
Viscous Torque and Dissipation in the Inner 
Regions of a Thin Accretion Disk: Implications for 
Measuring Black Hole Spin

Citation
Shafee, Rebecca, Ramesh Narayan, and Jeffrey E. McClintock. 2008. “Viscous Torque and 
Dissipation in the Inner Regions of a Thin Accretion Disk: Implications for Measuring Black Hole 
Spin.” The Astrophysical Journal 676 (1) (March 20): 549–561. doi:10.1086/527346.

Published Version
doi:10.1086/527346

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:27814541

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:27814541
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Viscous%20Torque%20and%20Dissipation%20in%20the%20Inner%20Regions%20of%20a%20Thin%20Accretion%20Disk:%20Implications%20for%20Measuring%20Black%20Hole%20Spin&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=bb7a82a9f94f239d69ad2c0557d1542b&departmentAstronomy
https://dash.harvard.edu/pages/accessibility


VISCOUS TORQUE AND DISSIPATION IN THE INNER REGIONS OF A THIN ACCRETION DISK:
IMPLICATIONS FOR MEASURING BLACK HOLE SPIN

Rebecca Shafee,
1
Ramesh Narayan,

2
and Jeffrey E. McClintock

2

Received 2007 May 16; accepted 2007 November 12

ABSTRACT

We consider a simple Newtonian model of a steady accretion disk around a black hole. The model is based on
height-integrated hydrodynamic equations, � -viscosity, and a pseudo-Newtonian potential which results in an inner-
most stable circular orbit ( ISCO) that closely approximates the one predicted by general relativity.We find that, as the
disk thicknessH /R or the value of � increases, the hydrodynamic model exhibits increasing deviations from the stan-
dard thin diskmodel of Shakura and Sunyaev. The latter is an analytical model in which the viscous torque is assumed
to vanish at the ISCO.We consider the implications of the results for attempts to estimate black hole spin by using the
standard disk model to fit continuum spectra of black hole accretion disks.We find that the error in the spin estimate is
quite modest so long asH /R � 0:1 and� � 0:2. At worst, the error in the estimated value of the spin parameter is 0.1
for a nonspinning black hole; the error is much less for a rapidly spinning hole. We also consider the density and disk
thickness contrast between the gas in the disk and that inside the ISCO. The contrast needs to be large if black hole
spin is to be successfully estimated by fitting the relativistically broadened X-ray line profile of fluorescent iron emis-
sion from reflection off an accretion disk. In our hydrodynamic models, the contrast in density and thickness is low
whenH /Rk 0:1, suggesting that the iron line technique may be most reliable in extremely thin disks. We caution that
these results have been obtained with a viscous hydrodynamic model. While our results are likely to be qualitatively
correct, quantitative estimates of, e.g., themagnitude of the error in the spin estimate, need to be confirmedwithMHD
simulations of radiatively cooled thin disks.

Subject headinggs: accretion, accretion disks — binaries: close — black hole physics — X-rays: stars

1. INTRODUCTION

Recently, we reported spin estimates of three black holes (BHs)
in Galactic X-ray binaries (Shafee et al. 2006; McClintock et al.
2006, hereafter S06 and M06, respectively). The results were
obtained by fitting the soft X-ray continuum spectra of these
systems in the thermal state (Remillard & McClintock 2006) to
a general relativistic, multicolor blackbody, thin disk model
(KERRBB; Li et al. 2005), which includes the effect of spectral
hardening (Davis et al. 2005). In this method, which was pio-
neered by Zhang et al. (1997), we assume a razor-thin disk that
terminates at the innermost stable circular orbit ( ISCO). In ad-
dition, we assume that the viscous torque vanishes at the ISCO
and that there is no energy dissipation or angular momentum loss
inside the ISCO. These are standard assumptions in the theory
of accretion disks (e.g., Shakura & Sunyaev 1973; Frank et al.
2002) and correspond to what we refer to in this paper as the
‘‘standard diskmodel.’’ However, there has been debate in recent
times as to the validity of the assumptions.

The stress responsible for angular momentum transport in a
thin accretion disk is likely to be magnetic (Balbus & Hawley
1991). If this is the case, an argument could be made for a non-
zero stress at the ISCO, coupled with considerable dissipation
near and inside the ISCO (Krolik 1999; Gammie 1999). These
effects could cause important deviations from the standard disk
model (Krolik & Hawley 2002), perhaps invalidating our spin
determinations.

Afshordi & Paczyński (2003), following earlier work by
Abramowicz & Kato (1989) and Paczyński (2000), suggested
that the torque at the ISCO increases with increasing disk thick-

ness. Motivated by their work, we argued in M06 that deviations
from the standard disk model are likely to be serious only for
thick disks.We thus restricted our attention to relatively thin disks
with height-to-radius ratios of H /R < 0:1. The present paper is an
attempt to verify whether or not such thin disks do indeed behave
like the standard disk model.

In addition to the debate over the validity of using the stan-
dard disk theory to model the continuum spectra of realistic disks,
another relevant issue in attempting to estimate BH spin is the
relative merit of the continuum fitting method compared to fit-
ting the relativistically broadened fluorescent iron line in the
X-ray spectrum. Both methods have been proposed as a means
of estimating BH spins, and it is of interest to understand how
well the assumptions of each are satisfied by real disks. Themodels
currently used by the iron line method assume that the line emis-
sivity peaks at the ISCO, drops abruptly to zero inside the ISCO,
and decreases steeply as a broken power law outside the ISCO
(e.g., Brenneman & Reynolds 2006, hereafter BR06). This re-
quires, among other things, a significant drop in matter density
(Fabian 2007) or disk thickness (Nayakshin et al. 2000;Nayakshin
& Kazanas 2002) inside the ISCO. A second motivation for the
present paper is therefore to check the validity of the assumed line
emissivity profile.

Our analysis is based on a nonrelativistic hydrodynamic model
of an accretion disk. We present global numerical solutions of the
differential equations governing the fluid flow, assuming that the
accretion disk is steady, axisymmetric and in hydrostatic equi-
librium in the vertical direction, and using a pseudo-Newtonian
model for the gravitational potential.We do not includemagnetic
fields explicitly, but assume an effective viscosity described by
the� prescription (Shakura& Sunyaev 1973).We also assume an
adiabatic index � ¼ 1:5, which corresponds to approximate equi-
partition between gas andmagnetic pressure (Quataert &Narayan
1999).
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Our primary interest is in accretion disks in the rigorously de-
fined thermal state (see Table 2 in Remillard &McClintock 2006)
with H /R < 0:1, as these are the systems of most interest for our
work onBH spin (M06). Since the value of the viscosity parame-
ter� for such disks is amatter of debate, we try different constant
values,� ¼ 0:01, 0.1, and 0.2.We also consider a variable-� pre-
scription (eq. [22]) inspired by the MHD simulations of Hawley
& Krolik (2002, hereafter HK02). For nonspinning BHs, we use
the pseudo-Newtonian potential of Paczyński&Wiita (1980, here-
after PW80), and for spinning black holes we use the pseudo-
Kerr model of Mukhopadhyay (2002). The numerical framework
for our calculations is similar to that used byNarayan et al. (1997),
viz., we use a relaxation method to solve the equations from the
sonic radiusRs to the outer edge of the disk (�105Rs), andwe then
integrate inward from Rs to the event horizon.

The paper is organized as follows.We discuss in x 2 the theory
and computational method. We then discuss in x 3 our numerical
disk solutions, focusing on themagnitude of the stress at the ISCO,
the amount of viscous dissipation near and inside the ISCO, and
the density and disk thickness contrast across the ISCO.We then
compute in x 4 the emitted spectra of our numerical disks for dif-
ferent values of H /R and� and investigate the errorwemakewhen
we estimate the spin of a BH via the continuum fitting method
assuming the standard disk model. We conclude in x 5 with a
discussion.

2. THE MODEL

2.1. Gravity

In order to focus our attention on the key physics of the prob-
lem and to avoid being distracted by technical details, we consider
a simple viscous hydrodynamic accretion disk in a Newtonian
gravitational potential. Since the presence of an ISCO is essential
for our analysis, we simulate relativistic gravity in this Newtonian
model by means of a modified gravitational potential. For a non-
spinning BH, we make use of the PW80 potential,

� ¼ � GM

R� 2Rg
; ð1Þ

where M is the BH mass, G is the gravitational constant, and
Rg ¼ GM /c2. The Keplerian angular velocity �K at a radius R
from the BH is

�K ¼ (GM )1=2

(R� 2Rg)R1=2
: ð2Þ

In the case of a spinning BH we use the pseudo-Kerr model of
Mukhopadhyay (2002) in which the gravitational acceleration of
a test particle in a Keplerian orbit at a distance R from the BH is

F ¼ �:� ¼ c4

GM

(r2 � 2a�
ffiffi
r

p
þ a2

� )
2

r3
ffiffi
r

p
(r � 2)þ a�½ �2

; ð3Þ

where r ¼ R/Rg, a� ¼ a/M ¼ J /(GM 2/c) is the dimensionless
spin of the BH, and�1 < a� < 1. TheKeplerian angular velocity
at radius R is then

�K ¼ c3

GM

(r2 � 2a�
ffiffi
r

p
þ a2

� )

r2
ffiffi
r

p
(r � 2)þ a�½ �

: ð4Þ

2.2. Hydrodynamics

We assume a steady axisymmetric disk in hydrostatic equilib-
rium in the vertical direction. In the equations that follow, which

have a long history in accretion disk theory (e.g., Paczyński &
Bisnovatyi-Kogan 1981; Muchotrzeb & Paczyński 1982; Kato
et al. 1988; Abramowicz et al. 1988; Popham & Narayan 1991;
Narayan & Popham 1993; Chen & Taam 1993; Narayan et al.
1997; Chen et al. 1997), we denote density, sound speed, radial
velocity, angular velocity, Keplerian angular velocity, and vertical
half-thickness by �, cs, vR, �, �K, and H, respectively. All these
parameters are taken to be functions of the cylindrical radius R
only. Because of the assumption of steady state, the Lagrangian
time derivative D/Dt ¼ @/@t þ v = : becomes D/Dt ¼ vR d/dR.
After vertical and then radial integration, the continuity equation
takes the form

4��vRRH ¼ �Ṁ ¼ const; ð5Þ

where H ¼ cs /�K. The momentum equation is

�(v = :)v ¼ �:P � �:�þ ��2Rþ �: = s; ð6Þ

where s is the stress tensor. We assume that the only nonzero
component of s is �R� ¼ ��P (� prescription; Shakura &
Sunyaev 1973), where P is the total pressure and we write P ¼
�cs2 . The radial component of the momentum equation gives

vR
dvR
dR

¼ �(�2
K � �2)R� 1

�

d

dR
(�c2s ); ð7Þ

and conservation of angular momentum gives

�vR
R

d

dR
(�R2) ¼ 1

R2H

d(R2H�R�)

dR
: ð8Þ

The latter equation can be integrated to obtain

�R2 � j ¼ � �c2s R

vR
; ð9Þ

where�R2 is the specific angular momentum of the gas at radius
R and j is an integration constant. We can interpret j as the spe-
cific angular momentum of the accreting gas at the radius where
the stress goes to zero.
Lastly, we write the energy conservation equation in terms of

the Lagrangian derivative of the specific entropy,

�T
Ds

Dt
¼ qþ � q� ¼ fqþ; ð10Þ

where s is the specific entropy per unit mass, and qþ and q� are
the volume rate of heating and cooling of the gas, respectively.
Following Narayan et al. (1997) we take the cooling rate to be
a factor (1� f ) of the heating rate. Narayan et al. used f ¼ 1
because theyweremodeling advection-dominated accretion flows.
Since we are interested primarily in thin disks, we use small val-
ues of f, i.e., substantial cooling, and we tune the value of f to
achieve the desired disk thickness (eq. [19]). The heating of the
gas is due to viscous dissipation, which gives qþ ¼ ��Rd�/dR.
Using the relationship � ¼ P/(� � 1), where � is the thermal en-
ergy per unit volume and � is the adiabatic index (we use � ¼
1:5), we can write

�T
Ds

Dt
¼ �vR

� � 1

dc2s
dt

� c2s vR
d�

dR
: ð11Þ
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Thus, the energy equation takes the form

�vR
� � 1

dc2s
dR

� c2s vR
d�

dR
¼ �f ��c2s R

d�

dR
: ð12Þ

2.3. Boundary Conditions and Numerical Method

We use a relaxation method to obtain numerical solutions of
the above differential equations. In the computations, we define
x ¼ R /Rs as the spatial variable and covered the region x ¼ 1 to
105 using 1000 grid points. The grid has a nonuniform spacing,
with more grid points near the inner boundary x ¼ 1. In solving
the equations, we set�4��vRRH ¼ Ṁ ¼ 1, and in order to sim-
plify the equations we substitute for � using equation (5). Thus,
we are left with three unknown functions of R: vR(R), c2s (R), and
�(R). In addition, we have two unknown constants, j and Rs,
which we treat as eigenvalues. To solve for these quantities, we
use equations (7), (9), and (12), supplemented with five bound-
ary conditions.

Narayan et al. (1997) showed that solutions of the disk model
described in x 2.2 tend to be nearly self-similar over awide range of
radius. Assuming self-similarity (following Narayan & Yi 1994),
we can obtain the following analytic solution of the equations
(the subscript ‘‘ss’’ refers to self-similar),

c2s;ss(R) ¼ c20
GM

R
; c20 ¼ 2

5þ 2�0 þ �2=�0
; �0 ¼ 5=3� �

f (� � 1)
;

ð13Þ

vR;ss(R) ¼ v 0

ffiffiffiffiffiffiffiffiffi
GM

R

r
; v0 ¼ ��

ffiffiffiffiffi
c20
�0

r
; ð14Þ

�ss(R) ¼ �0�K; �0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0

5þ 2�0 þ �2=�0

s
: ð15Þ

Weuse this self-similar solution to set boundary conditions at the
outer boundary Rout,

vR(Rout) ¼ v0

ffiffiffiffiffiffiffiffiffi
GM

Rout

r
; ð16Þ

c2s (Rout) ¼ c20
GM

Rout

; ð17Þ

�(Rout) ¼ �0�K: ð18Þ

From the above relations it can be shown that, at the outer bound-
ary, the vertical scale height H satisfies

H

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

5þ 2�0 þ �2=�0

s
: ð19Þ

Therefore, for a given value of �, we can vary the disk thickness
H /R by changing f. For � ¼ 1:5, f ¼ 0:000035 and 0.0035 give
H /R ¼ 0:01 and 0.1, respectively. Once set at the outer edge, the
value of H /R remains constant over most of the disk, becoming
smaller only near and inside the ISCO.Note that, for the thin disk
models that we consider in this paper which haveH /R � 0:1, the
advection parameter f is very much less than unity. This means
that radiative cooling (which is /1� f ) dominates by a huge
factor over energy advection (/ f ). We briefly discuss thicker
advection-dominated solutions in x 5.

The inner boundary is at the sonic radius, R ¼ Rs, which is a
singular point of the differential equations. Following standard
methods, we obtain the following regularity conditions at Rs,

v2R � 2�

� þ 1
c2s ¼ 0; ð20Þ

�2
K��2

� �
R�c2s

2�

� þ 1

1

R
� d ln�K

dR

� �
�c2s

��1

�þ1

f �R

vR

d�

dR
¼ 0:

ð21Þ

Equations (16)Y (18) and (20)Y (21) provide the five boundary
conditions we need to find a unique solution. Once we have ob-
tained the solution between R ¼ Rs and R ¼ Rout via the relax-
ation method, we use the solution at R ¼ Rs as initial conditions
and integrate the equations from Rs down close to the BH event
horizon.

We should emphasize that we do not set any boundary condi-
tion at the ISCO. Instead, we apply the boundary conditions at
the sonic radius, whose position is computed self-consistently for
each solution. Further, even at the sonic radius, the viscous torque
is not set to zero—the torque is computed self-consistently and is
allowed to continue smoothly inside the ISCO. The numerical
solutions we obtain are thus superior to the standard disk model
and can be used to check the validity of the latter. In particular,
we can estimate what error one makes in the standard disk model
as a result of the zero-torque boundary condition.

3. RESULTS

3.1. Numerical Solutions

Figure 1 shows model results for a nonspinning BH. We con-
sider two disk thicknesses, H /R ¼ 0:01 (solid lines) and 0.1
(dotted lines). In all four panels the vertical line shows the posi-
tion of the ISCO (R ¼ 6Rg). We useG ¼ M ¼ c ¼ 1, so that the
unit of velocity and time are c and GM /c3, respectively, and set
Ṁ ¼ 1. Most of our models correspond to a constant value of � .
However, we also consider a model in which � varies as a func-
tion of R,

� ¼ 16:8

(R=Rg)
3
þ 0:1; ð22Þ

which closely reproduces the effective profile of � found byHK02
(see their Fig. 4). We refer to this as the ‘‘variable-� model.’’

Figure 1a shows the variation of the sound speed squared c2s
as a function of radius R. For a given thickness, the different �
models overlap at large radii and are only distinguishable in the
inner region of the disk. Here and in the figures that follow, the
magenta, blue, red, and green lines refer to the � ¼ 0:01, 0.1,
0.2, and variable-� models, respectively. Figure 1b shows the
radial infall velocity vR of the accreting gas.We see that, between
the ISCO and the event horizon, vR increases rapidly regardless
of the value of � . The variable-� model almost completely over-
laps with the � ¼ 0:1 model even at large radii. Figure 1c shows
the angular velocity � and Keplerian angular velocity �K. The
profiles of � for the different values of � andH /R are not distinct
and are represented by the single dotted line. The solid red line
corresponds to the Keplerian angular velocity. Note that the gas
orbits in a nearlyKeplerian fashion until it reaches the ISCO.There-
after, the hydrodynamic forces maintain an orbital motion that be-
comes increasingly sub-Keplerian as the gas approaches the event
horizon. Figure 1d shows the gas density � as a function of radius.
As in the case of the sound speed (Fig. 1a), the density reaches a
maximum outside the ISCO and then decreases rapidly near the
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event horizon. In this plot, too, the variable-� model coincides
with the � ¼ 0:1 model.

Figure 2 is in the same format as Figure 1 and presents our
results for a spinning BH with a� ¼ 0:95. The principal differ-
ence from the previous figure is that the ISCO (vertical dashed
line) is now located at R ¼ 1:937Rg. We consider the same val-
ues of � andH /R as in Figure 1, but there is no variable-� model
in this case because HK02 considered only a nonspinning BH.

3.2. Matter Density, Disk Thickness, and the Iron Line Method

Before presenting ourmain results in the following subsections,
we briefly consider the implications of our models for the deter-
mination of spin via the iron line method. The source geometry
and illumination law for producing the fluorescence iron line
are probably the largest uncertainties in the line fitting method
(Reynolds&Begelman 1997). If we assume the steepest law that
is suggested by Reynolds & Begelman (1997), then the irradi-
ating flux FX � R�3. Let us write the emissivity function in the
form fFeFX, where fFe is an efficiency factor. In this section we
investigate if the existing models of fFe in the literature agree
with our hydrostatic models.

The currently favored iron line models (BR06) assume that
the iron line emission is restricted between RISCO and an outer
radius Rout and that, within this region, the line profile is fitted by
a broken power law. BR06 find that the emissivity varies as
�R�6 between the break radius Rbr and RISCO, and as �R�3 be-
tween Rbr and Rout. For FX � R�3, this implies the following
form for the efficiency function,

fFe(BR06) ¼
0; R < RISCO;

1=R3; RISCO � R � 3RISCO;

const; 3RISCO < R:

8><
>: ð23Þ

Below we discuss the two main theories regarding the physical
parameters that might affect the emissivity profile.
Constant-density models (Ross & Fabian 1993; Życki et al.

1994; Ross et al. 1999) predict that the line emissivity is depen-
dent on the ionization parameter, which is proportional to FX/�,
where � is the gas density and FX is the illuminating flux. It is
argued that the gas density drops to very low values inside the
ISCO. As a result, the region inside the ISCO has a very high
ionization parameter, which in turn produces negligible iron line

Fig. 1.—Disk parameters for a nonspinning BH: (a) sound speed, (b) radial velocity, (c) angular velocity, and (d ) density. In (a), (b), and (d ), the solid and dotted lines
correspond to H /R ¼ 0:01 and 0.1, respectively; where distinct, the magenta, blue, red, and green lines represent � ¼ 0:01, 0.1, and 0.2, and variable � (eq. [22]), re-
spectively. In all three panels, the variable-� model is nearly coincident with the � ¼ 0:1 model. In (c), the Keplerian velocity is plotted as a solid red line. Because the
angular velocity profile of the fourmodels are nearly identical, we represent them by a single dotted line. The radius of the ISCO,R ¼ 6Rg, is indicated in all four panels by
the vertical dashed line. All numerical values correspond toG ¼ c ¼ M ¼ 1; Ṁ ¼ 1. In (c), the unit of angular velocity is (GM /c3)�1. In (d ), the unit of � is c6/(G3M 2).
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emission (Reynolds&Begelman 1997; Young et al. 1998; Fabian
2007). In this case, one would expect fFe to be inversely related to
ionization, i.e., fFe should be a function of �(R) /FX(R) / �(R)R3.
More detailed calculations that solve for the vertical structure of
the disk under hydrostatic equilibrium (e.g.,Nayakshin et al. 2000;
Nayakshin & Kazanas 2002) suggest that the line emission de-
pends on a ‘‘gravity factor’’ �(H /R3)FX. If that is the case, then
for FX � R�3, one expects the efficiency function fFe to be pro-
portional to H.

In Figure 3, we compare the BR06 efficiency function fFe(BR06)
(eq. [23]) to those suggested by our hydrostatic models, in the
context of the constant-density and gravity theories mentioned
above. Figure 3a shows �(R)R3 as a function of radius. The line
types/colors for the various models are the same as those defined
in Figure 1. Superimposed on our density profiles is a thick short-
dashed black line that represents fFe(BR06). For both H /R ¼ 0:01
(solid lines) and 0.1 (dotted lines), and all values of � , we note
that �(R)R3 is an increasing function of radius, implying that fFe
should also increase with increasing radius. There is no apparent
reason why fFe should increase so steeply near the ISCO, or de-
crease at large radii, as suggested by fFe(BR06).

Figure 3b shows a similar plot for a rapidly spinning BH with
a� ¼ 0:95. We notice the same trends as in Figure 3a. In this

case, we also notice that (especially for H /R ¼ 0:1), instead of
becoming negligible at the ISCO, �(R)R3 decreases gradually
as one passes the ISCO and moves closer to the event horizon.
Therefore, one does not expect fFe to drop abruptly to zero at
the ISCO.

In Figures 3c and 3d, we consider the disk thickness in the
inner region. In our models, the disk has a more or less constant
thickness specified by H /R outside �100Rg, and we vary this
‘‘outer thickness’’ by changing the value of f (eq. [19]). How-
ever, in the inner region, the disk gets thinner. Figure 3c shows
H as a function of R for a nonspinning BH. The top panel of Fig-
ure 3c shows a disk with outer thickness of 0.01 and the bottom
one shows a disk with outer thickness of 0.1 for the choices of �
specified in x 3.1. In the thinner case, there is an abrupt drop in
H, which would likely quench the iron emission from inside the
ISCO. For the thicker case, however, the value of H decreases
gradually and remains significant far inside the ISCO at 3Rg.
Thus, these models indicate that the region within the ISCOmay
contribute a significant fraction of the total iron line emission
and, also, that it is difficult to justify the steeply falling form of
fFe(BR06). As shown in Figure 3d, the results for a BH with a� ¼
0:95 (RISCO ¼ 1:973Rg) are very similar. Again, for H /R ¼ 0:1
the disk thicknessH decreases gradually near andwithin the ISCO.

Fig. 2.—Same as Fig. 1, but for a spinning BHwith a� ¼ 0:95. The vertical dashed line shows the ISCO at R ¼ 1:937Rg. There is no variable-� model in this case (see
text), and hence, the green line is not present in these plots.
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We hasten to add that this is a very simple model of an accre-
tion disk, perhaps too simple to address ‘‘surface phenomena’’
such as fluorescent iron line emission. Modulo this important
caveat it seems that, for reasonable values of the model pa-
rameters, the iron line emission does not necessarily end at the
ISCO, nor does it vary with radius outside the ISCO with any-
thing like the functional form assumed in current fits of iron line
data (e.g., BR06).

3.3. Viscous Stress Near the ISCO

Figure 4 shows the vertically integrated stress 2H�P for a
nonspinning BH. As shown in Figure 4a, all the models corre-
sponding to a very thin disk are in close agreement with the stan-
dard model, i.e., the stress nearly vanishes at the ISCO even
though we do not require this of the model. For the thicker disk
shown in Figure 4b, the stress near and inside the ISCO in-
creases, the effect becoming more important for larger values
of � . Interestingly, for � ¼ 0:01, the magnitude of the peak
stress is actually smaller than that predicted by the standard disk
model.

As shown in Figure 5, our models for a spinning black hole
display essentially this same dependence of stress onH /R and� .
In both Figures 4 and 5, the presence of a nonzero viscous stress
inside the ISCO implies a contribution to the observed spectrum
that is not accounted for in the standard disk model. In x 4 we
investigate the magnitude of this effect.
We now consider the effect of � and disk thickness on the

eigenvalue j (x 2.2), which is the specific angular momentum
delivered to the black hole by the infalling matter. In the standard
disk model, j is the Keplerian specific angular momentum at the
ISCO because (1) matter is assumed to orbit at the Keplerian
velocity and (2) the stress is assumed to vanish inside the ISCO.
Neither assumption is made in our hydrodynamic models, and it
is therefore of interest to consider howmuch the calculated values
of j differ from the standard value. Table 1 summarizes the values
of j for our different models. We note that j decreases with in-
creasing H /R and � . That is, as the disk gets thicker or as � in-
creases, more angular momentum is removed before matter falls
into the BH. However, the effects are quite small, and the devi-
ations are less than 1% in all cases.

Fig. 3.—Profiles of �(R)R3 (a, b) and disk thicknessH (c, d ) in the inner regions. For the line types/colors defining the various models and the location of the ISCO, see
Figs. 1 and 2. Superimposed on ourmodels in all of the panels is a thick black line that schematically represents the emissivity profile efficiency, fFe, assumed in the iron line
work in which the emissivity cuts off abruptly inside the ISCO and falls off as a steep power law outside the ISCO (eq. [23]). Panel (a) shows �(R)R3 as a function of radius
for a nonspinning BH. Panel (b) shows a similar plot for a� ¼ 0:95. Panels (c) and (d ) show disk thicknessH as a function of radius for a� ¼ 0 and 0.95, respectively, for
disks with asymptotic values of H /R ¼ 0:01 and 0.1. In panels (a) and (b), the normalizations used for H /R ¼ 0:01 and 0.1 are different.
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3.4. Dissipation inside the ISCO

In x 3.3 we showed that the stress at the ISCO is small, but
nonzero, and that it increases with disk thickness and � . We now
consider the energy dissipation profiles of our model disks for
different values of � and H /R. Figure 6 shows the quantity

R
dL

dR
¼ dL

d ln R
¼ �Ṁ�c2s R

2

vR

d�

dR
¼ 4�R2D(R) ð24Þ

as a function of R. Here L is the luminosity and D(R) is the
energy dissipated per unit time per unit surface area of the disk.
Figures 6a and 6b show RdL/dR versus R for a� ¼ 0, while Fig-
ures 6c and 6d show the results for a� ¼ 0:95. The solid black
lines show the standard disk model with zero torque at the ISCO.
For the thin disk with H /R ¼ 0:01 and for all values of � , our
models are indistinguishable from the standardmodel, which thus
provides an excellent description of the flow in this case. How-
ever, for the thicker disk with H /R ¼ 0:1, our numerical models
deviate somewhat from the standard disk model. We note in par-
ticular that larger values of � are associated with more dissi-
pation near the ISCO and larger deviations from the standard
disk model.

In Table 1 we summarize the total luminosities of the different
models for a given mass accretion rate Ṁ . We note that none of
the luminosities of our models deviates by more than 4% from
that of the standard model.

4. DISK SPECTRA AND THE EFFECT
ON BH SPIN ESTIMATION

In the standard disk model, the viscous dissipation is assumed
to vanish at the ISCO. As a result, the emitted flux also vanishes
at the ISCO, and no radiation is emitted from the region of the
flow between the ISCO and the event horizon. For a given BH
mass, the radius of the ISCO is a well-known and monotonically
decreasing function of a�, e.g., for a� ¼ 0 and 1, the ISCO is
located at 6Rg and 1Rg, respectively. As discussed in Zhang et al.
(1997), S06, andM06, the radiusRin of the inner edge of the disk
can be estimated from observations. For a BH of known mass,
this radius can be expressed in units of Rg, and if the disk inner
edge is located at the ISCO, then Rin/Rg determines the spin
parameter a�.

From the calculations presented in this paper, we see that for a
very thin disk (H /R ¼ 0:01) the viscous dissipation does indeed
become negligible inside the ISCO and the dissipation profile
R dL/dR is identical to that predicted by the standard disk model.

Fig. 4.—Vertically integrated stress 2H�P(;104) for a nonspinning BH. In both panels the standard disk model is plotted as a thick solid line. For the line types /colors
defining the various models and the location of the ISCO, see Fig. 1. (a) ForH /R ¼ 0:01, all four models are seen as indistinguishable from the standard model. (b) For the
thicker disk, the models can be cleanly distinguished inside R � 15Rg. All numerical values correspond to G ¼ c ¼ M ¼ 1; Ṁ ¼ 1.

Fig. 5.—Same as Fig. 4, but for a� ¼ 0:95. As in Fig. 2, there is no variable-� model, and the ISCO is located at R ¼ 1:937Rg.
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Thus, for such systems we expect our estimates of BH spin to
be quite accurate. However, we do notice a difference for thicker
disks with say H /R � 0:1. Using the standard disk model to fit
the observed spectra of these systems will lead to an error in our
estimate of the radius of the ISCO. We now try to quantify this
error.
For each of our disk solutions, we have calculated the emitted

spectrum assuming that the disk emits like a blackbody at each
radius. The temperature profile T (R) of the disk surface can be
calculated from dL /dR using

(1� f )
dL

dR
¼ 4��RT 4(R); ð25Þ

where � is the Stefan-Boltzmann constant. This can be used to
calculate the observed spectrum of the disk by integrating over
the entire disk,

F� ¼
2� cos i

D2

Z Rout

Rinner

2h�3RdR

c2e h�=kT (R)½ ��1
; ð26Þ

where h is the Planck constant, c the speed of light, k the
Boltzmann constant, D the distance, i the angle of inclination, �

TABLE 1

Luminosities and Angular Momentum Eigenvalues

of the Numerical Disk Models

a� H /R �
Ltot

(Ṁc2)

Ltot (std)

(Ṁc2) j jstd

0.................... 0.01 0.01 0.0624 0.0625 3.6744 3.6742

0.1 0.0625 3.6735

0.2 0.0626 3.6727

Variable 0.0626 3.6730

0.1 0.01 0.0610 3.6839

0.1 0.0633 3.6609

0.2 0.0650 3.6456

Variable 0.0646 3.6518

0.95............... 0.1 0.01 0.2091 0.2144 2.3372 2.3311

0.1 0.2171 2.3237

0.2 0.2227 2.3146

Note.—The subscript std refers to the standard thin disk model.

Fig. 6.—Rate of energy dissipation RdL/dR as a function of radius R for models of a nonspinning BH (a, b) and a spinning BH (c, d ). For the line types/colors defining
the variousmodels and the location of the ISCO, see Figs. 1 and 2. Themodels shown for the thinner disks coincide with the standard diskmodel, whereas the thicker disks
deviate somewhat from the standard model.
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the frequency, and Rinner the radius of the inner boundary of the
disk, near the event horizon.

Figure 7 shows our calculated spectra for a BH with mass
M ¼ 10 M� and distance D ¼ 10 kpc. In each panel the solid
line shows the spectrum from a standard disk model with the ap-
propriate pseudo-Newtonian potential. As before, we have con-
sidered three constant values of � , 0.01, 0.1, and 0.2, for both the
spinning and nonspinning cases, and an additional variable-�
model for the nonspinning case.

Figures 7a and 7b show the calculated spectra for the case of
a nonspinning BH. For H /R ¼ 0:01, we see that the calculated
spectra for all four models of � overlap with the spectrum cal-
culated via the standard disk model. Therefore, we can conclude
that, for such very thin disks, the standard disk model is a very
good approximation and that the choice of � cannot be a major
source of error in estimating BH spin. The different lines are
more distinct in the case of a thicker disk with H /R ¼ 0:1 (ma-
genta, blue, red, and green lines show the � ¼ 0:01, 0.1, 0.2, and
variable-� models). The differences are especially noticeable at
high photon energies, where larger values of � give higher
fluxes. Figures 7c and 7d show H /R ¼ 0:1 disk spectra for a� ¼
0:8 and 0.95.

To estimate how the spectral distortions might affect BH spin
determination, we produced spectral data files for our models
using an RXTE response file and analyzed the data with XSPEC
version 12.2.0. These ‘‘fake’’ data fileswere fittedwith theXSPEC
model Diskpn (Gierlinski et al. 1999), which uses the standard
disk model with the PW80 potential and a zero-torque boundary
condition at the ISCO.Diskpn has three fit parameters,Tmax,Rin/Rg,
and normalization K ¼ M 2 cos i /D2�, where M is the mass, D
the distance, i the angle of inclination, and � the color correction
factor. We are interested in the case when the inner edge of the
disk coincides with the ISCO. Thus, sinceDiskpn considers a non-
spinning BH, we set Rin ¼ 6Rg. The constant K can then be re-
written as

K ¼ Rin

8:86 ; 106 cm

� �2
D

10 kpc

� ��2
cos i

�
: ð27Þ

In the above expression, 8:86 ; 106 cm corresponds to 6Rg ¼
RISCO for a nonspinning black hole with M ¼ 10 M�. From the
value of K obtained from spectral fitting, one can calculate Rin

for each model using equation (27). Using this value of Rin, one
can then calculate the BH spin for which the ISCO would be

Fig. 7.—Spectra corresponding to the numerical disk models described in this paper for models of a nonspinning BH (a, b) and spinning BHs with thicker disks for
a� ¼ 0:8 (c) and a� ¼ 0:95 (d ). For the line types /colors defining the various models, see Figs. 1 and 2. Again, the different models are essentially indistinguishable in the
case of the thin disk (a).
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located at that radius. This is the spin that one infers from the
fake spectral data, under the assumption that the standard disk
model is correct. Since the model was calculated with full vis-
cous hydrodynamics as described in previous sections, the spin
value derived assuming the standard disk model will be different
from the true BH spin (a� ¼ 0 in this case). The difference be-
tween the two values represents the error in the spin estimate,
�a�, caused by our use of the simplified standard disk model.

The results of this analysis are summarized inTable 2. The results
correspond to M ¼ 10 M�, D ¼ 10 kpc, cos i ¼ 1, and � ¼ 1.

Figure 8a shows the results in more detail for H /R ¼ 0:01,
0.02, 0.04, 0.06, 0.08, and 0.1. Figure 8b shows the results for the
variable-� model as a function of disk thickness. We see that the
error is larger for thicker disks and also for larger values of � .
However, even for the thickest case we considered, H /R ¼ 0:1,
and the largest value of � ¼ 0:2, the BH spin is overestimated
by less than 0.1. Thus, in the case of a nonspinning BH the error
is quite modest when one considers, for example, that both the
radius of the ISCO and the binding energy at the ISCO differ
only slightly (by 6%) for a BH with a� ¼ 0:1.

Although a similar standard pseudo-Kerr XSPECmodel is not
available for fitting our spinning BH model spectra, it is still
possible to estimate �a� by calculating the model luminosities.
Gierlinski et al. (1999) showed that, for a nonspinning BH with
the PW80 potential, one can write

L ¼ 1

16
Ṁc2 ¼ 35:7

��

� 4
R2
inT

4
max; ð28Þ

where L is the luminosity, � the Stefan-Boltzmann constant, �
the color correction factor, Rin the radius of the inner edge of the
disk, and Tmax the peak temperature of the disk. Therefore, instead
of calculating the multicolor blackbody spectrum of our models
and fitting them with XSPEC, we could simply compare each
hydrodynamicmodel with the corresponding standard diskmodel
with the same Tmax. This gives the following estimate for the ef-
fective disk inner radius Rin of any given hydrodynamic model,

R2
in ¼

Lmodel

Lsd
R2
ISCO; ð29Þ

where Lmodel is the luminosity of the model, Lsd is the luminosity
of the standard disk with the same value of Tmax, and RISCO is the
radius of the ISCO. The value of Rin obtained using equation
(29) may then be used to calculate �a�, as before.
Figure 9a shows�a� values calculated using both the full spec-

tral fitting method via equation (27) and the simpler luminosity-
temperature method described by equation (29). We see that the
results are very close, indicating that the secondmethod is a good
proxy for the more detailed spectral method.
For a spinning BH, equation (28) can be generalized to

L ¼ �Ṁc2 � c0
��

� 4
R2
inT

4
max; ð30Þ

where � is the spin-dependent efficiency of the BH and c0 is a
constant. Therefore, equation (29) can again be used to estimate
the effective Rin, and this can be used to obtain an estimate of the
BH spin.
Figure 9b shows�a� for spinning BHs using this method. We

show results for a� ¼ 0:7, 0.8, 0.9, and 0.95, andH /R ¼ 0:1. For
a given disk thickness and� , we see that the error in the spin esti-
mate becomes smaller as the spin of the BH increases. For a� ¼
0:95, the maximum error is only �0.01.

5. DISCUSSION

In this paper we studied the properties of a simple hydrody-
namic model of an accretion disk using the � prescription for
viscosity. We considered models with finite thicknessesH /R and
different values of � . Our aim was to investigate how much the

TABLE 2

Errors in Spin Estimation of a Nonspinning BH

H /R � Rin/(8:86 ; 106 cm) �a�

0.01............................. 0.01 1.011 �0.011

0.1 1.008 �0.008

0.2 1.006 �0.006

Variable 1.007 �0.004

0.1............................... 0.01 1.021 �0.019

0.1 0.960 0.037

0.2 0.920 0.074

Variable 0.879 0.060

Fig. 8.—(a) Error in the spin estimate as a function of� for a BHwith a true spin parameter of a� ¼ 0. The quantity�a� is equal to the value of a� obtained fromfitting
themodel spectrumminus the true a�. The different lines correspond to different relative thicknessesH /R of the disk. (b) Error in the spin estimate for the variable-� profile
as a function of disk thickness. In (a), note the variable offset from zero error that occurs near� ¼ 0:01, which is not visible in the previous figures for which the different�
models nearly coincide with the standard disk model.
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hydrodynamic models of thin disks deviate from the idealized
‘‘standard disk model’’ which assumes a vanishing torque at the
innermost stable circular orbit ( ISCO).

Wefind that the deviations of the viscous hydrodynamicmodels
from the standard disk model increase with increasing H /R and
increasing � . However, even for H /R ¼ 0:1 and � ¼ 0:2, the
largest values we tried for our thin disk calculations, the devia-
tions remain modest. This is illustrated in Figures 4 and 5, which
show how the stress profile deviates from that of the idealized
standard disk model, and also in Figure 6, which compares the
profiles of the viscous energy dissipation rate RdL/dR, Figure 7,
which shows the multicolor blackbody spectra of the models, and
Table 1, which gives some quantitative results. In all cases, we see
that the detailed hydrodynamic models match the standard disk
model quite closely.

Weweremotivated to do this study because we and others have
used the standard disk model to fit the continuum spectra of BH
X-ray binaries in the thermal state in order to estimate the spins
of the BHs. How much error do we expect in the estimated spin
values as a result of the fact that a real disk deviates from the
standard diskmodel?At least for the simple hydrodynamicmodels
we have considered in this paper, the answer is that the errors are
quite modest.

Quantitative results are given in Table 2 and Figures 8 and 9.
The error�a� in the derived estimate of BH spin is at most�0.1
in the case of a nonspinning BH and is much less for rapidly
spinning BHs. These errors are comparable to or smaller than the
errors that arise from uncertainties in our estimates of mass, dis-
tance, and disk inclination (S06; M06).

While these results are very encouraging for our program to
estimate BH spin through fitting the continuum spectra of BH
accretion disks in the thermal state, we must note some caveats.
First and foremost, we have considered a highly simplified toy
hydrodynamic model with an � prescription for viscosity. Real
disks doubtless have magnetic fields, and the stresses associated
with these fields probably do not behave like microscopic vis-
cosity. Indeed, it is precisely this argument that has been used
by Krolik (1999), Gammie (1999), and HK02 to question the
zero-torque boundary condition at the ISCO. On the other hand,
Paczyński (2000) makes an equally persuasive argument (based
on the angular momentum conservation equation) that, so long
as the shear stress is smaller than the pressure, a thin disk will
always satisfy the zero-torque condition.

In an attempt to include some of the effects of magnetic fields,
we have considered a model in which we allowed � to vary with
radius (see eq. [22]) in such a manner as to closely mimic the ef-
fective � obtained by HK02 from their MHD simulations. Even
though in this model � increases rapidly with decreasing radius,
especially inside the ISCO, we found that none of our results
changed. Based on this findingwe cautiously suggest that the inclu-
sion of magnetic fieldsmay not significantly alter our conclusions.

One question that needs to be addressed is why our results dif-
fer so much from those obtained by HK02. From MHD simula-
tions of magnetized gas accreting in a PW80potential, those authors
concluded that the vertically integrated magnetic stress increases
monotonically with decreasing radius all the way through and in-
side the ISCO. This is dramatically different from the behavior
we find, as a comparison of HK02’s Figure 10 with our Figure 4
shows. A likely explanation is that we have limited our study to
thin disks (H /R ¼ 0:01 and 0.1) in which we simulated strong
cooling by choosing a small value for the advection parameter f
(see the discussion below eq. [19]). HK02, by contrast, had no
cooling in their MHD simulation, so their gas retained whatever
energy was generated through shocks, making their disk thicker.

In order to verify that this difference is important, we calculated
models with larger values of f using our viscous hydrodynamic
code. It is hard to know what effective value of f is most appro-
priate tomatch theHK02 simulation. Nominally, theirswas a fully
advection-dominated accretion flow, since they had no cooling at
all; this means that their simulation corresponded to f ¼ 1. How-
ever, we do not know how well their code conserved energy.
Therefore, we calculated three models with f ¼ 1, 0.5, and 0.25,
all with the variable-� prescription (eq. [22]) which most closely
matches their stress profile. Figure 10 shows the resulting stress
profiles. We see that these advection-dominated models do ex-
hibit a monotonically increasing stress inward, exactly as found
byHK02 (their Fig. 10). The stress profiles are very different from
those we find for cooling-dominated thin disks (our Figs. 4 and
5). Thus, we tentatively suggest that a large part of the difference
between the results we find in this paper and those obtained by
HK02 is related to the differing treatments of the energy equation
of the gas, viz., cooling-dominated thin disk regime versus ad-
vection-dominated thick disk regime. In other words, we confirm
the original insight of Abramowicz & Kato (1989), Paczyński
(2000), and Afshordi & Paczyński (2003) on the strong relation
between disk thickness and the stress at the ISCO. However, only

Fig. 9.—(a) Error in the spin estimate �a� for a nonspinning BH, calculated using spectral fitting and eq. (27) (solid lines) and from eq. (29) (dotted lines). The
agreement is very good, showing that the simpler approach via eq. (29) is quite accurate. (b) Plots of�a� as a function of � for BHs with different values of a�, calculated
using eq. (29).
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a detailed MHD study of an accretion disk with significant cool-
ing can tell for sure if this interpretation is correct, and to our know-
ledge nobody has carried out such a study.

Another limitation in our work is that we used a Newtonian
model and we simplified the thermodynamics of the gas in the
disk via the advection parameter f (see eq. [10]). However, doing
the calculations in general relativity with full radiation thermo-
dynamics will, we believe, introduce modifications only of order
unity. The changes will be larger for a spinning BH, which we
modeled with the Mukhopadhyay (2002) model, compared to a
nonspinning hole (PW80 potential), but we think the error will
still be only of order unity. Therefore, calculating these effects in
more detail will not greatly alter our qualitative conclusion that the
standard diskmodel is adequate so long as the disk is geometrically
thin. Nevertheless, it would be useful to extend this work using a
more complete set of disk equations, such as those employed in
the study of slim disks (Abramowicz et al. 1988), and with the
inclusion of general relativity (e.g., Abramowicz et al. 1997).

Note that we employed the two pseudo-Newtonian potentials
mentioned above in the work reported here merely to obtain a
ballpark estimate of the error associated with the zero-torque ap-
proximation. When we actually fit data to estimate the spin pa-
rameters of BHs (e.g., S06; M06), we use a detailed model (Li
et al. 2005) which assumes the Kerr metric and includes all special
relativistic and general relativistic effects.

In our work on BH spin (S06; M06), we limited ourselves to
disks with luminosities less than 30% of Eddington, which cor-
responds to vertical thicknesses H /R < 0:1. The present study
shows that this was a reasonable choice. For H /R � 0:1, the ef-
fects of gas physics and finite vertical thickness in our hydro-
dynamicmodels are not serious. Equally clearly, for thicker disks
withH /Rmuch greater than 0.1, the effects will be large; e.g., see
Figure 10. Therefore, one should be cautious about applying
the standard disk model to disks more luminous than 30% of
Eddington. For this reason, we believe the results obtained by

Middleton et al. (2006) for the spin of the microquasar GRS
1915+105 should be taken with caution.

Strong observational evidence that fitting the X-ray continuum
is a promising way to estimate black hole spin comes from a long
history of fitting the broadband spectra of black hole transients
using the simple nonrelativistic multicolor disk model (Mitsuda
et al. 1984; Makishima et al. 1986), which returns the temper-
ature Tin at the inner disk radius Rin. In their classic review,
Tanaka & Lewin (1995) give examples of the steady decay (by
factors of 10Y100) of the thermal flux of transient sources during
which Rin remains constant. They remark that the constancy of
Rin suggests that it is related to the radius of the ISCO. More
recently, this evidence for a constant inner radius in the thermal
state has been presented for a number of sources via plots showing
that the bolometric luminosity of the thermal component is ap-
proximately proportional to T 4

in (Kubota & Makishima 2001,
2004;Abe et al. 2005;McClintock et al. 2007). In short, these non-
relativistic analyses, which ignore spectral hardening (Davis et al.
2006), provide evidence for the presence of a stable radius, al-
though they obviously cannot provide a secure value for the radius
of the ISCO or even establish that the stable radius is the ISCO.
We now consider the iron line method of estimating spin. In

this method, it is assumed that the line emission ceases abruptly
at the ISCO, so an important question is whether or not the gas
inside the ISCO will fluoresce (Reynolds & Begelman 1997).
The possibility of line emission from inside the ISCO is usually
discounted on the grounds that the density will fall suddenly in-
side the ISCO, thus causing a sudden increase in the ionization
parameter (Fabian 2007 and references therein). Alternatively,
and to the same effect, it is argued that emissivity is related to
the ‘‘gravity parameter’’ (Nayakshin et al. 2000; Nayakshin &
Kazanas 2002) and should depend on H.We see in Figure 3a that
the density-dependent function �(R)R3 does become negligible
inside the ISCO for the nonspinning BH. However, that is not
the case for a fast spinning BH with a� ¼ 0:95 (Fig. 3b) even for
a small disk thickness of H /R ¼ 0:1. In addition, the radial de-
pendence of H shown in Figures 3c and 3d implies that there
should be emission from the inner region unless the disk is very
thin (H /R ¼ 0:01).
An additional complication for iron line modeling is that the

emissivity is assumed to vary as a broken power law,with themax-
imum emission occurring exactly at the ISCO (e.g., BR06). Look-
ing at Figure 3, such an ad hoc model would be hard to justify if
the emissivity has anything to dowith gas density or disk thickness.
In contrast, the continuum fitting model has the merit that it makes
use of a physically motivated profile of disk emission R dL/dR
which can be calculated from first principles in the standard disk
model and which continues to be valid even in the more general
hydrodynamic models described in this paper (Figs. 6 and 7).
This paper has focused on only one aspect of BH spin esti-

mation, viz., the validity of assumptions made in various methods
of spin determination regarding the hydrodynamical properties of
the accretion disk. Of course, a successful determination of spin
needs more than a valid disk model. It also requires high-quality
data and accurate determination of secondary system parame-
ters. A discussion of these issues is beyond the scope of this paper,
and the reader is referred to appropriate papers in the literature
(e.g., M06; BR06).

The authors thank Niayesh Afshordi and Jonathan McKinney
for discussions and useful suggestions. We dedicate this paper to
Bohdan Paczyński for his amazing insights in accretion theory
and in numerous other areas of astrophysics.

Fig. 10.—Vertically integrated stress profile as predicted by the standard disk
model for a nonspinning BH (PW80 potential; thick red solid line). The other
lines show the stress profiles of three hydrodynamic disk models with advection
parameter values f ¼ 0:25 (short-dashed line), 0.5 (dotted line), and 1 (long-
dashed line). All threemodels use the variable-� prescription (eq. [22]), and their
stress profiles have been scaled to match the standard model at R ¼ 15Rg. A
logarithmic scale has been used to facilitate comparison with the MHD simula-
tion result shown in Fig. 10 of HK02.
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Muchotrzeb, B., & Paczyński, B. 1982, Acta Astron., 32, 1
Mukhopadhyay, B. 2002, ApJ, 581, 427
Narayan, R., Kato, S., & Honma, F. 1997, ApJ, 476, 49
Narayan, R., & Popham, R. 1993, Nature, 362, 820
Narayan, R., & Yi, I. 1994, ApJ, 428, L13
Nayakshin, S., & Kazanas, D. 2002, ApJ, 567, 85
Nayakshin, S., Kazanas, D., & Kallman, T. 2000, ApJ, 537, 833
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