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Distinguishing black holes from naked singularities through their accretion disk properties
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We show that, in principle, a slowly evolving gravitationally collapsing perfect fluid cloud can asymptotically
settle to a static spherically symmetric equilibrium configuration with a naked singularity at the center. We
consider one such asymptotic final configuration with a finiteouter radius, and construct a toy model in which
it is matched to a Schwarzschild exterior geometry. We examine the properties of circular orbits in this model.
We then investigate observational signatures of a thermal accretion disk in this spacetime, comparing them with
the signatures expected for a disk around a black hole of the same mass. Several notable differences emerge.
A disk around the naked singularity is much more luminous than one around an equivalent black hole. Also,
the disk around the naked singularity has a spectrum with a high frequency power law segment that carries a
major fraction of the total luminosity. Thus, at least some naked singularities can, in principle, be distinguished
observationally from black holes of the same mass. We discuss possible implications of these results.

I. INTRODUCTION

The no hair theorems in black hole physics state that a black hole is completely characterized by three basic parameters,
namely, its mass, angular momentum, and charge. Because of this extreme simplicity, the observational properties of a black
hole are determined uniquely by these three intrinsic parameters plus a few details of the surrounding environment.

There is compelling observational evidence that many compact objects exist in the universe, and there are indications that
some of these might have horizons [1]. However, there is as yet no direct proof that any of these objects is necessarily a black
hole. The dynamical equations describing collapse in general relativity do not imply that the final endstate of gravitational
collapse of a massive matter cloud has to be a black hole (see [2]); other possibilities are also allowed. In the case of a continual
collapse, general relativity predicts that a spacetime singularity must form as the endstate of collapse. However, recent collapse
studies show that, depending on the initial conditions fromwhich the collapse evolves, trapped surfaces form either early or late
during the collapse. Correspondingly, the final singularity may either be covered, giving a black hole, or may be visibleas a
naked singularity. If astrophysical objects of the latter kind hypothetically form in nature, it is important to be ableto distinguish
them from their black hole counterparts through observational signatures.

General relativity has never been tested in the very strong field regime, and very little is known about how matter behaves
towards the end of the gravitational collapse of a massive star, when extremely large densities are reached and quantum effects
possibly become relevant. Over the years, it has often been suggested that some exotic stable state of matter might occurbelow
the neutron degeneracy threshold, allowing for the existence of quark stars, or boson stars, or even more exotic astrophysical
objects (see for example [3]).

At present we cannot rule out the possibility that such compact objects do exist. On the other hand, the densities and sizes of
compact objects in the universe vary enormously, dependingon their mass. While a stellar mass quark star could have a density
greater than that of a neutron star, a supermassive compact object at the center of a galaxy might have a density comparable to
that of ordinary terrestrial matter. This means that it is difficult to come up with a single paradigm for all compact objects by
simply modifying the equation of state of matter. Also, the processes that lead to the formation of stellar mass compact objects
are different from those leading to supermassive objects. For one thing, time scales are very different. Stellar mass compact
objects form in a matter of seconds, when the core of a massivedying star implodes under its own gravity. We know little about
the physical processes that lead to the formation of supermassive compact objects, but whatever it is, it doubtless operates far
more slowly than in the stellar-mass case.

In our view it is important to study viable theoretical models that, under reasonable physical conditions, lead to the formation
of different kinds of compact objects, and to investigate the properties of these different end states. In recent times,much
attention has been devoted to the observational propertiesof spacetimes that describe very compact objects or singularities
where no horizon is present [4]. Many valid solutions of Einstein field equations exist which describe spacetimes that are not
black holes. These are either vacuum solutions with naked singularities or collapse solutions in the presence of matter. Naked
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singularity models include the Reissner-Nordstrom, Kerr and Kerr-Newman geometries with a range of parameter values that
differentiate the black hole and naked singularity regimes. Collapse models include dust collapse, models with perfect fluids and
those with other equations of state [2].

Note further that the classical event horizon structure of the Kerr metric can be altered in many ways. One way is by over-
spinning the Kerr black hole in order to obtain a naked singularity [5]. Another is by introducing deformations or scalarfields
to alter the spacetime and thus expose a naked singularity [6]. Although the physical viability of some of these examplesis not
clear, the fact remains that classical general relativity allows for the formation of naked singularities in a variety of situations.
If singular solutions represent a breakdown of the theory inthe regime of strong gravity, then a study of some of these models
might provide clues to new physics. For example, string theory or quantum gravity corrections can remove the Kerr singularity,
leaving open the possibility of non singular superspinningsolutions [7].

In a recent paper [8], the present authors showed that equilibrium configurations describing an extended compact objectcan
in principle be obtained from gravitational collapse. The models we described correspond to a slowly evolving collapsing cloud
which settles asymptotically to a static final configurationthat is either regular or has a naked singularity at the center. In this
context, a naked singularity must be understood as a region of arbitrarily large density that is approached as comoving time goes
to arbitrarily large values. We briefly examined the properties of accretion disks around the naked singularity solutions. There
were significant physical differences compared to disks around black holes, and it followed that there could be astrophysical
signatures that could distinguish black holes from naked singularities.

In the above previous work, we considered the case of purely tangential pressure and vanishing radial pressure. Are the
solutions we obtained a consequence of this extreme simplification, or are they representative of a generic class of solutions
that survive even for more reasonable equations of state? Weanswer this question here at least partly by exploring gravitational
collapse of perfect fluid objects with an isotropic pressure. Even in this more realistic case, we find that objects with either regular
interiors or naked singularities form readily as a result ofgravitational collapse. We explore the similarities and differences
between these new solutions and the earlier solutions whichhad purely tangential pressure.

Our main purpose in the present paper is to investigate whether the naked singularity models derived here and in our previous
work can be observationally distinguished from black holesof the same mass. We therefore take a further step in this direction by
calculating the spectral energy distributions of putativeaccretion disks. We show that important differences exist in the physical
properties of accretion disks around naked singularities compared to those around black holes, which may help us distinguish
black holes from naked singularities through observationsof astrophysical objects. Although the toy models considered here
are unlikely to be realized physically, some general features of these objects are revealed by our analysis and show thatnaked
singularities could be observationally distinguished from black holes.

The structure of the paper is as follows: In section II we describe a procedure by which a static perfect fluid object with a
Schwarzschild exterior metric can be obtained via gravitational collapse from regular initial conditions. In sectionIII, we use
the above procedure to obtain a toy model of a static final configuration with a naked singularity at the center. We then describe
the properties of accretion disks in this toy spacetime and compare these models to disks around a Schwarzschild black hole
of the same mass. We also briefly discuss other density profiles of astrophysical interest that could be studied within thesame
framework. In the final section IV, we discuss possible applications to astrophysical observations.

II. GRAVITATIONAL COLLAPSE

Spherical collapse in general relativity can be described by a dynamical spacetime metric of the form

ds2 = −e2νdt2 +
R′2

G
dr2 +R2dΩ2 , (1)

whereν, R andG are functions of the comoving coordinatest andr. For the perfect fluid case, the energy-momentum tensor is
given byT 0

0 = ǫ, T 1
1 = T 2

2 = T 3
3 = p. The Einstein equations then take the form

p = − Ḟ

R2Ṙ
, (2)

ǫ =
F ′

R2R′
, (3)

ν′ = − p′

ǫ+ p
, (4)

Ġ = 2
ν′

R′
ṘG , (5)

where(′) denotes a derivative with respect to comoving radiusr and (̇) denotes a derivative with respect to timet in the (r, t)
representation. The functionF , called the Misner-Sharp mass, describes the amount of matter enclosed within the shell labeled
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by r at the timet, and is given by

F = R(1−G+ e−2νṘ2) . (6)

Equations (2)–(6) give five relations among the six unknown functionsp(r, t), ǫ(r, t), ν(r, t), G(r, t), F (r, t) andR(r, t). We
thus have the freedom to specify one free function. An assumed equation of state relating pressure to energy density during
the evolution of the system would fix this remaining freedom and give a closed set of equations. It could happen, however,
that this approach leads to an analytically intractable problem. Moreover, we do not know if the collapsing matter will have
the same unchanged equation of state as it evolves to higher and higher densities as the collapse progresses. There is in fact no
astrophysical or mathematical requirement that the equation of state must be fixed as the collapse evolves in time. We therefore
prefer here instead to choose the functional form ofF (r, t), which corresponds implicitly to fixing the equation of state, which
could however change with time and space coordinates. We choose a scenario such that we approximate some standard equation
of state at early times, switching to some other, possibly exotic, kind of matter at later times.

We use the scaling degree of freedom in the definition ofR to fix the initial conditionR(r, ti) = r, whereti is the initial
time. To describe collapse we requireṘ < 0, which guarantees thatR decreases monotonically with respect tot. Hence, we
may change coordinates from(r, t) to (r, R), thus in effect consideringt = t(r, R). Correspondingly, we can view the original
functionF (r, t) as a function ofr andR and writeF = F (r, R). In the following, we use(, r) to denote a derivative with
respect tor in the(r, R) representation, i.e.,

F ′ = F,r + F,RR
′. (7)

The total mass of the system is not conserved during collapse, unless one requires the further condition thatF (rb, t) = const,
whererb corresponds to the boundary of the system. Therefore, we cannot in general match a collapse solution to an exterior
Schwarzschild metric. However, matching to a generalized Vaidya spacetime at the boundaryRb(t) = R(rb, t) is always
possible [9].

The procedure to solve the above system of Einstein equations is the following. We choose the free functionF (r, R) globally
and use equations (2) and (3) to obtainp(r, R(r, t)) andǫ(r, R(r, t)) as functions ofr, R and its derivatives. We then integrate
equation (4) to obtainν,

ν(r, R) = −
∫ r

0

p′

ǫ+ p
dr̃, (8)

and integrate equation (5) to obtainG,

G(r, R) = b(r)e2
∫

R

r
ν′

R′
dR̃. (9)

The free functionb(r) results from the integral in equation (9); it is related to the velocity profile in the collapsing cloud. The
integral in equation (8) again gives a free function oft, but this can be absorbed via a redefinition of the time coordinate. Once
we haveν(r, R) andG(r, R) as functions ofr, R and its derivatives, we can integrate the Misner-Sharp massequation (6) that
becomes a differential equation involvingR and its derivatives. We can write it in the form

t,R = − e−ν

√

F
R +G− 1

, (10)

and its integration givest(r, R), or equivalentlyR(r, t) thus solving the system.
Substituting equations (8) and (9) in equation (1), the metric of the collapsing spacetime takes the form

ds2 = −e−2
∫

r

0

p′

ǫ+p
dr̃dt2 +

R′2

b(r)e2
∫

R

r
ν′

R′
dR̃

dr2 +R2dΩ2 . (11)

It may not always be possible to fully integrate the system ofEinstein equations globally. However, this is not always needed,
because by considering the behaviour of the functions involved, it is often possible to extract useful information about collapse
and to integrate the solution at least in a neighborhood close to the center.

Typically some restrictions are required in order for the collapse model to be considered physically viable. They are:

1. Absence of shell crossing singularities, which arise from a breakdown of the coordinate system at locations where col-
lapsing shells intersect. This requirement impliesR′ > 0. We note in this connection that there is always a neighborhood
of the central liner = 0 of the collapsing cloud which contains no shell-crossing singularities throughout the collapse
evolution [10].
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2. Energy conditions, of which the usual minimal requirement is the weak energy condition, viz., positivity of the energy
density (ǫ > 0) and of the sum of density and pressure (ǫ+ p > 0). This requiresF ′(r, R) > 0 andF,r(r, R) > 0.

3. Regularity at the center during collapse before the formation of the singularity. This includes the requirements that
forces and pressure gradients vanish at the center and that the energy density has no cusps atr = 0. The corresponding
requirements areF (r, R) ≃ r3m(r, R) nearr = 0, m′(0, R) = 0 andp′(0, R) = 0.

4. Absence of trapped surfaces at the initial time. This lastrequirement is given by positivity of[1− (F/R)]t=ti
and

translates toṘ2
t=ti <

(

e2νG
)

t=ti
.

Our aim now is to construct a dynamical collapse evolution such that the pressure eventually balances gravitational attraction
and the collapsing object settles into a static configuration. Such a scenario is of course not always possible in gravitational
collapse of a massive matter cloud, and there are matter configurations that can only collapse indefinitely without achieveing
any possible equilibrium. Such is the case of collapse of a pressureless dust cloud [11], or similar systems where pressure is
very insignificant. Another possibility in collapse is thatthe cloud bounces back after reaching a minimum radius. Typically,
since we begin with a collapsing configuration, for each shell labeled by the comoving radiusr, three different behaviours are
possible:

1. Collapse:Ṙ < 0. If Ṙ is negative at all times the shell will collapses to a centralsingularity.

2. Bounce:Ṙ = 0 at a certain time, witḧR > 0 at this time. The shell bounces back and re-expands.

3. Equilibrium configuration:Ṙ = R̈ = 0. Here the collapse slows down and the shell achieves a staticconfiguration.

Shells that achieve an equilibrium configuration in a certain sense mark the separation between the region that collapses indef-
initely and the region that eventually bounces back [12]. Both collapse and bounce would occur typically very rapidly, on a
dynamical time scale which is proportional to the mass. Evenin the case of supermassive compact objects, this time is much
shorter than other typical time scales.

It would appear that all three possibilities above represent generic behavior during gravitational collapse, depending on the
masses and velocities of the collapsing shells and the physical scenario involved in collapse. For example, for a very massive
star, an indefinite collapse would seem inevitable if the star cannot shed away enough of its mass in a very short collapse time
scale to achieve any possible equilibrium. On the other hand, for a much larger mass scale such as galactic or yet larger scales,
the collapse could proceed much more slowly and even arrive at an equilibrium to form a stable massive object. It is well known
of course that gravitational collapse plays a key role in theformation of large scale structures in the universe. In manysuch
cases, an evolving collapse would slow down, eventually to form a stable massive object. In such cases, scenarios such asthe
one considered here could be relevant.

We note that in order to achieve an equilibrium object as the endstate of collapse or in order to have a useful quasi-equilibrium
configuration, it is necessary that each collapsing shell inthe cloud must individually achieve the conditionṘ = R̈ = 0. Such
an object can be well approximated by a static configuration.The equation of motion (6) can be written in terms ofR, for any
fixed comoving radiusr, in the form of an effective potential:

V (r, R) = −Ṙ2 = −e2ν
(

F

R
+G− 1

)

. (12)

We already know that no static configuration is possible for the pressureless (dust) case, whereV is negative at all times. When
there is pressure, it is still possible forV to be negative at all times, giving continued collapse. However, other possibilities are
also allowed since at any given timet each shellr can be either collapsing, expanding or still giving rise to awide array of
scenarios. We shall consider here the simple but very commoncase whereV , as a function ofR for fixed r, is a polynomial
of second order inR. We see that one generic possibility in this case is thatV has two distinct zeroes. In this case, the shell
will bounce at a finite radius and re-expand. Another possibility is that the two zeroes ofV coincide (namelyV has one root
of double multiplicity) corresponding to an extremum atV = 0. In this case, the shell will coast ever more slowly towards
the radius corresponding toV = 0 and will halt without bouncing having reached such radius with zero velocity and zero
acceleration ast goes to infinity. A global static configuration for this form of the potential is then achieved only if each shell
satisfies the condition that it has one double root. It is not difficult to see that the velocity of the cloud during collapseis always
non-zero and therefore such an equilibrium configuration can be achieved only in a limiting sense, as the comoving timet goes to
infinity (for a more detailed discussion on the condition leading to equilibrium see [8]). For more general forms of the potential
the allowed regions of dynamics for the shell and its behaviour are decided by the multiplicity of the roots ofV .

The condition that the spacetime evolves towards an equilibrium configuration is thus

Ṙ = R̈ = 0, (13)
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which is equivalent to

V = V,R = 0. (14)

From equation (12) we find

V,R = e2ν
(

F

R2
− F,R

R
+G,R

)

− 2ν,Re
2ν

(

F

R
+G− 1

)

. (15)

The system achieves an equilibrium configuration if the solution of the equation of motion (10), given byR(r, t), tends
asymptotically to an equilibrium solutionRe(r) such that the conditions given in equations (13) or (14) are satisfied. Therefore,
in order to have

R(r, t) −−−→
t→∞

Re(r), (16)

we must choose the free functionF (r, R) in the dynamical collapse scenario such that the quantitiesF , ν, G tend to their
respective equilibrium limits:

F (r, R) → Fe(r) = F (r, Re(r)), (17)

ν(r, R) → νe(r) = ν(r, Re(r)), (18)

G(r, R) → Ge(r) = G(r, Re(r)). (19)

Imposing the conditions (14), we thus obtain two equations which fix the behaviour ofG andG,R at equilibrium:

Ge(r) = 1− Fe

Re
, (20)

(G,R)e = G,R(r, Re(r)) =
Fe

R2
e

− (F,R)e
Re

, (21)

where the velocity profileb(r) in equation (9) has been absorbed intoGe(r).
Note that at equilibrium the area radiusR becomes a monotonic increasing function ofr. Therefore if we define the new

radial coordinateρ at equilibrium as

ρ ≡ Re(r), (22)

we can rewrite the functions at equilibrium as

Fe(r) = F(ρ), (23)

νe(r) = φ(ρ), (24)

Ge(r) = G(ρ) = 1− F

ρ
. (25)

Then, from equations (3) and (4), two of the Einstein equations for a static source become

ǫ(ρ) =
F,ρ

ρ2
, (26)

p,ρ = −(ǫ+ p)φ,ρ, (27)

where(, ρ) denotes a derivative with respect to the new static radial coordinateρ. The second equation is the well known
Tolman-Oppenheimer-Volkoff (TOV) equation. The third static Einstein equation, namely

p =
2φ,ρ

ρ
G(ρ)− F(ρ)

ρ3
, (28)

is obtained from equation (2) by imposing the equilibrium condition and making use of equation (5) at equilibrium. The metric
(11) at equilibrium then becomes the familiar static spherically symmetric spacetime,

ds2 = −e2φdt2 +
dρ2

G
+ ρ2dΩ2, ρ ≤ ρb ≡ Re(rb). (29)
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This interior metric is matched to a Schwarzschild vacuum exterior at the boundaryρb = Re(rb). By matchinggρρ at the
matching radiusρb and making use of equation (25), we see that the total gravitational massMT of the interior is given by

1− 2MT

ρb
= G(ρb) = 1− F (ρb)

ρb
. (30)

Note that, in principle, the interior metric in equation (29) need not be regular at the center, as the eventual singularity is
achieved as the result of collapse from regular initial data. A singularity at the center of the static final configurationis then
interpreted as a region of arbitrarily high density that is achieved asymptotically as the comoving timet goes to arbitrarily
large values. Therefore when considering static interiorswith a singularity we are in fact approximating a slowly evolving
configuration, where shells have typically very ‘small’ velocities and where the central region can reach very high densities.

Typically, for a static perfect fluid source of the Schwarzschild geometry, various conditions could be required in order to
ensure physical reasonability [13]. Some of these are: the matter satisfies an energy condition, matching conditions with the
exterior Schwarzschild geometry, vanishing of the pressure at the boundary, monotonic decrease of the energy density and
pressure with increasing radius, sound speed within the cloud should be smaller than the speed of light. If the energy conditions
are satisfied during collapse, they will be satisfied by the equilibrium configuration as well, i.e., the positivity of theenergy
density and sum of density and pressure at the origin followsfrom the same condition during collapse. Also, requiring only the
weak energy condition allows the possibility of negative pressures either during the collapse phase or in the final equilibrium
configuration.

Since we have required here the static configuration to evolve from regular initial data, we may omit the condition that the
final state must be necessarily regular at the center. This leaves open the possibility that a central singularity might develop as
the equilibrium is reached, where the singularity has to be understood in the sense explained above. Absence of trapped surfaces
at the initial time ensures that, if a singularity develops,it will not be covered by a horizon [14]. In fact it can be shownthat
if trapped surfaces do form at a certain time as the cloud evolves, then the collapse cannot be halted and the whole cloud must
collapse to a black hole or to a singularity where the first point of singularity is visible but the later portions of the singularity
become covered in a black hole. We note that some of the above conditions, although desirable, may be neglected in special
cases. Many interior solutions are available in the literature describing a static sphere of perfect fluid matching smoothly to a
Schwarzschild exterior geometry (see [15] for a list of solutions or [16] for an algorithm to construct interior solutions). As
discussed above, we can construct dynamically evolving collapse scenarios that lead asymptotically to the formation of such
static configurations. If we are able to achieve a static configuration from collapse from regular initial data, and if we view a
singularity as a region where density increases to arbitrarily high values, signaling a breakdown of the ability of general relativity
to model the spacetime, we may then neglect the requirement of regularity at the center.

III. A TOY MODEL OF A STATIC SPHERICALLY SYMMETRIC PERFECT FL UID INTERIOR

In the following, we look for static interiors with a singularity at the origin. We wish to investigate the properties of such
solutions and to establish whether such hypothetical nakedsingularity objects could in principle be distinguished interms of
observational signatures from black hole counter-parts ofthe same mass.

We start with the most general static spherically symmetricmetric written in the form given in equation (29). As we have
seen, the perfect fluid source Einstein equations give

ǫ =
F,ρ

ρ2
, (31)

p =
2φ,ρ

ρ

[

1− F(ρ)

ρ

]

− F(ρ)

ρ3
, (32)

p,ρ = −(ǫ+ p)φ,ρ, (33)

where we have absorbed the factor4π into the definition ofǫ andp, and definedF,ρ = dF/dρ. The third (Tolman-Oppenheimer-
Volkoff) equation, combined with the second equation, gives

p,ρ = −(ǫ+ p)

[

pρ3 + F(ρ)
]

2ρ [ρ− F(ρ)]
. (34)

Since the above system of Einstein equations consists of three equations with four unknowns, in order to close the systemwe
can either specify an equation of state that relatesp to ǫ or use the freedom to choose arbitrarily one of the other functions [17].
As discussed earlier, we opt for the latter approach and specify the form of the mass profileF(ρ), which describes the final mass
distribution obtained from collapse. Once we specifyF, equation (34) reduces to a first-order ordinary differential equation,
which we can solve.
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We follow the same procedure that we used in the pure tangential pressure case [8] and obtain a solution of the form

F(ρ)

ρ
= M0 = const, ρ ≤ ρb. (35)

By equation (30), this solution corresponds to a total massMT given by

2MT = F(ρb) = M0ρb. (36)

Hence, to avoid a horizon, we requireM0 < 1. Solving the first Einstein equation (31), the energy density becomes

ǫ =
M0

ρ2
, (37)

which clearly diverges asρ → 0, indicating the presence of a strong curvature singularityat the center.
The TOV equation (34) now becomes

p,ρ = − (ǫ + p)2ρ

2(1−M0)
= − (M0 + pρ2)2

2ρ3(1 −M0)
, (38)

which can be integrated by defining the auxiliary parameter

λ =

√

1− 2M0

1−M0
, M0 =

1− λ2

2− λ2
. (39)

Clearly, we requireλ ∈ [0, 1), or equivalentlyM0 < 1/2 (for values ofM0 > 1/2 similar considerations apply withλ =
√

−(1− 2M0)/(1−M0) but we do not consider this case here). In terms ofλ, the solution of equation (38) can be written as

p =
1

2− λ2

1

ρ2

[

(1− λ)2A− (1 + λ)2Bρ2λ

A−Bρ2λ

]

, (40)

whereA andB are arbitrary integration constants. Then, solving the remaining Einstein equation gives

e2φ = (Aρ1−λ −Bρ1+λ)2. (41)

This solution, among other similar interior static solutions, was first investigated by Tolman in 1939 for a specific choice ofλ
[18]. The energy density of the solution may be rewritten as

ǫ =

(

1− λ2

2− λ2

)

1

ρ2
. (42)

The existence of a strong curvature singularity at the center can be confirmed by an analysis of the Kretschmann scalarK near
ρ = 0, which gives

K =
16Q4(1− λ2)2 + ρ4(Q2

,ρ − 2QQ,ρρ)
2 + 8ρ2Q2Q2

,ρ

4ρ4Q4(2− λ2)2
, Q(ρ) = e2φ(ρ), (43)

which is clearly singular in the limitρ → 0.
The static metric of the above solution takes the form

ds2 = −(Aρ1−λ −Bρ1+λ)2dt2 + (2 − λ2)dρ2 + ρ2dΩ2, ρ ≤ ρb. (44)

It is matched at the boundaryρb to a vacuum Schwarzschild spacetime with total massMT . Sincegρρ in the interior is a constant,
the matching will not in general be smooth, though it will be continuous. From the matching conditions forgρρ andgtt at the
boundary we obtain,

ρb =
2(2− λ2)

(1− λ2)
MT , (45)

B ρ2λb = A− ρλ−1
b√
2− λ2

. (46)
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For all values ofλ ∈ [0, 1), the pressure is maximum at the center and decreases outwards, becoming zero at a finite radiusρp
given by

ρ2λp =
A

B

(1− λ)2

(1 + λ)2
. (47)

Since we require the pressure to vanish at the boundary of thecloud, we obtain the further conditionρb = ρp, which, together
with equation (46), fixes the two integration constantsA andB:

A =
(1 + λ)2ρλ−1

b

4λ
√
2− λ2

, (48)

B =
(1− λ)2ρ−λ−1

b

4λ
√
2− λ2

. (49)

The sound speed inside the cloud is given byc2s = ∂p/∂ǫ. We find

c2s =
p

ǫ
+

4λ2ABr2λ

(1− λ2)(A−Br2λ)2
,

p

ǫ
=

A1−λ
1+λ −B 1+λ

1−λρ
2λ

A−Bρ2λ
, (50)

from which we see thatcs(0) = (1 − λ)(1 + λ) < 1, as required, andcs decreases as the radiusρ goes from0 to ρb. We may
also rewrite the above relations in the form of an equation ofstate,p = p(ǫ),

p(ǫ) = ǫ
A
(

1−λ
1+λ

)(

2−λ2

1−λ2

)λ

ǫλ −B
(

1+λ
1−λ

)

A
(

2−λ2

1−λ2

)λ

ǫλ −B

. (51)

In the limit λ → 0, corresponding toM0 → 1/2, we obtain the most compact member of the above family of solutions. It
has an equation of statep ≈ ǫ and hence sound speedcs → 1. Note, however, that at the outer boundary,p → 0 but ǫ does
not vanish, so the equation of state is not strictly isothermal. For this solution, the matching radius with the Schwarzschild
exterior is atρb = 4MT , i.e., twice the Schwarzschild radius. In the case of pure tangential pressure, which we considered in
our previous paper [8], we found physically meaningful solutions down toρb = 3MT , and even more compact solutions with
exotic properties. This is one respect in which the perfect fluid model differs from the tangential pressure case.

Forλ = 1/2, corresponding toM0 = 3/7, we obtain an equation of state

p =
ǫ

3



1− 8B

A
√

7
3ǫ−B



 , (52)

which approaches the radiation equation of statep = ǫ/3 asρ → 0. For this model,ρb = (14/3)MT , i.e., the object is a little
less compact than the model withλ → 0.

Finally, the caseλ → 1,M0 → 0, corresponds toρb/MT → ∞, and hence an infinitely large object. In this limit, our solution
reduces to the classical Newtonian singular isothermal sphere solution. Correspondingly,A → 1, B → 0, and the metric in
equation (44) reduces to the metric of flat space.

Considering next the energy conditions, it is easy to see that M0 > 0 implies positivity of the energy density and pressure.
The pressure decreases from its maximum value at the center to zero at the boundary. From

ǫ+ p =
(1− λ)(1 + λ)

2− λ2

1

ρ2

(

1 +
p

ǫ

)

, (53)

we see that the weak energy condition is satisfied throughoutthe interior of the cloud.

A. Properties of circular orbits

We wish to investigate basic observational properties of accretion disks orbiting in the above family of spacetimes. Tothis
end, we study circular geodesics. Our assumption is that a test particle orbiting inside the “cloud” does not interact with the
material of the cloud but merely feels its gravitational influence [34].
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FIG. 1: (a) Energy per unit massE of circular orbits as a function of radiusρ for four perfect fluid models of unit mass (MT = 1). The
parameterλ and the radius of the boundaryρb of the four models are, respectively:(λ, ρb) = (1/100, 4.0002); (1/2, 14/3); (1/

√
2, 6);

(2/
√
5, 12). The curves are labeled by their values ofλ. Each solution is matched to a Schwarzschild exterior atρ = ρb. (b) Close up of

the matching region between the perfect fluid interior and the Schwarzschild exterior. The models withλ = 1/100, 1/2, haveρb lying inside
the innermost stable circular orbitρISCO = 6 of the Schwarzschild spacetime. For these two solutions,E decreases betweenρb andρISCO,
indicating a zone of unstable circular orbits.

Our perfect fluid model has five parameters,MT , λ, ρb,A, B, and there are three matching conditions at the boundaryρ = ρb,
viz., matching ofgtt andgρρ with the exterior Schwarzschild metric and the conditionp(ρb) = 0. Thus, we are free to choose
two of the five parameters. For convenience, in the followingwe choose the total gravitational mass of the cloudMT to be equal
to unity. This still leaves one free parameter, which we choose to beλ. Once we pick a value ofλ, the boundary radiusρb is
given by equation (45), and the coefficientsA andB are given by equations (48) and (49).

Given the spherical symmetry of the metric we can always choose the coordinateθ such that the geodesic under consideration
lies in the equatorial plane (θ = π/2). Time-like geodesics in this plane satisfy

−H(ρ)

(

dt

dτ

)2

+ (2 − λ2)

(

dρ

dτ

)2

+ ρ2
(

dϕ

dτ

)2

= −1, (54)

whereH(ρ) = (Aρ1−λ −Bρ1+λ)2.
From the two killing vectors,ζb, ηa, associated with time-translational symmetry and rotational symmetry, we can calculate

two conserved quantities, the energy per unit mass,E = gabζ
aub = e2φdt/dτ = Hdt/dτ , and the angular momentum per unit

mass,L = gabη
aub = ρ2dϕ/dτ . For circular geodesics we must havedρ/dτ = 0. Therefore, we obtain

E2 =
2H2

2H −H,ρρ
, (55)

L2

ρ2
=

H,ρρ

2H −H,ρρ
. (56)

Figure 1 shows the variation of the energy per unit massE with radiusρ for a selection of models corresponding toλ = 1/100,
1/2, 1/

√
2, 2/

√
5. The boundaries of the four models are at (see eq. 45)ρb = 4.0002, 14/3, 6 and 12. In all the models,E goes

to zero asρ → 0, with a power-law dependence:E ∼ ρ1−λ. At ρ = ρb, each model is matched to an exterior Schwarzschild
spacetime with massMT = 1. Panel (b) in Figure 1 shows the matching region.

By construction,E is continuous across the matching boundary, butdE/dρ is not. Note in particular that the vacuum
Schwarzschild spacetime has an innermost stable circular orbit (ISCO) atρISCO = 6. For ρ < ρISCO, E increases with
decreasingρ, which is one of the consequences of the absence of stable orbits. The model withλ = 2/

√
5 has its boundary at

ρb = 12 and hence has stable circular orbits all the way from large radii down toρ → 0. So too does the model withλ = 1/
√
2
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FIG. 2: (a) Angular momentum per unit massL of circular orbits as a function of radiusρ for the same four perfect fluid models shown in
Figure 1. The values ofλ are:1/100, 1/2, 1/

√
2, 2/

√
5 (the curves corresponding to the first and last solutions arelabeled). (b) Close up of

the matching region between the perfect fluid interior and the Schwarzschild exterior. Note, as in Figure 1, that the solutions withλ = 1/100,
1/2 haveL decreasing betweenρb andρISCO = 6. Circular orbits are unstable over this range of radius.

which has its matching radius at the ISCO,ρb = ρISCO. However, the other two models (λ = 1/2, 1/100) haveρb < ρISCO.
Hence, these models have stable circular orbits insideρb and outsideρISCO = 6, but no stable orbits in between.

Figure 2 shows analogous results for the angular momentum per unit massL. Here, at small radii,L ∼ ρ for all the models.
As in the case ofE, the angular momentum matches continuously across the boundaryρ = ρb to the external Schwarzschild
solution. As panel (b) shows, the two models withλ = 1/100 and1/2 havedL/dρ < 0 for a range of radii betweenρb and
ρISCO. This corresponds to the region with unstable circular orbits.

The angular velocityω = dφ/dt of particles on circular orbits is given by

ω2 = − gtt,ρ
gφφ,ρ

=
H,ρ

2ρ
. (57)

This quantity scales asω ∼ ρ−λ asρ → 0. Figure 3 shows a plot ofω vsρ for the same four models as before.

B. Properties of accretion disks

Gas in an accretion disk loses angular momentum as a result ofviscosity and moves steadily inwards along a sequence of
nearly circular orbits. Using just the properties of circular geodesics, and without needing to know the detailed properties of the
viscous stress, it is possible to calculate the radiative flux emitted at each radius in the disk [20].

Since in our model bothE andL tend to zero asρ goes to zero, no energy or angular momentum is added to the central
singularity by the gas in the accretion disk. The central singularity may be considered to be ‘stable’ in this sense. Indeed, since
E → 0, all the mass energy of the accreting gas is converted to radiation and returned to infinity, i.e., the net radiative luminosity
as measured at infinity satisfiesL∞ = ṁc2, whereṁ is the rate at which rest mass is accreted. Accretion disks around our
model naked singularity solutions are thus perfect enginesthat convert mass into energy with 100% efficiency.

From the behaviour ofE andL of circular geodesics (Figs. 1 and 2), we can distinguish twodifferent regimes of accretion,
depending on the value ofλ:

• For λ ∈ [1/
√
2, 1), corresponding toρb ∈ [6MT ,+∞), particles in the accretion disk follow circular geodesicsof

the Schwarzschild exterior until they reach the matching radiusρb at the outer edge of the cloud. Inside the cloud, the
particles switch smoothly and continuously to the circulargeodesics of the interior solution. Thus, the accretion disk
extends without any break from arbitrarily large radii downto the singularityρ → 0.
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FIG. 3: (a) Angular velocityω of circular orbits as a function of radiusρ for the same four perfect fluid models shown in Figure 1. The values
of λ are:1/100, 1/2, 1/

√
2, 2/

√
5 (the curves corresponding to the first and last solutions arelabeled). (b) Close up of the matching region

between the perfect fluid interior and the Schwarzschild exterior.

• Forλ ∈ (0, 1/
√
2), corresponding toρb ∈ (4MT , 6MT ), particles reach the ISCO of the exterior Schwarzschild spacetime

at ρISCO = 6. Inside this radius no stable circular orbits are allowed, so the gas in the disk plunges with constant
E = EISCO andL = LISCO until it crosses the boundary of the cloud atρb. Inside the cloud, circular geodesics are
allowed again. The gas penetrates into the cloud until it reaches a radiusρL at which the specific angular momentum of a
local circular geodesicL is equal toLISCO. At this radius, the gas settles into a stable circular orbitand radiates away any
excess energy. Further evolution than proceeds in the standard fashion, with the gas steadily moving to smaller radii until
ρ → 0. The accretion disk is thus divided into two parts, one in thevacuum exterior over radiiρ ≥ ρISCO and the other
inside the cloud over radiiρ ≤ ρL.

In the following, we focus on models belonging to the first regime, where we have a continuous disk extending with no
break from large radius down to the singularity. Specifically, we consider models withλ = 1/

√
2, 2/

√
5, which have matching

boundaries atρb = 6, 12, respectively. The radiative properties of accretion disks in these spacetimes may be calculated using
the relations given in [20]. In the local frame of the accreting fluid, the radiative flux emitted by the disk (which is the energy
per unit area per unit time) is given by

F(ρ) = − ṁ

4π
√−g

ω,ρ

(E − ωL)2

∫ ρ

ρin

(E − ωL)L,ρ̃dρ̃ , (58)

whereṁ is the rest mass accretion rate, assumed to be constant,ρin is the radius of the inner edge of the accretion disk, which
is zero for our singular cloud models, andg is the determinant of the metric of the three-sub-space(t, ρ, φ),

g(ρ) = −(2− λ2)ρ2H(ρ). (59)

The solid curves in Figure 4(a) show the variation ofF(ρ) vs ρ for the two chosen models. The flux diverges steeply as the
gas approaches the center:F ∼ ρ−(3−λ). This is not surprising, considering that the cloud is singular in this limit. Perhaps
more surprising is the discontinuity in the flux at the boundary between the cloud and the external vacuum metric, as seen clearly
in Figure 4(b). While all the quantitiesE, L, ω, g which are present in equation (58) are continuous across theboundary, the
derivativeω,ρ is not. The discontinuity inω,ρ causes the jump inF asρ crossesρb. The dotted lines in the two panels correspond
to an accretion disk around a Schwarzschild black hole. In this case, the inner edge of the disk is atρin = ρISCO = 6, and the
flux cuts off at this radius.

We note of course that the fluxF is a local quantity measured in the frame of the fluid and is notdirectly observable. A more
useful quantity is the luminosityL∞ (energy per unit time) that reaches an observer at infinity. The differential ofL∞ with
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FIG. 4: (a) The two solid lines show the variation of the radiative flux F of an accretion disk, as measured by a local observer comoving with
the fluid, for two perfect fluid singular models withλ = 1/

√
2 (ρb = 6) andλ = 2/

√
5 (ρb = 12). The dotted line corresponds to a disk

around a Schwarzschild black hole, while the two dashed lines are for accretion disks in models with purely tangential pressure [8], which are
discussed in section III C. (b) Close-up of the flux profiles near the matching radius. Note the discontinuity in the flux, which is caused by the
discontinuous behavior ofω,ρ in equation (58). (c) Profile of the differential luminosityreaching an observer at infinity,dL∞/d ln ρ, for the
same models. (d) Close-up of the region near the matching radius.

respect to the radiusρ can be computed fromF by the following relation [20]:

dL∞

d ln ρ
= 4πρ

√
−gEF . (60)

Panels (c) and (d) in Figure 4 showdL∞/d ln ρ for the two models under consideration. We see that the luminosity behaves in
a perfectly convergent fashion asρ → 0: dL∞/d ln ρ ∼ ρ1−λ. By integrating this quantity overln ρ, we can calculate the net
luminosityL∞ observed at infinity. We have confirmed that this is equal toṁc2 for the two singular models. That is the disk
has 100% efficiency — it converts the entire rest mass energy of the accreting gas into radiation. The dotted lines in the panels
indicate the very different behavior of a disk around a Schwarzschild black hole. Since such a disk is truncated at the ISCO, the
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luminosity is much less. In this case, we recover the standard result,L∞ = (1−EISCO) ṁc2 = 0.05719 ṁc2, i.e., an efficiency
of 5.719%.

Is it possible to distinguish observationally whether a given accretion system is a black hole or one of the toy singular objects
described in this paper? We have seen above that the accretion efficiencies are very different. However, the efficiency isnot
easily determined via observations since there is no way to obtain an indepedent estimate of the mass accretion rateṁ. A more
promising avenue is the spectral energy distribution of thedisk radiation.

Following standard practice, we assume that each local patch of the disk radiates as a blackbody. Defining a characteristic
temperatureT∗ as follows (where we have included physical units),

σT 4
∗ ≡ ṁc2

4π(GMT /c2)2
, (61)

whereσ is the Stefan-Boltzmann constant, the local blackbody temperature of the radiation emitted at any radiusρ with flux F
(eq. 58) is given by

TBB(ρ) = [F(ρ)]1/4T∗. (62)

This radiation is transformed by gravitational and Dopplerredshifts by the time it reaches an observer at infinity and hence
appears to have a different temperature. The transformation depends on the orientation of the observer with respect to the disk
axis. To avoid getting into too much detail, we simply use a single characteristic redshiftz, corresponding to an observer along
the disk axis,

1 + z(ρ) = [−(gtt + ω2gφφ)]
−1/2, (63)

and assume that the radiation emitted at radiusρ has a temperature at infinity, independent of direction, given by

T∞(ρ) = TBB(ρ)/(1 + z). (64)

It is then straightforward to convert the differential luminosity calculated in equation (60) into the spectral luminosity distribution
Lν,∞ observed at infinity. The result is

νLν,∞ =
15

π4

∫ ∞

ρin

(

dL∞

d ln ρ

)

(1 + z)4(hν/kT∗)
4/F

exp[(1 + z)hν/kT∗F1/4]− 1
d ln ρ. (65)

As a check, we have verified numerically that the integral over frequency of the spectral luminosityLν,∞ obtained via the above
relation is equal tȯmc2 (100% efficiency) for the singular models and equal to0.05719ṁc2 for the Schwarzschild case (5.719%
efficiency).

Figure 5 shows spectra corresponding to the same models considered in Figure 4. For a given accretion rateṁ, the
Schwarzschild black hole model gives a much lower luminosity than the naked singular models. However, as we discussed
earlier, this is not observationally testable. More interesting is the fact that the spectra have noticeably differentshapes. At low
frequencies, all the models have the same spectral shapeνLν ∼ ν4/3, which is the standard result for disk emission from large
non-relativistic radii [21]. However, there are dramatic differences at high frequencies.

The emission from a disk around a Schwarzschild black hole cuts off at the ISCO radiusρISCO = 6. Correspondingly, there
is a certain maximum temperature for the emitted radiation,which causes the spectrum to cutoff abruptly at a frequencyhν/kT∗

somewhat below unity. The two perfect fluid singular models,on the other hand, behave very differently. In these models,
the disk extends all the way down toρ → 0. Consequently, the temperatureTBB of the emitted radiation rises steadily and
diverges asρ → 0. The emission from all the inner radii combines to produce a power-law spectrum at high frequencies [35]:
νLν,∞ ∼ ν−8(1−λ)/(6λ−2).

As Figure 5 shows, the high-frequency power-law segment of the spectrum carries a substantial fraction (more than half)of
the total emission from disks around our naked singularity models. The presence of this strong power-law spectrum is thus a
characteristic feature of these models which can be used to distinguish them qualitatively from disks around black holes. Several
well-known astrophysical black hole candidates are known to have spectra with a strong thermal cutoff, similar to that seen in
the dotted line in Figure 5 [22]. These systems show very little power-law emission at high frequencies. In these cases atleast
we can state with some confidence that the central mass does not have a naked singularity of the sort discussed in this paper.

C. Comparison of the perfect fluid and tangential pressure models

In our previous paper [8], we considered a relatively restricted model in which the fluid in the cloud has non-zero pressure
only in the tangential direction. Because of vanishing radial pressure, matching pressure across the boundary radiusρb between
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FIG. 5: Spectral luminosity distribution of radiation fromthe accretion disk models in Figure 4. The dotted line corresponds to a disk around
a Schwarzschild black hole, the solid lines correspond to disks around two perfect fluid naked singularity models discussed in this paper, and
the dashed lines are for disks around two tangential pressure naked singularity models discussed in [8].

the cloud and the external Schwarzschild spacetime was trivial, and hence the solution was more easily determined. For radii
inside the cloud, the metric of the pure tangential pressuremodel takes the form,

ds2 = −H(ρ)dt2 +
dρ2

(1−M0)
+ ρ2dΩ2, ρ ≤ ρb, (66)

with H(ρ) = (1−M0) (ρ/ρb)
M0/(1−M0) andM0 = 2MT/ρb, whereMT is the total gravitational mass of the cloud as measured

in the vacuum exterior.
The close similarity of the tangential pressure model and the perfect fluid model described in the present paper is obvious,

e.g., compare the above expressions with equations (44) and(36). The constantM0 in the tangential pressure model plays the
role of λ for the perfect fluid case, and in both cases this parameter determines the compactness of the cloud as measured by
its dimensionless radiusρb/MT . The limitsM0 → 0 andλ → 1 in the two models correspond to infinitely large and dilute
clouds that are fully non-relativistic:ρb/MT → ∞. In this limit, the two models are essentially identical. One minor difference
between the models occurs in the opposite limit. For the perfect fluid cloud, the most compact configuration we find hasλ = 0,
which corresponds toρb = 4MT . In contrast, for the tangential pressure model, the most compact physically valid configuration
hasM0 = 2/3, which corresponds toρb = 3MT , i.e., a more compact object.

Another difference between the two models is that the tangential pressure cloud has a particularly straightforward metric in
which gtt = H(ρ) varies with radius as a simple power-law. Therefore, all quantities behave as power-laws and the analysis is
easy. In the case of the perfect fluid model, the extra matching condition on the pressure atρ = ρb results in the metric coefficient
gtt involving two power-laws. The term involving the coefficient A in equation (44) dominates asρ → 0 and behaves just like
the lone power-law term in the tangential pressure cloud case. The second term involvingB is required in order to satisfy the
pressure boundary condition and plays a role only asρ approachesρb. This term causes various quantities likeE, L, ω, etc. to
deviate from perfect power-law behavior asρ → ρb (see Figs. 1–4).

As far as observables are concerned the two models behave quite similarly. In Figs. 4 and 5, the two perfect fluid models with
λ = 1/

√
2 and2/

√
5 have boundaries atρb = 6 and12, respectively, and their properties are shown by the solid lines. For
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comparison, the dashed lines show results for two tangential pressure models withM0 = 1/3 and1/6 which have boundaries
at the same radii,ρb = 6, 12. While the agreement between the two sets of models is not perfect, as is to be expected since
the models are different, we see very good qualitative agreement. In particular, note that, just as in the perfect fluid models, the
tangential pressure models too produce a strong power-law high energy tail in the spectra of their accretion disks (Fig.5), which
may be used to distinguish these models from disks around a Schwarzschild black hole (dotted line).

D. Comparison with the Newtonian singular isothermal sphere

A simple and commonly used model in astrophysics is the singular isothermal sphere. This is a spherically symmetric self-
gravitating object with an equation of statep = ǫc2s, wherep is the pressure,ǫ is the density (this is usually calledρ but we use
ǫ here since we have already definedρ to be the radius), andcs is the isothermal sound speed. The model satisfies the condition
of hydrostatic equilibrium under the action of Newtonian gravity. The solution is

ǫ(ρ) =
c2s

2πGρ2
, p(ρ) =

c4s
2πGρ2

, M(ρ) =
2c2sρ

G
, (67)

whereM(ρ) is the mass interior to radiusρ. The variations ofǫ, p andM with ρ are very reminiscent of the variation ofǫ, p and
F in the perfect fluid relativistic cloud model described earlier.

One deficiency of the basic singular isothermal sphere modelis that it extends to infinite radius, where the mass is infinite. In
order to obtain an object with a finite radius, one needs to change the equation of state such that the pressure goes to zero at a
finite density. This is easily arranged as follows:

ǫ(ρ) =
c2s

2πGρ2
=

ρ2b
ρ2

ǫb, ǫb ≡
c2s

2πGρ2b
, p(ρ) = c2s(ǫ − ǫb), M(ρ) = 4πǫbr

2
bρ, ρ ≤ ρb, (68)

whereρb is the radius of the boundary andǫb is the density at that radius.
Circular orbits inside a singular isothermal sphere behavevery simply, with velocity and angular momentum given by

vcirc =
√
cs ρ = const, L =

√
2 csρ, ρ ≤ ρb. (69)

The constancy ofvcirc is the chief attraction of the singular isothermal sphere. It provides a simple way of reproducing the
observed flat rotation curves of galaxies. The scaling ofL with ρ in the singular isothermal sphere is exactly the same as the
variation ofL with ρ in the perfect fluid relativistic cloud. At first sight it appears that the flat rotation curve property is not
reproduced in the relativistic model. For example,ωρ scales asρ1−λ. However, note thatω is defined asdφ/dt, wheret is the
time measured at infinity. The appropriate quantity to consider isdφ/dtloc, wheretloc is time measured by a local ZAMO (Zero
Angular Momentum Observer) at radiusρ. The two times are related by a factor of[H(ρ)]1/2 which varies asAρ1−λ in the limit
ρ → 0. Thus, for ZAMOs, the rotation velocity is indeed independent of radius in the deep interior of the cloud. (Close to the
boundary, there are small deviations because of the term involvingB in H(ρ)).

Consider next the energy of circular orbits in the singular isothermal sphere model. If we include the rest mass energy and
add to it the orbital kinetic energy and the potential energy, then a Newtonian calculation gives for the energy of a particle of
unit mass

Ecirc = 1− c2s
c2

(

1 + 2 ln
ρb
ρ

)

, ρ ≤ ρb. (70)

The weak logarithmic divergence at small radii is rarely a problem since we generally havecs ≪ c. Nevertheless, the presence
of the logarithm implies that, in principle, at a sufficiently small radius, the Newtonian model predicts anegative total energy for
the particle. This is clearly unphysical.

It is reassuring that the logarithmic divergence is not present in our relativistic cloud models. Both the pefect fluid model
and the tangential pressure model haveE varying as a power-law with radius:E ∼ ρ1−λ for the perfect fluid case andE ∼
ρM0/2(1−M0) for the tangential pressure case. In both cases,E asymptotes precisely to zero asρ → 0 and does not go negative
anywhere. Effectively, the relativistic models, being more self-consistent, regularize the logarithm of the Newtonian model by
replacing it with a power-law. The index of the power-law is nearly 0 in the Newtonian limit but becomes as large as unity for the
maximally compact configuration, viz.,λ = 1 andM0 = 2/3 for the perfect fluid and tangential pressure models, respectively.

E. Other models

As we have seen above, the perfect fluid relativistic model described in this paper is equivalent to the Newtonian singular
isothermal sphere model used in astrophysics. The relativistic generalization was obtained by assuming that the energy density



16

ǫ(ρ) in the relativistic model has the same functional form asǫ(ρ) in the Newtonian model (compare eqs. 37 and 68), and then
solving for the pressurep and the spacetime metric. This procedure can be followed with any other trial model ofǫ(ρ) of interest.

One simple example is to consider a superposition of the toy perfect fluid model described in this paper with the well known
constant density Schwarzschild interior. The density profile then takes the form

ǫ =
M0

ρ2
+M1, (71)

which corresponds to

F (ρ) = M0ρ+M1ρ
3/3. (72)

The density in this model approaches the singular interior of our perfect fluid model asρ → 0 but resembles a constant density
interior withǫ = M1 asρ → ρb. It turns out that the TOV equation can be explicitly integrated in this case, though the expression
for p is fairly complicated and involves hypergeometric functions.

Other examples of more interest to astrophysics could be similarly considered. One natural generalization of the singular
isothermal sphere is the Jaffe density profile [23],

ǫ =
M0r0

ρ2(ρ0 + ρ)2
, (73)

whereM0 is a constant andρ0 describes the characteristic radius of the object. This density profile corresponds to

F (ρ) =
M0ρ

(ρ0 + ρ)
. (74)

The Jaffe model behaves just like the singular isothermal sphere asρ → 0, yet it has a finite total mass given byM0 and hence
does not need to be artifically truncated as we had to in the case of the singular isothermal sphere. The Jaffe model is a special
case of a more general class of models, the Dehnen density profile [24],

ǫ =
(3− γ)M0ρ0
ργ(ρ+ ρ0)4−γ

. (75)

The Jaffe profile corresponds toγ = 2, while the case withγ = 1 is known as the Hernquist model [25]. The Dehnen profile
implies a mass function

F (ρ) = M0

(

ρ

ρ0 + ρ

)3−γ

. (76)

Finally, we could also consider the Navarro-Frenk-White (NFW) profile [26], which is given by

ǫ =
M0

ρ(ρ0 + ρ)2
, (77)

where againM0 is a constant. This model has a logarithmically diverging mass asρ → ∞, and is thus a little less attractive.
It is not easy to solve the TOV equations for the pressurep and the spacetime metric of any of the above models analytically.

However, numerical solutions are easily obtained. Note that all these popular models technically have naked singularities at their
centers. Obtaining relativistic generalizations along the lines followed in this paper would be worthwhile.

IV. CONCLUDING REMARKS

In the present paper we considered a self-bound spherical cloud of perfect fluid and derived static non-vacuum solutionsof the
Einstein equations which posseses a central naked singularity. We showed that these solutions could be obtained asymptotically
as the final result of the slow collapse of a massive matter cloud. The solutions described here closely parallel those we obtained
in [8] for a fluid with pure tangential pressure.

We studied the properties of steady thermal accretion disksin our naked singularity spacetimes. Focusing on those models
that have a disk extending continuously from a large radiusρ down toρ → 0, i.e., models withλ ≥ 1/

√
2 for the perfect fluid

case andM0 ≤ 1/3 for the tangential pressure case, we showed that accretion disk spectra would consist of a multi-temperature
blackbody at low frequencies joining smoothly to a power-law at high frequencies. Notably, the disk luminosity would be
dominated by the high-energy tail, which is a characteristic feature of these models. The spectrum of an equivalent accretion
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disk around a black hole would have only the low-frequency multi-temperature blackbody component and would be missing the
high frequency tail (or at best have a weak tail).

Accretion disks around astrophysical black hole candidates do show power-law tails, but these are usually interpretedas
coronal emission from hot gas above the disk. In those cases where the disk emission is definitely thermal, e.g., in the so-called
Thermal State of accreting stellar-mass black holes [27], the spectrum is invariably dominated by the low-frequency multi-
temperature emission and the power-law tail tends to be quite weak. A number of stellar-mass black holes have been observed
in the Thermal State [28]. In the case of these systems at least we may conclude that the central compact objects are not naked
singularities of the type discussed in the present paper; the objects are presumably true black holes. However, it is notpossible
to state anything with certainty in the case of other black hole candidates that have not been observed in the Thermal State.

The existence of horizons in stellar mass astrophysical sources has been a matter of discussion in recent years (see for example
[1], [29] and references therein). Some observations suggest that the departure of such objects from black holes must bevery
small [30]. All the same, when it comes to more massive sources, excess luminosity from Ultra Luminous X-ray Sources
cannot at present be explained fully by the usual black hole accretion disk models and seem to require the existence of as yet
undiscovered intermediate mass black holes [31].

Since there is a strong thermal cutoff at high frequencies present in the spectrum of the black hole models while it is absent in
the perfect fluid naked singularity models studied here, this strenghtens the argument that the astrophysical sources that exhibit
the same behaviour would be black holes. On the other hand, ultra luminous sources exist in the universe and at present it is
not clear if it will be possible to fit all the observations within the black hole paradigm. It is possible that different kinds of
sources exist in nature, besides black holes, stars and neutron stars. These could be of the singular type discussed hereor could
be regular objects composed of ordinary or exotic matter. All these could possibly form from collapse processes as described
here and they would have their distinctive observational features (see for example [33]). In such a scenario, the comparison and
models such as the ones discussed here may be useful to understand better and analyze future observations.

For the toy models presented here we found that the radiant energy flux and the spectral energy distribution are much greater
as compared to a black hole of the same mass, and therefore we obtained indications that if some sources of similar kind do exist
in the universe it might be possible to distinguish them observationally from black holes.

We also found here that the qualitative features described in [8] are preserved when we consider perfect fluid sources, instead
of sources sustained only by tangential stresses. We can therefore conjecture that the increased flux and luminosity maybe a
generic feature of any source with a singularity at the center where the accretion disk can in principle extend untilr = 0. As it
is known, perfect fluids are important in the context of astrophysics as they can be used to model many sources and objects of
astrophysical relevance. Of course, different matter models will imply different luminosity spectrums that might or might not
eventually be distinguished from one another.

Finally, we note that these models require a certain fine tuning since all the collapsing shells must have the right velocity
so that the effective potential leads asymptotically toṘ = R̈ = 0. Nevertheless the class of static final configurations can be
understood in the sense of an idealized approximation for a slowly evolving cloud with small velocities. In this sense these
scenarios appear to be generic as they approximate a wide variety of slowly evolving matter clouds.
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