forces will entail. On a flat substrate, gravity or shear forces 
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generally drive flow by inducing large-scale curvature of the liquid surface. But if the 

liquid is infused in a uniformly nanostructured substrate, the curvature changes must now 

be negotiated locally within each nanocompartment, with nanoscale menisci that can 

substantially raise the energy cost of flow. Due to the strong capillarity, a liquid film 

entrapped in such substrates resists flow and remains stable under extremely high shear 

forces28,33 (Figure 5A, top), enabling it to remain fully omniphobic even after such 

exposures. The spacing is critical to setting the response threshold. On a hierarchically 

structured substrate, the liquid does flow between microstructures at intermediate forces 

but remains stable within the nanostructures overlying them, carving out an undulating 

but continuous liquid surface28 (Figure 5A, center). The differential sensitivity threshold 

for the two feature sizes is consistent with the liquid’s effective capillary length, a force-

dependent measure of the length scale at which body forces can overcome surface 

tension, and can be tailored to evoke force-specific effects on the surface’s repellent 

behavior28.  

 By introducing defects into the nanostructured surface, we can change not only 

the sensitivity but also the type of response to shear. A microscale defect within a field of 

uniform nanostructures effectively creates a low-aspect-ratio pore where the film is 

microns wide and nanometers thick. As discussed in Section 4.1, such a thin film, without 

interspersed nanostructures, is especially sensitive to molecular interactions with the 

substrate. As a result, the liquid can respond to intermediate forces by highly localized 

dewetting within the defect. The intrinsic contact angle now plays a crucial role. As 

mentioned in Section 4.2, the effective contact angle on top of the surrounding 

nanotextured region is zero, but as the overlying film thins, this collective effect will no 
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longer apply within the comparatively wide defect. Around the edges, then, the liquid can 

begin to take the shape favored by its intrinsic contact angle – effectively migrating away 

from the center as the force increases33 (Figure 5A, bottom). The sensitivity of this 

response – and how it balances with other response modes such as those described above 

– can be set by the combination of the intrinsic contact angle and the relative dimensions 

and pattern of the intact and defect geometries. Modeling this process has allowed us to 

precisely correlate defect spacing, film dynamics, and omniphobic performance under a 

variety of shear conditions. 

 Combining spatially patterned chemistry with patterned topography provides a 

highly precise way to orchestrate how and where the liquid film can be pushed by – and 

can push – a second liquid on top of it, even for low-surface-tension liquids that are not 

well-controlled by chemical patterning alone. On a uniform nanotexture, for example, a 

defined region can be functionalized with a surface chemistry that the liquid film wets 

only moderately, with strongly wetting chemistry everywhere else. Alone, the liquid film 

will still wet the entire substrate, since the roughness itself enhances the wettability. But 

if another fluid with better wettability in that region – a simple polar or apolar liquid, or a 

complex substance like blood or crude oil – flows over the film, the original film now 

becomes only metastable in the patterned area. Over time, the film will be displaced by 

the second fluid and redistribute to the surrounding region. But the pushing stops there – 

outside the patterned region, the film is thermodynamically stable: surface chemistry and 

capillarity resist further movement, and the film pushes back on the second fluid to keep 

it confined33 (Figure 5B, top). This not only creates a time-dependent way to pattern the 

behavior of the second substance, but the same principle can also work in reverse. If the 
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film is forced out of a region that it does wet preferentially, it will push the second 

substance out and flow back to form a continuous film again (Figure 5B, bottom). 

 

4.4 Integrating local and global   

 

 Yet the possibilities for shaping the film’s functional behavior are even richer 

than the sum of all these local negotiations. Since the liquid film is continuous over the 

whole surface, everything discussed so far is integrated by how it can move and 

communicate among the compartments, both within and on top of the texture. The film’s 

response to gravity, for instance, depends not only on how the liquid can deform locally 

but also on how freely it can snake among the roots of the nanoforest (Figure 5C, left). 

This underlying flow entrains the film’s dynamics at the surface, substantially altering the 

kinetics of its response74. The structures’ height and spacing once again play a critical 

role: setting these parameters tunes the liquid’s effective viscosity within the texture, 

providing a way to specify large-scale liquid kinetics through substrate architecture. A 

complementary way to tune the kinetics, with fewer restrictions on the spacing per se, is 

to use closed-cell architectures. Porous substrates, with arrays of individual holes 

patterned by colloidal spheres (Figure 4, right), allow little or no flow within the plane of 

the texture (Figure 5C, center). Liquids infused in such structures are extremely resistant 

to gravity even with microscale pore diameters, showing no perceptible signs of flow 

after months under continuous gravitational force33. 

 Even if the liquid is trapped within disconnected compartments, however, the 

underlying architecture can still shape collective multiscale dynamics in ways that differ 
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substantially from purely additive effects. Since the film is necessarily thicker within 

wells than on top of the walls between them, a bird’s eye view of the surface can show 

distinct dynamics directly on top of, compared to between, compartments. Yet even if the 

film over the walls becomes too thin to sustain intrinsic dynamics by itself, the length 

scale of the overall surface dynamics has been found to be several times larger than the 

diameter of the wells75. This implies that the dynamics arising from within the wells can 

propagate across even supposedly impassable barriers (Figure 5C, right). The periodic 

geometry still plays a central role in defining this length scale, but the collective behavior 

can undoubtedly be tuned by other structural parameters as well, such as pore depth, wall 

dimensions, and surface chemistry. The mechanism is still under investigation, but this 

unexpected form of connectivity gives an even broader taste of the potential complexity 

and specificity that can be designed into liquid-bearing materials. 

 

5. Adaptive liquid surfaces: dynamic dynamics 

 

5.1 Template takes an active role 

  

With increasing sophistication, then, the liquid material adapts and responds to 

stimuli all the time as part of its ongoing function and self-maintenance. But as we 

mentioned in Section 2, the liquid’s continuous dynamics make the system inherently 

meta-responsive as well: its responsiveness profile itself can be redesigned any time in 

response to specific stimuli and changing conditions. To build this capacity into adaptive 

materials, we look again to the template design. Elastic substrates have been shown to 
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introduce complex liquid film dynamics76,77, with elastic topography78,79 and porosity80 

introducing further multiscale responses. In addition, recent interest in stimulus-

responsive materials has produced an ever-growing assortment of dynamic, elastic solids 

that reversibly change size, shape, or even surface chemistry in response to mechanical, 

chemical, temperature, magnetic, electric, light and many more types of stimuli81-85. With 

these, we can design the substrate architecture itself to come alive in response to stimuli 

and translate all kinds of signals from the environment into its multiscale language of 

capillary, electrostatic, and other forces. For example, mechanically stretching, bending, 

or poking an elastic substrate creates unique surface-wide stress fields that, in a porous 

architecture, translate into sensitive, specific changes in pore size, shape, spacing, and 

potentially connectivity. These in turn create stimulus-specific pore pressure profiles 

(Figure 6A) that are felt by the infused liquid29.  

The liquid, for its part, responds by doing what it does best – it flows, 

redistributes, and reconfigures locally within each pore and over the continuous film in 

predictable, detailed, sensitive ways to find its new thermodynamically stable shape. As 

we model for a prototype array of nanopores (Figure 6B), this reshaping follows a 

progressive path as the stress is increased29. Initially, the film simply becomes thinner, 

maintaining a smooth outer surface by redistributing above the pores just as it self-heals 

in other cases. But as its outer surface approaches the level of the structures, it begins to 

curve inward over each pore as the inward pressure from the widening pores starts to 

overcome the surface tension. These deformations produce a gently roughening liquid 

surface. At higher stresses – with more stretching, wider pores, and more inward pressure 

– the inward curvature and thinning continue, as the liquid’s outer surface increasingly 
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takes the shape of the substrate. The combined dynamic responses of the template and 

liquid thus reconfigure both the inner and outer liquid interfaces, as well as the film’s 

overall depth profile – creating a whole range of new liquid architectures with 

corresponding new dynamics.   

 

5.2 Tuning the motion of droplets and light 

 

 To a foreign droplet traveling over the liquid interface, these increasingly rough 

topographies no longer look or act perfect, and the droplet accordingly stops in its tracks 

as the material is stretched29 (Figure 7A, left). But as soon as the stress is released and the 

pores regain their original dimensions, the liquid film immediately returns to its original 

defect-free perfection, and the droplet continues on its way. In fact, this entire reversible 

“pinning” process – not just the film’s behavior in the smooth slippery state – turns out to 

be yet another twist on the film’s ability to act perfect toward things moving on it. In 

almost all other cases where pinning is induced by a switch in surface properties, the 

droplet irreversibly transitions from a metastable state – such as balanced on an air/solid 

interface – to a stable wetting state86-90. Even if the surface properties can easily be 

returned to their original configuration, the droplet can’t: it remains trapped in place. On 

the liquid interface, no such transitions are involved. The film’s surface and the droplet’s 

underside progressively develop curvature together and conformally follow the 

underlying topography as a continuous liquid-liquid interface – and just as smoothly 

return to the flat state together. The situation is no different for a second droplet placed 

on the surface once it’s already stretched. Together the droplet and film reach the same 
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mutually stable curvature, and both droplets begin sliding at precisely the same moment 

as the interface returns to its original flat state (Figure 7A, left, bottom row). 

 This smooth transition, with thermodynamic stability all along the way, can also 

be stopped at any point – allowing a precise, graded response to stress29 (Figure 7A, 

right). The surface can be adjusted to anything from perfectly slippery, through a 

continuous range of intermediate slipperiness – as measured by the amount of tilting 

required for droplets to slide – to complete pinning and back, by subtly varying the 

degree of stretch. The fine resolution between degrees of slipperiness also underscores 

that each of the topographies is still perfect, defined by smooth, albeit curved, liquid 

precision. In addition, the fine tunability of the “responsive responsive” surface makes it 

possible to resolve subtle differences between different types of droplets. In the flat, 

relaxed state, the surface acts perfect toward droplets of all surface tensions, letting them 

all move freely. But since the exact topography under a given amount of stress depends 

on the balance between pore changes and surface tension, droplets with different 

interfacial tensions will each see a slightly different degree of curvature. These 

differences give each droplet type a characteristic sensitivity threshold and response 

profile29 (Figure 7A, right), determined by the combination of pore features, stimulus 

strength, and interfacial tension. 

 The fine resolution and liquid precision of these inducible topographies 

simultaneously allows the precise manipulation of light29. Not only different degrees but 

also different patterns of mechanical stress induce characteristic transitions from 

transparent to opaque, and back. These transitions can be highly localized: bending or 

poking the transparent flat surface creates an opaque region along the crease or poked 
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spot, with boundaries and spatial gradations that correlate with the predicted pore 

pressure profiles (Figure 7B, left). The extent and sharpness of these spatial gradations 

will be determined not only by the nature of the stimulus but also by the connectivity and 

length scale of liquid mobility. Just as for slipperiness, graded degrees of planar 

stretching create graded, finely tuned degrees of optical transmission, with graded 

reversibility as the surface is relaxed (Figure 7B, right) – in direct parallel with the 

transition between smooth and rough topography (Figure 7B, right, insets). Combined 

with the order, patterning, and nanoscale control offered by inverse colloidal 

architectures in particular47,91, these responsive liquid behaviors can potentially be 

designed to sculpt air-liquid interfaces that create a wide range of color, pattern, and other 

optical responses. 

 

5.3 Stimulus-responsive liquids 

 

 The liquid properties, too, can be made directly tunable by a variety of electric, 

chemical, temperature, magnetic, and other stimuli. Depending on the specific 

composition of the liquid, an electric field can potentially alter its intermolecular 

interactions, both within the liquid and at its two interfaces – altering its wetting strength 

and its overall dynamic interplay between body, substrate, and surface forces92. The same 

can be said for a wide range of chemical signals, from pH to salts, alcohols, or specific 

biomolecules. While liquids can specifically be chosen not to respond to cold or heat, 

others can be designed to respond to temperature changes within a particular range with 

sensitive variations in viscosity or surface tension. Temperature stimuli can, for example, 
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lead to adjustments in the velocity of droplets moving over the surface30. Ferrofluids – 

liquid suspensions of magnetic particles – introduce a particularly interesting set of 

magneto-responsive behaviors: a magnetic field can overcome surface tension and other 

forces to dramatically reshape the liquid surface93. The molecular groups and particles 

underlying these stimulus sensitivities need not even be that different from those of the 

responsive solids – but together, responsive liquids and solids provide vastly different 

and complementary routes for translating diverse stimuli into adaptive changes in the 

liquid material’s properties.  

 

6. Outlook 

 

The primary purpose of this Perspective Article is to provide direction for a new 

materials approach that uses liquids as a structural material for the design of robust, 

multifunctional interfaces. The liquid surfaces we discuss derive a very wide range of 

omniphobic, antifouling, optical, healing, and adaptive functions specifically from 

remaining in the fully liquid state, yet act as long-term, stable surface materials exposed 

to changing, unpredictable, or extreme environments – and therefore may require quite a 

different set of design concepts than traditionally studied liquid films that harden, 

evaporate, or are sandwiched between highly controlled solids. With the surge of interest 

in developing this strategy for practical use across many fields, we believe it is critical at 

this early stage to frame liquid surface materials in terms that emphasize common ground 

and potentially stimulate cross-pollination across many areas of materials design, 
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including thin films, tribology, fluid mechanics, microfluidics, and self-assembly, and to 

emphasize the role of materials chemistry in all these approaches. 

By placing never-ending motion at the root of design, liquids take us into a 

completely new realm for creating and understanding interfacial materials. A liquid 

surface not only intrinsically builds in a wide range of dynamic functions – self-healing, 

self-organizing, self-cleaning, self-shaping, self-adapting – but fundamentally unites all 

of them down to the molecular level. It’s no coincidence that many of them can be 

defined as “self”: with the liquid’s molecules in continuous thermal motion, a tremendous 

variety of surface functions that generally require energy input can be powered by 

ambient thermal energy alone. Based on the design principles outlined here, these unique 

capacities – common to all liquids – make it possible to create multifunctional, 

responsive, autonomous surface behaviors from the bottom up. But even more crucially, 

they also challenge us to think about such behaviors in ways we hadn’t imagined. All 

kinds of dynamic interfacial phenomena – from substances sliding, to cells growing, to 

crystals and particles assembling – can and must be conceived not only in terms of fixed 

surface properties but also as active, multiscale interplays with a dynamic, defect-free, 

molecularly smooth surface. Incorporating this active dimension into surface design will 

likely be inseparable from developing new understandings of the phenomena themselves. 

On the liquid’s underside as well, designing the liquid-substrate interface as an 

active, mutual interplay between liquid and solid can open even wider frontiers in 

creating complex liquid material functions. Several recent systems are already beginning 

to show how this can work at the nanoscale, with functionalized particles84 and fiber 

arrays72 dynamically assembling, disassembling, and reorganizing as conditions change. 
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Indeed, these as well as many other assembling systems are all the same story of a two-

way interplay between solids and liquids: liquids order solids and enable them to move, 

and solids shape the topography and flow of liquids19,76-79 – even breaking down the 

distinction between template and templated in favor of mutual coassembly17. 

Incorporating this dynamic interplay into the liquid material would not only create more 

complex, responsive behavior at the liquid’s outer interface – as in several of the living 

systems – but would provide opportunities to integrate the substrate’s and the liquid’s 

complementary responses to stimuli. 

 With these nearly unlimited design possibilities, and the diversity of unmatched 

properties that have already been demonstrated, liquid materials can fundamentally 

transform how we design surfaces everywhere, from medicine to airplanes to buildings. 

Fluid transport systems – from fuel to heating pipes to drinking water to dialysis tubing – 

can be designed to minimize drag, fouling, and corrosion, to withstand strong shear, high 

pressure, and high temperature, and even to self-regulate flow based on stimuli from the 

environment or the transported fluid. Planes, wind turbines, and refrigerators can be 

designed to simultaneously shed condensation, minimize ice nucleation, and prevent ice 

adhesion, with shear and gravity acting as an aid to self-cleaning rather than a threat to 

surface integrity. Optical devices and windows can self-adjust light transmission as well 

as self-clean, while multifunctional tent fabrics can be envisioned that adapt both 

transparency and water shedding for dry and sunny or dark and rainy weather. With 

infinitely reconfigurable liquid topographies, dynamic, defect-free liquid interfaces can 

themselves serve as novel templates for a wide range of microfluidic, lab-on-chip, and 

materials synthesis systems. By combining continuous flow and turnover with multiscale 
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precision and control, liquid materials – never drying, never hardening, and fully exposed 

to the changing and extreme conditions of diverse environments – may offer radically 

new opportunities for creating dynamic, responsive, energy-efficient materials needed to 

meet our most pressing materials challenges. 
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Figure 1. Liquid surfaces rooted in porous architectures. A purely liquid interface creates 
(top) the ultra-slippery surface of the carnivorous pitcher plant leaf; the optically perfect, 
antifouling, pressure-resistant surface of the eye (Adapted from ref.2.; the lubricating 
surface between bones (Adapted from ref.5.; (bottom) the shape-adapting soles of insect 
feet (Adapted from ref.41.; a tree frog’s adjustable, impact-resistant toe pads (Adapted 
from ref.7.. Corresponding insets show the underlying micro/nanoarchitectures in which 
the liquid films are infused: patterned radial ridges on the leaf surface (Adapted from 
ref.1.; labyrinthine whorls (Adapted from ref.3. (top) and villi (Adapted from ref.8. (left 
and bottom) on fish and mammalian cornea; porous cartilage (Adapted from ref.94.; 
elastic cuticle network (Adapted from ref.6.; patterned toe pad structures (Adapted from 
ref.7..  
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Figure 2. Dynamic perfection. A. A liquid film infused in a rough substrate (red box) 
flows to form an optically perfect, transparent surface. B. Self-healing liquid surface 
erases damage within milliseconds. C. Liquid acts as a perfect, defect-free interface 
toward nearly all substances, solids, and organisms: (from left) liquid droplets of high or 
low surface tension, ketchup, blood, ice, bacteria and biofilms, and insects cannot adhere, 
and slide freely off the surface. 
 
  
 
 

 
 
Figure 3. Thin film dynamics arise from complex coupling between substrate, body, and 
surface forces. Clockwise from top left: patterned liquid motions generated on a flat 
substrate by gravity (Adapted from ref.52.; thermocapillary forces (Adapted from ref.50.; 
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a substance flowing over the film’s surface (Adapted from ref.53.; and intermolecular 
interactions with the substrate (Adapted from ref.51..  
 
 
 
 

 
 
Figure 4. Micro/nanostructuring the substrate. A wide range of 3D architectures can 
serve as the underlying substrate: (from left) random nanoporous fiber networks; 
nanocrystalline boehmite; arrays of high aspect ratio nanofibers; inverse colloidal 
monolayers. All can be chemically functionalized to optimize compatibility with the 
infusing liquid. 
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Figure 5. Templating the liquid film’s mobility. A. The dimensions and multiscale 
organization of the underlying architecture create distinct responses to shear force for 
films infused in: uniform nanostructures (top), microstructures overlaid with 
nanostructures (center), and uniform nanostructures containing a microscale defect 
(bottom). B. Combining structure with defined, spatially patterned surface chemistry 
shapes the film’s behavior in the presence of a second fluid, such as how it confines (top) 
or extrudes (bottom) the second fluid. C. Disconnected surface structures (left), closed-
cell pores (center), and parallel ridges (right) create different pathways for flow and 
large-scale connectivity within and over the surface texture. 
 
 

 
 
Figure 6. Stimulus-responsive liquid surfaces. A. An elastic structured substrate 
translates different types of stimuli, such as mechanical stretching, bending, or poking, 
into characteristic changes in pore pressure across the surface. B. The local pressures 
cause the liquid surface to curve inward over each pore, creating liquid 
microtopographies that progressively conform to the underlying architecture as the strain 
is increased.  
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Figure 7. Tunable droplet motion and optics. A. (Left) Stretching roughens the smooth 
liquid interface, stops a sliding droplet in its tracks, and pins a newly added droplet in 
place. Relaxing restores the smooth surface and allows both droplets to begin sliding. 
(Right) The surface slipperiness can be finely tuned by varying the degree of strain, with 
distinct response profiles for droplets with different interfacial tensions. B. Mechanical 
stress produces localized (left) and finely graded (right) reversible changes in optical 
transmission, with decreasing transmission directly correlated with increasing liquid 
roughness (right, insets). 
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