A Glomerella Species Phylogenetically Related to Colletotrichum Acutatum on Norway Maple in Massachusetts

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.3852/07-192</td>
</tr>
<tr>
<td>Accessed</td>
<td>June 9, 2017 6:24:06 PM EDT</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:2766644</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>

(Article begins on next page)
A Glomerella species phylogenetically related to Colletotrichum acutatum on Norway maple in Massachusetts

Katherine F. LoBuglio
Donald H. Pfister
Harvard University Herbaria, Cambridge, Massachusetts 02138

Abstract: A fungus isolated from Norway maple (Acer platanoides) in the Boston, Massachusetts, area was determined to be a species of Glomerella, the teleomorph of Colletotrichum acutatum. Pure cultures of the fungus were obtained from discharged ascospores from perithecia in leaf tissue. This fungus was determined to be homothallic based on the observation of perithecial development in cultures of single-spore isolates grown on minimal salts media and with sterile toothpicks. A morphological and molecular analysis was conducted to determine the taxonomic position of this fungus. Parsimony analyses of a combined nucleotide dataset of the ITS and LSU rDNA region, and of the D1–D2 LSU rDNA region, indicated that this species has phylogenetic affinities with Colletotrichum acutatum, C. acutatum f. sp. pineum, C. lupini, C. phormii and G. miyabeana. These results are significant because C. acutatum has not been reported on Acer platanoides. In addition the consistent presence of perithecia on leaf tissue and in culture is unusual for Colletotrichum, suggesting that the teleomorphic state is important in the life cycle of this fungus.

Key words: Acer, anamorph, Ascomycota, phylogeny, ribosomal DNA, teleomorph

INTRODUCTION

During fall 2006 leaves of Norway maple (Acer platanoides) in the Boston area exhibited symptoms of an anthracnose disease. Symptoms included irregularly shaped, brown, necrotic lesions with reddish margins. The lesions often were delimited by veins. From August to November perithecia with mature asci were found in the lesions on leaves still attached to trees and on leaves that had fallen prematurely. This study was undertaken to determine the identity and phylogenetic relationships of the fungus associated with the lesions as well as the mating system of the fungus.

Materials and methods

Isolation.—Symptomatic leaves were collected from A. platanoides trees Aug–Nov 2006 (Fig. 1a). Leaves were examined under a dissecting microscope (Fig. 1a) for the presence of perithecia (Fig. 1b). Petri plates containing malt-yeast-extract agar (MEYE, 3.0 g yeast extract, 3.0 g malt extract, 5.0 g peptone, 10.0 g glucose and 1 L H2O) medium were inverted over leaves with perithecia. Discharged ascospores were observed on the agar medium with a dissecting microscope within 1 h and transferred to fresh medium. Cultures were incubated at room temperature (approximately 23 °C) and ambient light. Cultures also were established by placing surface-sterilized, symptomatic leaf pieces on MEYE media and incubating them under the conditions above. Colony morphology was observed from cultures grown on potato-dextrose agar (PDA, Difco, Becton Dickinson & Co., Sparks, Maryland) incubated at 23 °C in the dark as well as at room temperature with ambient light.

Development and morphology of appressoria was observed examining the underside of glass cover slips that had been placed on the margin of developing cultures from which a block of agar had been removed.

Single-spore isolation.—To determine the compatibility system of this fungus single-spore isolates were established from ascospores produced in cultures obtained from maple leaf tissue. Mature perithecia were removed from a culture and placed on the inside surface of a Petri plate lid. The Petri plate was turned upside down so that the perithecia would discharge spores upward onto the surface of water agar. Isolated perithecia also were placed in Petri plates, crushed and flooded with sterile water. The water with ascospores was spread on the surface of water agar. Petri plates were examined with a compound microscope for germinating ascospores that were not in contact with other spores. Individual germinating ascospores were transferred to the surface of PDA, incubated at 23 °C with constant light from a 10-watt fluorescent bulb and examined every other day for growth.

Thirty-three single-spore isolates obtained as described above were grown on PDA and on a minimal salts medium with autoclaved flat toothpicks on the agar surface (Guerber and Correll 2001). Inoculum on the minimal salts medium was placed close to the toothpicks, which provide a surface for perithecial development (Guerber and Correll 2001). These cultures were grown at 23 °C under constant light provided by a 10-watt fluorescent bulb and were examined every other day for perithecial development.

DNA isolation, amplification and sequencing.—Three of the five original A. platanoides isolates were selected for DNA isolation. The isolates were grown on sterile dialysis membrane (Bel-Art Products, Pequannock, New Jersey, No. 402990000) placed on the surface of PDA. Mycelium (equivalent to a volume of 250 μL) from each isolate was

Accepted for publication 16 May 2008.

1 Corresponding author. E-mail: klobuglio@oeb.harvard.edu
scraped from the membrane into a 1.5 mL Eppendorf tube. The mycelium was ground with pestles (Kontes Glass Co., Vineland, New Jersey, No. 749521-1590) and sterile sand. A total of 500 µL of SDS lysis buffer (1% SDS; 200 mMTris, pH 7.5; 250 mM NaCl; 25 mM EDTA) was added next, followed by additional grinding. The three samples were incubated at 70°C on a heating block with occasional grinding. This solution was extracted with phenol-chloroform and precipitated as described in Lee et al (1988). A 1/100 dilution of the DNA was used for PCR amplification of the ITS and LSU rDNA regions. These rDNA regions were amplified with rDNA primers ITS1 and ITS4 (White et al 1990) and LROR and LR5 (Moncalvo et al 2000). PCR amplification, purification and sequencing were carried out as described in Hansen et al (2005).

Sequence analyses.—The program Sequencher 4.6 (Gene Codes, Ann Arbor, Michigan) was used to edit nucleotide sequences. Comparison of Glomerella sequences to Colletotrichum species was done with the program Se-Al v 2.0a8 (Rambaut 1996). A total of 44 Colletotrichum sequences were compared in this analysis, 42 of which were provided by M.C. Aime (now at Louisiana State University) from a recent study of this genus (Farr et al 2006). Plectosphaerella cucumerina was chosen as the outgroup (Farr et al 2006). Maximum parsimony analysis of the ITS-LSU combined dataset was performed with PAUP 4.0b10 (Swofford 2002). Heuristic searches consisted of 1000 random sequence addition replicates with tree bisection-reconnection branch swapping. The strength of the internal branches from the resulting trees was tested statistically by bootstrap analysis from 500 bootstrap replications.

The relationship of this fungus from maple to two species known to infect other tree hosts, C. acutatum f. sp. pineum and G. miyabeana, was examined by phylogenetic analysis of the D1–D2 LSU region (209 nucleotides) of taxa used in the present study and the D1–D2 LSU sequences of C. acutatum subgroups A, B and C, C. acutatum f. sp. pineum and G. miyabeana (EMBL No. U79691–U79700 and U79710–U79713, Johnston and Jones 1997).

RESULTS

Morphology and compatibility.—Five isolates (MP1–MP5) were established from either ascospores or leaf tissue. Colonies were initially white, becoming gray, green/gray, or dark gray, initially in the center but then coloring throughout. Some isolates were slightly salmon on the upper and lower surface, each with a distinct white margin. Other cultures remained white/cream to gray with or without a dark center, and some became dark olive green as viewed from the top or the under surface. Dense, elevated, aerial mycelium was characteristic of the colonies, the center often appearing green/gray velvety. Colony growth was respectively 4.5–7.8 cm diam after 5 and 14 d on PDA in the dark at 23°C. Dark structures, which resembled perithecia but did not produce asci, often were observed throughout.

Limited production of conidia was observed after 1 mo at room temperature under ambient light. Conidia also formed in orange gelatinous masses throughout cultures more than 1 mo old. Conidia were hyaline, aseptate, narrow to broadly oblong, straight to irregular in outline, with one end tapered. Conidia were 10–25 × 3–7 µm. Perithecia were produced regularly in MEYE and were single or clustered and superficially embedded in the mycelium (Fig. 2a). Mature ascospores were variable at 14.4–20 × 4–6.8 µm (Fig. 2b, c). Ascospores were hyaline, aseptate, narrowly to broadly oblong and straight to slightly curved.
Appressoria were observed on the underside of sterile covers slips arising from vegetative hyphae (Fig. 2d). They were smooth, simple, obovate to clavate (instead of lobed and/or in chains) and varied from light to dark brown.

In all single-spore cultures perithecia containing asci with ascospores were observed after 1 wk on inoculum plugs and on toothpicks on minimal salts medium. This observation suggests that this fungus is homothallic. Perithecia were not observed in cultures grown on PDA under the same conditions.

Phylogenetic analysis.—The ITS and LSU DNA sequences obtained for the three isolates (MP1, MP2 and MP3) were identical for both rDNA regions. The ITS-LSU dataset included 1273 nucleotide characters of which 87 were excluded due to questionable alignment. Of the remaining characters 974 were constant, 114 of the variable characters were parsimony uninformative and 98 were parsimony informative. The strict consensus of 328/488 equally parsimonious trees (tree length 369, CI = 0.65 and RI = 0.83) is provided (Fig. 3). Bootstrap values are included on branches. Our analyses showed that the fungus on maple is related phylogenetically to *Colletotrichum* species in the clade comprising *C. acutatum*, *C. lupini*, and *C. phormii* (Fig. 3), *C. acutatum* f. sp. *pineum* and *G. miyabeana*. *Glomerella miyabeana* is a pathogen of willow and was found to be related phylogenetically to *C. acutatum* by Johnston and Jones (1997) using the D1–D2 LSU rDNA region. *Colletotrichum acutatum* has not been reported on *Acer platanoides*, to our knowledge. Stipes and Clement (1978) reported an anthracnose on *Acer platanoides* in Virginia caused by *Glomerella cingulata*, which is considered a causal agent of anthracnose leaf spot on maple species (Sinclair and Lyons 2005). We could not find reference to *G. acutata* or *C. acutatum* as a pathogen of *Acer platanoides*, however *C. acutatum* has been reported to cause a disease of Japanese maple (*Acer palmatum*) in Connecticut (Smith 1993). Smith (1993) noted that perithecia never were observed on diseased plant material or in isolates from Japanese maple leaves grown either alone or in paired combinations.

Phylogenetic analysis of the D1–D2 LSU rDNA region placed the fungus from maple in the *C. acutatum* clade, which included *C. acutatum* f. sp. *pineum* and *G. miyabeana* with 92% bootstrap support (1000 bootstrap replications, data not shown). Phylogenetic relationships within this clade were not resolved due to the high sequence similarity among isolates (98–100% similarity).

DISCUSSION

Molecular analyses indicated that the *Glomerella* species on *Acer platanoides* in the Boston area is phylogenetically related to species in the *C. acutatum* clade, which include *C. acutatum*, *C. lupini*, *C. phormii* (Fig. 3), *C. acutatum* f. sp. *pineum* and *G. miyabeana*. *Glomerella miyabeana* is a pathogen of willow and was found to be related phylogenetically to *C. acutatum* by Johnston and Jones (1997) using the D1–D2 LSU rDNA region. *Colletotrichum acutatum* has not been reported on *A. platanoides*, to our knowledge. Stipes and Clement (1978) reported an anthracnose on *Acer platanoides* in Virginia caused by *Glomerella cingulata*, which is considered a causal agent of anthracnose leaf spot on maple species (Sinclair and Lyons 2005). We could not find reference to *G. acutata* or *C. acutatum* as a pathogen of *Acer platanoides*, however *C. acutatum* has been reported to cause a disease of Japanese maple (*Acer palmatum*) in Connecticut (Smith 1993). Smith (1993) noted that perithecia never were observed on diseased plant material or in isolates from Japanese maple leaves grown either alone or in paired combinations.

Some of the morphological characters in culture of the *Glomerella* from Norway maple are similar to those of *C. acutatum*. For example the dark structures resembling perithecia that often were observed...
throughout cultures also were observed for *C. acutatum* Group D as has been described by Lardner et al (1999). In addition few conidia were produced in culture. Production of conidia by *C. acutatum* has been shown to vary significantly among isolates, and loss of the ability to produce conidia in culture is not uncommon (Fernando et al 2000, Du et al 2005). Conidia were 10–25 × 3–7 μm, which is longer than those reported by Simmonds (1965) in the original description of *C. acutatum* (8.3–14.4 × 2.5–4.0 μm) but overlaps with the morphological subgroups of *C. acutatum* described by Lardner et al (1999) and with

![Figure 3](https://example.com/figure3.png)

Fig. 3. Strict Consensus of 328 488 equally parsimonious trees based on 1186 nucleotide characters from combined ITS and LSU DNA sequences (tree length 369, CI = 0.65 and RI = 0.83). Values from 500 bootstrap replications are shown above tree branches. Asterisk indicates the type culture of *Colletotrichum acutatum*. Numbers after scientific names are GenBank.

Colletotrichum lupini DQ286118/DQ286117
Colletotrichum lupini DQ286120/DQ286119
Colletotrichum acutatum DQ286133/DQ286132*
Colletotrichum acutatum DQ286122/DQ286121
Colletotrichum acutatum DQ286223/DQ286123
Colletotrichum acutatum DQ286129/DQ286128
Colletotrichum acutatum DQ286125/DQ286124
Colletotrichum acutatum DQ286127/DQ286126
Colletotrichum acutatum DQ286131/DQ286130

Glomerella Maple Isolate #3 EU622052/EU622053

Glomerella Maple Isolate #1

Colletotrichum phomii DQ286147/DQ286146
Colletotrichum phomii DQ286145/DQ286144
Colletotrichum phomii DQ286141/DQ286140
Colletotrichum lincola AB57437/AB106160
Colletotrichum higginsonianum AB105957/AB105956
Colletotrichum glycines AB57435/AB106160
Colletotrichum fuscum AB105966/AB106161
Colletotrichum destructivum AF320562/AB106148
Colletotrichum dematium AJ301954
Colletotrichum trichellum DQ286153/DQ286152
Colletotrichum circinans AJ301955
Colletotrichum truncatum AJ301985
Colletotrichum coccodes AB105970/AB06153
Colletotrichum sublineolatum AJ301978
Colletotrichum boninense DQ286167/DQ286166
Colletotrichum capsici DQ286159/DQ286158
Colletotrichum crassipes DQ286206/DQ286205
Colletotrichum dracaenophilum DQ286210/DQ286209
Glomerella sp. DQ286214/DQ286213
Colletotrichum sp. DQ286218/DQ286217
Colletotrichum agaves DQ286222/DQ286221
Colletotrichum gloeosporioides DQ286175/DQ286174
Glomerella cingulata DQ286201/DQ286200
Glomerella cingulata DQ286225/DQ286224
Colletotrichum gloeosporioides DQ286195/DQ286194
Glomerella cingulata DQ286181/DQ286180
Colletotrichum gloeosporioides DQ286183/DQ286182
Colletotrichum gloeosporioides DQ286189/DQ286188
Glomerella lageneri AJ301965
Colletotrichum lindemuthianum AJ301958
Colletotrichum trifolii AJ301941
Plectosphaerella cucumerina AF176952/AF176953
Many of the characters of this Glomerella differ from those of C. acutatum. These isolates lack the intense red pigment described for some isolates of C. acutatum (Simmonds 1965, Sutton 1992, Lardner et al 1999, Du et al 2005). Concentric rings, described in cultures for some isolates of C. acutatum (Lardner et al 1999, Du et al 2005) were not observed. Ascospores of the Glomerella from Norway maple were 14.4–20 × 4–6.8 μm. This is longer than G. acutata ascospores reported from highbush blueberry (10.0–16.3 × 4.3–5.5 μm) by Talgø et al (2007) and from the teleomorphs established in laboratory crosses by Guerber and Corell (2001) (12.2–17.7 × 5.0–6.5 μm).

The teleomorph generally is considered to have a minor role in the life history of C. acutatum, occurring rarely if at all in nature (Bryson et al 1992, Peres et al 2005). C. acutatum typically predominates on its host in the anamorphic state producing acervuli with abundant conidia during the growing season, which are dispersed by water (Peres et al 2005, Sinclair and Lyons 2005). In the present study the teleomorph was the dominant state in the life cycle both in vivo and in vitro.

Guerber and Corell (2001) were the first to observe the teleomorph of C. acutatum, Glomerella acutata, from laboratory crosses of single-spore isolates. Glomerella acutata has been detected for the first time in nature on fruits from highbush blueberry (Vaccinium corymbosum) (Talgø et al 2007). The phylogenetic placement of the Glomerella from maple in the Colletotrichum acutatum clade, which includes other Glomerella species capable of producing perithecia in nature, suggests that the sexual state might have a larger role in the life history of this group than previously considered.

The fungus in this study was widespread in 2006 in eastern Massachusetts on Norway maple leaves exhibiting early defoliation in 2006. We found no evidence of this fungus on Norway maple leaves in 2007. The significantly less precipitation in Massachusetts during summer and fall 2007 compared to 2006 (www.bluehill.org) might account for the absence of this fungus on Norway maple leaves in 2007. Nonetheless no collections of this fungus could be located in the Farlow Herbarium, which house many specimens collected locally over the past 150 y.

ACKNOWLEDGMENTS

We thank Amy Y. Rossman, James C. Correll and an anonymous reviewer for helpful comments on this manuscript.

LITERATURE CITED

Talgø V, Aamot HU, Stromberg GM, Klemiadsl SS, Stensvand