
Parametric Energy Simulation in Early Design: 
High-Rise Residential Buildings in Urban Contexts

Citation
Samuelson,Holly, Sebastian Claussnitzer, Apoorv Goyal, Yujiao Chen, and Alejandra Romo-
Castillo.2016. Parametric Energy Simulation in Early Design: High-Rise Residential Buildings in 
Urban Contexts. Building and Environment 101:19-31.

Published Version
10.1016/j.buildenv.2016.02.018

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:27754128

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:27754128
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Parametric%20Energy%20Simulation%20in%20Early%20Design:%20High-Rise%20Residential%20Buildings%20in%20Urban%20Contexts&community=1/3345925&collection=1/3345926&owningCollection1/3345926&harvardAuthors=07e7d4d871bff0686e8e26c21cb46b73&department
https://dash.harvard.edu/pages/accessibility


Parametric Energy Simulation in Early Design: High-Rise 
Residential Buildings in Urban Contexts 

Holly Samuelson
a*

, Sebastian Claussnitzer, Apoorv Goyal
a
, Yujiao Chen

a
, 

Alejandra Romo-Castillo
a
,  

a
Harvard University 

Graduate School of Design  

48 Quincy St. Cambridge, MA 02138 USA  

*corresponding author: hsamuelson@gsd.harvard.edu 

 
 

ABSTRACT 

This paper presents a framework for the development of early-design guidance to inform architects and policy-makers 

using parametric whole-building energy simulation.  It includes a case study of a prototype multifamily residential 

building, using an exhaustive search method and a total of 90,000+ simulations. The authors performed a simple sensitivity 

analysis to identify the most influential of the tested design parameters on energy use intensity, which included WWR, 

Glass Type, Building Rotation, Building Shape, and Wall Insulation, in that order.  They identified synergies and trade-offs 

when designing for different energy objectives, including (a) decreasing Energy Use Intensity, (b) reducing peak-loads, and 

(c) increasing passive survivability – i.e., maintaining the safest interior temperatures in an extended power outage.  

This paper also investigated the effect of urban context as a source of sun shading and found it to have a substantial impact 

on the design optimization. Ignoring urban context in energy simulation, a common practice, would mislead designers in 

some cases and result in sub-optimal design decisions. Since in generalized guidelines the future building site is unknown, 

the authors tested a method for generating urban contexts based on the floor area ratio and maximum building heights of an 

urban district. 
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1. INTRODUCTION 

The United Nations expects the world's urban population to nearly double by 2050, increasing from 3.3 billion in 2007 to 

6.4 billion in 2050, with much of this growth occurring in developing megacities [1]. Because of this new growth, society 

cannot afford to simply replicate standard building practices. New buildings must respond to the local climate and urban 



form, rather than rely on fossil fuels to make up for ill-suited designs. This is especially true in emergency events when 

utility grid-based systems may be unavailable.  

Today, the American Institute of Architects and other organizations encourage design teams to use computerized 

simulation to achieve better energy performance in their projects [2]. However, many designers habitually apply this 

analysis too late in the process to take advantage of important design opportunities [3]. The most influential and cost-

effective decisions occur earliest in the project's life [4], and experts suggest that building energy simulation is most 

effective early in the design process [5, 6, 7].  

The following sections present a framework for the use of parametric energy simulation to inform early-stage building 

design and the use of this framework in a prototype, high-rise, residential building. 

1.1 The Case Study 

The prototype building was simulated in Beijing and Shenzhen China, chosen because they are fast growing megacities [8] 

representing two unique ASHRAE Climate Zones (2 and 4 respectively), as well as New York City also Zone 4 (included 

because of available, detailed urban context data). The authors performed a case study of a prototype residential high-rise 

building. They implemented a sensitivity analysis to identify the most influential of several early-stage design parameters -

-including building form, window-to-wall ratio, window shading, and others --considering a range of design options for 

each parameter.  

1.2 Parametric Simulation in Design 

Simulations traditionally used in the building industry require detailed inputs and, therefore, are difficult to employ in early 

design stages when the pace of design iteration is fast and the simulation inputs include many unknown variables [9]. By 

utilizing parametric simulation techniques with today’s computing power, a modeler can evaluate numerous potential 

designs to produce guidance that design teams can use as an informed starting point in the design process.  

Researchers have developed parametric simulation tools specifically for early design, [6, 10], such as BEOpt [11] from the 

National Renewable Energy Laboratory. These tools provide a user-friendly interface, but they present limitations with 

regard to suitable building types or available design inputs. Here, the authors propose a framework for utilizing parametric 

simulation in early design utilizing multiple existing tools (described in Section 3.6) offering the flexibility of user-defined 

design parameters and ranges.  

1.3 Methods 



Researchers have advanced the use of optimization techniques, such as genetic algorithms, in energy simulation [12, 13], 

which are computationally efficient and allow modelers to identify optimal solutions for quantifiable criteria from a large 

set of design combinations. Here, the authors chose an exhaustive search method, i.e. simulating all possible design 

combinations from a discrete search space. The exhaustive search method is computationally intensive but more suitable 

for creating design guidelines since the full solution space is available to the user, which allows her to combine 

optimization results with her own judgement. For example, the user can find/evaluate near-optimal design alternatives, not 

simply the optimum [11]. Furthermore, advancements in computation time and cloud-computing services give practitioners 

opportunities to search increasingly large sets of design combinations while keeping computation times and fees reasonable 

within real-world project budgets and scopes. 

Researchers have developed [14] and implemented [15, 16, 17] sophisticated sensitivity analysis techniques for building 

thermal simulations.  Some techniques perturb only one parameter at a time keeping other inputs constant [16] or use 

sampling techniques [14, 15, 17], such as Monte Carlo methods, to perturb multiple inputs while simulating only a portion 

of the total possible design combinations. These methods prove especially valuable when computing power is limited or 

the set of possible combinations is very large. For this early-design investigation the authors prioritized a conceptually 

simple sensitivity analysis, made possible by the exhaustive search approach. 

1.4 Confounding Variables 

While existing research investigates the impact of design variables on energy objectives, most studies ignore the presence 

of potentially confounding variables, such as plug-loads (i.e. energy consumed by occupant appliances) and urban context. 

Although designers have little control over these parameters, these variables may warrant consideration, since they could 

influence the optimization of other parameters. Plug-loads have a high degree of uncertainty, occasionally varying by 

100% or more over design estimates in practice [18], and they impact a building's heating and cooling loads.  

Similarly, urban context affects energy use in buildings [19, 20, 21, 22]. In particular, Athalye [23] showed that the 

presence or absence of solar shading from neighboring buildings impacts design optimization. Here the authors similarly 

test the impact of solar obstructions on energy use and related design decisions, while expanding the investigation to 

include additional design parameters and more realistic urban contexts. 

 According to Reinhart and Davila [24], design teams, especially in the US, have increasing access to urban context data 

such as Geographic Information Systems (GIS) databases, LiDAR data, or other formats such as CityGML, which can be 

used to generate geometric models of a building's surroundings. However, particularly in fast growing megacities, design 



teams often need to design for (and policy-makers need to plan for) unknown context due to rapid development. Therefore, 

the authors propose using stochastic urban context models based on neighborhood-level density and building height 

restrictions.  

1.5 Performance Objectives 

Most building energy performance research focuses on annual energy consumption as the objective. Yet, due to peak-use 

tariffs, reducing a building's peak consumption can sometimes achieve greater utility cost savings than reducing annual 

consumption. Furthermore, as urban growth strains existing infrastructure [1] and the frequency and magnitude of weather 

emergencies increase, designers may have an ethical imperative to include other objectives. In this vein, researchers have 

begun to consider the impact of architectural design on both reducing peak loads [26, 27] and passive survivability [28, 29, 

30]. 

Passive survivability is a type of resiliency. An important criterion of passive survivability is a building's ability to 

maintain an indoor temperature as close as possible to comfort conditions in a power outage, since extreme temperatures 

have been linked to increased mortality and morbidity in at-risk populations [31, 32]. Research on passive survivability is 

scarce and primarily focused on existing buildings. It remains unclear for designers how optimization for this and other 

energy-related objectives may differ. Therefore, in this study the authors compared the results of prioritizing three different 

energy-related objectives: minimizing Energy Use Intensity (EUI), minimizing peak loads, and maximizing passive 

survivability (specifically the ability to passively maintain indoor temperatures) on early design decisions. 

2. THE TESTING AND ANALYSIS STEPS 

The authors propose the framework shown in Table 1 to perform the testing and analysis to inform early design decisions.  

Table 1: The Analysis Framework 

Step 1: Select the objectives (e.g. minimize EUI) 

Step 2: Choose design parameters and input values (e.g. 

window-to-wall ratios of 30%, 45%, 60%, and 75%) 

Step 3: Consider potential confounding variables, i.e. 

variables that are not under the design team's control 

but may influence the performance of design parameters 

(e.g. external solar obstructions)  

Step 4: Specify other model assumptions (e.g. operation 

schedules).  

Step 5: Choose appropriate weather files (e.g. historic 

extreme weather years) 



Step 6: Choose software (e.g. ArchSim and EnergyPlus) 

Step 7: Run parametric simulations 

Step 8: Evaluate the objectives. Do they each 

independently affect design decisions?  

Step 9: Evaluate the confounding variables. Do they 

affect the results and design decisions? 

Step 10: Perform a sensitivity analysis to prioritize 

design considerations 

Step 11: Adjust the objectives, confounding variables, 

and design parameters to better inform design. Repeat 

Steps 7-11 as needed. 

Step 12: Use the results to inform early design. Identify 

important design considerations and preferred ranges of 

parameter values. 

(Continue to use simulation best practices to inform the 

remaining design process.) 

3. THE CASE STUDY 

3.1 Step 1: Selecting the Objectives 

As explained in Section 1, the authors chose three different energy-related objectives: minimizing Energy Use Intensity 

(EUI), minimizing peak loads, and maximizing passive survivability. Here, EUI (i.e. annual energy consumption per unit 

floor area) includes only heating cooling and lighting energy. "Peak loads" refer to the peak heating and cooling power 

demand for each design variant, since the other end-uses remained constant between the design cases.  

To test passive survivability, the authors ran each simulation for two weeks. The first week followed a normal operation 

schedule. Then the heating, cooling, and plug-loads switched off (resembling a power outage) and the simulation ran for an 

additional week. The authors recorded the indoor operative temperatures
1
, in one thermal zone of the building – the hottest 

zone in summer and the coldest zone in winter. The authors found the design case in each city that keeps this zone the 

closest to comfort conditions.  

3.2 Step 2: Choosing the Design Parameters and Input Values 

For this case study, the parameters tested included various early-design-phase decisions, such as building shapes, window-

to-wall ratios
2
 (WWR), envelope constructions, and shading designs, as listed in Table 2. Here, the baseline architectural 

                                                           

1
 "Operative temperature" is a measure of human comfort that combines air temperature and mean radiant temperature.  

2
 i.e. the glazing area to wall area ratio of the building's envelope 



parameters met ASHRAE 90.1 2010 standards [33], except for the maximum 40% WWR limitation, because contemporary 

buildings frequently exceed this limitation.  

To determine what impact building shape might have on the energy results, the authors modeled three different plan 

shapes, chosen because they varied in perimeter area and the potential for self-shading. They included a long-thin rectangle 

(1-to-3.5 width to length ratio), a "square" (actually a 1-to-1.67 width to length ratio, since truly square floor plans are rare 

in residential high-rise architecture), and a T-shape. Each shape contained the same floor area. The dimensions were 

determined using commercial standards such as double-loaded corridors and a center-to-perimeter distance of 10m (33ft), 

which is a reasonable assumption for residential buildings (especially those built above underground parking garages). Per 

simulation best practices [33], each plan was divided into thermal zones by core, perimeter (4.6m [15 ft] wide), and solar 

orientation. See Figure 1.  

Table 2: Parameters Tested 
Input Name Parameter Values 

Building Shape  

 

See Figure 1 

Building 

Rotation (Solar 

Orientation) 

 

0o, 30o, 60o, 90o, 120o, 150o, 180o  

WWR 

  

30%, 45%, 60%, 75% 

Glass Type*:  

U-Value W/m2K 

(Btu/h ft2 F) & 

Solar Heat Gain 
Coefficient 

(SHGC)  

 

ASHRAE Climate Zone 4, Beijing, New York:  

"Glass ASHRAE": U=2.84 (0.50), SHGC = 0.4 

"Lower-U Glass": U=1.70 (0.30), SHGC = 0.4 

"Lower-SHGC Glass": U=2.84 (0.50), SHGC = 0.2 

"High Perform. Glass": U=1.70 (0.30), SHGC = 0.2 

ASHRAE Climate Zone 2, Shenzhen: 

"Glass ASHRAE": U=3.97 (0.70), SHGC = 0.25 

"Lower-U Glass": U=2.27 (0.40), SHGC = 0.25 

"Lower-SHGC Glass": U=3.97 (0.70), SHGC = 0.2 

"High Perform. Glass": U=2.27 (0.40), SHGC = 0.2 

Window 

Shading 

(Horizontal)

 

No Shading,  

Projection Factor: 25%,  

Projection Factor: 50% 

(Projection Factor = ratio of overhang depth to distance 
between bottom of glass and overhang) 

Wall 

Insulation**: 
"Wall ASHRAE": Assembly U=0.365 (R=15.6) 

Layers and thicknesses: concrete-0.12m, extruded 



U-Value W/m2K  

R-Value 

(ft2 F hr/ Btu) 

 

polystyrene (XPS)-0.09m, concrete- 0.12m 

"More Insul.": Assembly U=0.22 (R=25.8) Layers 

and thicknesses: concrete-0.12m, XPS-0.15m, 

concrete- 0.12m 

"Most Insul.": Assembly U=0.15 (R=37.8) Layers 

and thicknesses: concrete-0.12m, vacuum panel, 
concrete- 0.12m 

Thermal Mass 

 

"Low Thermal Mass": see exterior wall description 

above, with .25m (9.8in) thick concrete ceiling and 
floor 

"High Thermal Mass": same as above with double 
thickness concrete in ceiling 

Plug-Loads 

kWh/m2 

(kBtu/ft2) 

 

"Low Internal Loads": 5.5 (1.74) 

"High Internal Loads": 11 (3.49) 

The plug-load diversity schedule is listed in appendix 
A. 

*Glass ASHRAE = ASHRAE 90.1 2010 [33] maximum U and SHGC values.  

** Wall ASHRAE = ASHRAE 90.1 2010 [33] Zones 2 and 4 maximum wall assembly U values (same requirements for both climate zones) 

 

Figure 1: Plan shapes with typical thermal zoning 

3.3 Step 3: Considering Potential Confounding Variables 

Here, confounding variables are defined as model parameters that the modeler wishes to test that are not under the design 

team's control. These variables may affect the performance of design parameters and, therefore, design decisions. Here the 

authors investigated confounding variables: plug-loads and urban context. 

3.3.1 Plug-Loads 

The authors tested the design parameters with two levels of plug-loads. They chose a baseline called "Low Internal Loads" 

per the U.S. DOE’s Commercial Prototype Building Models (based on ASHRAE 90.1 2004) [34] as shown in Table 2. 

They then doubled that value to reflect the uncertainty of real-world inputs found in past research [18]. 

3.3.2 Urban Context 

Here, the authors conjectured whether it is critical to model urban context, as a source of sun shading, for this pre-

simulated design resource. The presence of neighboring buildings would change energy use, but would it also change the 

preferred design decisions? To test the impact of urban context, the authors first simulated the 12,096 different design 

combinations without surrounding buildings, then again within an urban context (the “generalized high-density context” 

described below). They repeated this study for Beijing, New York City, and Shenzhen, and compared the results with and 



without context. For this parametric analysis, the authors simulated a lower floor (15m [50ft] above ground) of a high-rise, 

which would be susceptible to shading from neighboring buildings. 

Assuming that context matters, one faces a challenge when creating generalized pre-design guidance in cities, since a 

modeler cannot know where in an urban district a future building may be located. Therefore, the authors developed a script 

in Grasshopper for generalizing urban context. The algorithm uses a fixed lot and street size then randomizes neighboring 

building heights while maintaining a district’s maximum Floor Area Ratio (FAR) and height limits (see Figure 2). 

 

Figure 2: Example Generalized Context 

Next, the authors evaluated this method of generalizing urban context. They chose three different neighborhoods in New 

York City as test cases and produced detailed geometric models, labeled "real" context, as shown in Figure 3. These sites 

included: (1) a high-density context with a Floor-Area-Ratio (FAR) of 15 and a maximum building height limit of 180 

meters, (2) a medium-density context with an FAR of 6 and a maximum building height limit of 120 meters, and (3) a low-

density context with an FAR of 6 and a maximum height limit of 65m. The authors hypothesized that in these cases 

simulating the building with a generic context would introduce some error, when compared to the "real" context models, 

but would improve accuracy over the customary approach of using no context.  

To test this hypothesis, they performed the parametric simulations with the real context, the generic context, and no context 

then compared results. They also repeated this stochastic process to create 50 different urban contexts, in order to 

investigate the impact of various arrangements of solar obstructions. The context analysis is explained further in Section 

3.9.2. 



 

Figure 3: “Real” Context Models in New York 

3.4 Step 4: Specifying Other Model Assumptions 

 Modelers must specify the other, non-perturbed, model inputs, and should be aware of software default settings. Model 

assumptions can have a large impact on the applicability of the results. In addition to the parameters described above, 

Appendix A lists several key model assumptions used here. The simulations assumed an ideal load system with mechanical 

ventilation. (For calculating EUI, the authors assumed a heating and cooling coefficient of performance of 1.0.)  

3.5 Step 5: Choosing the Weather Files 

For the EUI and peak-load objectives, the authors chose to study the design impacts in typical weather years to design for 

high-probability conditions. In contrast, passive survivability research aims to promote safety in extreme events. Since 

typical weather files are created by compiling the least extreme months of historic weather data from a multi-year range 

[35] these weather files would be inadequate for studying passive survivability. Therefore, the authors performed these 

simulations using extreme meteorological year (XMY) weather files, following Crawley and Lawrie's methodology [36] by 

choosing historical weather files from the available range (2001 to 2014) with the highest and lowest hourly dry-bulb 

temperature.
3
 In order to consider long-term climate-change impacts modelers could also morph existing typical weather 

files into future weather files, using the method of Hacker et al  [37] for example. However, the objective here is to study 

near-term extreme events rather than distant future climactic trends. 

Details of the simulation dates and weather conditions are shown in Table 3. For the power outage, the authors chose the 

"extreme week", i.e. the week nearest the maximum or minimum (dry bulb) temperature for the year, as identified in the 

weather file header. 

                                                           

3
 The authors found the year with the hottest/coldest historic hourly temperature for each city using www.wunderground.com. In case of 

a tie, they used the year with the most extreme week, based on number of cooling or heating degree days. They then obtained .epw files 

for the selected years from weather.whiteboxtechnologies.com/hist. 



Table 3: Details of Passive Survivability Simulations  

Weather File Power Outage Dates Extreme Outdoor 

Dry-Bulb 

Temperature 

Beijing extreme cold: 

2010 

January 08 to 14 -19oC (-2oF) 

Beijing Extreme hot: 

2014 

July 17 to 23 42oC (107 oF) 

New York extreme 
cold: 2004 

January 19 to 25 -17oC (1 oF) 

New York extreme 
hot: 2011 

July 20 to 26 39oC (103 oF) 

Shenzhen extreme 
cold 

Not investigated due to mild winter conditions. 

Shenzhen Extreme 
hot: 2004 

June 28 to July 04 38oC (100 oF) 

3.6 Step 6: Choosing the Software 

The authors linked several different tools together to create the parametric model. They used EnergyPlus [38], a whole-

building energy performance simulation engine developed by the U.S. Department of Energy. EnergyPlus is a free and 

open-source engine, which offers advanced energy simulation capabilities [39], including multi-zone, sub-hourly, heat and 

mass transfer calculations.  

For daylight simulation, this version of EnergyPlus relies on the split-flux method, which is faster but less accurate than the 

ray tracing method employed by the lighting simulation tool Radiance [40]. Athalye et al [23] demonstrated in a similar 

case study investigation that the EnergyPlus method is adequate for evaluating the energy impacts of daylighting and 

exterior obstructions compared to a more arduous practice incorporating Radiance. 

Since the goal was to create a resource integrated with the early-design process, the authors sought an interface that could 

link to modeling software already used by many designers. Therefore, the parametric building model, the urban context 

model, and the code used to iterate through all the simulations was created in Grasshopper. Grasshopper [41] is a graphical 

algorithm editor enabling parametric 3D modeling in the popular 3D computer-aided design program Rhinoceros [42]. The 

authors used ArchSim [43], a Grasshopper-based plug-in to convert the building model information into input files for 

EnergyPlus. The energy simulation file was automatically uploaded from Grasshopper to a customized web service [44] 

where the simulations were executed in the cloud. The results were compiled into Comma Separated Values for use in 

Excel.  

3.7 Step 7: Running the Simulations 

In order to investigate the importance of each parameter and provide information for analysis, the authors simulated every 

permutation of the design parameters. After each phase of the study, they performed a preliminary sensitivity analysis, as 



described in Section 3.10, to determine which design parameters warranted a more- or less- thorough investigation. Next, 

they adjusted the number of perturbations to provide the most beneficial information while maintaining feasible 

computation time. Figure A1 in Appendix A shows an overview of the case study research. Table 4 lists the number of 

design permutations tested in each phase (not including the preliminary analysis), for a total of 90,820 simulations. The 

following sections present the results of the case study simulations. 

Table 4: Number of Simulations Tested in Each Phase 

EUI and Peak Load Analysis: 

12,096 permutations x 3 cities = 36,288 simulations 

Passive Survivability Analysis: 

6,048 permutations* x 5 weather files (Beijing Summer, 

Beijing Winter, New York Summer, New York Winter, 

Shenzhen)  

= 30,240 

EUI and Peak Load Analysis with Urban Context: 

New York REAL context = 3,024 permutations** x 

3 (High, Medium, Low) densities = 9,072 

New York GENERIC context = 3,024 x 3 (High, 

Medium, Low) densities = 9,072 

Shenzhen = 3,024 

Beijing = 3,024  

Randomized Context Analysis: 

50 randomized contexts x 2 permutations (best and worst 

EUI cases from above) = 100 

Total: 

90,820 Simulations 

* high plug-load cases removed 

** high plug-load cases and high thermal mass cases removed 

3.8 Step 8: Evaluating the Objectives 

Here, the authors sought to understand whether the range of parameters tested would substantially impact building 

performance according to each objective. Also, since all three objectives were similar, i.e. all related to energy 

performance, the authors questioned whether each of these objectives would prove to be important to consider, or if some 

of the objectives would provide redundant guidance to designers.  

3.8.1 EUI and Peak Load Results 

The design parameters and ranges studied here had a substantial impact on each of the energy objectives studied. Table 5 

lists the difference between the best and worst performing design cases for EUI and peak loads. Figures 4 and 5 show the 

results in more detail (with and without urban context, which will be discussed in Section 3.9.2). One can see a difference 



ranging from 18-42% between the best and worst performing design cases for each objective in each city.
4
  

Table 5: Difference between Best and Worst Design Cases 

 Beijing  
New 

York 
Shenzhen  

EUI 19% 18% 21% 

Peak Cooling Load 36% 42% 22% 

Peak Heating Load 19% 19% NA 

 

Figure 4: Box Plot of EUI Results in Each City 

 

Figure 5: Box Plot of Peak Heating and Cooling Loads in Each City 

3.8.2 Passive Survivability Results 

                                                           

4
 The results shown/discussed throughout include the low plug-load cases only. 



The passive survivability objective also revealed a substantial difference in performance between the designs studied here. 

Table 6 summarizes the difference in extreme indoor operative temperature recorded for the best and worst performing 

designs during the simulated power outage.  

Table 6: Passive Survivability Difference between Best and Worst Design Cases 

 Beijing  
New 

York  
Shenzhen  

SUMMER Extreme Indoor 

Operative Temperature: delta 

between best & worst cases 

Δ9
 o
C 

(17
o
F) 

Δ9
o
C 

(16
o
F) 

Δ11
o
C 

(20
o
F) 

WINTER Extreme Indoor 

Operative Temperature: delta 

between best & worst cases 

Δ7
o
C 

(13
o
F) 

Δ6
o
C 

(11
o
F) 

NA 

 

Figures 6, 7, and 8 show the simulation results in more detail.
5
 (Beijing's results were similar to New York’s.) The graphs 

illustrate the difference between the best and worst design in terms of mitigating indoor temperature extremes. One can see 

a substantial performance difference between the design cases, especially in the summers. (Figures 6, 7, and 8 also show 

the performance of the EUI-optimized design case, which will be discussed in Section 3.8.3.) The outdoor temperature is 

plotted for reference. 

  

Figure 6: Indoor Operative Temperatures in New York with Simulated One-Week Winter Power Outage, Best and Worst 

Designs 

                                                           

5 The following is an explanation of the temperature phenomena shown here. Prior to the power outage, the indoor air temperature does 

not exceed (or drop below) the thermostat set-point in summer (and winter respectively). However, the operative temperature, shown 

here, is also influenced by surface temperatures, especially in design cases with large areas of poor-performing glass, which is why the 

temperature shown here does not appear to be bound by the thermostat, even prior to the power outage. During the power outage, the 

indoor temperatures are no longer mitigated by heating and cooling systems, and plug-loads, which produce heat as a by-product, are 

eliminated.  

 



 

Figure 7: Indoor Operative Temperatures in New York with Simulated One-Week Summer Power Outage, Best and Worst 

Designs 

 

Figure 8: Indoor Operative Temperatures in Shenzhen with Simulated One-Week Summer Power Outage, Best and Worst 

Designs 

3.8.3 Relevance of Objectives as Decision-Criteria 

With such a large discrepancy in performance between different design cases, so far none of the three performance 

objectives can be deemed trivial. Next, a design team might wonder if each objective would provide additional design 

guidance, or if some objectives might provide redundant information.  

Figures 9, 10, and 11 show the energy end-uses for a sampling of the design cases. One can see that cooling consumption 

dominated the energy use in Shenzhen, while the heating consumption was small. The lighting consumption was both 

small and relatively stable across the design cases. Therefore, optimizing for low EUI or low peak cooling loads was 

redundant here; both objectives resulted in the same building design. Table A2 in the Appendix lists the winning design 

parameters, of those tested here, for different objectives. 

Similarly, the EUI and peak heating objectives were somewhat redundant here for New York and Beijing. In New York the 

optimal peak heating design was the “square” building, whereas the optimal EUI design was the “rectangular” building; 

however, either shape worked well for both objectives, affecting the performance by less than 1%. Similarly, in Beijing and 

New York, as shown in Figure 6, optimizing for passive survivability in the winter produced almost no change or benefit 

over optimizing for EUI. 



 

Figure 9: Energy Breakdown of Notable Design Cases, Beijing 

 

Figure 10: Energy Breakdown of Notable Design Cases, New York 

 

Figure 11: Energy Breakdown of Notable Design Cases, Shenzhen 

Figures 7and 8 show how well the EUI-optimized design case performed in a summer-time power outage, compared to the 

passive survivability-optimized case. Contrary to the previously-described trends, even in cooling-dominant Shenzhen, 

EUI was not a good proxy for summertime passive-survivability and vice versa. The EUI-optimized case performed 2.5
o
C 

worse at the most extreme than the passive survivability-optimized case.
6
 Without simulation, this trend may not have been 

apparent. The implications of these findings on the next steps of the investigation are discussed in Section 3.11. 

3.9 Step 9: Evaluating the Confounding Variables 

3.9.1 Relevance of Plug-Loads 

The "high" versus "low" plug-loads affected the balance of heating and cooling loads in the space. For example, in New 

                                                           

6
 In turn, the passive survivability-optimized case performed poorly (4% worse) in EUI compared to the design case optimized for EUI. 



York increasing plug-loads from 5.5 to 11 kWh/m
2
 (1.74 to 3.49 kBtu/ft

2
) reduced the heating load by 14% and increased 

the cooling load by 42%. However, plug-loads were not found to be an important variable here, because they did not affect 

the preferred selection of design parameters. Therefore, the authors eliminated this variable in later stages of the research. 

Because of the impact on heating and cooling loads, the plug-load variable might become an important consideration later 

in the design process, for example when testing HVAC energy conservation measures. 

3.9.2 Impact of Urban Context on Performance  

This research supports the notion that in some urban contexts, the shading cast by neighboring buildings can act as an 

important confounding variable.
7
 Here, including the generalized high-density urban context in the simulations 

substantially affected the annual energy use, as illustrated in Table 7 and Figure 12 for the 3024 design cases tested in each 

climate. Even the impact of the low-density urban context was substantial. In New York, including the low-density generic 

context increased the annual heating use by 1%, while decreasing the annual cooling use by 11%, on average, compared to 

iterations with no context.  

Table 7: Energy Use: Change from No Context to High-Density Generic Urban Context (mean of 3024 design cases) 

 Beijing  New York Shenzhen  

Lighting 8% 8% 8% 

Heating 7% 8% NA 
Cooling -20% -31% -3% 

 

 

Figure 12: Impact of (High-Density Generic) Context on Annual Heating, Cooling, and Lighting  

Figure 13 shows the impact of the various context forms tested in New York City. One can see that in each case, as 

                                                           

7
 Modeling additional urban context effects, which were outside the scope of this research, such as the reflectivity of neighboring facades 

and heat island effects may impose additional impacts on building performance. 



expected, the generalized contexts produced slightly different results than the “real” contexts. However, the differences 

were small, and in every case (considering lighting, heating, and cooling end-uses in the different urban densities) the 

generalized contexts produced smaller errors (0-11%) than ignoring urban context altogether (8-31%). Therefore, creating 

a generalized urban context based on known urban characteristics produced substantially better results than ignoring urban 

context altogether.  

 

 
Figure 13: Impact of Different Contexts on Annual Heating & Cooling in New York City 

Here the authors used an algorithm to choose neighboring building heights stochastically. An anomaly in any one urban 

context iteration would impact the results. To hedge against this type of experimental artifact, the authors repeated the 

stochastic process numerous times to generate several potential urban contexts. Modelers and policy-makers could also use 

this method to test the robustness of design decisions in various urban scenarios.  

The authors demonstrated this method by generating 50 different high-density urban conditions. They then simulated two 

design cases (the best- and worst- performing EUI cases) in each context.
8
 Table 8 shows the results. One can see how the 

performance of the low-performance design case is much more susceptible to variations in urban context than the high-

performance design case but only in terms of heating and cooling loads. Even though all cases included continuous 

dimming lighting controls, as shown in Table A1, meaning that the electric lighting power density responded to interior 

                                                           

8
 This method was computationally intensive. Therefore, the authors limited the test to 100 simulations rather than testing every design 

case. 



daylight illuminance levels, the lighting loads proved to be relatively stable across the various building designs and urban 

contexts. 

Table 8: Range of Simulation Results with 50 Different Urban Contexts 

 Range kWh/m
2
 (and 

standard deviation) best 

performing design 

case* in different 

contexts 

Range kWh/m
2
 (and 

standard deviation) 

worst performing 

design case** in 

different contexts 

Lighting 33-35 (2) 33-35 (2) 
Heating 182-190 (9) 234-247 (12) 
Cooling 29-33 (4) 34-43 (12) 

*Rectangle, 180
o
 rotation, 30% WWR, High-Perform. Glass, Most Insulation Wall 

** Rectangle, 60
o
 rotation, 75% WWR, ASHRAE Glass, Wall ASHRAE 

3.9.3 Relevance of Urban Context to Design  

Importantly, urban context also affected the preferred design decisions. For example, Figures 14 and 15 show how the 

preferred design parameters for the low-EUI objective changed with the addition of the high-density context to the model. 

In New York (and Beijing) the preference for window shading was eliminated. In Shenzhen, the addition of high-density 

context changed the preferred Building Shape and Solar Orientation while eliminating the preference for Window Shading.  

In summary, including urban context mattered. Because several important design decisions changed depending on whether 

or not context was included, in some cases pre-design guidance (and energy code requirements) should account for the 

shading effects of urban context.  

 

Figure 14: Lowest EUI Case with/without Context, New York 

 



Figure 15: Lowest EUI Case with/without Context, Shenzhen 

 

3.10 Step 10: Performing a Sensitivity Analysis 

To inform the methodology for a pre-simulated design resource, the authors ranked the design parameters by their impact 

on the objectives via a sensitivity analysis. Here, the sensitivity index for each parameter was calculated per Equation 1. 

Sensitivity analysis is a method for decision-makers to establish design priorities. For example, within the parameters and 

ranges tested here, EUI proved to be particularly sensitive to the selection of window-to-wall-ratio.  

                      
               

       
        

where: 
                                             

                                                          

                           

                                                 

                                                

                                                  

                                                 

 

Equation 1: Sensitivity Analysis of Test Parameters 

The results are shown in Figure 16 for each city with and without the generalized high-density urban context. Of the 

parameters tested, EUI was most sensitive to WWR, Glass Type, Building Rotation, (Window Shading, particularly in 

Shenzhen without urban context), Building Shape, and Wall Insulation, in that order. It is important to note that, like most 

sensitivity analyses, the ranking is only representative for the parameter ranges of the simulation study. For instance, a 

narrow spread of thermal resistance for the wall insulation and a wide spread for WWR will prioritize WWR over wall 

insulation. However, for a wide spread of the wall insulation, and a narrow spread for WWR, the priorities may change.  



 

Figure 16: Sensitivity of EUI to Design Parameters 

When tested, the higher thermal mass option always produced better results according to the objectives. However, 

changing the levels of thermal mass did not produce a large impact on the simulated results. Two factors likely contributed 

to this result. First, even the "Low Mass" option included exposed concrete surfaces, and thus already had high thermal 

mass relative to lightweight construction choices. Second, due to the indoor daylight settings used in EnergyPlus, the added 

thermal mass in the "high mass" option was not exposed to direct sunlight, which limited its simulated effectiveness. This 

and other limitations of this approach will be discussed in Section 4.2. 

3.11 Step 11: Adjusting the Parameters and Repeating 

The parametric simulation process will likely take multiple iterations, even in early design. Modelers should adjust the 

process throughout to provide the most valuable information with the available (human and computational) resources.  

Here, the authors investigated the “design significance” of design parameters, objectives, and confounding variables. They 

defined “design significance” by asking: does this variable change the choice a designer should make, and would that 

selection then significantly impact the building’s performance? For example, varying plug-loads had a very large impact on 

heating/cooling/lighting loads. However, here the presence of high or low plug-loads would not change an architect’s 

selection of the design parameters tested.  

As mentioned in Section 3.7, here the authors performed preliminary simulations and sensitivity analyses. Based on these 

results they expanded the test ranges for parameters found to be significant, including WWR, Glass Type, and Solar 

Orientation to include the values listed in Table 2. As discussed in Sections 3.7 and 3.9.1, in later phases of this research, 



the authors removed test values for Plug-Loads and Thermal Mass since, within the ranges tested here, they lacked design 

significance. 

3.12 Step 12: Informing Early Design 

The quantitative results of the parametric simulation analysis can be used to help set energy performance targets for the 

project moving forward. For example, the team could target improvements over a baseline based on the range of results 

produced by the design cases.  

In addition, simulation can not only assist teams in identifying the most influential design parameters, as discussed in 

Section 3.10, but also shedding light on the preferred ranges for key design parameters in early design. Since the whole 

solution set is available for analysis, reviewing this data can help identify trends and interactions between the different 

design parameters. The following section describes some examples from this analysis.  

Within the parameters and ranges tested here, window-to-wall ratio emerged as the most important design consideration, 

and a smaller WWR outperformed a larger WWR in every city, context, and combination of design parameters. Designers 

struggle with WWR selection in particular since non-energy objectives including views, aesthetics, and occupant 

preferences often favor larger WWR. The results here showed that in Beijing and New York, even a 75% WWR building 

was able to outperform a minimally code-complying 30% WWR with the use of aggressively high-performing envelope 

selections. For example, in New York City within the High-Density context, a 75% WWR building with the highest 

performance glass (U=1.70 W/m2K [0.30 Btu/h ft2 F], SHGC = 0.2) and best wall assembly (U=0.15 W/m2K [R=37.8 ft2 F hr/Btu]) could 

outperform a 30% WWR building with a minimally code compliant glass (U=2.84 W/m2K [0.50 Btu/h ft2 F], SHGC = 0.4) and wall 

assembly (Assembly U=0.365 W/m2K [R=15.6 ft2 F hr/Btu]), resulting in a 2% lower total heating/cooling/lighting energy use.
9
 It is 

important to note that achieving this aggressive envelope performance may not be economically feasible in today's market.  

As one might expect, the preferred glass selections showed that in the cool climates (Beijing and New York), lowering the 

U-value was always the more important glass characteristic, whereas in the warmer climate, lowering the SHGC was 

always paramount. However, reviewing the data revealed that when it comes to selecting the lower or higher SHGC in the 

cooler climates, the preferred choice may not be intuitively clear. The ASHRAE model energy code [33] specifies a 

maximum Solar Heat Gain Coefficient (SHGC); therefore, a designer may assume that a lower SHGC would result in 

energy savings, but that was not always the case, depending on WWR, Window Shading as well as other parameters.  

                                                           

9
 The other parameters remained the same between the two cases: rectangle, 0 degree orientation, no shading, lower plug-loads, and lower thermal mass. 



It is important to investigate not only the optimized solutions, but the nearly-optimized solutions. As shown in Figure 16, 

Building Rotation was a relatively important design parameter with regard to EUI, and, not surprisingly, a 0 degree rotation 

(long facades facing north and south) was generally preferable. However, designers facing other siting constraints may 

wonder about the energy penalty of a compromise. In New York, the second best rotation: (30degeres) resulted in a slight 

increase in EUI on average over the 0-degree rotation. The result was most pronounced with the rectangular shaped 

buildings with 75% WWR; yet even in these extreme cases the second-best rotation resulted in a 2% increase on average in 

EUI over the best orientation. In some cases Building Rotation had no effect on EUI, (e.g. in Shenzhen the T-shape 

building with 30% WWR, High Performance glass, and a Window Shading projection factor of 50%). 

The selection of the optimal Building Shape for low EUI was dependent on other factors. In Beijing and New York, the 

rectangle-shaped buildings resulted in both the lowest and highest EUIs. As one might expect, the rectangular shape 

generally performed better than the others with proper Solar Orientation (i.e. the long facades facing due north and south or 

within 30 degrees thereof), and worse than the others with improper orientation (i.e. the long facades facing east and west, 

or within 30 degrees thereof).  

Even with the proper orientation, however, the energy performances of the rectangular building cases, with their large 

surface areas, were highly impacted by the selection of envelope parameters. Examples include a building in New York 

with 0 degree orientation (long facades north and south) and 75% WWR. With the highest performing glass (U=1.70 W/m2K 

[0.30 (Btu/h ft2 F]) and wall assembly (U=0.15 W/m2K [R=37.8 ft2 F hr/ Btu]), the rectangular building's EUI outperformed the 

square building's by 4%. However, if the envelope were downgraded to the next-best performing glass (U=2.84 W/m2K 

(0.50[Btu/h ft2 F]) and wall assembly (U=0.22 W/m2K [R=25.8 ft2 F hr/ Btu]), the rectangular building's EUI would increase by 14%. 

With the down-graded envelope parameters, the square shape would actually out-perform the rectangle by 4%. In 

summary, the rectangular buildings were more susceptible to the detrimental effects of poor envelope design and "value 

engineering", a process common in building design in which design parameters are substituted with less expensive choices 

late in the design process.  

In summary, Building Shape influenced the building's EUI. However, a well-designed envelope, especially one with a low 

WWR, was somewhat robust to the influence of Building Shape. Put another way, with poorer performing envelope 

properties, shape became an even more important design parameter. 



4. DISCUSSION 

4.1 Potential for Generalized Pre-Design Guidance 

The results here confirm the important impact of early architectural design decisions on building energy performance. 

When starting design on a low-energy project, it would be helpful for architects to have guidance, such as which design 

parameters can potentially make a large impact on energy performance in their climate/city/urban district. Yet, the use of 

energy simulation in early design stages is currently limited because teams lack either the budget or skills, and/or because 

feedback from energy modelers often cannot keep up with the highly iterative design explorations in early design phases. 

With parametric simulation, researchers can test a large enough solution space to provide a pre-simulated, pre-design 

resource (potentially for multiple architecture teams) that will give instant feedback at a low cost. The intent of this 

resource is to augment traditional energy modeling in design.  

4.2 Model Assumptions and Potential Shortcomings  

Users should be aware of potential difficulties in creating pre-simulated design guidelines. As discussed in Section 3.10, 

the parameter selection and range have a signification influence on the practicability of guidelines. Modelers face the 

challenge of striking a balance between limiting the numbers of variables to allow instant feedback without restricting the 

decision maker’s choices.  

Furthermore, the user must acknowledge the uncertainty of the simulation engine and, more importantly, the model inputs 

at this early stage of design. For example, as shown in Table A2, mathematically the Best Passive Winter Survivability 

case in Beijing included window shading (projection factor 0.25). The second-best design solution was identical except that 

it contained no window shading, and logically this design should have prevailed. Inspecting the data reveals that the 

temperature results were identical down to a fraction of a degree. In reality the simulation cannot distinguish between these 

two design cases, and the authors only included these results for the purpose of discussion.  

Interpretation of energy modeling results always requires a fundamental understanding of the energy model engine, the 

modeling techniques used, and the assumptions made in the model, as illustrated by the examples below. First, as described 

in Section 3.10, the lack of differentiation between the thermal mass parameters may have partially resulted from an 

artifact of the simulation rather than a real-life phenomenon. Second, in this research, the ventilation rate was independent 

of WWR. One can imagine that in situations where window size affects passive cooling potential, the design optimizations 

might change. Third, here the model included daylight dimming controls. In buildings without these controls this 

assumption would overstate the energy-saving potential of daylight.  



Nevertheless, here an increase in WWR consistently resulted in an increase in EUI, as described in Section 3.12. Athalye et 

al 2013 [23] found the same trend in their research but noted that this result differed from earlier studies [45,46] that used 

higher lighting power densities. 

4.3 Comparison to Standard Practice  

The authors believe that the above concerns can be addressed through education and documentation to inform the end-user. 

The value of simulation-based early-design guidelines must be weighed against their alternative --namely avoiding or 

postponing the use of energy simulation.  

Design teams that use energy simulation typically apply it later in the design-process, as mentioned in Section 1, simulating 

a handful of design options one at a time, by hand. The advantage of this later-stage simulation is that more of the design 

parameters are known. For example, having a correctly modeled HVAC system would allow for a more accurate 

comparison of the energy performance of various glass types. However, by postponing simulation until more design 

decisions have been made, design teams miss important opportunities to impact building performance. Therefore, the 

authors intend for this early-stage simulation method to augment, not replace, later simulation as the design evolves. A 

similar parametric approach could be repeated later in the design process, focusing on the design questions at hand, for 

example testing detailed energy conservation measures once general parameters such as building shape have been 

determined. 

5. CONCLUSION 

This research presented a framework for creating a parametric energy simulation-based resource for early-phase 

architectural design.  The authors performed a case-study of a prototype multi-family residential building considering 

multiple energy-related objectives including passive survivability. They tested the impact of urban context on energy 

results and design optimization.  
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 APPENDIX A 

Table A1 

Other Model Assumptions 

Weather data, unless otherwise noted (passive survivability):  

USA_NY_New.York-Central.Park_TMY3.epw, CHN_Guangdong.Shenzhen.594930_SWERA.epw, 

CHN_Beijing.Beijing.545110_IWEC.epw. 

Floor & Ceiling: Adiabatic (The simulated residence is bordered by other conditioned residences above and below.) 

Lights: 

1. Continuous Dimming 

2. Power-Density: 6.5 W/m
2
 (0.6 W/ft

2
) per ASHRAE 90.1 2010 

3. Illuminance Target: 300 lux (28 footcandles) 

Occupants Density: 18.6 m
2
/person (200 ft

2
/person) 

Conditioning: 

1. Heating Set Point: 20
o
C (68

o
F) 

2. Cooling Setpoint: 26
o
C (79

o
F) 

5. Mechanical Ventilation: On 

6. Min. Fresh Air per Person: 0.001 m
3
/s-person (2.12 ft

3
/min-person) 

7. Min. Fresh Air per Area: 0.001 m
3
/s-m

2
 (0.197 ft

3
/min-ft

2
) 

8. Economizer: Yes 

9. Heat Recovery: None 

Ventilation: 

1. Infiltration: 1 Air Change per Hour (ACH) 

2. Scheduled Ventilation: 0.6 ACH 

3. Natural Ventilation: No 

5. Hybrid Ventilation: No 

Schedules: 

The following occupancy schedule was used seven days per week, based on the US DOE’s Prototype Models [20] (Models 

are based on ASHRAE 90.1. 2004.) All other operating schedules were based on this schedule. The diversity factor for 

each hour from 1:00 to 24:00 is as follows:1,1,1,1,1,1,0.9,0.7,0.4,0.2,0.2,0.2, 

0.2,0.2,0.2,0.2,0.3, 0.5,0.9,0.9,0.9,1,1,1  

http://www.grasshopper3d.com/
https://www.rhino3d.com/
http://archsim.com/


 

Figure A1:  Overview of Parametric Simulation Research 

Table A2: Best Design Parameters for Different Objectives 

Case (all cases here are without context  

unless otherwise noted) 
Shape Solar 

Orient

ation 

WWR Glass Type Shading 

Projection 

Factor 

Wall 

Construction 

BEIJING 

Lowest EUI  Rectangle 180 0.3 Lower SHGC & Lower U 0.5 WallBest 

Lowest EUI (with context) Rectangle 180 0.3 Lower SHGC & Lower U 0 WallBest 

Lowest Peak Heating Rectangle 0 0.3 Lower SHGC & Lower U 0 WallBest 

Best Passive Survivability Winter T-Shape 150 0.3 Lower SHGC & Lower U 0.25* WallBest 

Lowest Peak Cooling T-Shape 90 0.3 Lower-SHGC Glass 0.5 WallBest 

Best Passive Survivability Summer Rectangle 0 0.3 Lower-SHGC Glass 0.5 WallBest 

Highest EUI  Rectangle 90 0.75 GlassASHRAE 0 WallASHRAE 

NEW YORK CITY 

Lowest EUI  Rectangle 180 0.3 Lower SHGC & Lower U 0.5 WallBest 

Lowest EUI (with context) Rectangle 90 0.3 Lower SHGC & Lower U 0 WallBest 

Lowest Peak Heating Square 180 0.3 Lower SHGC & Lower U 0 WallBest 

Best Passive Survivability Winter T-Shape 180 0.3 Lower SHGC & Lower U 0.5* WallBest 

Lowest Peak Cooling T-Shape 180 0.3 Lower SHGC Glass 0.5 WallBest 

Best Passive Survivability Summer T-Shape 120 0.3 Lower SHGC Glass 0.5 WallBest 

Highest EUI  Rectangle 90 0.75 Lower-SHGC Glass 0 WallASHRAE 

SHENZHEN 

Lowest EUI and Lowest Peak Cooling T-Shape 0 0.3 Lower SHGC & Lower U 0.5 WallBest 

Lowest EUI (with context) Square 30 0.3 Lower SHGC Glass 0 WallBest 

Best Passive Survivability Summer Rectangle 150 0.3 Lower SHGC Glass 0.5 WallBest 

Highest EUI  Rectangle 90 0.75 GlassASHRAE 0 WallASHRAE 
 

 Red = objectives prioritizing maintaining heat  Blue = objectives prioritizing dissipating heat  Gray = worst case 

*discussed in Section 4.2 

 


