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Abstract
The hyperscaling property implies that spatially isotropic critical quantum states in d spatial dimensions

have a specific heat which scales with temperature as T d/z , and an optical conductivity which scales with

frequency as ω(d−2)/z for ω ≫ T , where z is the dynamic critical exponent. We examine the spin-density-

wave critical fixed point of metals in d = 2 found by Sur and Lee (Phys. Rev. B 91, 125136 (2015)) in

an expansion in ϵ = 3− d. We find that the contributions of the “hot spots” on the Fermi surface to the

optical conductivity and specific heat obey hyperscaling (up to logarithms), and agree with the results of

the large N analysis of the optical conductivity by Hartnoll et al. (Phys. Rev. 84, 125115 (2011)). With

a small bare velocity of the boson associated with the spin density wave order, there is an intermediate

energy regime where hyperscaling is violated with d → dt, where dt = 1 is the number of dimensions

transverse to the Fermi surface. We also present a Boltzmann equation analysis which indicates that the

hot spot contribution to the DC conductivity has the same scaling as the optical conductivity, with T

replacing ω.
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I. INTRODUCTION

The anomalous properties of the ‘strange metal’ phase of the cuprates, and other correlated

electron compounds, have remained a long-standing challenge to quantum many-body theory.

Strange metals are states of quantum matter whose density can be continuously varied by an

external chemical potential at zero temperature, but unlike in a Fermi liquid, there are no long-

lived quasiparticle excitations. It is generally believed that strange metals should be described by

a strongly-coupled quantum-critical theory [1], but such a proposal immediately faces an obstacle.

Almost all strongly-coupled quantum-critical states, including all conformal field theories, obey

the ‘hyperscaling’ property [2]: this implies that the specific heat, CV , and the conductivity, σ,

scale as

CV ∼ T d/z ; σ(ω ≫ T ) ∼ ω(d−2)/z , (1.1)

where ω is frequency, T is temperature, d is the spatial dimension, and z is the dynamic critical

exponent; we will refer to the conductivity in the ω ≫ T regime above as the optical conductivity.

In the important spatial dimension of d = 2, this immediately implies that the optical conductivity

should be frequency independent, which contradicts the ∼ ω−0.65 behavior observed in the cuprates

[3, 4].

The scaling arguments can also be naively extended to the DC conductivity, which would then

imply that σ(ω ≪ T ) ∼ T (d−2)/z . In d = 2, this contradicts the widely observed ‘linear-in-

T resistivity’, σ ∼ T−1. However, DC transport co-efficients are sensitive to constraints from

momentum conservation, and so the naive application of hyperscaling to DC transport is often

not valid [5–14]. But this sensitivity does not extend to the optical conductivity, and so the

observations of Ref. 3 and 4 are the stronger challenge to the hyperscaling property.

There is a much-studied [15–29] strongly-coupled quantum-critical point which violates hyper-

scaling: this is the critical point to the onset of Ising-nematic order in a metal in d = 2. A

closely-related critical theory applies to a d = 2 metal coupled to an Abelian or non-Abelian gauge

field. We write the properties of the Ising-nematic theory in a suggestive form similar to Eq. (1.1)

CV ∼ T dt/z ; σ(ω ≫ T ) ∼ ω(dt−2)/z , with hyperscaling violation, (1.2)

where z = 3/2 is the ‘fermionic’ dynamic critical exponent (in the notation of Ref. 24). For

the specific heat, the hyperscaling-violating dimensionality dt = 1 has been connected to the

number of dimensions transverse to the Fermi surface [27, 30]. This value of dt also happens to

yield the correct behavior of the optical conductivity in Eq. (1.2), although the existing [19, 31]

physical interpretations of this result are different. It is also notable that σ ∼ ω−2/3 is close to the

experimental observations [3, 4].

The above violation of hyperscaling is in a theory with a ‘critical Fermi surface’. On the other

hand, theories with Dirac fermions, which are gapless only at points in the Brillouin zone do obey

hyperscaling.
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FIG. 1. (a) Hot spot geometry, labelling conventions, and choice of x, y-coordinate system in the Brillouin

zone of the two-dimensional square lattice in which the fermions move. The boundary of the blue area

denotes the Fermi surface separating the filled particle-like states (blue area) from the the hole-like states

(white area). QAF = (π,π) is the (commensurate) antiferromagnetic ordering vector that intersects the

Fermi surface at 4 pairs of hot spots. (b) (Top) Fermi surface patches from a hot spot pair connected

by QAF centered at a common origin in momentum space. The two light colored regions are the regions

occupied by fermions at the two hot spots of the pair respectively, the dark colored region is occupied by

fermions at both hot spots, and the white region is unoccupied. The arrows perpendicular to the Fermi

surfaces denote the directions of the Fermi velocities. (Bottom) Under the RG flow, the Fermi surfaces are

deformed as shown at the strange metal fixed point, and as indicated in Eq. (1.3). The Fermi velocities

are exactly antiparallel only at the hot spot (k = 0).

Our interest in this paper is the onset of spin density wave order in two-dimensional metals,

whose critical theory is described by isolated points called ‘hot spots’ which are connected to a

gapless Fermi surface (see Fig. 1). This transition is therefore intermediate between the critical

Fermi surface and critical Fermi point cases. Its field theory [32] has a bosonic order parameter φ⃗

coupled to fermionic excitations at 4 pairs of hot spots around the Fermi surface.

In a large N analysis of such a field theory, it was found [32, 33] that at the two loop level that

the Fermi surfaces near the hot spots became asymptotically nested at low energies. In terms of

momenta kx, ky measuring deviations from the hot spots, the Fermi surface is given by (see the
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bottom panel of Fig. 1b)

ky ∼ ±
kx

ln(1/|kx|)
. (1.3)

The optical conductivity of the hot spots was computed by Hartnoll et al. [31] in a Eliashberg

framework, and they found (at variance with an earlier treatment by Abanov et al. [34], and that

in Ref. 35) a hot spot contribution σ(ω) ∼ ωr0, where the exponent r0 > 0 was determined by the

angle between the Fermi surfaces at the hot spots. For the asympotically nested Fermi surface in

Eq. (1.3), it was found [31] that r0 → 0, indicating that the optical conductivity is a constant (up

to logarithms), and so obeys hyperscaling as in Eq. (1.1) in d = 2.

This paper will re-examine these issues using the fixed point for the spin density wave critical

found by Sur and Lee [36] using an expansion in ϵ = 3−d. They also also found the asymptotically

nested Fermi surfaces in Eq. (1.3) under the 1-loop renormalization group flow of the ϵ expansion.

We will review their RG analysis in Section II. We then proceed to a computation of the optical

conductivity in Section III, and find that the hot spot contribution obeys the hyperscaling of

Eq. (1.1) (up to logarithmic corrections) in the ϵ expansion, in agreement with Hartnoll et al. [31].

We turn to a computation of the non-zero temperature free energy density in the ϵ expansion in

Section IV. We find a result for the hot spot contribution to the specific heat again in agreement

with the hyperscaling of Eq. (1.1), and for reasons similar to those for the optical conductivity.

Sections III and IV also examine the optical conductivity and the free energy in the limit

of a vanishing bare φ⃗ velocity: c → 0. As the bare velocity is generically finite, such a limit

can only apply to observable properties over intermediate ω or T : we find the allowed range is

cΛ < ω, T < vFΛ, where vF is a Fermi velocity (see Eq. (2.2)), and Λ is high momentum cutoff.

Only in such a limit do we find hyperscaling violation as described by Eq. (1.2) with dt = 1. The

quantum critical optical conductivity studied in Refs. 34 and 35 is analogous to this intermediate

regime, and we maintain that their results do not apply when the the bare velocity c is not small.

The more subtle question of the DC conductivity is examined in Section V; in discussions of

the DC conductivity, we implicitly assume that ω ≪ T . Here, we have to consider the interplay

between the hot spots on the Fermi surface with the remainder of the ‘cold’ Fermi surface more

carefully [11, 31, 37, 38]. The cold fermions can short-circuit electronic transport, and so possibly

dominate the DC conductivity. More generally, this belongs to a class of effects associated with

the conservation of total momentum, which can relax only via quenched disorder or umklapp

scattering beyond that already continued in the continuum theory [11]. A general framework

for describing such effects was presented in Refs. 5 and 14, using solvable holographic models,

relativistic hydrodynamics, and memory functions. In the context of strange metals, it useful to

begin with a microscopic model in which total momentum is exactly conserved [7, 11]. Then the

conductivity can be written as [5]

σ = σQ +
Q2

M
1

(−iω)
, (1.4)
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where σQ is a finite and T -dependent ‘quantum critical’ conductivity, and the second term can

be viewed as the contribution of the cold Fermi surface. The pole at ω = 0 has a co-efficient

determined by static thermodynamic susceptibilities associated with the electric current J and the

momentum density P , with Q = χJP and M = χPP . These thermodynamic susceptibilities are

usually non-critical, and so can be taken to be non-universal and T -independent constants, which

depend on the full short-distance structure of the theory. Now we add perturbations associated

with umklapp scattering or quenched disorder which can relax the total momentum [5–14, 39–43]:

this leads to a momentum relaxation rate Γ which shifts the pole in Eq. (1.4) off the real axis to

ω = −iΓ, and so the conductivity takes the finite value at ω = 0

σ = σQ +
Q2

M
1

(−iω + Γ)
. (1.5)

Note that Γ does have a singular T dependence associated with universal properties of the quantum-

critical theory, and can be computed via memory functions [5–7, 11, 39, 44–47]. A notable feature

[48] of Eq. (1.5) is that the quantum-critical σQ and the momentum-mode conductivity are ad-

ditive; this is in contrast to the Matthiessen’s Rule for quasiparticle theories, in which different

quasiparticle scattering mechanisms are additive in the resistivity. The T dependence of the

momentum-mode term in Eq. (1.5) was discussed in Ref. 11, using the assumption that the cold

regions of the Fermi surface are ‘lukewarm’ i. e. the electron-electron scattering rate on the entire

Fermi surface is faster than the impurity scattering rate; the results of Ref. 11 are not modified by

the analysis of the present paper.

Section V will present a computation of the quantum-critical conductivity σQ for the case of a

spin density wave quantum critical point in a metal in d = 2. The momentum mode contribution

in Eq. (1.5) was computed in a previous work by two of us [11], and will not be addressed here. The

computation of σQ here is aided by the fact that the theory describing the hot spots is particle-hole

symmetric. This implies that the scaling limit theory has Q = 0, and so we can cleanly separate

away the momentum mode contribution; the full theory ultimately has Q ≠ 0, but this arises from

portions of the Fermi surface away from the hot spots [11]. Such a separation between σQ and the

momentum mode is more complicated in general [12]: in particular, for the Ising-nematic critical

point there is no particle-hole symmetry to aid us, and we are not aware of any computation of

σQ for this case. For the spin density wave critical point, we compute σQ in Section V using a

Boltzmann equation method developed for conformal field theories [49–52]. We will carry out the

Boltzmann analysis directly in d = 2, rather than the technically more cumbersome ϵ expansion.

Consequently, our results for σQ will be qualitative, and not systematic. From the computations in

Section V, we estimate that the leading T -dependence of σQ has the same form as the ω-dependence

of the optical conductivity: i.e. with bare velocities finite, hyperscaling is preserved with σQ ∼
constant; and with vanishing bare velocities, there is violation of hyperscaling with σQ ∼ T (dt−2)/z

and dt = 1 and over intermediate T range cΛ < T < vFΛ.
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II. MODEL

In this section, we first recapitulate the low-energy continuum quantum field theory for fermions

moving in a two-dimensional square lattice close to the transition to the antiferromagnetic phase

with commensurate ordering wave vector QAF = (π, π) [32, 33, 36]. We then explain the embedding

by Sur and Lee [36] of the two-dimensional system into a higher-dimensional d = 3− ϵ space, and

summarize the basic features of the ϵ expansion.

We begin by defining the action in frequency and momentum representation S[ψ̄,ψ, φ⃗] in two

space dimensions x and y and one temporal (imaginary time) direction τ :

S[ψ̄,ψ, φ⃗] =
4∑

ℓ=1

∑

m=±

∑

σ=↑,↓

∫

k

ψ̄(m)
ℓ,σ (k) [ikτ + emn (k)]ψ

(m)
ℓ,σ (k) +

1

2

∫

q

φ⃗(−q) ·
[
q2τ + c2q2 + r

]
φ⃗(q)

+ g
4∑

ℓ=1

∑

σ,σ′=↑,↓

∫

k

∫

q

[
φ⃗(q) · ψ̄(+)

ℓ,σ (k + q)τ⃗σ,σ′ψ
(−)
ℓ,σ′(k) + h.c.

]
. (2.1)

Here, the functional integral for the fermions goes over fermionic Grassmann fields ψ̄, ψ which

carry additional labels according to their “home” hot spot (depicted in Fig. 1). Via a “Yukawa”

coupling g, the fermions are (strongly) coupled to a bosonic vector field with three components

φ⃗ whose fluctuations represent spin waves. At zero temperature kτ is a continuous (imaginary)

frequency variable with k = (kτ ,k) = (kτ , kx, ky) and likewise for q.

According to Fig. 1, the dispersions of the fermions e±ℓ (k) = v±
ℓ · k in the hot regions are

e±1 (k) = −e±3 (k) = vF (vkx ± ky)

e±2 (k) = −e±4 (k) = vF (∓kx + vky) , (2.2)

with v being the ratio of the velocities in x and y-direction; we will henceforth set vF = 1. In

particular, the limit v → 0 corresponds to locally nested pairs of hot spots, in which the Fermi

line becomes orthogonal to the antiferromagnetic ordering vector QAF and the fermion becomes

one-dimensional and disperses parallel to QAF.

The physics of the action Eq. (2.1) in two space dimensions has been addressed with a vari-

ety of techniques including resummation of subclasses of Feynman diagrams [32], field-theoretic

renormalization group techniques [31, 33], and Polchinski-Wetterich flow equations for the effective

action [53]. The bottom line is that the fermions and spin-waves are strongly coupled, one has to

account for strong renormalization of the shape of the Fermi surface [33].

Here we embed the fermionic system in two space dimensions described by Eq. (2.1) into a

higher-dimensional space; the “extra dimensions” are added perpendicular to the physical Fermi

surface [36] that lies in the x-y plane and has co-dimension 1. Artificially introduced Fermi surfaces

with co-dimension > 1 are gapped out by assuming a p-wave charge density wave order in directions

perpendicular to the physical Fermi surface. This results in line nodes of the fermionic dispersion
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with co-dimension 1 as needed. The main advantage of this embedding is that the density of states

at the Fermi line is suppressed to ρ(E) ∼ Ed−2, that is, it vanishes with energy for d > 2. This

allows the powerful dimensional regularization techniques of relativistic systems to be adapted to

the present problem.

The d+ 1-dimensional action

S =
4∑

n=1

Nc∑

σ=1

Nf∑

j=1

∫

k

Ψ̄n,σ,j(k) [iΓ ·K+ iγd−1εn(k)]Ψn,σ,j(k) +
1

4

∫

q

[
|Q|2 + c2q2

]
Tr [Φ(−q)Φ(q)]

+
gµ(3−d)/2

√
Nf

4∑

n=1

Nc∑

σ,σ′=1

Nf∑

j=1

∫

k

∫

q

[
Ψ̄n,σ,j(k + q)Φσ,σ′(q)iγd−1Ψn̄,σ′,j(k) + h.c.

]
(2.3)

is integrated over k = (K,k), which contains the physical momentum k = (kx, ky) and a d−1 = 2−ϵ
dimensional “generalized frequency” vector K = (kτ , K̄) = (kτ , k1, ..., kd−2), that includes the

physical frequency kτ in its first component and the d − 2 extra dimensions in the others and

likewise for q. The bosons have been promoted to matrix fields φ(q) =
∑N2

c−1
a=1 φa(q)τa with

Tr
[
τaτ b

]
= 2δab conventions for the trace over SU(Nc) generators τa. The fermions are collected

in a SU(Nf) flavor group and the physical limit of Eq. (2.3) is

K → kτ , ϵ→ 1 , d → 2 , Nc = 2 , Nf = 1. (2.4)

Computations with Eq. (2.3) involve traces over products of d − 1 dimensional gamma matrices,

collected in the vector (Γ, γd−1) with Γ = (γ0, Γ̄) = (γ0, γ1, ..., γd−2), that satisfy {γµ, γν} = 2Iδµν
and Tr I = 2. The book-keeping indices for the hot spots are: 1̄ = 3, 2̄ = 4, 3̄ = 1, 4̄ = 2; the

two-component fermion spinors appearing in Eq. (2.3) disperse according to

ε1(k) = e+1 (k),

ε2(k) = e+2 (k),

ε3(k) = e−1 (k),

ε4(k) = e−2 (k), (2.5)

with the right-hand-sides defined in Eq. (2.2). The two-component spinors of Eq. (2.3) contain

two of the original fermions from opposing sides of the Fermi surface [36].

Sur and Lee [36] performed a field-theoretic one-loop renormalization group analysis of Eq. (2.3)

in d = 3 − ϵ dimensions. They retained the simplest set of 5 independent running couplings. For

the fermion propagator 3 wave-function renormalization factors are used, one in the direction of

“time and extra dimensions” K and one each in the kx and ky directions. For the Bose propagator

there are 2 wave-function renormalization factors, one in the Q direction and one for the qx,y
directions (which have to be equivalent by point group symmetry).
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The fixed point of the ϵ expansion is defined in terms of the ratios λ = g2/v and w = v/c:

λ→ λ∗ = 4πϵ
N2

c +NcNf − 1

N2
c +NcNf − 3

,

w → w∗ =
NcNf

N2
c − 1

, (2.6)

The fixed point determines a dynamic critical exponent z via

z = 1 +
λ∗

8π
+O(ϵ2). (2.7)

Note that kτ and K̄ scale as kz
y ; so the extra d− 3 spatial dimensions and the time dimension both

scale as z with respect to the two physical dimensions, instead of just the time dimension as is

usually the case with other models.

While the scaling structure described so far is conventional, there are logarithmic corrections

which arise from the flow of the velocities v and c flow to zero at long length scales. This flow is

described by

dc

d lnµ
≈

4z

π
(z − 1)c2,

dv

d lnµ
≈ w∗ dc

d lnµ
, (2.8)

where µ is the renormalization group momentum scale. Such a dynamic nesting with v → 0

was found also in an earlier 1/Nf expansion [33]. At the fixed point with vanishing v and c, the

antiferromagnetic ordering vectors intersect the Fermi surface at a right angle. This is illustrated

in Fig. 1(b). Note that with v → 0 at the fixed point, we must also have g2 → 0 for the coupling

λ to remain finite; this is indeed found to be the case in the renormalization group flow.

III. OPTICAL CONDUCTIVITY σ(ω)

In this section, we compute the optical conductivity σ(ω) for fermions near the hot spots at the

ϵ expansion fixed point described in Section II. Our computation will be to order ϵ, which requires

evaluation of two-loop Feynman graphs.

Before embarking on the description of the Feynman graphs, let us review the expectations of a

general scaling analysis. The spatial directions, x, y, have scaling dimension 1, the time direction

has scaling dimension z, and the 1 − ϵ extra spatial directions with Dirac dispersion also have

scaling dimension z. So the scaling dimension of the free energy density, F , is

[F ] = 2 + (2− ϵ)z. (3.1)

The vector potential, A, has dimension 1, and so the electric current, J , being proportional to

δF/δA has dimension

[J ] = 1 + (2− ϵ)z. (3.2)
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Finally, the conductivity is given by the Kubo formula in terms of a current correlator, from which

we deduce

[σ] = (1− ϵ)z. (3.3)

These are the scaling expectations for a theory that obeys hyperscaling. If we have a violation

of hyperscaling, we expect the spatial direction along the Fermi surface to not contribute in the

counting of scaling dimension. So we should have

[F ] = 1 + (2− ϵ)z , [σ] = −1 + (1− ϵ)z, with hyperscaling violation. (3.4)

We already know that the Fermi liquid contribution of the quasiparticles far from the hot spots

violates hyperscaling as in Eq. (3.4) with z = 1. The question before us is whether the hot

spot contribution preserves hyperscaling as in Eqs. (3.1) and (3.3), or violates hyperscaling as in

Eq. (3.4).

We first compute the one-loop (free fermion) contribution to the two-point correlator of the

current density ⟨JyJy⟩. Then, we compute the two-loop (interaction) contributions to ⟨JyJy⟩,
of which there are two: the “self-energy correction” (Section III B) and the “vertex correction”

(Section IIIC). Finally, in Section IIID we compile the results from the evaluation of the loop

diagrams and, applying the Kubo formula, we derive the scaling form of the optical conductivity

σ(ω) for the fermions near the hot spots.

A. One-loop contribution to ⟨JyJy⟩

We have, for the current density in the y direction,

Jy = J (1)
y + J (3)

y + J (2)
y + J (4)

y =

i
Nc∑

σ=1

Nf∑

j=1

(Ψ̄1,σ,jγd−1Ψ1,σ,j − Ψ̄3,σ,jγd−1Ψ3,σ,j) + iv2
Nc∑

σ=1

Nf∑

j=1

(Ψ̄2,σ,jγd−1Ψ4,σ,j + Ψ̄2,σ,jγd−1Ψ4,σ,j),

(3.5)

and likewise for Jx but with (1, 3) ↔ (4, 2).

The one-loop contribution to this correlator is simply the non-interacting “bubble” containing

a convolution of two fermion propagators as shown in Fig. 2, both from the same hot spot (we

follow the index convention of Eq. (2.5) and absorb the identical contributions from the other hot

spots into a prefactor)

⟨JyJy⟩1−loop(ω) = −2(1 + v2)NcNf

∫
d2k

(2π)2
d2−ϵK

(2π)2−ϵ
Tr [iγd−1G1(K,k)iγd−1G1(K+W,k)] ,

(3.6)
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FIG. 2. Feynman graphs for the current-current correlator up to two loops. The black and grey boxes are

current vertices for the n and n̄ hot spot pairs respectively. The wiggly lines are the boson propagators

and the solid lines stand for fermion propagators. (a): One-loop contribution for free fermions. (b): Two-

loop self-energy correction computed in Section IIIB. There is also a partner diagram with the boson on

the lower fermion line. (c): Two-loop vertex correction computed in Section IIIC.

where W = (ω, 0̄) and the fermion propagator is given by

Gn(K,k) = (−i)
Γ ·K+ γd−1εn(k)

K2 + εn(k)2
. (3.7)

We evaluate Eq. (3.6) using Feynman parameters in App. A1 and obtain in Eq. (A2) to leading

order in ϵ:

⟨JyJy⟩1−loop(ω) = −
√
1 + v2

∫
dk∥ NcNfω

1−ϵ

(
1

16π

)
. (3.8)

where k∥ is the component of k along the Fermi surface of ε1(k) (note k∥ = kx for v = 0). For

comparison with the subsequent two-loop contribution, it is useful to write this as

⟨JyJy⟩1−loop(ω) = −(1 + v2)

∫
dε3
2v

NcNfω
1−ϵ

(
1

16π

)
, (3.9)

where the variable of integration ε3 is a co-ordinate orthogonal to the equal energy lines of ε3(k).

We can evaluate the integral over ε3 to yield a factor of Λ, a large-momentum cutoff, and then

we conclude that σ1−loop(ω) ∼ ω−ϵ. We now observe that this result agrees with hyperscaling

violating scaling dimension in Eq. (3.4) for z = 1. This is just the expected result, because we are

dealing with the contribution of free fermions, and there is no distinction yet between the hot-spot

contribution, and the Fermi liquid contribution of quasiparticles far from the hot spot.

B. Two-loop self-energy correction ⟨JyJy⟩SE

To investigate the impact of interactions on ⟨JyJy⟩, we first compute the two-loop self-energy

correction depicted in Fig. 2(b). There are two diagrams here with identical contributions, whose

sum gives

⟨JyJy⟩SE(ω) = −4(1 + v2)Nf

∫
d2k

(2π)2
d2−ϵK

(2π)2−ϵ
Tr

[

iγd−1G1(K,k)Σ1(K,k)G1(K,k)iγd−1G1(K+W,k)

]

.

(3.10)
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FIG. 3. Key one-loop elements appearing in the two-loop self-energy correction (a) and two-loop (current)

vertex correction (b).

Here we note that this expression contains three fermion propagators from the same hot spot pair

1 and one, inside the one-loop self-energy Σn(K,k), depicted in Fig. 3 (a) from its “partner” hot

spot pair 3. We now compute Σ1(K,k) separately. After that, we substitute the result back into

Eq. (3.10) and perform the remaining integrations over k and K. The effect of large momentum-

transfer scattering of fermions from one hot spot pair (1) to its partner (3) via exchange of bosonic

spin fluctuations is captured in the self-energy

Σ1(K,k) =
g2µϵ

Nf

N2
c−1∑

j=1

(τ jτ j)

∫
d2q

(2π)2
d2−ϵQ

(2π)2−ϵ
iγd−1G3(Q +K,q+ k)iγd−1D(Q,q) , (3.11)

where the spin fluctuation propagator

D(Q,q) =
1

Q2 + c2q2
(3.12)

involves the spin-wave velocity c which vanishes at the Sur-Lee fixed point near the hot spots, as

does the Yukawa coupling g2; the ratio g2/c however attains a finite value (see Sec. II).

We evaluate the expressions first in Appendix A2 using a simplifying approximation valid only

for small bare velocities c and v. In the limit v, c → 0, the integrand in Eq. (3.11) then depends

on qx only via the spin fluctuation propagator. Thus, we can first perform the qx integration and

then set c = 0, which is equivalent to replacing
∫

d2q

(2π)2
→
∫

dqy
(2π)2

D(Q,q) →
π

c

1

|Q|
. (3.13)

in Eq. (3.11). This way, Eq. (3.11) picks up the finite prefactor g2/c and the integrand becomes

independent of both velocities v and c. The resulting integrals are performed in Appendix A2

using Feynman parameters to obtain

Σ1(K,k) = Σ1(K) = −i
π2−ϵ/2Γ(ϵ/2)

(2π)4−ϵ
µϵ

Nf

g2

c

N2
c−1∑

j=1

(τ jτ j)
Γ ·K
[K2]ϵ/2

∫ 1

0

dx
(1− x)

1

2
− ϵ

2

x
1

2
+ ϵ

2

. (3.14)
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We observe that the above fermion self-energy depends only on frequency and not an spatial

momenta k anymore; the fermions near the hot spots see an essentially “local” boson with the

“1 over frequency” propagator of Eq. (3.13). Eq. (3.14) induces an anomalous scaling for the K

dependent part of the fermion propagator, but the absence of anomalous dimensions for the spatial

k components renormalizes the dynamical exponent z to values larger than one at the Sur-Lee fixed

point.

However, for our purposes here, the approximation associated with Eq. (3.13) turns out not to

be sufficient, since v and c vanish only logarithmically near the hot spot. It is thus crucial to obtain

the full v and c dependence of the pole term in Eq. (3.14), and of that in Eq. (3.10). The needed

integrals are computed in Appendix C, and the final result for the two-loop self-energy correction

is the rather complicated expression in Eqs. (C2) and (C3). Computing its singular pole in ϵ and

dropping power divergent terms, we obtain

⟨JyJy⟩SE(ω) ≈
∫

dε3
2v

(N2
c − 1)g2µϵω1−ϵ

64π3cϵ

∫ 1

0

dx
(1− x)1/2(1 + v2)

(c2 + x(1 + v2 − c2))1/2

(
ω2 +

c2ε23
c2 + x(1 + v2 − c2)

)−ϵ/2

,

(3.15)

in terms of the same ε3 variable of integration used in Eq. (3.8).

C. Two-loop vertex correction to ⟨JyJy⟩vert

The vertex correction graph, Fig. 2(c), is considerably more involved than the self-energy cor-

rection of the preceding section; although for c → 0 it is free of 1/ϵ poles of the type Eq. (3.15).

Using the abbreviation Ξ1(K,k,W) for the one-loop current vertex correction in Fig. 3(b), we can

write the entire graph including contributions from all hot spot pairs as

⟨JyJy⟩vert(ω) = −2(1 − v2)iNf

∫
d2k

(2π)2

∫
d2−ϵK

(2π)2−ϵ
Tr

[

γd−1G1(K,k)Ξ3(K,k,W)G1(K+W,k)

]

,

(3.16)

We observe that Eq. (3.16) contains two fermion propagators from one hot spot pair and two

fermion propagators (inside the current vertex Ξ1) from the partner hot spot pair, unlike the self

energy correction Eq. (3.10). The one-loop correction to the Jy vertex,

Ξ3(K,k,W) =

i
g2µϵ

Nf

N2
c−1∑

j=1

(τ jτ j)

∫
d2q

(2π)2
d2−ϵQ

(2π)2−ϵ

[

γd−1G3(K+Q,k+ q)γd−1G3(K+Q +W,k+ q)γd−1
1

Q2 + c2q2

]

,

(3.17)
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does not contain a 1/ϵ pole in the limit of c → 0. This subsequently leads to the lack of a pole

in the two-loop vertex correction (the details of the computation are presented in Appendix A3).

For v, c ̸= 0 however, as described in Appendix C, the vertex correction picks up a small pole with

a coefficient of O(c):

⟨JyJy⟩vert(ω) ≈ −
∫

dε3
2v

(N2
c − 1)g2cµϵω1−ϵ

32π3ϵ

∫ 1

0

dx
(1− x)1/2(1− v2)

(c2 + x(1 + v2 − c2))3/2

(
ω2 +

c2ε23
c2 + x(1 + v2 − c2)

)−ϵ/2

.

(3.18)

However, this is subdominant to the self energy correction in Section III B, as the latter is finite

in the limit c → 0; this is a consequence of a Ward identity discussed in Appendix C.

D. Renormalized conductivity σ(ω)

We can now add the leading free contribution in Eq. (3.9), the singular self-energy correction

in Eq. (3.15) and the appropriate counter term to obtain the renormalization of the conductivity

σ(ω) near the fixed point

σyy(ω) ≈ (1 + v2)

∫
dε3
2v

NcNf

16π
ω−ϵ

∫ 1

0

dx

[

1+

(z − 1)

π

(1− x)1/2

(c2 + x(1 + v2 − c2))1/2
ln

(
ω2

µ2
+

c2ε23/µ
2

c2 + x(1 + v2 − c2)

)]

. (3.19)

The interpretation of this central result requires some care in the limit of small v and c, and we

consider various cases separately below. The important point here is that the argument of the

logarithm is of order (ω2 + (cε3)2)/µ2, and so the renormalization-group-improved perturbation

expansion will lead to powers of (ω2 + (cε3)2)/µ2, in contrast to the power of ω alone outside the

square bracket. This difference arises because, at leading order, the singular contribution of the

hot spot is the same as the rest of the Fermi surface, while at higher orders there is quasiparticle

breakdown only close to the hot spot. Consequently, there is a modification in the nature of the

ε3 integral, where we recall that ε3 measures distance away from the hot spot along the Fermi

surface.

First, let us assume the bare value of c is so small that the ε3 dependence of the argument of

logarithm can be ignored; this was, effectively, the limit that was implicitly taken in by Abanov

et al. [34]. This requires that cΛ < ω, where Λ is the momentum space cutoff. Then, we can

easily perform the integral over x, and after re-exponentiating the logarithm in the ϵ expansion,

we conclude that

σyy(ω) ∼
∫

dε3
2v

ω−ϵ
[
1 + (z − 1) ln(ω/µ)

]

∼ Λµ1−z ω−ϵ+(z−1). (3.20)
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This is the answer expected from the hyperscaling violation case in Eq. (3.4) at this order in ϵ;

Abanov et al. [34] found σ(ω) ∼ 1/
√
ω, which is consistent with Eq. (3.4) for their dynamic critical

exponent z = 2. Thus the ω dependence of σ violates hyperscaling as in Eq. (1.2) with dt = 1 for

cΛ < ω < Λ, which can be within a universal regime only if the bare value of c is small enough, as

claimed in Section I.

Next, we consider the more generic case where the bare value of c is of order unity. Then, we

can divide the integration over ε3 in Eq. (3.19) into two regimes. There is the far from the hot-spot

regime where cε3 ≫ ω, and the close to the hot-spot regime of cε3 ≪ ω. The contribution of the

close to the hot-spot regime is similar to that in Eq. (3.20), except that the upper bound on the

integration over ε3 involves ω

σyy(ω) ∼
∫ ω/c

0

dε3
2v

ω−ϵ+(z−1). (3.21)

Actually, by scaling, we expect the upper bound on the momentum integral over ε3/v to scale as

ω1/z at higher order in ϵ; using such an upper bound in Eq. (3.21) we obtain the generic hot-spot

contribution

σyy(ω) ∼ ω−ϵ+(z−1)+1/z. (3.22)

To this order in ϵ, this is the scaling expected by the hyperscaling preserving scaling dimension in

Eq. (3.3). In comparison to the hyperscaling violating answer obtained in the direct v, c → 0 limit

used for Eq. (3.20), the conductivity has acquired an extra factor of ω1/z. So we reach one of our

main conclusions, that the hot-spot contribution to the conductivity generically obeys hyperscaling

as in Eq. (1.1). We have not written out explicit factors of v and c in the final scaling forms, but

these are ultimately only expected to yield powers of (ln(1/ω))−1, and so hyperscaling is only

obeyed up to powers of ln(1/ω).

Finally, we also have to consider the contribution of the far from the hot spot regime cε3 ≪ ω.

In this regime, the term inside the square brackets in Eq. (3.19) is ω-independent, and so we

obtain an additional contribution σ ∼ ω−ϵ. This is just the additive Fermi liquid contribution of

long-lived quasiparticles far from the hot spot.

IV. T > 0 FREE ENERGY

In order to study the finite temperature dynamics of this model, we need to compute the free

energy density at T > 0. The free energy density has contributions from the free fermions, the free

bosons, and a “self energy” correction due to their interactions. Following the lessons learned in

the analysis of the optical conductivity in Section III, we will perform the computation here only in

the simpler limit of vanishing velocites v, c → 0, where we can replace the boson propagator by the

momentum-independent form in Eq. (3.13). However, as described in Section IIID, we will assume

that the low T hot spot contribution for the case of finite velocities can be estimated by limiting
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the range of the fermionic kx integral (along the Fermi surface) to an upper limit ∼ T 1/z ; here we

have assumed the the upper cutoff is determined by T rather than ω for the optical conductivity

in Section IIID.

The free fermion, F 0
f , and free boson, F 0

b contributions to the free energy density, F , are obtained

straightforwardly to leading order in ϵ (the prefactor of 4 in the fermion contribution comes from

having 4 pairs of hot spots)

F 0
f = 4NcNfT

∫
dkx
2π

∫
dkyd1−ϵK̄

(2π)2−ϵ
ln
[
(1 + e(k

2
y+K̄2)1/2/T )(1 + e−(k2y+K̄2)1/2/T )

]

=

∫
dkx NcNfT

3−ϵ

(
3ζ(3)

2π2

)
, (4.1)

where the infinite temperature-independent constant part was dropped. For the bosons

F 0
b = (1−N2

c )T

∫
d2q

(2π)2

∫
d1−ϵQ̄

(2π)1−ϵ
ln
[
1− e−(c2q2+Q̄2)1/2/T

]
=

π2

90c2
(N2

c − 1)T 4−ϵ. (4.2)

FIG. 4. The simplest interaction contribution to the free energy at O(g2).

The interaction contribution to the free energy at two-loop order is given by Fig. 4. It may be

expressed as

Ffb =
1

2
Tr

⎡

⎣
N2

c−1∑

j=1

τ jτ j

⎤

⎦
∫

d2qd1−ϵQ̄

(2π)3−ϵ
T
∑

ωq

Π(q, T )

Q̄2 + c2|q|2 + ω2
q

, (4.3)

where Π(q, T ) is the RPA polarization bubble given by

Π(q, T ) = g2
∑

n

∫
d2kd1−ϵK̄

(2π)3−ϵ
T
∑

ωk

Tr [γd−1Gn(k)γd−1Gn(k + q)] . (4.4)

We separate out Π(q, T ) as

Π(q, T ) = (Π(q, T )− Π(q, 0)) + Π(q, 0), (4.5)

and evaluate the finite temperature part setting v = 0 at the outset, taking g, c → 0 with g2/c

finite and equal to its fixed point value λ∗w∗. The zero temperature part is evaluated with v ̸= 0

at the outset, and g, v → 0 with g2/v finite and equal to its fixed point value λ∗ . As described in
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Appendix B, this separates out the contributions that renormalize the free fermionic and bosonic

contributions, with the finite temperature part of Π renormalizing the free fermionic contribu-

tion and the zero temperature part renormalizing the bosonic contribution. We then obtain (see

Appendix B for details), for the singular parts,

Ffb = F (1)
fb + F (2)

fb ,

F (1)
fb =

∫
dkx (N2

c − 1)T 3−2ϵ g
2

c

(
3ζ(3)

16π3ϵ

)
,

F (2)
fb = (N2

c − 1)T 4−2ϵ g2π

360vc2ϵ
. (4.6)

We have set the momentum renormalization scale µ = 1 in the present section. We thus get, after

plugging in the fixed point values,

Ff = F 0
f + F (1)

fb =

∫
dkx

3ζ(3)

2π2
NcNfT

3−ϵ

(
1 + (z − 1)

T−ϵ

ϵ

)
→
∫

dkx
3ζ(3)

2π2
NcNfT

3−ϵ−(z−1),

(4.7)

where the pure 1/ϵ pole is cancelled by the usual addition of a counter term. Similarly,

Fb = F 0
b + F (2)

fb =
π2

90c2
(N2

c − 1)T 4−ϵ

(
1 + 2

z − 1

ϵ
T−ϵ

)
→

π2

90c2
(N2

c − 1)T 4−ϵ−2(z−1). (4.8)

We now observe that the bosonic term Fb is compatible with the behavior ∼ T 2−ϵ+2/z expected

from the hyperscaling preserving scaling dimension in Eq. (3.1); the agreement holds to first

order in ϵ after recalling that z − 1 is O(ϵ) from Eq. (2.7). For the fermionic contribution, as in

Section IIID the behavior depends upon the fate of the kx integral. As noted at the beginning

of the present section, for the low T behavior we should impose an upper cutoff on the integral

of order T 1/z; then Ff ∼ T 3−ϵ−(z−1)+1/z which also agrees with ∼ T 2−ϵ+2/z to first order in ϵ.

Thus both the bosonic and fermionic contributions to the free energy obey hyperscaling, and the

behavior in Eq. (1.1), up to logarithms.

As was the case in Section III, for very small bare velocity c, and for cΛ < T < Λ, there is

a regime of hyperscaling violation when the kx integral is replaced by Λ, and behavior is as in

Eq. (1.2). Note that we are using units in which the velocity vF in Eq. (2.2) has been set equal to

unity; so the full condition for this intermediate regime is cΛ < T < vFΛ.

V. QUANTUM BOLTZMANN EQUATION

We now compute the hot spot conductivity σQ appearing in Eq. (1.4) in d = 2 using a quantum

Boltzmann equation approach [49–52]. We use the Keldysh formalism at one-loop order to derive

quantum kinetic equations for the fermions and bosons in the presence of an applied electric field,

and then solve these equations in linear response to obtain the contribution of the fermions near the
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hot spots to the DC conductivity. Note that, unlike the previous sections, we are not performing

a systematic ϵ expansion here, but working directly in d = 2 to minimize technical complexity.

As in Section IV, we will restrict our analysis to the case of vanishing v and c, when the Fermi

surfaces are nested, and manipulations similar to Eq. (3.13) can be applied. With finite v and c,

as argued in Sections IIID and IV, we can estimate the low T hot spot conductivity by limiting

the kx integral along the Fermi surface by an upper bound of order T 1/z .

A. Keldysh framework

We begin by expressing the action in Eq. (2.1) on the closed time Keldysh contour [51, 52].

Denoting with subscripts + the forward part of the contour and with subscripts − the backward

part of the contour, we obtain for the free part of the action

Sψ̄ψ

=

∫ ∞

−∞

dt

∫
d2p

(2π)2

4∑

ℓ=1

∑

m=±

∑

σ=↑,↓

[

ψ̄(m)
ℓ,σ,+(t,p) (i∂t − emℓ (p))ψ

(m)
ℓ,σ,+(t,p)− ψ̄(m)

ℓ,σ,−(t,p) (i∂t − emℓ (p))ψ
(m)
ℓ,σ,−(t,p)

]

,

Sφ⃗φ⃗ =
1

2

∫ ∞

−∞

dt

∫
d2q

(2π)2

[

φ⃗+(t,−q) ·
(
−∂2t − ω2

q

)
φ⃗+(t,q)− φ⃗−(t,−q) ·

(
−∂2t − ω2

q

)
φ⃗−(t,q)

]

,

(5.1)

with ωq = c|q|. The interacting part is given by

Sφ⃗ψ̄ψ = −g

∫ ∞

−∞

dt

∫
d2r

4∑

ℓ=1

∑

σ,σ′=↑,↓

[

φ⃗+(t, r) · ψ̄(+)
ℓ,σ,+(t, r)τ⃗σ,σ′ψ

(−)
ℓ,σ′,+(t, r)−

− φ⃗−(t, r) · ψ̄(+)
ℓ,σ,−(t,x)τ⃗σ,σ′(t, r)ψ

(−)
ℓ,σ′,−(t, r) + h.c.

]

, (5.2)

We now perform the standard bosonic and fermionic Keldysh rotations: For the real bosons we

use

φ⃗+ = φ⃗c + φ⃗q,

φ⃗− = φ⃗c − φ⃗q (5.3)

and for the Grassmannian fermions we have

ψ(m)
ℓ,σ,+ =

1√
2
(ψ(m)

ℓ,σ,1 + ψ(m)
ℓ,σ,2), ψ̄(m)

ℓ,σ,+ =
1√
2
(ψ̄(m)

ℓ,σ,1 + ψ̄(m)
ℓ,σ,2),

ψ(m)
ℓ,σ,− =

1√
2
(ψ(m)

ℓ,σ,1 − ψ(m)
ℓ,σ,2), ψ̄(m)

ℓ,σ,− =
1√
2
(ψ̄(m)

ℓ,σ,2 − ψ̄(m)
ℓ,σ,1). (5.4)
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Hence, we get for the free fermion part of the lagrangian

Lψ̄ψ =
4∑

ℓ=1

∑

m=±

∑

σ=↑,↓

(
ψ̄(m)
ℓ,σ,1(t,p) ψ̄

(m)
ℓ,σ,2(t,p)

)( [GRℓm
0

]−1
δKf

0
[
GAℓm

0

]−1

)(
ψ(m)
ℓ,σ,1(t,p)

ψ(m)
ℓ,σ,2(t,p)

)

, (5.5)

where the infinitesimal δKf ensures convergence. Inverting this matrix, we obtain the bare fermion

Green’s function matrix

Ĝℓm
0 =

(
GRℓm

0 GKℓm
0

0 GAℓm
0

)

. (5.6)

The bare retarded (R) and advanced (A) fermion Green’s functions thus are

GRℓm
0 (ω,p) =

1

ω + i0+ − emℓ (p)
,

GAℓm
0 (ω,p) =

1

ω − i0+ − emℓ (p)
. (5.7)

For the free boson part of the lagrangian we have

Lφ⃗φ⃗ =
1

2

(
φ⃗c(−ω,−q) φ⃗q(−ω,−q)

)( 0
[
DA

0

]−1

[
DR

0

]−1
δKb

)(
φ⃗c(ω,q)

φ⃗q(ω,q)

)

, (5.8)

where the infinitesimal δKb again ensures convergence. After performing the matrix inverse,

D̂0 =

(
DK

0 DR
0

DA
0 0

)

(5.9)

and the retarded and advanced boson Greens’ functions hence are

DR
0 (ω,q) =

1

2

1

(ω + i0+)
2 − ω2

q

,

DA
0 (ω,q) =

1

2

1

(ω − i0+)
2 − ω2

q

. (5.10)

The interaction between fermions at the (ℓ,+) and (ℓ,−) hot spots and the boson takes the

following form:

Lφ⃗ψ̄ψ = −g
4∑

ℓ=1

∑

σ,σ′=↑,↓

(
ψ̄(+)
ℓ,σ,1(t, r) ψ̄

(+)
ℓ,σ,2(t, r)

)( φ⃗c(t, r) · τ⃗σσ′ φ⃗q(t, r) · τ⃗σσ′
φ⃗q(t, r) · τ⃗σσ′ φ⃗c(t, r) · τ⃗σσ′

)(
ψ(−)
ℓ,σ′,1(t, r)

ψ(−)
ℓ,σ′,2(t, r)

)

+ h.c. .

(5.11)

This gives rise to the Feynman rules summarized graphically in Fig. 5.
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FIG. 5. Feynman rules and one-loop graphs for the self energies of the fermions and bosons in the Keldysh

formalism: (a) Fermion propagators. (b) Boson propagators. (c) Yukawa vertices. (d) Self energies. Here

x = (t, r), hot spot indices (ℓ,±) are suppressed and the external legs on the self energy diagrams are

amputated. The external momentum and frequency on the self energy diagrams is on shell. The 2-1 and

q-q propagators are zero and hence are omitted.

We adopt the shorthand convention of x = (t, r) and q = (ω,q) to combine spatial and temporal

components. We have the relations

GKℓm = GRℓm ◦ Ff − Ff ◦GAℓm,

DK = DR ◦ Fb − Fb ◦DA, (5.12)

where C = A ◦B implies C(x, x′) =
∫
dx1A(x, x1)B(x1, x′) and Ff,b are respectively the fermionic
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and bosonic distribution functions. The Dyson equations for the matrix fermion and boson Green’s

functions are

([Ĝℓm
0 ]−1 − Σ̂ℓmf ) ◦ Ĝℓm = 1,

(D̂−1
0 − Σ̂b) ◦ D̂ = 1. (5.13)

The self energy matrices Σ̂ have the same form as the inverse Green’s function matrices in Eq. (5.6)

and Eq. (5.8), and hence the different components of the self energies are given by the graphs

in Fig. 5 at the one loop level. Defining central and relative coordinates xc = (x + x′)/2 and

xr = (x − x′)/2, we can convert the two point functions G, D, F and Σ which are of the form

A(x, x′) = A(xc + xr/2, xc − xr/2) into a momentum representation via the Wigner transform

A(xc, p) =

∫
dxre

−ipxrA
(
xc +

xr

2
, xc −

xr

2

)
. (5.14)

Since we have spatial translational invariance in the linear response limit a of weak applied electric

field E, we can further simplify A(xc, p) → A(t, p). We will also always consider external particles

to be on shell in the subsequent computations of the collision integrals. We define an alternate

parameterization ff,b of the distribution functions Ff,b

Ff (t,p,ω) = 1− 2ff (t,p,ω),

Fb(t,q,ω) = 1 + 2fb(t,q,ω). (5.15)

In thermal equlibrium in the absence of any applied electric fields, we have ff,b(t,k,ω) = nf,b(ω),

where nf,b(ω) = 1/(1± eω/T ) are the thermal Fermi and Bose functions respectively [52].

B. Kinetic equations for fermions and bosons

There are two coupled quantum kinetic equations [52, 54], one for the electrically charged

fermions, (
∂

∂t
+ E ·

∂

∂p

)
F ℓ±
f (t,p) = Icollfℓ±[Ff , Fb](t,p), (5.16)

with the on shell fermion distribution function F ℓ±
f (t,p) = Ff (t,p, e

±
ℓ (p)); and one for the neutral

bosons,
∂

∂t
Fb(t,q,ωq) = Icollb [Ff , Fb](t,q), (5.17)

The fermion electric charge is set to 1 for simplicity. The two collision integrals have the general

form [52]

Icollfℓ±[Ff , Fb](t,p) = iΣKℓ±
f (t,p, eℓ±(p)) + 2F ℓ±

f (t,p)Im
[
ΣRℓ±

f (t,p, eℓ±(p))
]
,

Icollb [Ff , Fb](t,q) = iΣK
b (t,q,ωq) + 2Fb(t,q,ωq)Im

[
ΣR

b (t,q,ωq)
]
. (5.18)
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At the one-loop level, ΣR,Kℓ±
f,b are given by the graphs in Fig. 5. The self energies and collision

integrals are computed in Appendix D. We obtain

Icollfℓ±[ff , fb](t,p) =

= 3g2
∫

d2q

2π

1

ωq

(

δ(e±ℓ (p)− e∓ℓ (p− q)− ωq)
[
f ℓ±f (t,p)(1− f ℓ∓f (t,p− q))− f ℓ∓f (t,p− q)fb(t,q,ωq)+

+ f ℓ±f (t,p)fb(t,q,ωq)
]
− δ(e±ℓ (p)− e∓ℓ (p− q) + ωq)

[
f ℓ±f (t,p)(1− f ℓ−f (t,p− q))−

− f ℓ∓f (t,p− q)fb(t,q,−ωq) + f ℓ±f (t,p)fb(t,q,−ωq)
])

, (5.19)

and

Icollb [ff , fb](t,q) = 4g2
∑

ℓ

∫
d2k

2π

[
δ
(
e−ℓ (k) + ωq − e+ℓ (k+ q)

) (
f ℓ+f (t,k + q)(1− f ℓ−f (t,k))+

+ f ℓ+f (t,k+ q)fb(t,q,ωq)− f ℓ−f (t,k)fb(t,q,ωq)
)
+ (+ ↔ −)

]
, (5.20)

where we have expressed the collision integrals in the alternate parameterization (5.15) of the

distribution functions Ff,b and f ℓ±f (t,p) = ff (t,p, e
±
ℓ (p)).

C. Ansatz and solution for conductivity

If we set the collision integrals to zero, the distribution function for the neutral bosons unaffected

by the applied electric field remains fixed at its equilibrium value. For the Fermions, we have

(
∂

∂t
+ E ·

∂

∂p

)
f ℓ±f (t,p) = 0. (5.21)

To solve this in linear response, we switch from the time to the frequency domain and parameterize

the deviation of f ℓ±f (ω,k) from its equilibrium value by [54, 55]

f ℓ±f (ω,p) = 2πδ(ω)nf(v
±
ℓ · p) + v±

ℓ ·E(ω)ϕ(v±
ℓ · p,ω)nf(v

±
ℓ · p)(1− nf(v

±
ℓ · p)). (5.22)

Inserting this parameterization into Eq. (5.21), we obtain the collisionless ϕ function in linear

response

ϕnc(v
±
ℓ · p,ω) =

1/T

−iω + 0+
. (5.23)

We have the electrical current density:

J(ω) = 2
4∑

ℓ=1

∑

m=±

∫
d2p

(2π)2
vm
ℓ ⟨ψ

m†
ℓ ψm

ℓ ⟩(ω,p) = 2
4∑

ℓ=1

∑

m=±

∫
d2p

(2π)2
vm
ℓ f

ℓm
f (ω,p), (5.24)
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and hence obtain the linear response conductivity

σij(ω) =
δJi(ω)

δEj(ω)
= 2

4∑

ℓ=1

∑

m=±

∫
d2p

(2π)2
(vm

ℓ ·êi)(vm
ℓ ·êj)ϕ(v±

ℓ ·p,ω)nf(v
±
ℓ ·p)(1−nf(v

±
ℓ ·p))). (5.25)

It is easily seen that if the ϕnc is used in the above expression, we obtain a temperature

independent collisionless conductivity that has a delta function in ω in its real part. In fact, for

the Sur-Lee embedding in higher dimensions, we have for the collisionless conductivity

Re[σnc
xx(ω)] = Re[σnc

yy(ω)] ∝
∫

dkx T 1−ϵδ(ω), (5.26)

which is derived in Appendix D; assuming the kx integral yields a factor of the cutoff Λ, this yields

a conductivity with the hyperscaling violating scaling dimension in Eq. (3.4), as expected for free

fermions. Once collisions of the fermions with the bosons are included, these delta functions are

broadened, and the kx integral has to be performed with more care, as in Section IIID.

Returning to d = 2, we find that, to linear order in E, the bosons still remain in equilibrium

and their distribution function is hence given by the thermal Bose function fb(t,k,ωk) = nb(ωk) if

the parameterization Eq. (5.22) is used (See Appendix D for a derivation of this fact). Intuitively,

this is because the linearly dispersing hot spot model exhibits particle-hole symmetry, making the

charge carrying modes excited by the applied electric field particle-hole pairs with the particle

and hole moving in opposite directions. The bosons then do not absorb any momentum that they

have to dissipate when the particle-hole pairs recombine and hence remain in equilibrium. This

behavior is also present for quantum critical transport in graphene [54].

We now consider the system to be at the fixed point discussed previously, in the spirit of [49].

We take the applied electric field to be in the y direction (E = Eyêy); since v → 0 at the fixed

point, only the ℓ = 1 and ℓ = 3 pairs of hot spots contribute significant response in this case. (For

the electric field in the x direction we obtain the same response with the ℓ = 4 and ℓ = 2 hot

spot pairs respectively). We insert the f ℓ
±

f functions parameterized by Eq. (5.22) and the thermal

Bose function for fb into the frequency domain version of the fermion kinetic equation Eq. (5.16),

and linearize in Ey to get the following integral equation for ϕ in the v → 0 limit (considering the

ℓ = 1 pair of hot spots)
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−
1

2

3g2

2π

∫
d2q

c|q|

(

δ(2py − qy − c|q|)
[
ϕ(py,ω)nf(py) (1− nf(py)) (1− nf (qy − py) + nb(c|q|))+

+ ϕ(qy − py,ω)nf(qy − py) (1− nf (qy − py)) (nf(py) + nb(c|q|))
]
−

− δ(2py − qy + c|q|)
[
ϕ(py,ω)nf(py) (1− nf(py)) (1− nf(qy − py) + nb(−c|q|))+

+ ϕ(qy − py,ω)nf(qy − py) (1− nf (qy − py)) (nf(py) + nb(−c|q|))
])

= (−iω + 0+)ϕ(py,ω)nf(py) (1− nf (py))−
1

T
nf (py) (1− nf (py)) .

(5.27)

In the collision term, the boson momentum parallel to the Fermi surface, qx, is limited by the Bose

function to a value of order T/c. Integrating out qx, we obtain

3g2

2πc

[
C0(py)ϕ(py,ω) +

C1[ϕ, py]

nf(py) (1− nf(py))

]
= (−iω + 0+)ϕ(py,ω)−

1

T
. (5.28)

where,

C0(py) =
1

2

∫ ∞

−∞

dqy

[

sgn(qy − 2py)
Θ
(
(qy − 2py)2 − c2q2y

)
√

(qy − 2py)2 − c2q2y
(1− nf (qy − py) + nb(2py − qy))

]

,

C1[ϕ, py] =
1

2

∫ ∞

−∞

dqy

[

sgn(qy − 2py)
Θ
(
(qy − 2py)2 − c2q2y

)
√

(qy − 2py)2 − c2q2y
ϕ(qy − py,ω)nf(qy − py)×

× (1− nf(qy − py)) (nf (py) + nb(2py − qy))

]

. (5.29)

This equation may be solved iteratively by choosing the trial solution

ϕ1(py,ω) =
−1/T

3g2

2πcC0(py) + iω − 0+
(5.30)

and iterating
(
3g2

2πc
C0(py) + iω − 0+

)
ϕj+1(py,ω) = −

1

T
−

3g2

2πc

C1[ϕj, py]

nf (py) (1− nf (py))
, (5.31)

for j > 1 (Note that ϕ1 in Eq. (5.30) may be derived from inserting ϕ0 = 0 into Eq. (5.31)). The

integral for C1 may be evaluated numerically by sampling ϕ at a discrete set of points and then

constructing an interpolating function through these points. The exponential decay of nf,b at large

values of their arguments ensures convergence of the integrals and supresses errors arising from the
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extrapolation of the interpolating function to large arguments. The trial solution ϕ1 is actually

fairly accurate, and this algorithm converges in a small number of iterations.

In the limit of c → 0, which also occurs at the fixed point, we see that C0 ∼ 1/c because the

singularity in nb(2py − qy) as 2py − qy → 0 is cut off by c in the Θ function in Eq. (5.28); this also

occurs in the integral for C1 in (5.29). Hence in this limit, we have for ω → 0,

ϕ1(py, 0) ≈
c2

g2T
χ
(py
T

)
(5.32)

for some function χ. It can be seen from Eq. (5.31), and also established numerically, that given

the above form for ϕ1, all ϕj>1 will also be of the same form. Numerically, we find that χ is an

even function and χ(0) = 0. Since χ is an even function, it is easy to show that the (1,−) hot

spot contributes the same value to the conductivity as the (1,+) hot spot as it is related by the

transformation of py → −py in the above computation. Similarly, the (3,±) hot spots also produce

identical contributions equal to those from the (1,±) hot spots. Hence, using Eq. (5.25),

σyy(0) ≈ 8
c2

g2T

∫
d2p

(2π)2
χ
(py
T

)
nf (py)(1− nf(py))) ∼

∫
dkx

c2

g2
. (5.33)

In the last step we have changed the fermion momentum notation from px to kx for compatibility

with earlier discussions. It is also easily seen that σxx = σyy if we repeat the above analysis for the

ℓ = 2 and ℓ = 4 hot spots instead, and that σxy = σyx = 0. So Eq. (5.33) is the estimate by the

Boltzmann equation of the value of the conductivity σQ in Eq. (1.4).

We now need to determine the T dependence implied by Eq. (5.33) using scaling ideas. Under

the renormalization group flow, we expect that the coupling λ = g2/v flows to a fixed point value.

While this fixed point can be determined precisely under an ϵ expansion, we are only able to make

an estimate in the present computation carried out directly in d = 2, where g2/v is a dimensionful

quantity of order µϵ. The natural scale for the momentum µ is set by the temperature, and so

µ ∼ T 1/z. So in d = 2, we can expect that g2/v ∼ T 1/z. Ignoring the logarithmic factors, we

therefore have the estimate

σQ ∼
∫

dkx T−1/z. (5.34)

Finally, as in Sections III and IV, we bound the kx integral by T 1/z to conclude that σQ ∼ constant,

as claimed in Section I. And also as in previous sections, for a small bare c, we will have σQ ∼
ΛT−1/z in the intermediate T regime cΛ < T < Λ (and as noted at the end of Section IV, after

restoring units, this condition is cΛ < T < vFΛ).

VI. CONCLUSIONS

We have computed the critical conductivity and free energy at the onset of spin density wave

order in metals in d = 2 using the ϵ expansion introduced by Sur and Lee [36]. The advantage
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of this method is that the ϵ expansion appears to be valid systematically order-by-order in ϵ, and

there is no breakdown in the renormalization group flows. The ϵ expansion exhibits a logarithmic

flow of the velocity v to zero at large length scales, and a dynamic nesting of the Fermi surfaces.

We found that hyperscaling was obeyed, with the hot spot contributions scaling as in Eq. (1.1).

It is interesting to compare these results with a previous two-loop, large N renormalization

group analysis of the spin-density wave critical point in Ref. 33, which also found a logarithmic

flow of v to zero at low energies. However, it was also found that the large N expansion broke

down at sufficiently large scales. The same large N framework was used to compute the optical

conductivity by Hartnoll et al. [31], and it was found that hot-spot contribution was σ(ω) ∼
constant in the limit of vanishing v, as expected under hyperscaling in d = 2.

This similarity between the large N and ϵ expansion indicates that the terminology ‘quasi-local’

for the latter expansion [36] should be used with some care, and we have avoided it here. The

basic scaling properties are similar to those of a standard, spatially-isotropic, critical point obeying

hyperscaling with a finite dynamic critical exponent z given by Eq. (2.7). The deviations from

strong scaling arise only in logarithmic corrections, which are linked, ultimately, to the asymptotic

nesting of the Fermi surfaces [32, 33] in Fig. 1b.

We also carried out computations for the free energy density at non-zero T using the ϵ expansion.

Again our results were in excellent accord with hyperscaling expectations. Both the fermionic

excitations at the hot spot and the collective bosonic fluctuations scaled with the same power of

T , as shown in Section IV.

There was, however, for the somewhat unnatural case of a sufficiently small bare boson velocity,

an intermediate energy regime where hyperscaling was violated. This was discussed in Section III

for the optical conductivity, and in Section IV for the free energy. The optical conductivity results

of Refs. [34, 35] are similar to this hyperscaling violating regime, and our analysis indicates that

their results do not apply when the bare boson velocity is not small.

Finally, in Section V, we addressed the question of the DC conductivity. Because of the con-

straints of total momentum conservation, such a computation must be carried out [5, 7] in the

context of the expression in Eq. (1.4), which separates a quantum critical conductivity σQ from

that associated with ‘drag’ from the conserved momentum. We estimated σQ in Section V and

found a result that scaled as T 0, up to logarithms. Thus, the σQ contribution to Eq. (1.5), in the

theory of the spin density wave critical point, is likely not the mechanism of the strange metal

linear resistivity.

The momentum-drag term in Eq. (1.5) was considered in a previous work by two of us [11] for

the spin density wave critical point: there we found that quenched disorder which changes the

local critical coupling did lead to a linear-in-T resistivity. This conclusion is not modified by the

considerations of the present paper.
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Appendix A: Computation of ⟨JyJy⟩

All computations in this appendix are symbolically described for the n = 1 fermions, with the

identical contributions for n = 3 accounted for by doubling the overall prefactors. Momentum

integrals in dimensional regularization are performed using the standard identity

∫
ddk

ka

(k2 +∆)b
=

πd/2

Γ(d/2)

Γ((a+ d)/2)Γ(b− (a + d)/2)

Γ(b)
∆(a+d)/2−b. (A1)

1. Free fermion contribution to ⟨JyJy⟩

The free fermion contribution to ⟨JyJy⟩ is given by Fig. 2(a) and is straightforwardly computed

in dimensional regularization:

⟨JyJy⟩free(ω) =

− 2(1 + v2)NcNf

∫
d2k

(2π)2
d2−ϵK

(2π)2−ϵ
Tr

[
iγd−1(−i)

Γ ·K+ γd−1ε1(k)

K2 + ε1(k)2
iγd−1(−i)

Γ · (K+W) + γd−1ε1(k)

(K+W)2 + ε1(k)2

]

= −4NcNf

√
1 + v2

∫
dk∥

∫ 1

0

dx

∫
dε1(k)

(2π)2
d2−ϵK

(2π)2−ϵ
−K · (K+W) + ε1(k)2

[(K+ xW)2 + ε1(k)2 + x(1 − x)W2]2

= −
NcNf

2π

√
1 + v2

∫
dk∥

∫ 1

0

dx

∫
d2−ϵK

(2π)2−ϵ

(
−K2 +W2x(1− x)

[K2 + x(1− x)W2]3/2
+

1

[K2 + x(1− x)W2]1/2

)

= −
NcNfπ1−ϵ/2

πΓ(1− ϵ/2)(2π)2−ϵ
√
1 + v2

∫
dk∥ ω

1−ϵ

∫ 1

0

dx

(
Γ(1− ϵ/2)Γ(ϵ/2− 1/2)

2Γ(1/2)
(x(1− x))1/2−ϵ/2+

+
Γ(1− ϵ/2)Γ(1/2 + ϵ/2)

2Γ(3/2)
(x(1− x))1/2−ϵ/2 −

Γ(2− ϵ/2)Γ(−1/2 + ϵ/2)

2Γ(3/2)
(x(1− x))1/2−ϵ/2

)

= −
√
1 + v2

∫
dk∥ NcNfω

1−ϵ

(
1

16π
+O(ϵ)

)
, (A2)

where k∥ is the component of k along the Fermi surface.
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2. Fermion self-energy correction to ⟨JyJy⟩

In this subsection, we will freely take the limit of vanishing velocities associated with Eq. (3.13).

The extension to the case of finite velocities will be presented in Appendix C.

This self-energy correction is given by Fig. 2(b) and a partner diagram with the boson on the

lower fermion line. The sum of the two gives

⟨JyJy⟩SE(ω)

= 4iNf

∫
d2k

(2π)2
d2−ϵK

(2π)2−ϵ
Tr

[

γd−1
Γ ·K+ γd−1ky

K2 + k2
y

Σ1(K,k)
Γ ·K+ γd−1ky

K2 + k2
y

γd−1
Γ · (K+W) + γd−1ky

(K+W)2 + k2
y

]

(A3)

We first compute the fermion self energy, given by Fig. 3(a):

Σ1(K,k)

=
g2µϵ

Nf

N2
c−1∑

j=1

(τ jτ j)

∫
d2q

(2π)2
d2−ϵQ

(2π)2−ϵ
iγd−1(−i)

Γ · (K+Q)− γd−1(qy + ky)

(K+Q)2 + (qy + ky)2
iγd−1

1

Q2 + c2q2

= i
g2µϵ

Nf

N2
c−1∑

j=1

(τ jτ j)

∫ 1

0

dx

∫
d2q

(2π)2
d2−ϵQ

(2π)2−ϵ
−Γ ·K(1− x)− γd−1(qy + ky)

[Q2 + x(1− x)K2 + c2q2(1− x) + x(qy + ky)2]2

= i
π1−ϵ/2Γ(1 + ϵ/2)

(2π)2−ϵ
g2µϵ

Nf

N2
c−1∑

j=1

(τ jτ j)

∫ 1

0

dx

∫
d2q

(2π)2
−Γ ·K(1− x)− γd−1(qy + ky)

[x(1− x)K2 + c2q2(1− x) + x(qy + ky)2]1+ϵ/2

= i
π3/2−ϵ/2Γ(1/2 + ϵ/2)

(2π)4−ϵ
g2µϵ

cNf

N2
c−1∑

j=1

(τ jτ j)

∫ 1

0

dx

∫
dqy√
1− x

−Γ ·K(1− x)− γd−1(qy + ky)

[x(1− x)K2 + x(qy + ky)2]1/2+ϵ/2
,

(A4)

where in the last step we integrated out qx and then sent c → 0. After shifting qy by ky we integrate

it out to get

Σ1(K,k) = −i
π2−ϵ/2Γ(ϵ/2)

(2π)4−ϵ
g2µϵ

cNf

N2
c−1∑

j=1

(τ jτ j)

∫ 1

0

dx(x(1− x))−ϵ/2
√

1− x

x

Γ ·K
[K2]ϵ/2

. (A5)
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Inserting this into the expression for ⟨JyJy⟩SE,

⟨JyJy⟩SE(ω)

= 16(1−N2
c )
π5/2−ϵ/2Γ(ϵ/2)Γ(1/2− ϵ/2)

21−ϵ(2π)8−2ϵΓ(1− ϵ/2)

g2µϵ

c

∫
dkx

∫
dkyd

2−ϵK
K4 +W ·K K2 − k2

y(3K
2 +K ·W)

(K2 + k2
y)

2((K+W)2 + k2
y)(K

2)ϵ/2

= 32(1−N2
c )
π5/2−ϵ/2Γ(ϵ/2)Γ(1/2− ϵ/2)

21−ϵ(2π)8−2ϵΓ(1− ϵ/2)

g2µϵ

c

∫
dkx

∫ 1

0

dy(1− y)×

×
∫

dky
d2−ϵK

(K2)ϵ/2
K4 +W ·K K2 − k2

y(3K
2 +K ·W)

[(K+ yW)2 +W2y(1− y) + k2
y]

3

= 4(1−N2
c )
π7/2−ϵ/2Γ(ϵ/2)Γ(1/2− ϵ/2)

21−ϵ(2π)8−2ϵΓ(1− ϵ/2)

g2µϵ

c

∫
dkx

∫ 1

0

dy(1− y)×

×
d2−ϵK

(K2)ϵ/2

[

3
K4 +W ·K K2

[(K+ yW)2 +W2y(1− y)]5/2
−

3K2 +K ·W
[(K+ yW)2 +W2y(1− y)]3/2

]

= 4(1−N2
c )

π7/2−ϵ/2Γ(1/2− ϵ/2)

21−ϵ(2π)8−2ϵΓ(1− ϵ/2)

g2µϵ

c

∫
dkx

∫ 1

0

dz

∫ 1

0

dy(1− y)d2−ϵK

[

3
K4 +W ·K K2

[(K+ yzW)2 + y2z(1 − z)W2 +W2yz(1− y)]5/2+ϵ/2
Γ(5/2 + ϵ/2)

Γ(5/2)
z3/2(1− z)ϵ/2−1−

−
3K2 +K ·W

[(K+ yzW)2 + y2z(1 − z)W2 +W2yz(1− y)]3/2+ϵ/2
Γ(3/2 + ϵ/2)

Γ(3/2)
z1/2(1− z)ϵ/2−1

]

. (A6)

Now we shift K → K − yzW. This leads to the replacements ((K ·W)2 ≡ K2W2/(2 − ϵ) as far

as integration over K is concerned)

K4 +W ·K K2 → K4 +
4K2W2y2z2

2− ϵ
+ 2K2W2y2z2 −

2K2W2yz

2− ϵ
−

−K2W2yz +W4y4z4 −W4y3z3,

K2 → K2 +W2y2z2,

K ·W → −yzW2. (A7)
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Then, integrating out K,

⟨JyJy⟩SE(ω) = 4(1−N2
c )

π9/2−ϵΓ(1/2− ϵ/2)

2−ϵ(2π)8−2ϵΓ(1− ϵ/2)2
g2µϵ

c
ω1−2ϵ

∫
dkx

∫ 1

0

dz

∫ 1

0

dy

[

(1− y)(1− z)ϵ/2−1×

×

(

−
(3y2z2 − yz)

(
Γ
(
ϵ+ 1

2

)
Γ
(
1− ϵ

2

))
(y2(1− z)z + (1− y)yz)−ϵ−1/2 z1/2

2Γ
(
3
2

) +

+
3yz

(
Γ
(
ϵ+ 1

2

)
Γ
(
2− ϵ

2

)) (
yz
(

4
2−ϵ + 2

)
−
(

2
2−ϵ + 1

))
(y2(1− z)z + (1− y)yz)−ϵ−1/2 z3/2

2Γ
(
5
2

) −

−
3
(
Γ
(
ϵ− 1

2

)
Γ
(
2− ϵ

2

))
(y2(1− z)z + (1− y)yz)

1/2−ϵ
z1/2

2Γ
(
3
2

) +

+
3
(
Γ
(
ϵ− 1

2

)
Γ
(
3− ϵ

2

))
(y2(1− z)z + (1− y)yz)

1/2−ϵ
z3/2

2Γ
(
5
2

) +

+
3y3z3(yz − 1)

(
Γ
(
ϵ+ 3

2

)
Γ
(
1− ϵ

2

))
(y2(1− z)z + (1− y)yz)

−ϵ−3/2
z3/2

2Γ
(
5
2

)
)]

. (A8)

To leading order in ϵ, we can take only the (1 − z)ϵ/2−1 term in the above integrand for its z

dependence and set z = 1 elsewhere (which produces 2/ϵ for the integral over z). This agrees with

numerically evaluating the y and z integrals. We thus get,

⟨JyJy⟩SE(ω) =
∫

dkx
(1−N2

c )

32π3ϵ

g2µϵ

c
ω1−2ϵ

∫ 1

0

dy y(6y − 5)

√
1− y

y

=

∫
dkx(N

2
c − 1)

g2µϵ

c
ω1−2ϵ

(
1

128π2ϵ
+O(1)

)
. (A9)

3. Vertex correction to ⟨JyJy⟩

As in Appendix A2, here too we will freely take the limit of vanishing velocities associated with

Eq. (3.13). The case of finite velocities will be presented in Appendix C.

This correction is then given by Fig. 2(c):

⟨JyJy⟩vert(ω) = 2iNf

∫
d2k

(2π)2

∫
d2−ϵK

(2π)2−ϵ
Tr

[

γd−1
Γ ·K+ γd−1ky

K2 + k2
y

Ξ3(K,k,W)
Γ · (K+W) + γd−1ky

(K+W)2 + k2
y

]

.

(A10)
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We again first compute the current (Jy) vertex, given by Fig. 3(b):

Ξ3(K,k,W)

=
g2µϵ

Nf

N2
c−1∑

j=1

(τ jτ j)

∫
d2q

(2π)2
d2−ϵQ

(2π)2−ϵ
iγd−1×

× (−i)
Γ · (K+Q)− γd−1(qy + ky)

(K+Q)2 + (qy + ky)2
(−iγd−1)(−i)

Γ · (K+Q +W)− γd−1(qy + ky)

(K+Q+W)2 + (qy + ky)2
iγd−1

1

Q2 + c2q2

= −2i
g2µϵ

Nf

N2
c−1∑

j=1

(τ jτ j)

∫ 1

0

dx

∫ 1−x

0

dy

∫
d2q

(2π)2
d2−ϵQ

(2π)2−ϵ

[
− (K+Q) · (K+Q +W) + (qy + ky)

2−

+ 2Γ · (K+Q)γd−1(qy + ky) + Γ ·Wγd−1(qy + ky)− Γ · (K̄+ Q̄)Γ ·W
]
×

×
[
(Q + (x+ y)K+ yW)2 +W2y(1− y) + (1− (x+ y))(K2(x+ y) + 2K ·Wy)+

+ (x+ y)(qy + ky)
2 + (1− (x+ y))q2c2

]−3
γd−1

= −i
g2µϵπ3/2−ϵ/2

cNf (2π)4−ϵΓ(1− ϵ/2)

N2
c−1∑

j=1

(τ jτ j)

∫ 1

0

dx

∫ 1−x

0

dy
1√

(1− (x+ y))

∫
dqy

(

[
(ky + qy)

2 − (K(x+ y − 1) +W(y − 1)) · (K(x+ y − 1) +Wy)+

+ 2Γ · (K(1− (x+ y))−Wy)γd−1(ky + qy)− Γ̄ · K̄(1− (x+ y))Γ ·W + Γ ·Wγd−1(ky + qy)
]
×

× Γ(3/2 + ϵ/2)Γ(1− ϵ/2)∆−(3/2+ϵ/2)
1 − Γ(1/2 + ϵ/2)Γ(2− ϵ/2)∆−(1/2+ϵ/2)

1

)

γd−1, (A11)

where we again integrated out qx and then sent c → 0 in the last step of the above, and

∆1 = W2y(1− y) + (1− (x+ y))(K2(x+ y) + 2W ·Ky) + (x+ y)(ky + qy)
2

Proceeding,

Ξ3(K,k,W) = −i
g2µϵπ2−ϵ/2

cNf (2π)4−ϵΓ(1− ϵ/2)

N2
c−1∑

j=1

(τ jτ j)

∫ 1

0

dx

∫ 1−x

0

dy
1√

(1− (x+ y))(x+ y)

(

[

− (K(x+ y − 1) +W(y − 1)) · (K(x+ y − 1) +Wy)− Γ̄ · K̄(1− (x+ y))Γ ·W

]

×

×
Γ(1− ϵ/2)Γ(1 + ϵ/2)

∆(1+ϵ/2)
2

−
Γ(ϵ/2)

∆ϵ/2
2

(
Γ(2− ϵ/2)−

Γ(1− ϵ/2)

2(x+ y)

)
γd−1, (A12)

where

∆2 = W2y(1− y) + (1− (x+ y))(K2(x+ y) + 2W ·Ky). (A13)

An important feature of the above computation is that because
∫ 1

0

dx

∫ 1−x

0

dy
2(x+ y)− 1

(x+ y)3/2
√

1− (x+ y)
= 0, (A14)
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the coefficient of the 1/ϵ pole (i.e. the coefficient of Γ(ϵ/2)) in Ξ vanishes when ϵ → 0. This

eventually leads to the lack of a 1/ϵ pole in ⟨JyJy⟩vert, and hence the correction to scaling of ⟨JyJy⟩
arises solely from the self-energy graphs.

Taking the expression for the current vertex and inserting it into the one for ⟨JyJy⟩vert, we get

⟨JyJy⟩vert(ω)

=
4g2µϵπ3−ϵ/2(N2

c − 1)

c(2π)8−2ϵΓ(1− ϵ/2)

∫
dkx

∫
d2−ϵK

∫ 1

0

dz

∫ 1

0

dx

∫ 1−x

0

dy√
(1− (x+ y))((x+ y)

(

[

− (K(x+ y − 1) +W(y − 1)) · (K(x+ y − 1) +Wy)

(
1

∆1/2
3

−
K · (K+W)

∆3/2
3

)

+

+
K̄2W2(1− (x+ y))

∆3/2
3

]
Γ(1− ϵ/2)Γ(1 + ϵ/2)

∆(1+ϵ/2)
2

−
Γ(ϵ/2)

∆ϵ/2
2

(

Γ(2− ϵ/2)−

−
Γ(1− ϵ/2)

2(x+ y)

)(
1

∆1/2
3

−
K · (K+W)

∆3/2
3

))

, (A15)

where now

∆2 = W2y(1− y) + (1− (x+ y))(K2(x+ y) + 2W ·Ky),

∆3 = (K+ zW)2 + z(1 − z)W2. (A16)

We combine denominators using

1

∆s
2∆

b
3

=
Γ(s+ b)

Γ(s)Γ(b)

∫ 1

0

da
as−1(1− a)b−1

[a∆2 + (1− a)∆3]s+b
, (A17)

and the denominator square completion is

a∆2 + (1− a)∆3 = (a(x+ y)(1− (x+ y)) + (1− a))

(
W(ay(1− (x+ y)) + (1− a)z)

a(x+ y)(1− (x+ y)) + (1− a)
+K

)2

+

+W2

(
−

(ay(1− (x+ y)) + (1− a)z)2

a(x+ y)(1− (x+ y)) + (1− a)
+ a(1− y)y + (1− a)z

)
. (A18)

Defining

f1 = a(x+ y)(1− (x+ y)) + (1− a),

f =
1

f1
(ay(1− (x+ y)) + (1− a)z),

f2 = a(1− y)y + (1− a)z − f1f
2, (A19)

we can process the numerators and write down the final expression

⟨JyJy⟩vert(ω) =
8g2µϵπ4−ϵ(N2

c − 1)

c(2π)8−2ϵΓ(1− ϵ/2)2
ω1−2ϵ

∫
dkx

∫ 1

0

da

∫ 1

0

dz

∫ 1

0

dx

∫ 1−x

0

dy

(

T1 + T2 + T3 + T4

)

,

(A20)
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where

T1 =

√
1− aaϵ/2f

ϵ
2
−3

1 f
−ϵ− 3

2

2√
−(x+ y − 1)(x+ y)π

Γ
(
1−

ϵ

2

)( 1

ϵ− 2
f1f2Γ

(
2−

ϵ

2

)
Γ

(
ϵ+

1

2

)(

2f 2(ϵ− 4)(x+ y − 1)2−

− f(ϵ− 4)(x+ 3y − 2)(x+ y − 1)− 2xy + x+ (y − 1)(y(ϵ− 4) + 1)− (1− (x+ y))(ϵ− 1)

)

+

+ (f − 1)ff 2
1Γ
(
1−

ϵ

2

)
Γ

(
ϵ+

3

2

)
(f(x+ y − 1)− y)(f(x+ y − 1)− y + 1)+

+ f 2
2 (x+ y − 1)2Γ

(
3−

ϵ

2

)
Γ

(
ϵ−

1

2

))

,

T2 =
aϵ/2f

ϵ
2
−2

1 f
−ϵ− 1

2

2√
1− a

√
−(x+ y − 1))(x+ y)π

Γ
(
1−

ϵ

2

)(

− f1Γ
(
1−

ϵ

2

)
Γ

(
ϵ+

1

2

)
(f(x+ y − 1)− y)×

× (f(x+ y − 1)− y + 1)− f2(x+ y − 1)2Γ
(
2−

ϵ

2

)
Γ

(
ϵ−

1

2

))

,

T3 =

√
1− aa

ϵ
2
−1f

ϵ
2
−2

1 f
−ϵ− 1

2

2

4
√
π
√
−x− y + 1(x+ y)3/2

Γ
(
1−

ϵ

2

)2
Γ

(
ϵ−

1

2

)
(x(ϵ− 2) + y(ϵ− 2) + 1)

(

f 2×

× (f1 − 2f1ϵ) + ff1(2ϵ− 1) + f2(ϵ− 2)

)

,

T4 =
a

ϵ
2
−1f

ϵ
2
−1

1 f
1

2
−ϵ

2

4
√
1− a

√
π(−x− y + 1)(x+ y)3/2

Γ
(
1−

ϵ

2

)2
Γ

(
ϵ−

1

2

)
(x(ϵ− 2) + y(ϵ− 2) + 1). (A21)

This multidimensional integral over four parameters is finite in the limit of ϵ→ 0 and can be done

numerically. We first integrate over x and y: The resulting function of a and z has integrable

singularities in the limits of a → 1 and a → 0 which can be handled by numerical integration using

an adaptive grid. The final result is

⟨JyJy⟩vert(ω) =
∫

dkx
g2µϵ(N2

c − 1)

32π4c
ω1−2ϵ

(

α0 +O(ϵ)

)

, (A22)

where α0 ≈ 1.1 is a finite numerical constant.

Appendix B: Free Energy Computations

As in the previous appendix, we will freely take the limit of vanishing velocities associated with

Eq. (3.13) here as well to compute the correction to the fermion free energy.

Ffb =
1

2
Tr

⎡

⎣
N2

c−1∑

j=1

τ jτ j

⎤

⎦
∫

d2qd1−ϵQ̄

(2π)3−ϵ
T
∑

ωq

1

Q̄2 + c2|q|2 + ω2
q

[(Π(q, T )− Π(q, 0)) + Π(q, 0)] . (B1)
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Where Π(q, T ) is the fermion RPA bubble at external momentum and frequency given by q evalu-

ated at temperature T . As described in the main text, we evaluate the finite temperature part of

the bubble at v = 0 to renormalize the fermion free energy and the zero temperature part at v ̸= 0

to renormalize the boson free energy. To evaluate the frequency summations, we use the following

zeta-function regularization identities:

T
∑

ωq

1

|ωq|s
= 2

T 1−s

(2π)s
ζ(s),

T
∑

ωk

1

|ωk|s
= 2

T 1−s

(2π)s
ζ

(
s,

1

2

)
. (B2)

Where ωq is a bosonic Matsubara frequency and ωk is a fermionic Matsubara frequency. We then

have

Π(q, T )−Π(q, 0) = −4g2
∫

dkx
2π

∫
dkyd1−ϵK̄

(2π)2−ϵ

(

T
∑

ωk

−
∫

dωk

2π

)

Tr [iγd−1G(k)iγd−1G(k + q)]

= −4g2
∫

dkx

∫
dkyd1−ϵK̄

(2π)3−ϵ

(

T
∑

ωk

−
∫

dωk

2π

)[
Q̄2 + q2y + ω2

q

(K̄2 + k2
y + ω2

k)((K̄+ Q̄)2 + (ky + qy)2 + (ωk + ωq)2)
−

−
1

K̄2 + k2
y + ω2

k

−
1

(K̄+ Q̄)2 + (ky + qy)2 + (ωk + ωq)2

]

. (B3)

The last two terms in the square brackets yield identical contributions, because the q in the last

term can be shifted out. Thus,

Π(q, T )−Π(q, 0)

= −4g2
∫

dkx

∫
dkyd1−ϵK̄

(2π)3−ϵ

(

T
∑

ωk

−
∫

dωk

2π

)[
Q̄2 + q2y + ω2

q

(K̄2 + k2
y + ω2

k)((K̄+ Q̄)2 + (ky + qy)2 + (ωk + ωq)2)

]

+

+ 8g2
∫

dkx

∫
dkyd1−ϵK̄

(2π)3−ϵ

(

T
∑

ωk

−
∫

dωk

2π

)
1

K̄2 + k2
y + ω2

k

.

(B4)

We evaluate the second term to leading order in ϵ in the above using dimensional regularization

for the momentum integral and zeta function regularization for the frequency sum:

8g2
∫

dkx

∫
dkyd1−ϵK̄

(2π)3−ϵ

(

T
∑

ωk

−
∫

dωk

2π

)
1

K̄2 + k2
y + ω2

k

= 8g2
∫

dkx

∫
dkyd1−ϵK̄

(2π)3−ϵ
T
∑

ωk

1

K̄2 + k2
y + ω2

k

=
8πg2

(2π)2ϵ

∫
dkxT

∑

ωk

1

|ωk|ϵ
= −

∫
dkx

8g2T 1−ϵ ln 2

(2π)2
, (B5)
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where we have used the fact that scaleless integrals vanish in dimensional regularization. Thus,

Π(q, T )−Π(q, 0)

= 4g2
∫

dkx

∫
dkyd1−ϵK̄

(2π)3−ϵ

(∫
dωk

2π
− T

∑

ωk

)[
Q̄2 + q2y + ω2

q

(K̄2 + k2
y + ω2

k)((K̄+ Q̄)2 + (ky + qy)2 + (ωk + ωq)2)

]

−

−
∫

dkx
8g2T 1−ϵ ln 2

(2π)2
, (B6)

To evaluate the first term, we introduce a Feynman parameter y to combine the denominators.

Doing the k momentum integral and ωk frequency summation (integral for the T = 0 part), we

have, to leading order in ϵ

Π(q, T )−Π(q, 0) = −
g2

8π2

∫
dkx

∫ 1

0

dy
[
t(y, q̃2,ωq, ϵ)− 2π

]
(q̃2 + ω2

q )
1/2−ϵ/2 −

∫
dkx

8g2T 1−ϵ ln 2

(2π)2
,

(B7)

Where q̃ = (Q̄2 + q2y)
1/2. We determine the following asymptotic expansion numerically

∫ 1

0

dy t(y, q̃2,ωq, ϵ) =

(
2π − T 1−ϵ 16 ln 2

(q̃2 + ω2
q)

1/2−ϵ/2
+ 48ζ(3)T 3−ϵ 2ω2

q − q̃2

(q̃2 + ω2
q)

5/2−ϵ/2
+O

(
T 5−ϵ

q̃5−ϵ,ω5−ϵ
q

)
+ ...

)
.

(B8)

Simple power counting dictates that the higher terms in the above asymptotic expansion can’t

produce any log UV divergences in the final two loop graph because they fall off too fast in q.

Thus, retaining only terms that will survive and contribute to the pole in the final two-loop integral,

Π(q, T )− Π(q, 0) = −
g2

8π2

∫
dkx

(
48ζ(3)T 3−ϵ 2ω

2
q − q̃2

(q̃2 + ω2
q )

2

)
. (B9)

We evaluate Π(q, 0) using dimensional regularization at finite v to get, to leading order in ϵ:

Π(q, 0) = −4g2
∫

d2k

(2π)2
d2−ϵK

(2π)2−ϵ
Tr [iγd−1Gn(K,k)iγd−1Gn̄(K+Q,k+ q)]

= −
4g2

v

∫
dεn(k)dεn̄(k)

(2π)2
d2−ϵK

(2π)2−ϵ
−K · (K+Q) + εn(k)εn̄(k+ q)

[K2 + εn(k)2][(K+Q)2 + εn̄(k+ q)2]

= −
g2

v

∫
d2−ϵK

(2π)2−ϵ
−K · (K+Q)

[K2]1/2[(K+Q)2]1/2

= −
g2

v

Q2−ϵ

8πϵ
= −

g2

v

(Q̄
2
+ ω2

q )
1−ϵ/2

8πϵ
, (B10)

where the last integral was performed using Feynman parameterization. Inserting the expressions

for Π(q, T )− Π(q, 0) and Π(q, 0) into Eq. (B1), we get, using dimensional regularization for the q
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momentum integrals,

Ffb = F (1)
fb + F (2)

fb ,

F (1)
fb = (N2

c − 1)

∫
d2qd1−ϵQ̄

(2π)3−ϵ
T
∑

ωq

Π(q, T )− Π(q, 0)

Q̄2 + c2|q|2 + ω2
q

= (1−N2
c )T

3−ϵ6ζ(3)g
2

πc

∫
dkx

∫
dqyd1−ϵQ̄

(2π)3−ϵ
T
∑

ωq

2ω2
q − q̃2

(q̃2 + ω2
q )

2
√

Q̄2 + ω2
q

(B11)

Where we integrated out qx and then sent c → 0 in the last step of the above. Doing the remaining

integrals first over qy and then Q̄, we get, to leading order in ϵ

F (1)
fb =

3ζ(3)g2(N2
c − 1)T 3−ϵ

16cπ2

∫
dkxT

∑

ωq

1

|ωq|1+ϵ
=

∫
dkx

3ζ(3)g2(N2
c − 1)T 3−2ϵ

16cπ3ϵ
. (B12)

The other part gives

F (2)
fb = (N2

c − 1)

∫
d2qd1−ϵQ̄

(2π)3−ϵ
T
∑

ωq

Π(q, 0)

Q̄2 + c2|q|2 + ω2
q

= (1−N2
c )

g2

8πvϵ

∫
d2qd1−ϵQ̄

(2π)3−ϵ
T
∑

ωq

(Q̄2 + ω2
q )

1−ϵ/2

Q̄2 + c2|q|2 + ω2
q

.

(B13)

Integrating first over Q̄ and then over q using the dimensional regularization, we get, to leading

order in ϵ

F (2)
fb = (N2

c − 1)
g2π

6vc2ϵ
T
∑

ωq

1

|ωq|−(3−2ϵ)
= (N2

c − 1)
g2π

360vc2ϵ
T 4−2ϵ. (B14)

Appendix C: Finite v and c

In this appendix, we describe the breakdown of the results derived in the previous appendices

when we do not have v, c → 0. We illustrate this by first computing the self energy correction to

⟨JyJy⟩ for finite v and c; similar problems occur in the computations of the fermion free energy.

The fermion self energy for v, c ̸= 0 is given by [36]

Σ1(K,k) = −i
π2−ϵ/2Γ(ϵ/2)

(2π)4−ϵ
g2µϵ

cNf

∫ 1

0

dx
N2

c−1∑

j=1

(τ jτ j)
Γ ·K− γd−1

c2ε3(k)
c2+x(1+v2−c2)

[
K2 +

c2ε2
3
(k)

c2+x(1+v2−c2)

]ϵ/2
x−ϵ/2(1− x)1/2−ϵ/2

(c2 + x(1 + v2 − c2))1/2
,

(C1)

We can ignore the term with the prefactor of c2 in the numerator of the integrand in Eq. (C1);

since v ̸= 0 ε1(k) and ε3(k) can be taken to be independent variables of integration over k space

via the coordinate transformation d2k → dε1dε3/(2v). This term then only produces contributions
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to ⟨JyJy⟩SE that are odd in ε3 and hence vanish under integration over ε3. Thus dropping this

term, we have

⟨JyJy⟩SE(ω) =
16(1−N2

c )π
2−ϵ/2Γ(ϵ/2)g2µϵ

(2π)8−2ϵc

∫ 1

0

dx
x−ϵ/2(1− x)1/2−ϵ/2(1 + v2)

(c2 + x(1 + v2 − c2))1/2
×

×
∫

dε1dε3
2v

d2−ϵK
K4 +W ·K K2 − ε21(3K

2 +K ·W)

(K2 + ε21)
2((K+W)2 + ε21)

[
K2 + c2ε2

3

c2+x(1+v2−c2)

] ϵ
2

(C2)

evaluating this as in Appendix A2 gives the singular contribution

⟨JyJy⟩SE(ω) ≈
∫

dε3
2v

(N2
c − 1)

g2µϵ

c
ω1−2ϵ

∫ 1

0

dxκ1

(
c2ε23

ω2(c2 + x(1 + v2 − c2))
, ϵ

)
(1− x)1/2(1 + v2)

(c2 + x(1 + v2 − c2))1/2

(
1

64π3ϵ

)
,

(C3)

where the crossover function κ1(x, ϵ) ≈ (1 + x)−ϵ/2 for x ≪ 1.

The singular part of the 1-loop current vertex at finite v and c is most easily derived from the

Ward identity;

Ξ3(K,k, 0)

∣∣∣∣∣
pole

= −
dΣ1(K,k)

dky

∣∣∣∣∣
pole

=

iγd−1
π2−ϵ/2Γ(ϵ/2)

(2π)4−ϵ
g2cµϵ

Nf

N2
c−1∑

j=1

(τ jτ j)

∫ 1

0

dx

[
K2 +

c2ε23(k)

c2 + x(1 + v2 − c2)

]−ϵ/2 x−ϵ/2(1− x)1/2−ϵ/2

(c2 + x(1 + v2 − c2))3/2
.

(C4)

Inserting this into Eq. (3.16) gives, for the singular part of the two-loop vertex correction to ⟨JyJy⟩,
via a computation very similar to that for the self energy correction (an additional prefactor of 2

has to be inserted to account for both the poles associated with vertex corrections to each of the

two current vertices in the graph),

⟨JyJy⟩vert(ω) ≈ −
g2cµϵ(N2

c − 1)

8π6ϵ

∫
dε1dε3
2v

d2−ϵK

∫ 1

0

dx
(1− x)1/2(1− v2)

(c2 + x(1 + v2 − c2))3/2
×

[
−K · (K+W) + ε21

(K2 + ε21)((K+W)2 + ε21)
[
K2 + c2ε2

3

c2+x(1+v2−c2)

]ϵ/2

]

≈ −
∫

dε3
2v

(N2
c − 1)g2cµϵω1−2ϵ

∫ 1

0

dxκ2

(
c2ε23

ω2(c2 + x(1 + v2 − c2))
, ϵ

)
(1− x)1/2(1− v2)

(c2 + x(1 + v2 − c2))3/2

(
1

32π3ϵ

)
,

(C5)

where again the crossover function κ2(x, ϵ) ≈ (1 + x)−ϵ/2 for x ≪ 1.
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Appendix D: Boltzmann Equation Computations

1. Collisionless conductivity in d = 3− ϵ

We can diagonalize the Hamiltonian corresponding to the free fermion part of Eq. (2.3) as

Hf =
4∑

n=1

Nc∑

σ=1

Nf∑

j=1

∫
d2kd1−ϵK̄

(2π)3−ϵ
Ψ̄n,σ,j(k, K̄)

[
iΓ̄ · K̄+ iγd−1εn(k)

]
Ψn,σ,j(k, K̄)

=
4∑

n=1

Nc∑

σ=1

Nf∑

j=1

∑

m=±

∫
d2kd1−ϵK̄

(2π)3−ϵ
λ†n,σ,j,m(k, K̄)ξn,m(k, K̄)λn,σ,j,m(k, K̄) (D1)

with the particle-hole symmetric dispersions ξn,m(k, K̄) = m
(
K̄2 + ε2n(k)

)1/2
. The physical current

density becomes

J =
4∑

n=1

Nc∑

σ=1

Nf∑

j=1

∑

m=±

∫
d2kd1−ϵK̄

(2π)3−ϵ

(

vn
mεn(k)√

K̄2 + εn(k)2
λ†n,σ,j,m(k, K̄)λn,σ,j,m(k, K̄)

)

+ J2, (D2)

where εn(k) = vn · k and J2 contains particle-hole terms λ†+λ−, λ
†
−λ+ that are unimportant for

transport in the low frequency regime of ω ≪ T [54, 55]. Defining the distribution functions

fn,m(k, K̄, t) = ⟨λ†n,σ,j,m(k, K̄, t)λn,σ,j,m(k, K̄, t)⟩, (D3)

we have the collisionless kinetic equation in the presence of an applied electric field

(
∂

∂t
+mE ·

∂

∂k

)
fn,m(k, K̄, t) = 0, (D4)

with the frequency-domain solution to linear order in E

fn,m(k, K̄,ω) = 2πδ(ω)nf(ξn,m(k, K̄))+vn·E(ω)
mεn(k)√

K̄2 + εn(k)2
1/T

−iω + 0+
nf (ξn,m(k, K̄))(1−nf(ξn,m(k, K̄))).

(D5)

Inserting this into the expression for J, we obtain the collisionless conductivity

σxx(ω) =
δJx(ω)

δEx(ω)
= 4NcNf

(1 + v2)/T

−iω + 0+

∫
d2kd1−ϵK̄

(2π)3−ϵ
ε2n(k)

K̄2 + ε2n(k)
nf (ξn,+(k, K̄))(1− nf (ξn,+(k, K̄))),

Re[σxx(ω)] = 2NcNf

∫
dk∥

√
1 + v2

δ(ω)

T

∫
dεnd1−ϵK̄

(2π)2−ϵ
ε2n

K̄2 + ε2n
nf

(√
K̄2 + ε2n

)(
1− nf

(√
K̄2 + ε2n

))

= 2NcNf

√
1 + v2

∫
dk∥δ(ω)T

1−ϵπ
1−ϵ/2(1− 2ϵ)Γ(2− ϵ)ζ(1− ϵ)

(2π)2−ϵΓ(2− ϵ/2)
= Re[σyy(ω)]. (D6)
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2. Derviation of the fermion collision integral

We derive the following expressions for the different components of the fermion self energies in

the Keldysh formalism. For a fermion at hot spot given by (ℓ,+), we get for the first diagram for

ΣR
f in Fig. 5

ΣRℓ+(1)
f,σσ′ (x, x′) = ig2τaσρτ

a
ρσ′D

K
0 (x, x′)GRℓ−

0 (x, x′) = 3iδσσ′g
2DK

0 (x, x′)GRℓ−
0 (x, x′). (D7)

We use that for products of Wigner transforms

DK
0 (x, x′)GRℓ−

0 (x, x′) →
∑

q

DK
0 (x, p− q)GRℓ−

0 (x, q), (D8)

and plug in the representation of the Keldysh propagator in terms of the distribution function to

get

ΣRℓ+(1)
f,σσ′ (x, p) = 3δσσ′g

2
∑

q

Fb(x, p− q) i
[
DR

0 (x, p− q)−DA
0 (x, p− q)

]
GRℓ−

0 (x, q). (D9)

For the collision integral on the right hand side of (5.16) we need twice the imaginary part of this

expression. Using

2Im[GRℓ−
0 (x, q)] =

1

i

[
GRℓ−

0 (x, q)−GAℓ−
0 (x, q)

]
, (D10)

we get,

2Im
[
ΣRℓ+(1)

f,σσ′ (x, p)
]

= 3δσσ′g
2
∑

q

Fb(x, p− q) i
[
DR

0 (x, p− q)−DA
0 (x, p− q)

] 1
i

[
GRℓ−

0 (x, q)−GAℓ−
0 (x, q)

]

= −3δσσ′g
2

∫
d2q

∫
dω

2π

1

4ωp−q

(
δ(e+ℓ (p)− ω − ωp−q)− δ(e+ℓ (p)− ω + ωp−q)

)
×

× δ(ω − e−ℓ (q))Fb(t,p− q, e+ℓ (p)− ω)

= −3δσσ′g
2

∫
d2q

2π

1

4ωp−q

(
δ(e+ℓ (p)− e−ℓ (q)− ωp−q)Fb(t,p− q,ωp−q)−

− δ(e+ℓ (p)− e−ℓ (q) + ωp−q)Fb(t,p− q,−ωp−q)
)

= 2δσσ′Im
[
ΣRℓ+(1)

f (t,p, e+ℓ (p))
]
, (D11)
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where we have used spatial translational invariance and also have kept the external fermion on

shell. Likewise, for the second diagram for ΣR
f in Fig. 5 contributing to ΣRℓ+

f,σσ′ we have

2Im[ΣRℓ+(2)
f,σσ′ (x, p)]

= 3δσσ′g
2
∑

q

Ff(x, q)[G
Rℓ−
0 (x, q)−GAℓ−

0 (x, q)][DR
0 (x, p− q)−DA

0 (x, p− q)]

= −3δσσ′g
2

∫
d2q

2π

1

4ωp−q

(
δ(e+ℓ (p)− e−ℓ (q)− ωp−q)− δ(e+ℓ (p)− e−ℓ (q) + ωp−q)

)
F ℓ−
f (t,q)

= 2δσσ′Im
[
ΣRℓ+(2)

f (t,p, e+ℓ (p))
]
. (D12)

For the diagrams in Fig. 5 contributing to ΣKℓ+
f,σσ′ , the first gives

iΣKℓ+(1)
f,σσ′ (x, p)

= −3δσσ′g
2
∑

q

Ff (x, q)Fb(x, p− q)[GRℓ−
0 (x, q)−GAℓ−

0 (x, q)][DR
0 (x, p− q)−DA

0 (x, p− q)]

= 3δσσ′g
2

∫
d2q

2π

1

4ωp−q

(

δ(e+ℓ (p)− e−ℓ (q)− ωp−q)F
ℓ−
f (t,q)Fb(t,p− q,ωp−q)−

− δ(e+ℓ (p)− e−ℓ (q) + ωp−q)F
ℓ−
f (t,q)Fb(t,p− q,−ωp−q)

)

= 2iδσσ′Σ
Kℓ+(1)
f (t,p, e+ℓ (p)). (D13)

The second and third combined yield

iΣKℓ+(2+3)
f,σσ′ (x, p)

= −3δσσ′g
2
∑

q

[GRℓ−
0 (x, q)DR

0 (x, p− q) +GAℓ−
0 DA

0 (x, p− q)]

= 3δσσ′
∫

d2q

4π2

∫
dω

2π

g2

4ωp−q

[
1

ω − e−ℓ (q) + i0+

(
1

e+ℓ (p)− ω + ωp−q + i0+
−

1

e+ℓ (p)− ω − ωp−q + i0+

)

+ c.c.

]

= 3δσσ′g
2

∫
d2q

2π

1

4ωp−q

(
δ(e+ℓ (p)− e−ℓ (q)− ωp−q)− δ(e+ℓ (p)− e−ℓ (q) + ωp−q)

)

= 2iδσσ′Σ
Kℓ+(2+3)
f (t,p, e+ℓ (p)). (D14)
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Combining the above expressions gives the collision integral for fermions of any spin at the hot

spot given by (ℓ, +)

Icollfℓ+[Ff , Fb](t,p) =

= 3g2
∫

d2q
1

4ωp−q

(

δ(e+ℓ (p)− e−ℓ (q)− ωp−q)
[
1 + F ℓ−

f (t,q)Fb(t,p− q,ωp−q)− F ℓ−
f (t,q)F ℓ+

f (t,p)−

− F ℓ+
f (t,p)Fb(t,p− q,ωp−q)

]
− δ(e+ℓ (p)− e−ℓ (q) + ωp−q)

[
1 + F ℓ−

f (t,q)Fb(t,p− q,−ωp−q)−

− F ℓ−
f (t,q)F ℓ+

f (t,p)− F ℓ+
f (t,p)Fb(t,p− q,−ωp−q)

])

. (D15)

The collision integral for the hot spot given by (ℓ, -) is given by simply interchanging + ↔ − in

the above. With the alternate parameterization (5.15) of the distribution functions, and relabeling

of momenta q ↔ p− q we may rewrite this for any hot spot as

Icollfℓ±[ff , fb](t,p) =

= 3g2
∫

d2q

2π

1

ωq

(

δ(e±ℓ (p)− e∓ℓ (p− q)− ωq)
[
f ℓ±f (t,p)(1− f ℓ∓f (t,p− q))− f ℓ∓f (t,p− q)fb(t,q,ωq)+

+ f ℓ±f (t,p)fb(t,q,ωq)
]
− δ(e±ℓ (p)− e∓ℓ (p− q) + ωq)

[
f ℓ±f (t,p)(1− f ℓ−f (t,p− q))−

− f ℓ∓f (t,p− q)fb(t,q,−ωq) + f ℓ±f (t,p)fb(t,q,−ωq)
])

. (D16)

3. Derivation of the boson collision integral

We begin with the retarded component of the boson self energy in the Keldysh formalism. The

sum of the two diagrams for this component in Fig. 5 gives

ΣR
b (x, x

′) = −ig2
∑

ℓ

[
GKℓ+

0 (x, x′)GAℓ−
0 (x′, x) +GRℓ−

0 (x, x′)GKℓ+
0 (x′, x) + (+ ↔ −)

]
. (D17)

Wigner transforming this gives

2Im[ΣR
b (x, q)] = −g2

∑

ℓ

∑

k

[
Ff (x, k + q)

(
GRℓ+

0 (x, k + q)−GAℓ+
0 (x, k + q)

) (
GAℓ−

0 (x, k)−GRℓ−
0 (x, k)

)

+ Ff(x, k)
(
GRℓ+

0 (x, k)−GAℓ+
0 (x, k)

) (
GRℓ−

0 (x, k + q)−GAℓ−
0 (x, k + q)

)
+ (+ ↔ −)

]

= −g2
∑

ℓ

∫
d2k

2π

[
δ
(
e−ℓ (k) + ωq − e+ℓ (k+ q)

)
F ℓ+
f (t,k+ q)−

− δ
(
e+ℓ (k) + ωq − e−ℓ (k+ q)

)
F ℓ+
f (t,k) + (+ ↔ −)

]

= 2Im[ΣR
b (t,q,ωq)], (D18)
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where we have used spatial translational invariance and also have kept the external boson on shell.

For the Keldysh component of the boson self energy, the second diagram in Fig. 5 gives

iΣK(2)
b (x, q)

= g2
∑

ℓ

∑

k

[
Ff (x, k + q)

(
GRℓ+

0 (x, k + q)−GAℓ+
0 (x, k + q)

)
Ff (x, k)

(
GRℓ−

0 (x, k)−GAℓ−
0 (x, k)

)
+ (+ ↔ −)

]

= −ig2
∑

ℓ

∫
d2k

2π

[
δ
(
ωq + e−ℓ (k)− e+ℓ (k + q)

)
F ℓ+
f (t,k + q)F ℓ−

f (t,k) + (+ ↔ −)
]

= 2iΣK(2)
b (t,q,ωq). (D19)

The first and third diagrams for the Keldysh component when combined give

iΣK(1+3)
b (x, q) = g2

∑

ℓ

∑

k

[(
GRℓ+

0 (x, k + q)GAℓ+
0 (x, k)

)
+
(
GAℓ+

0 (x, k + q)GRℓ−
0 (x, k)

)
+ (+ ↔ −)

]

= g2
∑

ℓ

∫
d2k

4π2

∫
dω

2π

[
1

ωq + ω − e+ℓ (k + q) + i0+
1

ω − e−ℓ (k)− i0+
+ c.c. + (+ ↔ −)

]

= g2
∑

ℓ

∫
d2k

2π

[
δ
(
ωq + e−ℓ (k)− e+ℓ (k+ q)

)
+ (+ ↔ −)

]

= 2iΣK(1+3)
b (t,q,ωq). (D20)

Thus we obtain the boson collision integral:

Icollb [Ff , Fb](t,q) = −g2
∑

ℓ

∫
d2k

2π

[
δ
(
e−ℓ (k) + ωq − e+ℓ (k+ q)

)

(
− 1− F ℓ−

f (t,k)Fb(t,q,ωq) + F ℓ+
f (t,k+ q)F ℓ−

f (t,k) + F ℓ+
f (t,k+ q)Fb(t,q,ωq)

)
+ (+ ↔ −)

]
,

(D21)

or

Icollb [ff , fb](t,q) = 4g2
∑

ℓ

∫
d2k

2π

[
δ
(
e−ℓ (k) + ωq − e+ℓ (k+ q)

) (
f ℓ+f (t,k + q)(1− f ℓ−f (t,k))+

+ f ℓ+f (t,k+ q)fb(t,q,ωq)− f ℓ−f (t,k)fb(t,q,ωq)
)
+ (+ ↔ −)

]
. (D22)

4. Solution of the boson kinetic equation

Inserting the parametrization Eq. (5.22) for the fermion f functions into the boson collision

integral and also parameterizing fb in the frequency domain as

fb(ω,q,ωq) = 2πδ(ω)nb(ωq) + u(ω,q,ωq), (D23)
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where u is linear in E. Changing variables to pℓ1 = e−ℓ (k) = v−
ℓ · k and pℓ2 = e+ℓ (k) = v+

ℓ · k, the
boson collision integral (5.20) becomes

Icollb [Ff , Fb](t,q)

=
g2

πv

∑

ℓ

∫
dpℓ1dp

ℓ
2

[
δ
(
pℓ1 + ωq − pℓ2 − v+

ℓ · q
) (

f+
ℓ (t,k+ q)

(
1− f−

ℓ (t,k)
)
+

+ f+
ℓ (t,k+ q)fb(t,q,ωq)− f−

ℓ (t,k)fb(t,q,ωq)
)
+ (+ ↔ −, 1 ↔ 2)

]
. (D24)

Always integrating out pℓ2 in this expression, and keeping only terms up to linear order in E, we

get, in the frequency domain, using the boson kinetic equation Eq. (5.17)

2(−iω + 0+)u(ω,q,ωq) = Icollb [Ff , Fb](ω)

=
g2

πv

∑

ℓ

∫
dpℓ1

[
a(pℓ1,ωq,v

−
ℓ · q)(2πδ(ω)nb(ωq) + u(ω,q,ωq))+

+ E(ω) · bℓ(pℓ1,ωq,v
−
ℓ · q)nb(ωq) + E(ω) · bℓ1(pℓ1,ωq,v

−
ℓ · q)−E(ω) · dℓ(pℓ1,ωq,v

−
ℓ · q)−

− c(pℓ1,ωq,v
−
ℓ · q)(2πδ(ω)) + a1(p

ℓ
1,ωq,v

−
ℓ · q)(2πδ(ω))

]
, (D25)

where

a(pℓ1,ωq,v
−
ℓ · q) = (nf(p

ℓ
1 + ωq)− nf (p

ℓ
1)) + (nf (p

ℓ
1 + v−

ℓ · q)− nf(p
ℓ
1 + v−

ℓ · q− ωq)),∫
dpℓ1a(p

ℓ
1,ωq,v

−
ℓ · q) = −2ωq,

bℓ(pℓ1,ωq,v
−
ℓ · q) = v+

ℓ nf (p
ℓ
1 + ωq)(1− nf(p

ℓ
1 + ωq))ϕ(p

ℓ
1 + ωq)− v−

ℓ nf (p
ℓ
1)(1− nf (p

ℓ
1))ϕ(p

ℓ
1)+

+ v−
ℓ nf(p

ℓ
1 + v−

ℓ · q)(1− nf (p
ℓ
1 + v−

ℓ · q))ϕ(pℓ1 + v−
ℓ · q)−

− v+
ℓ nf (p

ℓ
1 + v−

ℓ · q− ωq)(1− nf (p
ℓ
1 + v−

ℓ · q− ωq))ϕ(p
ℓ
1 + v−

ℓ · q− ωq),

bℓ1(p
ℓ
1,ωq,v

−
ℓ · q) = v+

ℓ nf(p
ℓ
1 + ωq)(1− nf (p

ℓ
1 + ωq))ϕ(p

ℓ
1 + ωq)+

+ v−
ℓ nf(p

ℓ
1 + v−

ℓ · q)(1− nf (p
ℓ
1 + v−

ℓ · q))ϕ(pℓ1 + v−
ℓ · q),

dℓ(pℓ1,ωq,v
−
ℓ · q) = v−

ℓ nf (p
ℓ
1 + ωq)nf (p

ℓ
1)(1− nf (p

ℓ
1))ϕ(p

ℓ
1)+

+ v+
ℓ nf(p

ℓ
1)nf(p

ℓ
1 + ωq)(1− nf(p

ℓ
1 + ωq))ϕ(p

ℓ
1 + ωq)

+ v+
ℓ nf(p

ℓ
1 + v−

ℓ · q)nf (p
ℓ
1 + v−

ℓ · q− ωq)(1− nf (p
ℓ
1 + v−

ℓ · q− ωq))ϕ(p
ℓ
1 + v−

ℓ · q− ωq)+

+ v−
ℓ nf(p

ℓ
1 + v−

ℓ · q− ωq)nf (p
ℓ
1 + v−

ℓ · q)(1− nf (p
ℓ
1 + v−

ℓ · q))ϕ(pℓ1 + v−
ℓ · q),

c(pℓ1,ωq,v
−
ℓ · q) = nf (p

ℓ
1 + ωq)nf (p

ℓ
1) + nf (p

ℓ
1 + v−

ℓ · q)nf (p
ℓ
1 + v−

ℓ · q− ωq),

a1(p
ℓ
1,ωq,v

−
ℓ · q) = nf (p

ℓ
1 + ωq) + nf (p

ℓ
1 + v−

ℓ · q),
∫

dpℓ1
[
a1(p

ℓ
1,ωq,v

−
ℓ · q)− c(pℓ1,ωq,v

−
ℓ · q)

]
= 2

∫
dpℓ1nf (p

ℓ
1 + ωq)(1− nf(p

ℓ
1)) = 2ωqnb(ωq).

(D26)
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Since each term in the bℓ, bℓ1, d
ℓ terms results in a convergent integral over pℓ1, the v−

ℓ · q s can

be shifted out. Then, since
∑

ℓ v
±
ℓ = 0, the contribution from the bℓ, bℓ1 and dℓ terms vanishes.

Then,

2(−iω + 0+)u(ω,q,ωq) = −8ωq

g2

πv
u(ω,q,ωq). (D27)

Since this has to hold for all values of ω, we can only have u = 0. Hence, the boson collision

integral is trivially solved by the thermal Bose distribution and the bosons do not respond to the

applied electric field in our approximation. It is also easily seen using the identity

nf(x)(1 − nf (x− y)) + nb(y)(nf(x)− nf (x− y)) = 0, (D28)

that the thermal Fermi distribution nf nullifies the fermion collision integral in the absence of an

applied electric field if the thermal Bose distribution nb is used for the bosons, as it should.
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