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Abstract

We use a French firm-level panel data set over the period 1993-2004 to analyze the
relationship between credit constraints and firms’ R&D behavior over the business cycle.
Our main results can be summarized as follows: (i) the share of R&D investment over total
investment is countercyclical without credit constraints, but it becomes more procyclical
as firms face tighter credit constraints; (ii) the result is magnified for firms in sectors
that depend more heavily upon external finance; (iii) in more credit constrained firms,
R&D investment share plummets during recessions but does not increase proportionally
during upturns; (iv) average R&D investment and productivity growth are more negatively
correlated with sales volatility in more credit constrained firms.

JEL classification: E22, E32, O16, O30, O32.
Keywords: business cycles, R&D, credit constraints, volatility.



I Introduction

A Schumpeterian view of business cycles and growth, is that recessions provide a cleansing

mechanism for correcting organizational inefficiencies and for encouraging firms to reorganize,

innovate or reallocate to new markets. The cleansing effect of recessions is also to eliminate

those firms that are unable to reorganize or innovate. Schumpeter1 himself would summarize

that view as follows; “[Recessions] are but temporary. They are means to reconstruct each time

the economic system on a more efficient plan”. This of course assumes that firms can always

borrow enough funds to either reorganize their activities or move to new activities and markets.

Without credit constraints, investment choices are indeed dictated by an opportunity-cost effect:

namely, the opportunity cost of long-term innovative investments instead of short-term capital

investments, is lower in recessions than in booms. Hence, the share of long-term investment

in total investment should be countercyclical, whereas the share of short-term investment is

procyclical (see Hall (1993), Gali and Hammour (1992), Aghion and Saint-Paul (1998), Bean

(1990), Bloom (2007)).

However, as emphasized by Aghion et al. (2005), henceforth AABM, things become quite

different when credit market imperfections prevent firms from innovating and reorganizing in

recessions. In particular, suppose that firms can choose between short-run capital investment

and long-term R&D investment, that innovating requires that firms survive short-run liquidity

shocks, and that to cover liquidity costs firms can rely only on their short-run earnings plus

borrowing. Whenever the firm is hit by a bad (idiosyncratic or aggregate) shock, its current

earnings are reduced, and therefore so is the firms’ ability to borrow in order to innovate. This

in turn implies that a negative shock should hit R&D investments and innovation more in firms

that are more credit constrained. In other words, R&D investments should be expected to be

1See Schumpeter (1942).
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more procyclical in firms facing tighter credit constraints.

In this paper, we test this prediction using a French firm-level panel data set that contains

information both, on the extent of credit constraints at the firm level each year, and on R&D

investments by the firm, relative to total investment. The firm-level database we use has been

collected by the Banque de France. The sample includes about 13,000 firms (all of them having

at least one time a positive R&D investment) and covers the period 1993-2004. The database

contains an important number of small and medium firms that are particularly prone to be

hit by credit constraints, and are thus especially relevant for the study of the above-mentioned

mechanisms. The most interesting feature of this dataset is that it contains information on

credit constraints at the firm level. More specifically, firms that fail to repay their trade creditors

are identified on a list to which banks have access. Our first stage regression shows that being

notified on that list under the heading ”incident de paiement”, is negatively and significantly

correlated with a firm’s access to future loans.

Once equipped with this firm-level information on credit access, we regress firm R&D over

total investment on firm sales and its interaction with credit constraints. Our main results from

second stage regressions can be summarized as follows: (i) the share of R&D investment over

total investment is countercyclical without credit constraints, and it becomes more procyclical

as firms face tighter credit constrained; (iii) this effect is only observed during downturns:

namely, in presence of credit constraints, R&D investment share plummets during recessions

but it does not increase proportionally during upturns; (iv) the level of R&D investment is

lower in more credit constrained firms whatever the firm’s position within the business cycle -

but it decreases more during recessions. Therefore, credit constraints, by preventing the R&D

share from being countercyclical, may amplify the business cycle, increase productivity growth

volatility and decrease average productivity growth.
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This paper relates to a broader literature on cycles, innovation and growth. The theoretical

papers that are most closely related to our approach in this paper, are Hall (1991), Gali and

Hammour (1992), Caballero and Hammour (1994), Aghion and Saint-Paul (1998), Francois

and Lloyd-Ellis (2003), Comin and Gertler (2006), Barlevy (2004), and Barlevy (2007). All

these papers take a Schumpeterian approach to the relationship between growth and cycles,

however they do not emphasize credit constraints. The empirical literature on the subject starts

with Ramey and Ramey (1995) who provide cross-country evidence of a negative relationship

between volatility and growth. More closely related to the analysis in this paper is AABM.

Based on cross-country panel data over the period 1960-2000, AABM show that structural

investment (another proxy for growth-enhancing investment) is more procyclical in countries

with lower ratios of credit to GDP, and that the correlation between macroeconomic volatility

(measured as in Ramey and Ramey (1995) by the variance of growth rate) and average growth,

is more negative the lower financial development. However, unlike in this paper, the data in

AABM do not include R&D investments, and moreover credit constraints are not measured

at the firm level. Prior evidence on R&D investments over the cycle, is provided by Griliches

(1990), Comin and Gertler (2006), and Barlevy (2007), although not in relation to firms’ credit

constraints2.

The paper is organized as follows. Section 2 presents a simple model to derive our main

predictions. Section 3 presents the data and the measurement variables. Section 4 presents

the first stage analysis, where we regress credit access on firms’ past credit records. Section 5

presents the second stage results. Section 6 discusses the robustness of our results and their

implications for productivity growth and volatility, and it concludes.

2Barlevy (2007) finds no evidence of current cash flows affecting how firms’current R&D investments respond
to the business cycle. However, in Barlevy’s own estimations, lagged cash flows turn out to significantly affect
how current R&D investment reacts to the firm’s current position in the business cycle.
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II Model

1 Basic environment

There is a continuum of overlapping-generations of two period lived entrepreneurs. Entrepreneurs

are risk-neutral and maximize intertemporal wealth.

An entrepreneur born at date t faces a sales shock at at time t and at+1 at time t+1, where

at ∈ {a, a},

and

p = Pr(at+1 = a/at = a)

= Pr(at+1 = a/at = a)

is strictly less than one but greater than 1/2 so that there is some persistence to a sales shock

over time.

At the beginning of her first period, an entrepreneur born at date t decides about: (i) short-

run capital investment kt, which yields short run profit atkt at cost 1
2
dk2

t at the end of the first

period, and; (ii) long-term R&D investment zt , which yields an innovation value vt+1 equal to

the expected productivity E(at+1/at) in period (t+1) with probability zt in the second period,

at cost 1
2
cz2

t . Credit market imperfections may prevent a firm with short-run profit flow atkt

from investing more than µatkt in R&D, where µ ≥ 1 measures the extent to which the firm

can borrow using its first period return as collateral.
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2 Profit maximization and optimal investments

Consider first the benchmark case where the entrepreneur is not credit constrained. Then she

will choose k and z to

max
k,z
{atk + E(at+1/at)z − 1

2
dk2 − 1

2
cz2},

which yields

dk = at; (1)

cz = E(at+1/at) = pat + (1− p)a−t, (2)

where

a−t 6= at

In particular, given that p < 1, the ratio

z

k
=

d

c

E(at+1/at)

at

=
d

c
[p + (1− p)

a−t

at

] (3)

is countercyclical, that is, lower when sales are high with at = a than when sales are low with

at = a. This is the opportunity cost effect already mentioned in the introduction.

Now, consider the case where the entrepreneur is credit-constrained. Then she will choose

k and z to

max
k,z
{atk + E(at+1/at)z − 1

2
dk2 − 1

2
cz2}

s.t. z ≤ µkat
.
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The credit-constraint is binding whenever the equilibrium R&D level in the absence of credit

constraint, is higher than µkat in equilibrium, that is, whenever:

E(at+1/at)

c
> µ

(at)
2

d
.

This latter condition, which can be reexpressed as

1

c
[p + (1− p)

a−t

at

] > µ
at

d
, (4)

is more likely to be satisfied when the firms faces a low sales shock (with at = a and a−t = a)

than when it faces a high sales shock (with at = a and a−t = a).

Suppose first that the credit constraint binds only when sales are low. Then the ratio of

R&D over capital investment z
k

is necessarily procyclical. To see this, note that: (i) when

at = a, this ratio is unconstrained and thus from (3) it is equal to:

(
z

k
)higha =

d

c
[p + (1− p)

a

a
];

(ii) when at = a the credit constraint is binding so that the R&D/capital ratio is equal to

(
z

k
)lowa = µa;

(iii) our assumption that (4) is satisfied for at = a, which immediately implies that

(
z

k
)lowa < (

z

k
)higha.

Another predictions in this case is that a lower µ reduces ( z
k
)lowa without affecting ( z

k
)higha.

7



Thus, lowering µ will result in a lower equilibrium R&D investment reduced in a low sales

shock, whereas the R&D investment is unchanged in a high sales shock.

Overall, the R&D/capital ratio will be more procyclical in a firm facing tighter credit con-

straints, and that this firm will also invest relatively less in R&D on average over time. These

predictions will be validated by our empirical analysis in the next sections.

Now, suppose that condition (4) is always binding. Then the equilibrium R&D/capital ratio

remains procyclical, with

(
z

k
)lowa = µa < (

z

k
)higha = µa.

However, in this case, a lower µ will reduce the R&D/capital ratio z
k

more when the firm faces

high sales (when at = a) than when it faces low sales (at = a) since

d

dµ
[(

z

k
)higha − (

z

k
)lowa] = a− a > 0.

This case is not the most plausible, as we can expect firms to be less credit-constrained in

high than in low-sales states. And indeed our empirical analysis will not support this latter

prediction that tightening credit constraints should reduce the R&D share of investment by

more in upturns than in downturns.

To complete our analysis of the model, we can derive the equilibrium R&D investment under

high and low current sales respectively. If the credit constraint does not bind, then from (2)

we have:

z =
E(at+1/at)

c
.
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And if it binds one can show that3:

z =
1

d + c(µat)2
µ(at)

2[1 + µE(at+1/at)].

It then follows that R&D is procyclical when the credit constraint binds in the low sales

state. This is obvious when the firm is also constrained in the high sales state, as:

a2

d + c(µa)2
>

a2

d + c(µa)2

and

[1 + µ(pa + (1− p)a)] < [1 + µ(pa + (1− p)a)]

when p > 1/2. It is a fortiori true when the firm is constrained in the low sales state only since

the credit constraint affects the R&D investment primarily.

3To see this, note that when the credit constraint binds, we have

z = µkat

so that the optimal capital investment k solves:

max
k
{atk + E(at+1/at)µkat − 1

2
dk2 − 1

2
c(µkat)2}.

From first order condition we get:

k =
1

d + c(µat)2
at[1 + µE(at+1/at)]

and therefore

z = µkat

=
µ

d + c(µat)2
(at)2[1 + µE(at+1/at)].
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3 Main theoretical predictions

The main predictions that emerge from our analysis in this section can be summarized as

follows:

1. A firm’s (relative) R&D investment is more procyclical (in the sense that it reacts more

positively to the firm’s current sales), the more credit-constrained the firm is.

2. Tighter credit constraints interact with sales in an asymmetric fashion over the business

cycle. In particular, starting from a situation where credit constraints are more binding

in downturns, a tightening of credit-constraints or an increase in the volatility of sales,

reduce the firm’s R&D investment more in a downturn than it might increase it in an

upturn. It thus reduces the firm’s average R&D investment.

In the remaining part of the paper we take these predictions to French firm-level panel data.

III Data

Our empirical analysis merges two different French-firm-level datasets: FiBen and the payment

incident dataset, which we now describe in more details.

1 The FiBEn database

Our core data comes from FiBEn, a large French-firm-level database constructed by the Banque

de France. FiBEn is based on fiscal documents, including balance sheet and P&L statement, and

thus contains detailed information on both, flow and stock accounting variables. A subsample

of FiBEn, called Centrale des Bilans, is available for a lower number of firms and includes
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additional information directly collected by the Banque de France. This additional data will

allow us to perform additional consistency and accuracy tests.

The FiBen database includes all French firms which sales at least equal to 75,000 euros or

with credit outstanding of at least 38,000 euros; annual accounting data are then available for

about 200,000 firms. In 2004, FiBEn covered 80% of the firms with 20 to 500 employees, and

98% of those employing more than 500 employees4.

We then restrict our sample by looking only at firms that have at least one year a positive

R&D investment; our sample is unbalanced and includes about 13,000 firms over the period

1993-2004. A same firm appears in our database during a seven year period on average.

[Table 1 about here]

[Table 2 about here]

Tables 1 and 2 present summary statistics for our key variables, including the R&D share of

investment, and the measure of credit constraint we use in the empirical analysis; this measure,

which is referred to as ”payment incident”, will be described and analyzed in details in the two

next subsections.

Our final sample includes an important number of small and medium firms5, that are par-

ticularly prone to be hit by credit constraints.

4More than 50% of the firms in FiBEn have less than 20 employees. However, these firms are under-
represented in FiBEn since their sales rarely exceed the required amount.

5The median size is of around 30 employees per firm.
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2 R&D variable

Among the variables for which FiBEn data are available, we choose to concentrate on R&D

investment rather than R&D expenditures as a proxy for long-term, productivity-enhancing

investment. R&D investments are a fraction of R&D expenditures that the firms are allowed

to capitalize. The reason for relying on this measure is twofold. First, it makes the ratio of

R&D investment over total investment, which is central in our study, more homogenous. Sec-

ond, R&D investment is much more volatile than R&D expenditures, since the latter include

in an important way researchers wages that are more stable along the business cycle. Note

that the accounting behavior of firms should not been affected by changes in the fiscal envi-

ronment: the R&D fiscal rules has not been significantly altered during the studied period6.

Using R&D investment, we check that the sectoral R&D intensity is as expected (that is the

lowest for agriculture and the highest for services to businesses that include business software

developments).

We also check whether our variable has a positive long-term effect on TFP growth. Table 3

shows a clear positive correlation. An increase of the ratio R&D investment over value added is

associated with a significant rise of future TFP growth. The ratio R&D over total investment

also has a positive and significant impact.

[Table 3 about here]

3 Payment incidents

Direct firm-level information on credit constraints is not available in France. However, we could

derive an indirect measure of credit constraints, as follows. Since its introduction in 1992, all

French banks have a legal obligation to report any previous default on trade creditors to the

6The main reforms have been implemented during the fiscal years 1990 and in 2005.
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“Système Interbancaire de Télécompensation” within four business days. These defaults on

trade credit are called payment incidents (henceforth PI). The Banque de France aggregates

this information and makes it available to all commercial banks through a weekly paper or an

electronic report automatically sent to all bank agencies. Also, since 1992, through a specific

commercial network system, banks can immediately access these reports covering the last 12

months; access is through internet since 2000. The complete longitudinal dataset is available

for research only at the Bank of France.

Banks are thus supposed to adapt their credit supply to this information, in particular they

typically reduce future lending to defaulting firms. Our proxy for credit constraints is a binary

variable equal to 1 when the firm has experienced at least one payment incident during the

previous year, and to zero otherwise. This variable is easy to interpret and weakly correlated to

our other key variables (see Table 13 in appendix). About 7% of firms experience each year at

least one payment incident, and about one third of firms in our sample has experienced at least

one payment incident over the overall period. All sectors are concerned by payment incidents,

especially manufacturing motor vehicles that includes small and medium subcontractors facing

the strong cyclicality of this industry. Conversely, real estate firms are less affected by the

business cycle and experience fewer payment incidents (table 2).

Our descriptive statistics table (1) shows that credit constrained firms (here defined as the

firms that have experienced at least 1 payment incident during the period) display a lower ratio

of R&D investment over total investments, and a higher volatility (measured by the standard

deviation) of sales. This is consistent with the theoretical predictions: if credit constraints

are in action, the share of productivity-enhancing investment over total investment turns less

countercyclical (or even procyclical). Credit constraints thus prevent R&D from having a

smoothing effect on productivity and magnifies the business cycle - sales are more volatile. We
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confirm these stylized facts in the next sections.

IV First stage: Payment Incidents as a proxy for credit

constraints

In this section we investigate the effect of experiencing a payment incident (PI) on future bank

loans. More precisely, we study the impact of having experienced at least one PI during the

two previous years (t− 1 and t− 2) both on the probability to contract a new bank loan, and

on the amount of this loan. We estimate the following specification:

BkLi,t = α1PIi,t−1 + α2PIi,t−2 + βjXi,t−1 + µt + ρi + εi,t (5)

where BkLi,t ≥ 0 represents the amount of new bank loans contracted by firm i during year

t, PIi,t−1 is a binary variable equal to 1 whenever firm i had a payment incident during year

t− 1, and Xi,t−1 is a set of controls that includes various determinants of bank loans supply. In

particular, we control for firm size (number of employees) and its squared value, for the firm’s

cash-flow, and for collateral and the firm’s dependence upon bank finance (banking debt over

total debt)7. All these variables are lagged.

We expect the supply of bank loans to be higher for firms with higher cash flow and collateral.

Size may have a non-linear effect - i.e. a lower positive effect on credit supply at higher levels.

Finally, we expect the estimated coefficients on the PI variable to be negative - banks are

7A more detailed description of the computation of these different variables is provided in the Appendix -
Table 12.
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supposed to reduce their credit supply to defaulting firms.

We also include a full set of year dummies to account for time specific effects, and estimate

the equation with firms’ fixed effects. Alternatively, we use a GMM procedure; we also assess

separately the impact of having experienced a payment incident in the past, on both, the access

to new bank loans (by using a Logit estimation) and on the amount of this loan (by using a

left-censored, Tobit estimation). Finally, we replace the dependent variable “new bank loans”

by the share of long term loans over total loans. The idea here is that credit constrained firms

have relatively more short term loans as banks are more reluctant to give them long terms ones.

We thus expect the coefficient on PI to be negative in this latter estimation.

Our specification only takes into account supply factors in explaining firms’ new bank loans’.

However, our regressors may be correlated with factors which affect firms’ demand for new loans.

In particular, the demand for credit should be positively correlated with firms’ investment

demand, which itself should be positively correlated with current sales. To partly capture this

demand effect, we introduce lagged sales variation, and the lag of the share of R&D investment

over value added as additional controls.

[Table 4 about here]

Results are shown in Table 4. The estimated coefficients on control variables have the

expected sign: a larger cash flow, size and collateral are all positively correlated with banks

credit supply (columns (a) to (d)). Results are qualitatively unchanged when controlling for

past sales variations (columns (i) and (j)). Having experienced a payment incident during

the previous year has a negative and significant impact, both on the probability to contract

a new loan (logit estimation, column (l)) and on the size of the loan (within estimations). In

the last two columns we decompose the marginal effects computed from a left-censored tobit
15



estimation of the previous specification in two subcomponents: namely, the marginal effect on

the probability to contract a new loan and the effect on the size of the loan. Having experienced

a payment incident has more negative impact both on the size of the loan than on the probability

to contract a new loan. We also find that having experienced a payment incident two years

before does not have any impact on credit supply8. One potential explanation for this latter

finding is that the electronic service provided by the Bank of France gives commercial banks

access to only the past year PI. Note that the introduction of the convivial internet access in

2000 does not seem to have modified the correlation between PI and credit supply between

before and after 2000 (columns (f) and (g)). Finally, our results exhibit a negative correlation

between PI and the share of long-term debt in total debt - an especially important fact since we

will study in the next part the effect of credit constraints on the share of long-run investment.

These findings are consistent with the idea of a significant impact of payment incidents on

credit supply. We shall build on these results in our second-stage analysis, in which we use the

binary variable equal to 1 whenever the firm has experienced at least one PI in year t − 1, as

our proxy for credit constraint in year t.

As we explain in more details in the next section, this measure of credit constraint is not

immune from potential endogeneity problems. In particular, both the composition of investment

and the fact of having experienced a payment incident, may result from the existence of omitted

variables. For example the firm may decide that a given activity is no longer worth pursuing,

and as a result reduce both, its R&D investment and also its diligence vis-a-vis trade creditors

in that activity. To deal with the endogeneity problem and further confirm the relevance of

payment incidents as a proxy for credit constraints, we use the Rajan and Zingales (1998)’s

8We also tried to determine whether the number of payment incidents or the extent of the unpaid trade
credits play a role; we find that payment incidents have nearly the same effects on R&D share over the business
cycle no matter the number or magnitude of incidents.
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industry-level measure of financial external dependence9. More precisely, we shall run our

second-stage estimations on two different sub-samples, respectively containing highly and lowly

dependent sectors. We explain our methodology in more details in the next section.

V Second stage: credit constraints and the cyclicality of

R&D investment

In this section we use our PI measure of credit constraints to test our main theoretical predic-

tions. In particular we will show that: (1) the R&D / investment ratio is more procyclical for

firms facing tighter credit constraints; (2) this procyclicality effect tends to be asymmetric: it

operates mainly during low sales states. The next section will discuss robustness checks and

implications of our results, in particular for the effect of volatility on the level of R&D and on

average productivity growth in credit-constrained firms.

1 Proposition 1: Cyclicality of the R&D share and credit constraints

1.1 Specification

We test our first proposition by estimating the following specification:

RDi,t

Ii,t + RDi,t

= α0 + β1∆si,t + β2∆si,t−1 + β3∆sit−2 + θPIi,t−1+

γ1∆si,t ∗ PIi,t−1 + γ2∆si,t−1 ∗ PIi,t−1 + γ3∆si,t−2 ∗ PIi,t−1 + µt + νi + εit (6)

9See Rajan and Zingales (1998). The RZ indicator measures the extent to which the corresponding sector
in the US is more or less dependent upon external finance.
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where RDit represents R&D investment (used as a proxy for long-term, productivity enhancing

investment), Ii,t +RDi,t total investment (physical plus R&D investment), PIi,t−1 the payment

incident dummy (used as a proxy for credit constraints), and ∆sit the variation in sales10 of

firm i during year t. We control for time fixed effects µt
11, and for firms fixed effects.

We thus analyze the interacted impact of sales cycles and credit constraints on the composi-

tion of investment. Based on our theoretical analysis, we expect the share of R&D investment

to be countercyclical in the absence of credit constraints; we thus expect β1 < 0 and
∑

βi < 0.

However, credit constraints are supposed to reverse the cyclicality of investment composition:

they should lead to a more procyclical long-run investment (γ1 > 0,
∑

γi > 0). Finally, by

themselves credit constraints have an uncertain effect on investment composition. For example,

a firm may reduce its demand for short-run investment more when it is credit constrained; but

long-run investment should also be negatively affected by credit supply. Thus, we do not expect

a particular sign or significance on θ.

As mentioned before, we estimate the equation with firm fixed effects. The results are almost

unchanged when using a Random effects / GLS methodology with sector and size dummies12.

Moreover, taking into account the important share of zero-values in our R&D variable by

estimating the previous specification using a left-censored Tobit does not change the results

qualitatively either.

However, a potential bias arises when using the within estimator, since some of the inde-

10Defined as: Log(Salest)− Log(Salest−1).
11We also included year×sector dummies to account for sectoral shocks such as privatization. Results were

unaffected.
12The inclusion of these controls in a within estimation does not add much since sectors and size specific

effects are already captured by the firms’ fixed effects.

18



pendent variables - in particular ∆si,t - may be simultaneously determined with the dependant

variable. More specifically, it seems clearly unlikely that investment and sales would not be

simultaneous to some extent. A solution to this bias is to use an instrumental variable (IV)

methodology, where the instruments are an appropriated set of lagged values of the variables.

This in turn argues in favor of using the GMM method, at least to control for the robustness

of our results. We thus replicate each basic result using the Arellano and Bond (1995) estima-

tor. The validity of the instruments is verified by the classical Sargan test for over-identifying

restrictions.

1.2 Results

Columns a, b and c in Table 5 report the within estimations of the potential impact of sales

changes on the composition of investment. These estimations include current sales shocks and

up to two-period lagged shocks.

These first results show a countercyclicality of the share of R&D in the investment spending.

A 10 percent change in current sales induces a modification in the opposite direction of the share

of R&D of 0,2 percentage point the same year, and also the next year, and still half of this effect

two years after. But the correlation vanishes for older shocks (regressions not reported). The

magnitude of the current impact of this 10 percent change in current sales is quite important:

about 4 % of the R&D average share. Finally, these results are robust to the use of GMM

estimators.

[Table 5 about here]

Introducing PI as an additional explanatory variable does not also alter the countercycli-

cality of the share of R&D in the investment spending. On its own, PI shows no significant
19



impact on the R&D share in the within estimation, however using the GMM procedure makes

the payment incident coefficient become significant and negative. This suggests that R&D in-

vestment tends to be more negatively affected than physical investment by the occurrence of

payment incidents. Intuitively, firms with credit constraints tend to favor short-term invest-

ments relatively to long-term ones. Facing at least one payment incident the previous year may

be associated with a large drop of the share of R&D of 0,5 percentage point, about 10 % of the

R&D average share.

Now, when we interact PI with our sales shock variables, we obtain the desired results:

consistent with theoretical predictions, the share of R&D investment turns less countercyclical

in presence of credit constraints (Table 5, columns d, e and f).

To deal with potential endogeneity problems linked to the co-determination of sales and

investment, we first run GMM estimations (GMM, Table 5). This does not affect the results on

the R&D share cyclicality - on the contrary, the interaction term between sales variations and

payment incident becomes significant in t− 1. However, the Sargan test rejects the validity of

our instruments, in line with previous work emphasizing the weakness of GMM instruments in

this kind of estimations13.

1.3 Robustness

As already mentioned in the previous section, another source of endogeneity lies in the possi-

bility that both, a firm’s investment structure and whether it is subject to a payment incident,

may hinge on some omitted variable. Note that the omitted variables have to be firm-year

specific (if not, it is captured by year or firm fixed effects), and to co-determine PI in year t− 1

and the R&D share of investment in year t, without affecting the R&D share at t − 1 in the

13See for example Mulkay et al. (2001).
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same way as it affects the R&D share at t (since the inclusion of a lagged term of the dependant

variable does not modify the results). These variables cannot be sector-year specific since the

inclusion of sector-year dummies leaves the results unchanged.

To deal with this potential endogeneity problem, we use the sectoral financial dependence

indicator of Rajan and Zingales (1998). More precisely, we run the last set of estimations

on two different sub-samples, respectively consisting of sectors with analogs in the US that

are more (above median) and less (below median) financially dependent. Our idea is here

twofold. First, there is a priori no reason for this endogeneity bias to be differently distributed

across sectors with different levels of external dependence, that is, for the omitted variable to

affect PI(t-1) and the structure of investment in year t (with the above restrictions) only in

sectors that are more dependent upon external finance. Second, the previous results should be

exacerbated in more financially dependent sectors. Hence, getting more significant results on

the financially dependent sub-sample, would suggest both that the endogeneity bias is weak

and that payment incident is indeed a good proxy for firm-level credit constraints. We then

repeat the same exercise, but dividing up our sample according to firms’ collateral. Thus,

we run separated estimations for firms with higher (above median) and lower (below median)

collateral and expect stronger correlations in the latter sub-sample. Collateral is computed as

the sum of fixed and tangible assets.

[Table 6 about here]

Results provided in table 6 show that the share of R&D investment becomes more procyclical

in presence of credit constraint only for firms in sectors that are more dependent upon external

finance or in firms with lower collateral (columns (b) and (c)). Estimated coefficients are

insignificant for firms the other sub-samples. This in turn suggests a causal effect of credit
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constraints on the procyclicality of R&D investments.

2 Proposition 2: Asymmetry between positive and negative shocks

2.1 Specification

The interactions terms in the previous tables need to be interpreted with precaution: their

positive signs can mean either that credit constraints prevent firms from increasing their R&D

share in downturns, or that firms increase more this share during upturns periods when they

are financially constrained.

In this section, we disentangle the up- and downturns effects and show that the effect of

credit constraints on the R&D share depends upon the firm’s position within its business cycle.

Intuitively, one expects this effect to be stronger during downturns as credit constraints are

more likely to be binding in that case. More specifically, we decompose the sales variation

variable in two components: downturns (first quartile of sales variations) and upturns (last

quartile). We implicitly assume that a large negative shock leads to the equivalent of our a

whereas a large positive shock leads to the equivalent of our a.

We expect credit constraints to prevent firms from increasing their R&D share mainly dur-

ing downturns, thus it is the interaction terms between this variable and payments incidents

that should be most positive and significant. The specification becomes:

RDi,t

Ii,t + RDi,t

= α0 +
2∑

j=0

(
αj∆sH

i,t−j + γj∆sL
i,t−j

)
+ α4PIi,t−1+

2∑
j=0

(
θj∆sH

i,t−j ∗ PIi,t−1 + λj∆sL
i,t−j ∗ PIi,t−1

)
+ µt + νi + εit (7)
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where ∆sH
i,t equals sales variations if the firm is above its mean value for this variable, and

to 0 otherwise; ∆sL
i,t equals sales variations if the firm is below its mean, 0 otherwise. We also

use another decomposition of sales shocks, by sector: in this case, ∆sH
i,t equals sales variations

if the firm is above the third quartile (computed by sector) of this variable and zero otherwise;

similarly ∆sL
i,t equals sales variations if the firm below the first quartile, and zero otherwise14.

Our contention is that credit constraints should play a more important role during recessions

(λj > 0, λj > θj ).

2.2 Results

[Table 7 about here]

Results are provided in table 7. In particular we see that the interaction term between sales

variation and PI is significant only for lower shocks. Furthermore, the share of R&D investment

turns procyclical15 for the lower shocks in case of a PI while it is countercyclical when no PI

occurs. A 10 percent drop in current sales in a firm experiencing a PI in the previous year,

induces a significant reduction of the share of R&D in total investment of about 0.25 point

(5%), but for a firm that has not experienced PI this share falls down to 3%. Finally, whether

firms are subject to PI or not, the share of R&D in total investment becomes countercyclical

for large positive sales shocks. This is consistent with the view that firms escape their credit

constraints thanks to upward positions in their business cycle. These results are robust to the

14We also tried with alternative decompositions, based on quartiles computed by year, of sector-year. The
results were qualitatively unchanged.

15This procyclicality is confirmed by a Wald test, showing that the coefficient on ∆st is significantly lower
than the coefficient on ∆st ∗ PI(t− 1).
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alternative decomposition of the shocks16. Note also that the uninteracted effect of PI is not

affected by the decomposition.

3 Shock and cyclical position of the firm

One objection to the previous estimation is the implicit assumption that the size of shocks

determines the position of the firm within its business cycle. However, even if firms are in the

low (resp. high) part of their business cycle (resp. high) they may experience large negative

(resp. positive) shocks.

To handle this caveat, we divide our sample according to the initial position of firms. We

assume that a firm is already lying on the upward (resp. downward) part of its cycle if the real

sales per employee are above (resp. below) its median.

• When a firm lies initially in the upward part of its cycle at time t−1, we expect: (i) that the

effect of a high sales shock alone should be either negative (the share of R&D investment

becomes more countercyclical as the firm moves further up) or insignificant (as the share

of R&D investment is low from the start); (ii) that the effect of a payment incident on

the R&D share is insignificant as the credit constraint is essentially not binding; (iii) that

a low sales shock should significantly increase the share of R&D; (iv) finally, that the

interaction effect between PI and a (small) sales shock should not be significant.

• When a firm lies initially in the downward part of its cycle at t−1, the interaction between

PI and a positive sales shock should become positive and significant.

[Table 8 about here]

16We also obtain similar qualitative results using GMM estimates (not presented, available on request).
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Results in Table 8 are consistent with these predictions and our previous estimations. What-

ever the initial position of the firm, the correlation between a sales shock and the R&D share

is, as expected, non positive for firms without PI and non negative for firms affected by a PI.

In addition, if the initial position of the firm is high, the coefficients are significantly different

from zero when the sales shock is adverse. Alternatively, if the initial position of the firm is

low, the coefficients are significantly different from zero when the sales shock is positive.

VI Discussion and conclusions

In this section we discuss some extensions and implications of our analysis. First, we argue

that our main results carry over when we move from R&D share of investment to R&D levels :

in other words, the higher procyclicality of the R&D share in a more credit-constrained firm,

is not primarily driven by a variation in its physical investment. Second, we move from R&D

share to firm level productivity growth and analyze how this latter variable responds to sales

volatility interacted with firm-level credit constraints.

1 From R&D share to R&D level

As total investments are not constant over the firm’s business cycle, our previous results do not

provide direct information on how the average level of R&D investment is affected by credit

constraints. For example, a procyclical R&D share would be consistent with the level of R&D

either increasing or decreasing, if it turned out that the amount of physical invesment increases

sufficiently during slumps.

To check that the reaction of the R&D share to sales volatility, indeed reflects an adjustment

of the R&D level, we use the following specification:
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Ii,t

Ki,t−1

= α0+η1
Ii,t−1

Ki,t−2

+ξ1∆si,t+ξ2∆si,t−1+α1PIi,t−1+β1∆si,t∗PIi,t−1+β2∆si,t−1∗PIi,t−1+µt+νi+εit

(8)

where Ii,t is physical investment, Ki,t denotes capital stock, and ∆si,t is the variation in sales of

firm i during year t. The dependent variable is the accumulation rate of physical capital. How

the level of R&D responds to sales shocks and their interaction with PI, is directly deductible

from these results. We estimate this equation with firms and times fixed effects17.

We expect physical investment to be procyclical (ξ1, ξ2 > 0) and negatively affected by

credit constraints (α1 < 0). The signs of β1 and β2 provide direct information on the cyclical

variation of both physical investment and R&D in response to sales variations. If, unlike for

R&D investment, physical investment turns out to be affected by credit constraints in the same

way whatever the firm’s position within the business cycle (β1, β2 < 0) - then the results in

the previous section on the procyclicality of R&D share in more credit constrained firms, must

carry over to the adjustment of R&D levels over the firm’s business cycle.

[Table 9 about here]

Our results are in line with these predictions. Table 9 shows that the level of physical

investment is procyclical, and negatively affected by credit constraints no matter the firm’s

17We also have estimated the effect of PI and its interaction with ∆st using structural investment equations
based on Mulkay et al. (2001). The results, available upon request, were qualitatively unchanged.
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location within the business cycle. More importantly, physical investments are uniformly af-

fected by credit constraint over the business cycle. This, together with our previous findings,

makes it clear that: (a) the average level of R&D investment decreases with sales volatility

when the firm is more credit constrained; (b) this level decreases more in downturns for more

credit-constrained firms.

2 From R&D to productivity growth

In this subsection we investigate the interacted effect of PI and sales shocks on firm average

productivity growth. The prediction is that the interacted effect should be negative, with

growth in more credit constrained firms responding more positively to a positive sales shock.

[Table 10 about here]

Results in Table 10 are in line with these predictions. First, the effect of adverse shocks

on average productivity growth for credit constrained firms is negative: the variable shock

in this table is a dummy equal to 1 when the firm has experienced both, an adverse shock

and a payment incident in year t − 1; The table shows an estimated coefficient of average

productivity growth on this variable which is negative and significant. When we control for

sectoral R&D intensity (captured by the mean of the share of R&D investment over total

investment, computed by sector), this coefficient is no longer significant, whereas the interaction

term remains negative and significant. This suggests that the negative effect of adverse shocks

on productivity growth in credit constrained firms, is related to the impact of those shocks on

long-term R&D investment.

[Table 11 about here]
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Additional evidence on the role of credit constraints in the relationship between business

cycles and productivity growth is presented in table 11, which presents cross-section estimations

of the correlation between the volatility of growth and average TFP growth over the period 1994-

2004. All estimations include controls for firm size and sector dummies. The impact of growth

volatility alone is found to be insignificant (column (a)), but turns negative in more financially

dependent industries (column (b)). In the last four columns we present separate estimations

for high (above median) and low (below median) R&D intensity sectors. Consistent with our

theoretical model, the negative impact of volatility on growth in more financially dependent

sectors appears only in R&D intensive industries, suggesting that credit constraints magnify the

negative impact of volatility on growth at least partly through their effects on R&D investment.

3 Policy implications

An important next step in this research program will be to study the effect of macro-policy

- both monetary and budgetary policies - on firms’ R&D behavior over the business cycle.

In particular, our regression results in Tables 6, 10 and 11 suggest that more countercyclical

macroeconomic policies (e.g with higher fiscal deficits or lower interest rates in downturns)

should enhance R&D investments and productivity growth in firms that are more credit con-

strained and more dependent upon external finance. However, a systematic investigation of the

effects of macroeconomic policies on firms’ investment behavior is left for future research.
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Tables

Table 1: Descriptive Statistics, whole sample

Variable No Obs. No. Firms Mean S.D Q1 Median Q3

Whole Sample

No Employees 73,237 12,966 94.70 288.03 16 32 68
Sales (1) 73,237 12,966 21141 1.9e+05 2098 4417 11126
Variation in Sales 73,237 12,966 0.04 0.19 -0.05 0.04 0.13
Payment Incidents (PI) 73,237 12,966 0.07 0.26 0.00 0.00 0.00
R&D Share (2) 73,237 12,966 0.05 0.14 0.00 0.00 0.00

Credit Constrained Firms (4)

No Employees 26,864 4,646 110.86 331.63 17.00 34.00 72.00
Sales (1) 26,864 4,646 24512 1.9e+05 1919 4113 10549
Variation in Sales 26,864 4,646 0.04 0.19 -0.05 0.04 0.13
Payment Incidents 26,864 4,646 0.20 0.40 0.00 0.00 0.00
R&D Share (4) 26,864 4,646 0.04 0.15 0.00 0.00 0.00

Non Credit Constrained Firms (5)

No employees 46,373 8,320 85.33 258.98 16.00 31.00 66.00
Sales (1) 46,373 8,320 19189 1.8e+05 2210 4589 11454
Variation in Sales 46,373 8,320 0.05 0.19 -0.04 0.04 0.13
R&D Share (4) 46,373 8,320 0.05 0.14 0.00 0.00 0.00

First Stage

No employees 51,656 11,392 98.30 292.25 17.00 34.00 72.00
New Bank Loans / VA 54,253 11,392 0.03 1.37 0.00 0.00 0.01
Long Term / Total Loans 54,572 11,367 0.39 0.38 0.00 0.27 0.77
Collateral (1) 51,656 11,392 15784 1.8e+05 688 1716 4939
Bank Debt / Total Financing 51,651 11,390 0.22 0.20 0.05 0.17 0.33

Note: (1) : Thousands of euros; (2) R&D share : R&D investment / (Physical Investment + R&D Investment);
(3) Capital Stock Growth Rate : It/Kt−1; (4): At least 1 payment incident during the period; (5) no payment
incident during the period; Positive R&D investment rate for 24% of the total number of observations. Source:
Authors’ computations from Fiben / Centrale des Bilans, Banque de France.
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Table 3: Effect of R&D on TFP Growth

Depvar: Average TFP Growth (t+2 to t+4)
(a) (b) (c) (d)

Initial TFP -0.023a -0.024a

(0.001) (0.001)
R&D investment/VA 0.163a 0.074a

(0.018) (0.025)
R&D Invest./ Total Invest. 0.044a 0.012c

(0.004) (0.006)

Obs. 34596 36364 33627 35299
Adj. R2 0.033 0.025 0.035 0.025
Estimation OLS Within OLS Within

Note: Panel, within estimation. Robust standard errors into parentheses. Significance levels: c10%, b5%, a1%.
All estimations include year dummies. Intercept not reported.
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Table 5: Credit constraints and the cyclical composition of investment (1)

Depvar: R&D investment / Total Investment

(a) (b) (c) (d) (e) (f) (g) (h) (i)

∆Sales(t) -0.016a -0.018a -0.020a -0.018a -0.020a -0.022a -0.021a -0.025a -0.026a

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
∆Sales(t-1) -0.014a -0.016a -0.015a -0.017a -0.008a -0.009a

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
∆Sales(t-2) -0.010a -0.011a -0.003

(0.003) (0.003) (0.003)
PI(t-1) 0.003 0.002 0.002 -0.005b -0.006b -0.005b

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
∆Sales(t)*PI(t-1) 0.029a 0.030a 0.030a 0.021b 0.024a 0.022b

(0.010) (0.010) (0.010) (0.009) (0.009) (0.009)
∆Sales(t-1)*PI(t-1) 0.017 0.018 0.018b 0.022b

(0.011) (0.011) (0.009) (0.010)
∆Sales(t-2)*PI(t-1) 0.013 0.001

(0.010) (0.009)

No Obs. 73,237 62,159
No Groups 12,966 11,449
Estimation Within GMM
Adjusted R2 0.01 0.01 0.01 0.01 0.01 0.01
Sargan test (χ2) 603.57 607.59 510.85
Sargan test (p− val) 0.00 0.00 0.00

Note: Panel, within estimation. Robust standard errors into parentheses. Significance levels: c10%, b5%, a1%.
All estimations include year dummies. Intercept not reported.
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Table 6: Second stage regressions with financial dependence and collateral

Depvar: R&D investment / Total Investment

Fin. Dependence Collateral

Low High Low High

(a) (b) (c) (d)

∆Sales(t) -0.021a -0.038a -0.027a -0.012a

(0.005) (0.006) (0.005) (0.004)
∆Sales(t-1) -0.012b -0.032a -0.019a -0.015a

(0.005) (0.006) (0.005) (0.004)
∆Sales(t-2) -0.013a -0.027a -0.010b -0.013a

(0.005) (0.006) (0.004) (0.004)
PI(t-1) 0.003 0.002 0.001 0.002

(0.004) (0.005) (0.004) (0.003)
∆Sales(t)*PI(t-1) 0.026 0.049b 0.043a 0.010

(0.020) (0.020) (0.016) (0.012)
∆Sales(t-1)*PI(t-1) -0.001 0.011 0.029c 0.005

(0.019) (0.023) (0.017) (0.014)
∆Sales(t-2)*PI(t-1) 0.000 0.049b 0.012 0.017

(0.018) (0.021) (0.014) (0.012)

No Observations 20028 18457 36639 36598
No Firms 3403 3221 8212 6589
Estimation Within
Adjusted R2 0.01 0.01 0.01 0.01
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Table 7: Credit constraints and the cyclical composition of investment, asymmetry, Within
estimations (1)

Depvar: R&D investment / Total Investment

Decomposition by firm (1) Decomposition by Sector (2)

(a) (b) (c) (d) (e) (f) (g) (h)

High ∆Sales(t) -0.020a -0.023a -0.021a -0.023a -0.017a -0.019a -0.018a -0.020a

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Low ∆Sales(t) -0.008 -0.011b -0.014b -0.016a -0.010c -0.013b -0.016a -0.019a

(0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)
High ∆Sales(t-1) -0.015a -0.017a -0.013a -0.015a

(0.004) (0.004) (0.004) (0.004)
Low ∆Sales(t-1) -0.012b -0.012b -0.013b -0.013b

(0.006) (0.006) (0.006) (0.006)
PI(t-1) 0.003 0.003 0.003 0.003

(0.003) (0.003) (0.002) (0.003)
High ∆Sales(t)*PI(t-1) 0.005 0.005 0.007 0.005

(0.016) (0.016) (0.015) (0.016)
Low ∆Sales(t)*PI(t-1) 0.054a 0.055a 0.056a 0.058a

(0.017) (0.017) (0.017) (0.017)
High ∆Sales(t-1)*PI(t-1) 0.024 0.024

(0.016) (0.016)
Low ∆Sales(t-1)*PI(t-1) 0.005 0.001

(0.021) (0.021)

Adjusted R2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
No Obs. 73,237 73,237
No Firms 12,966 12,966
Estimation WITHIN WITHIN

Note: (1) Decomposition by firm: above (high) and below (low) firm’s mean sales’ variation; (2) Decomposition
by sector: firm above the third quartile of its sector’s sales variation (high) or below the first quartile (low).
Panel, within estimations. Robust standard errors into parentheses. Significance levels: c10%, b5%, a1%. All
estimations include year dummies. Intercept not reported.
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Table 8: Asymmetry, with initial state

Dep. var. R&D investment/ Total Investment

Est. (a) (b) (c) (d)

Initital State: High Low High Low

High ∆Sales(t) -0.002 -0.025a -0.013a -0.029a

(0.006) (0.005) (0.010) (0.010)
Low ∆Sales(t) -0.018a -0.027a -0.030a -0.008a

(0.006) (0.009) (0.005) (0.005)
PI(t-1) 0.004 0.003 0.003 -0.004

(0.003) (0.003) (0.007) (0.007)
High ∆Sales(t)*PI(t-1) 0.025 0.007 -0.013 -0.008

(0.024) (0.018) (0.017) (0.017)
Low ∆Sales(t)*PI(t-1) 0.042b 0.060b 0.091a 0.028b

(0.020) (0.025) (0.020) (0.021)

No. Obs. 34,360 38,877 32,656 36,863
No. Firms 11,563 12,597 11,099 12,074
Adj. R2 0.002 0.004
Estimation Within GMM

Note: High resp. low) state: sales per employee above (resp. below) firms’ median. Standard errors into
parentheses. Significance levels: c10%, b5%, a1%. All estimations include year dummies. Intercept and lag of
the dependent variable not reported for GMM estimates. All variables are in logarithms.
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Table 9: On the Level of Physical Investment

Dep. var. It

Kt−1

(a) (b) (c)

Inv(t− 1)/K(t− 2) 0.058a 0.058a 0.058a

(0.008) (0.008) (0.008)
∆Sales(t) 0.127a 0.127a 0.126a

(0.006) (0.006) (0.007)
∆Sales(t-1) 0.095a 0.095a 0.095a

(0.006) (0.006) (0.006)
PI(t-1) -0.013a -0.012a

(0.004) (0.004)
∆Sales(t) * PI(t-1) 0.007

(0.021)
∆Sales(t-1) * PI(t-1) -0.008

(0.023)

Adjusted R2 0.08 0.08 0.08
No Obs. 72,609 72,609 72,609
No Firms 12,877 12,877 12,877
Estimation Within

Note: Robust standard errors into parentheses. Significance levels: c10%, b5%, a1%. All estimations include
year and sector dummies. Intercept not reported.

39



Table 10: Productivity, R&D and Credit Constraints

Dep. var.: MEAN TFP Growth (t+2) to (t+5)

(a) (b) (c) (d)

Initial TFP -0.031a -0.031a

(0.001) (0.001)
Shock -0.063a -0.017 -0.037c 0.001

(0.019) (0.026) (0.020) (0.027)
Sect. R&D Intensity 1.104a 1.095a

(0.041) (0.042)
Shock*Sect R&D Intensity -3.936a -3.284b

(1.487) (1.575)

No obs. 33,973 33,973 33,973 33,973
R2 0.05 0.06 0.05 0.05
Est. OLS Fixed Effects / Within

Note: Robust standard errors into parentheses. Significance levels: c10%, b5%, a1%. All estimations include
year dummies. Shock equals 1 if the firm is credit constraint and has a negative shock in t, 0 otherwise. R&D
intensity : industry mean of R&D Investment / Total Investment.
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Table 11: Volatility, Growth and Credit Constraints

Est. : (a) (b) (c) (d) (e) (f)
Dep. Var TFP Growth TFP Growth TFP Growth

High R&D intensity Low R&D intensity

Initial TFP -0.021a -0.020a -0.021a -0.020a -0.022a -0.022a

(0.003) (0.004) (0.005) (0.005) (0.005) (0.005)
Growth Volatility 0.003 -0.037 -0.012 -0.074c 0.012 -0.015

(0.022) (0.028) (0.035) (0.039) (0.026) (0.038)
Growth volatility*Fin. Dep -0.033c -0.066c -0.018

(0.018) (0.037) (0.021)

No. Observations 4459 4459 2249 2249 2310 2310
R2 0.141 0.146 0.152 0.164 0.089 0.090

Note: Robust standard errors into parentheses. Significance levels: c10%, b5%, a1%. OLS estimations, over
the period 1994-2004; each estimation includes sector and size dummies. Rajan and Zingales (1998) data for
sectoral financial dependence. R&D intensity : industry mean of R&D Investment / Total Investment. Large
(resp. low) R&D intensity: above (resp. below) median of R&D intensity.

Table 12: Variables Description

Variable Description Source

New bank loans Total amount of new bank loans Centrale des Bilans, Banque de France (BdF)

Payment Incident 1 when the firm experienced at least Observatoire des entreprises, BdF
one payment incident, 0 otherwise

∆Sales Log(sales)-Log(sales(t-1)) Fiben, BdF

Size Number of Employees Fiben, BdF

Collateral Sum of fixed and tangible assets Fiben, BdF

Banking Debt Banking debt / Fiben, BdF
(Own Financing + Market Financing + Financial Debt)

R&D Share R&D Investment / (Physical + R&D Investment) Fiben, BdF
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Table 13: Correlations

Variable Var. Sales PI Inv. Rate (1) R&D Inv. Rate
(2)

R&D Share (3)

Variation in Sales 1.0000
Payment Incidents -0.0416 1.0000
Investment Rate (1) 0.349 -0.0068 1.0000
R&D Investment Rate (2) -0.006 0.0331 0.2137 1.0000
R&D Share (3) -0.0041 0.0363 0.0611 0.7697 1.0000

Note: (1) Capital Stock Growth Rate : It/Kt−1 ; (2): R&D Investment / Value Added; (3) R&D share : R&D
investment / (Physical Investment + R&D Investment); ; Source: Authors’ computations from Fiben / Centrale
des Bilans, Banque de France.
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