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We present a theory for the large suppression of the superfluid-density, ⇢s, in BaFe2(As1�xPx)2 in the vicin-
ity of a putative spin-density wave quantum critical point at a P-doping, x = xc. We argue that the transition
becomes weakly first-order in the vicinity of xc, and disorder induces puddles of superconducting and antifer-
romagnetic regions at short length-scales; thus the system becomes an electronic micro-emulsion. We propose
that frustrated Josephson couplings between the superconducting grains suppress ⇢s. In addition, the presence
of ‘normal’ quasiparticles at the interface of the frustrated Josephson junctions resolves some seemingly contra-
dictory observations between the metallic and the superconducting phases. We propose experiments to test our
theory.

Introduction.- An important focus of the study of high tem-
perature superconductivity (SC) has been on the role of an-
tiferromagnetism (AFM) and its relation to SC [1]. There is
clear evidence across many di↵erent families of compounds
that SC appears in close proximity to an AFM phase [2];
these families include the iron-pnictides, the electron-doped
cuprates and the heavy-fermion superconductors. Moreover,
the optimal transition temperature (Tc) of the SC is often sit-
uated where the normal state AFM quantum critical point
(QCP) would have been located, in the absence of supercon-
ductivity. The experimental detection of the QCP is often
challenging in the normal state, and more so in the supercon-
ducting state.

Recently, a number of measurements were reported in a
member of the pnictide family, BaFe2(As1�xPx)2, as a func-
tion of the isovalent P-doping, x. The experiments show a
phase transition involving onset of spin-density wave (SDW)
order in the normal state above Tc, which extrapolates to a
T = 0 SDW QCP (see [3] and references therein). These ex-
periments include: (i) a sharp enhancement in the e↵ective
mass, m⇤, upon approaching a critical doping from the over-
doped side, as obtained from de Haas-van Alphen oscillations
[4] and from the jump in the specific-heat at Tc [5] , and, (ii) a
vanishing Curie-Weiss temperature (✓CW ), extracted from the
1/T1T measurements using NMR.

As we will review below, a number of puzzling results have
appeared from experiments investigating whether the SDW
QCP actually survives “under the SC dome.” Here we propose
a resolution of these puzzles by postulating a weakly first-
order transition [6] for the onset of SDW order in the pres-
ence of SC order (see Fig. 1a). It is well known that ‘random
bond’ disorder has a strong e↵ect on symmetry-breaking first-
order transitions [7], and ultimately replaces it with a disorder-
induced second order transition in two dimensional systems.
Our main claim is that the inhomogeneities associated with
these highly relevant e↵ects of disorder can resolve the exper-
imental puzzles.

The fate of the normal state transition within the SC state
was investigated by measurements [8] of the zero temperature
London penetration depth, �L(0) / 1/p⇢s (⇢s ⌘ superfluid-
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FIG. 1. (a) A cartoon phase-diagram showing the interplay between
SDW and SC phases. The TN line may survive as a continuous tran-
sition inside the SC phase up until the point marked ‘•’, below which
it becomes weakly first-order (shown as black dashed line). The grey
region depicts the regime where the system develops spatial inho-
mogeneity due to the presence of disorder. Inset: Emulsion with
SC grains (purple) and SDW(+SC) regions (grey). We ignore the
presence of other symmetry-broken phases in the diagram. (b) The
behavior of �L(0) as a function of the tuning parameter, x, within
di↵erent scenarios (see text for details).

density), as a function of x. A sharp peak in �L(0), corre-
sponding to a nearly ten-fold suppression in ⇢s, was observed
at x = xc, strongly indicating a QCP within the SC state [9].
However, it has been subsequently argued [10] that this peak
cannot be due to a second-order quantum phase transition as-
sociated with the onset of SDW order in the presence of a su-
perconductor with gapped quasiparticle excitations [11, 12].
Indeed, general arguments [10] establish that a large class of
such second-order transitions actually have a monotonic varia-
tion in �L(0) across the QCP (see dashed-blue/solid-red curves
in Fig. 1b). In contrast, the most striking feature observed is
the sharp decrease in �L(0) on the ordered side of the transi-
tion, where large portions of the Fermi-surface are lost due to
reconstruction from long-range SDW.

A related, and equally surprising, experimental observa-
tion in this material is the apparent violation of optical sum-
rules. A remarkable, but straightforward, consequence of
these sum-rules is that �L(0) is related to the normal state
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d.c. conductivity, �dc, just above Tc. When a conventional
metal with a Drude-like conductivity becomes superconduct-
ing without any sub-gap excitations (i.e. the density of states,
N(E) ⇠ E/

p
E2 � �2 for E > � and 0 otherwise), all of the

low energy spectral weight goes into the superfluid density at
! = 0, which manifests itself as a delta-function peak. From
conservation of spectral weight,

⇢s ⇠ �dc� ⇠ �dcTc, (1)

where we have assumed that � scales with Tc. The last re-
lation, often referred to as Homes’ law, has been verified to
be true across many di↵erent superconducting materials, in-
cluding the cuprates [13]. The above relation also implies that
if ⇢s behaves non-monotonically as a function of x, then �dc
should have a similar dependence on x, as long as the varia-
tion in Tc is small. In the case of BaFe2(As1�xPx)2, where the
variation in Tc is negligible around optimal doping, while ⇢s
behaves highly non-monotonically across xc, transport exper-
iments have not seen any evidence of a non-monotonic vari-
ation in �dc [14]. Moreover, recent measurements of opti-
cal conductivity [15] in near optimal BaFe2(As1�xPx)2 suggest
that the normal state spectral weight below the gap frequency
is consistent with the small penetration depth measured for
samples with x far from the critical value, rather than the much
larger �L(0) observed near x = xc.

In order for the above observations to be consistent with
optical sum-rules, the uncondensed part of the spectral weight
is transferred either (i) to very high frequencies (as is known
to happen for c�axis optical conductivity in the underdoped
cuprates [16]), or, (ii) to very low frequencies (but not to ⇢s),
which goes undetected in optical conductivity experiments.
The latter possibility is plausible within the scenario that we
develop here.

We analyze the above experiments by assuming a weakly
first-order transition [6], and argue that the presence of
quenched disorder leads to formation of a micro-emulsion at
small scales [7]. The system consists of SC puddles, where
some of the puddles additionally have SDW order (see Fig.
1a inset). The SDW(+SC) regions, which have a locally well-
developed antiferromagnetic moment but no long-range orien-
tational order, act as barriers between the di↵erent SC grains.
Upon moving deeper into the ordered side of the transition, the
SDW(+SC) regions start to percolate and crossover to a state
with long-range SDW order; this is the regime with a micro-
scopically coexistent SC+SDW. As a function of decreasing
x, the micro-emulsion is therefore a transitional state (shown
as grey region in Fig. 1a) between a pure SC and a coexistent
SC+SDW. We note that the granular nature of superconduc-
tivity should have no e↵ect on the bulk Tc in the presence of
percolating SC channels.

Model.- When the system is well described in the vicinity of
xc by a micro-emulsion as explained above, the phase fluctu-
ations associated with the SC grains (shown as purple regions
in Fig. 1a inset), can be modeled by the following e↵ective

theory,

H✓ = �
X

a,b

Jab cos(✓a � ✓b), (2)

where Jab represent the Josephson junction (JJ) couplings be-
tween grains ‘a’ and ‘b’. We have ignored the capacitive con-
tributions.

The Josephson current across the junction will be given by
Is = Jab sin(✓a � ✓b), and Jab may therefore be interpreted
as the lattice version of the local superfluid density, ⇢s(r),
i.e. J s(r) = ⇢s(r) vs(r), with J s(r), vs(r) representing the
superfluid-current and velocity respectively. Having a frus-
trated JJ (also known as a ⇡�junction) with a negative value
of Jab leads to a local suppression in ⇢s. Similar ideas have
been discussed in the past in a variety of contexts (see Refs.
[17] for a specific example), though the mechanism consid-
ered here will be di↵erent. We shall now propose an explicit
scenario under which a suppression in ⇢s arises in the vicinity
of putative magnetic QCPs, utilizing the SC gap structure in
the material under question.

The basic idea is as follows: suppose that the tunneling of
electrons between the two grains is mediated by the SDW mo-
ment in the intervening region [18], and is accompanied by a
transfer of finite momentum that scatters them from a hole-
like to an electron-like pocket. Because the SC gaps on the
two pockets have a relative phase-di↵erence of ⇡, the JJ cou-
pling will be frustrated [19].

Let us first focus on a single grain. In order to capture the
multi-band nature of the SCs, we introduce two superconduct-
ing order parameters, �i with i = ± to model the s± state on the
two pockets. Microscopically, these belong to regions in the
grain having di↵erent momenta, kk, parallel to the junction.
The gaps are related to the microscopic degrees of freedom
[20] via the following relation,

�i(z) =
1
A

X

kk2Ri

V
kk,k0k
h 

k

0
k" �k

0
k#i, (3)

where  †
kk�

creates an electron at position z with momentum
kk parallel to the junction and spin �. V

kk,k0k
is the pairing in-

teraction in the Cooper channel and z is the coordinate perpen-
dicular to the junction with area A. The regions Ri are defined
as, R+ = {kk|k0 > |kk|} and R� = {kk|k0  |kk|}, where k0 is an
arbitrary momentum scale chosen such that �+ > 0, �� < 0
(see Fig. 2 for an illustration). We’ll assume that such a pre-
scription is valid for each grain, with possibly di↵erent values
of k0.

Let us then write down a model for the two coupled SC
grains with an intervening proximity coupled SDW that has a
well developed moment, n. Our notation is as follows: we use
↵ = a, b to denote the grain index and i = ± to denote the band
index within each grain. From now on, we relabel kk as k.
We introduce the Nambu spinor,  ↵†

i,k,� = ( †↵i,k,� ✏��0 
↵
i,�k,�0 ),

where now  †↵i,k,� creates an electron with momentum k paral-
lel to the junction and at a position z (label suppressed), which
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FIG. 2. A cartoon of a frustrated ⇡�junction between two supercon-
ducting grains with a SDW(+SC) barrier. The SDW moment imparts
a finite momentum transfer along the direction of the interface while
scattering electrons from the electron (hole) pocket on one grain to
the hole (electron) pocket on the other grain.

belongs to a region of band “i” within grain “↵”. The e↵ective
Hamiltonian is given by,

He↵ = H� + HT , (4)

H� =
X

↵,i,k

 ↵†
i,k,�


"i↵,k⌧̂

z + �i↵,k⌧̂
x
�
 ↵

i,k,�, (5)

HT = g
X

k

n ·
✓
 a†
+,k,�[���0 ⌦ ⌧̂0] b

�,k,�0

+  a†
�,k,�[���0 ⌦ ⌧̂0] b

+,k,�0

◆
+ H.c., (6)

where g is the tunneling matrix element, ⌧̂i (i = 0, x, y, z) act
in Nambu space and �̂i (i = 0, x, y, z) act in spin space.

In the above, H� corresponds to the bare pairing Hamilto-
nian written for the ± bands within each of the two grains. HT
represents the SDW moment mediated hopping of electrons
from one grain to the other (represented by the a, b super-
scripts) and simultaneously scattering from one band to the
other (represented by the ± subscripts). Therefore, n imparts
a finite momentum (along the interface) to the electrons when
it scatters them from the electron (hole) pocket on one grain
to the hole (electron) pocket on the other grain (shown as the
black arrows in Fig. 2).

Results.- Using the Ambegaokar-Barato↵ relation [19], we
can write the Josephson coupling (at T = 0) between the two
grains as,

Jab =
g2hn2i
⇡2

 X

`2a,`02b
�`�`0

Z 1

0

d"`
E`

Z 1

0

d"`0
E`0

1
E` + E`0

�
(7)

where E2
` = "2

` + �
2
` and `, `0 represent the band indices on

the di↵erent grains. Since �`�`0 < 0, the coupling Jab < 0.
Note that the specific nature of the frustrated tunneling arises
from the same spin-fluctuation mediated mechanism that is
predominantly responsible for the s±� pairing symmetry [2].
However, there will also be a direct tunneling term (not in-
cluded in Eqn. 4) in the Hamiltonian, which does not scatter
the electrons from one pocket to the other, as they hop across
the junction. The contribution to the JJ coupling from this
term will be unfrustrated (i.e. Jab > 0).

The ratio of the tunneling amplitudes in the two di↵erent
channels is non-universal and depends on various microscopic
details. In particular, the emulsion is associated with a distri-
bution of Josephson-couplings, P(J), with a mean coupling
strength, hJi = J̄. If a substantial fraction of the JJ couplings
become negative due to the mechanism proposed above, J̄ will
be small, and the superfluid density will be suppressed (see
green curve in Fig.1b).

We now turn to a resolution of the apparent sum rule vio-
lation in the optical conductivity. Frustrated ⇡�junctions host
gapless states at the interface between the two grains [21, 22],
giving rise to a finite density of states around zero energy (see
Fig 3 inset). As a result of the gapless ‘normal’-fluid compo-
nent at the interface, a fraction f of the spectral weight will be
displaced from the superfluid-density to non-zero frequencies
(shaded region in Fig. 3). For BaFe2(As1�xPx)2, it appears that
f ⇠ 0.9 in the vicinity of the putative QCP, in order for there to
be a ten-fold suppression in ⇢s. The weight of the condensate,
⇢s, is then proportional to J̄(1 � f ).

FIG. 3. Plot of the optical conductivity, �(!), for a Drude metal
(blue curve) and a superconductor with a large number of sub-gap
excitations (red curve). The shaded region corresponds to the dis-
placed spectral weight from the superfluid-density, ⇢s (red arrow).
Inset: Density of states, N(E) vs. E, for a conventional gapped su-
perconductor (blue curve). A superconductor with a large number of
subgap states has a finite N(E) below � (red curve).

It is clear from our proposed form of the optical conduc-
tivity, �(!), in Fig 3 that Homes’ relation in Eq.1 will not be
satisfied. In particular, �dc (which is a property of the nor-
mal state), could continue to behave monotonically as a func-
tion of the isovalent-doping across xc, while the abundance of
low-energy excitations in the immediate vicinity of xc would
give rise to a non-monotonic variation in the superfluid den-
sity. This allows for an unusual way of rearranging spectral
weight in the superconducting state below the gap, without
violating optical sum-rules. Moreover, since approximately
90% of the sub-gap spectral weight in the vicinity of xc needs
to remain uncondensed, �0 = lim!!0 �(!) will be huge. Re-
flectivity measurements in the subgap frequency range cannot
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distinguish this narrow conductivity peak centered on ! = 0
from a true delta-function.

The above scenario will give rise to a number of inter-
esting low temperature thermodynamic and transport proper-
ties, as we now discuss. First of all, there should be a strik-
ing enhancement in the low-temperature thermal conductiv-
ity and specific-heat, as a function of x in the narrow vicin-
ity of xc, due to the ‘normal’-component. It is important to
recall that this material has loop-like nodes on the electron-
pockets [12]. However, the geometry of the electron-pockets
and the magnitude of the gap do not change substantially in
the vicinity of xc, and therefore it is unlikely that the contribu-
tion to the above quantities from the nodal-quasiparticles will
have a drastic modificiation. It should therefore be relatively
straightforward to disentangle the contribution arising from
the nodal versus the ‘normal’ quasiparticles. Studying the
NMR-spectra as a function of decreasing temperature (across
Tc) and down to su�ciently low temperatures in the vicinity
of xc should also reveal the spatial inhomogeneity associated
with the SDW regions. Finally, we note that a promising di-
rection for future studies would be to measure the magnetic-
field distribution due to the propagating currents in the emul-
sion using NV-based magnetometers [23].

Discussion.- The theoretical study in this paper is moti-
vated by a number of remarkable experiments carried out in
BaFe2(As1�xPx)2, as a function of x in the normal and super-
conducting phases. Our primary objectives were two-fold —
to provide an explanation for the striking enhancement of the
London penetration depth in the vicinity of a putative SDW
QCP in the SC state, and, to resolve a number of apparent
discrepancies between properties of the metallic normal state,
just above Tc, and the low-temperature properties of the SC.
We stress that neither of these two experimental observations
can be explained by invoking the critical fluctuations associ-
ated with a symmetry-broken order-parameter in a supercon-
ductor.

It is quite likely that the true SDW criticality is masked by a
weak first-order phase transition in the superconducting state
at T = 0. Quenched disorder would then naturally give rise
to an emulsion at small length scales with puddles of SC and
SDW(+SC). It is then, in principle, possible for the SDW mo-
ments at the interface of the SC grains to generate frustrated
Josephson couplings, which would in turn deplete the local
superfluid-density. The ten-fold suppression in the superfluid
density requires a su�ciently large fraction of the Josephson
couplings in the emulsion to become negative. Furthermore,
the interface of these frustrated junctions host gapless states,
which would contribute to a finite density of states around zero
energy and help explain the dichotomy between the normal-
state d.c. conductivity and the low temperature penetration
depth.

Our proposed scenario naturally calls for a number of ex-
perimental tests that should be carried out in the near fu-
ture, which should directly look for both the spatial inhomo-
geneities associated with the emulsion, and probe the gapless
excitations using thermodynamic probes, as explained above.

In addition it will be interesting to verify that the optical sum
rule is satisfied in a conventional way leading to Homes’ law
away from the narrow vicinity of xc.

In the superconducting state of the electron-doped material,
Ba(Fe1�xCox)2As2, �L(0) behaves monotonically as a func-
tion of x across the putative QCP [24]. Electron-doping leads
to significantly higher amounts of disorder compared to the
isovalently-doped case, and would therefore lead to puddles
with typically much smaller size. Our proposed mechanism
for the strong suppression of the superfluid-density in the
isovalently-doped material relies on the existence of an emul-
sion with puddles of appreciable size, in the presence of an
optimal amount of disorder. A comparison of the NMR spec-
tra in the narrow vicinity of the putative QCP in the electron
and isovalently doped materials would shed light on these mi-
croscopic di↵erences between the two families.

Finally, though we have hypothesized that the SDW on-
set transition inside the SC is, in the absence of disorder, a
weak first order transition, we emphasize that the normal state
properties are consistent with the presence of a “hidden” QCP
around optimal doping [4, 5, 25]. It is plausible that in the
normal state, di↵erent experimental techniques are probing
the critical fluctuations associated with not one, but distinct
QCPs as a function of x. For instance, m⇤ extracted from
high-field quantum oscillations is dominated by the vicinity
of ‘hot-spots’, where quasiparticles are strongly damped due
to coupling to the SDW fluctuations [26]. On the other hand,
strong critical fluctuations associated with the nematic order-
parameter [27], that couple to the entire Fermi-surface, would
dominate m⇤ extracted at zero-field from the jump in the spe-
cific heat at Tc.
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