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Abstract

Circulating levels of fibroblast growth factor 23 (FGF23) are elevated in patients with chronic 

kidney disease (CKD), but the mechanisms are poorly understood. Here we tested whether 

inflammation and iron deficiency regulate FGF23. In wild-type mice, acute inflammation induced 

by single injections of heat-killed Brucella abortus or interleukin-1β (IL-1β) decreased serum iron 

within 6 hours, and was accompanied by significant increases in osseous Fgf23 mRNA expression 

and serum levels of C-terminal FGF23, but no changes in intact FGF23. Chronic inflammation 

induced by repeated bacteria or IL-1β injections decreased serum iron, increased osseous Fgf23 
mRNA and serum C-terminal FGF23, but modestly increased biologically active, intact FGF23 

serum levels. Chronic iron deficiency mimicked chronic inflammation. Increased osseous FGF23 

cleavage rather than a prolonged half-life of C-terminal FGF23 fragments accounted for the 

elevated C-terminal FGF23 but near-normal intact FGF23 levels in inflammation. IL-1β injection 

increased Fgf23 mRNA and C-terminal FGF23 levels similarly in wild-type and Col4a3KO mice 

with CKD, but markedly increased intact FGF23 levels only in the CKD mice. Inflammation 

increased Fgf23 transcription by activating Hif1α signaling. Thus, inflammation and iron 

deficiency stimulate FGF23 production. Simultaneous upregulation of FGF23 cleavage in 

osteocytes maintains near-normal levels of biologically active, intact circulating FGF23, whereas 

downregulated or impaired FGF23 cleavage may contribute to elevated intact serum FGF23 in 

CKD.
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Introduction

Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that is essential for 

maintaining normal phosphate and vitamin D homeostasis.
1
 FGF23 inhibits renal phosphate 

reabsorption by downregulating expression of the sodium-phosphate cotransporters NPT2a 

and NPT2c, and decreases circulating 1,25-dihydroxyvitamin D3 levels by inhibiting renal 

expression of CYP27B1 (1-α-hydroxylase) and stimulating expression of CYP24A1 (24-

hydroxylase).
2, 3 FGF23 levels rise progressively in chronic kidney disease (CKD), and 

higher levels are strongly associated with increased risks of CKD progression, 

cardiovascular events, and mortality.
4-9 Experimental data suggesting that FGF23 may 

contribute causally to certain cardiovascular complications of CKD
10

 emphasize the 

therapeutic importance of defining the molecular mechanisms that stimulate FGF23 

production beginning early in the course of CKD.

FGF23 is regulated by an incompletely understood interplay between local bone factors that 

modulate turnover and mineralization
11-13

 and systemic factors that control mineral 

metabolism.
14, 15

 High levels of parathyroid hormone (PTH), 1,25-dihydroxyvitamin D3, 

phosphate and calcium stimulate FGF23 production
14-16

 but cannot adequately explain the 

increases in FGF23 levels in early CKD. Indeed, FGF23 elevations usually antedate 

hyperparathyroidism and hyperphosphatemia,
17

 and CKD is characterized by low levels of 

1,25 dihydroxyvitamin D3 and calcium rather than high levels.

Iron is a newly described regulator of FGF23 production. Animal and human studies 

demonstrate that iron deficiency stimulates Fgf23 transcription which is counterbalanced by 

commensurately increased cleavage of newly synthesized FGF23 within healthy 

osteocytes.
18

 This results in high circulating concentrations of FGF23 fragments that can be 

detected with C-terminal FGF23 (cFGF23) assays, but normal serum phosphate levels 

because the levels of intact, biologically active FGF23, measured by intact FGF23 assays 

(iFGF23), remain normal.

As CKD progresses, total FGF23 levels rise and the proportion of circulating C-terminal 

FGF23 fragments relative to intact hormone decreases, perhaps because FGF23 cleavage is 

impaired in CKD.
19, 20

 In the setting of reduced cleavage of newly synthesized FGF23, 

factors that activate FGF23 transcription, such as iron deficiency, would be expected to 

increase circulating levels of intact hormone, as occurs in autosomal dominant 

hypophosphatemic rickets, which is the prototype disease of impaired FGF23 cleavage.
18 

“Functional” iron deficiency is a consequence of chronic inflammation in which iron 

sequestration in the reticuloendothelial system decreases the amount of iron available for 

erythropoiesis despite adequate total body iron stores. Given the high prevalence of 

functional iron deficiency in CKD,
21

 and the association between chronic inflammation and 

elevated FGF23 levels observed in cross-sectional studies of CKD patients,
22, 23

 we 

hypothesized that inflammation and functional iron deficiency might be novel, interrelated 

mechanisms of increased FGF23 production that may contribute to elevated FGF23 levels in 

CKD.
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Results

Iron deficiency regulates FGF23

We fed 3-week-old wild-type mice a low iron diet for 3 weeks. By 6 weeks of age, the mice 

developed iron-deficiency, marked by decreased serum iron and ferritin levels (p<0.05) 

compared to mice fed the control diet (Figure 1A-B). Iron deficiency resulted in 

significantly increased serum cFGF23 levels (Figure 1C) and significantly increased osseous 

expression of Fgf23 mRNA (Figure 1E) and protein (Figure 1F), but Fgf23 mRNA 

expression was not induced in the kidney. As shown in previous studies of young mice,
24 

iron deficiency also significantly increased iFGF23 (Figure 1D). Consistent with increased 

intact FGF23, renal expression of Npt2c and Cyp27b1 decreased significantly, and Cyp24a1 
expression (Figure 1G) increased significantly resulting in lower 1,25(OH)2D levels (Table 

1). Urinary phosphate excretion tended to increase, although this trend did not reach 

significance, and serum phosphate levels were unchanged. Bone expression of both the 

osteoblastic marker Sp7, which encodes osterix, and the osteoclastic marker Ctsk, which 

encodes cathepsin K, decreased significantly, (Figure 1G), consistent with decreased bone 

turnover.

Acute inflammation induces functional iron deficiency and increases FGF23 production

To determine whether inflammation regulates FGF23, we studied the Brucella abortus (BA) 

mouse model 
25

 that develops acute and chronic inflammation starting at 3 hours and lasting 

through 14 days after a single intraperitoneal injection of heat-killed bacteria.
26

 Six hours 

after injection, Brucella abortus significantly decreased serum iron (Figure 2A) and 

increased ferritin levels compared to control (Figure 2B), consistent with the acute phase 

inflammatory reaction.
27, 28

 Serum cFGF23 levels rose significantly compared to controls, 

concomitant with a significant 8-fold elevation in bone expression of Fgf23 mRNA, but 

iFGF23 levels were unchanged (Figure 2C-E). Analysis of femoral bone protein extracts 

demonstrated evidence of increased FGF23 production and cleavage compared to control 

(Figure 2F). Consistent with the lack of increase in iFGF23 levels, there were no differences 

in renal mRNA expression of Cyp24a1, Npt2a or Npt2c (Figure 2G). As previously 

shown,
29-31

 acute inflammation resulted in significantly increased PTH levels, Cyp27b1 
expression, (Figure 2G, Table 1), and bone mRNA expression of Sp7 and Ctsk (Figure 2G), 

consistent with increased bone turnover.
32

We also investigated FGF23 regulation in response to IL-1β injection, which is an intensely 

pro-inflammatory cytokine
33

 and an established cause of inflammation-induced, functional 

iron deficiency.
34

 Six hours after a single injection of IL-1β, serum iron decreased and 

ferritin increased significantly (Figure 2H-I). Longitudinal evaluation during 6 hours 

following IL-1β injection demonstrated that serum cFGF23 progressively increased, but 

iFGF23 was unchanged (Figure 2J-K). Bone expression of Fgf23 mRNA and protein 

increased significantly (Figure 2L-M). Renal Fgf23 mRNA expression also increased 

significantly in response to IL-1β, but the effect was modest compared to the dramatic 

increase in bone (Figure 2L).
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IL1-β significantly increased renal expression of Cyp27b1 and Npt2a (Figure 2N), but the 

change in serum phosphate levels did not reach significance, likely due to increased renal 

phosphate excretion induced by significantly higher PTH levels (Table 1). Similar to the 

Brucella abortus model, IL-1β significantly increased osseous mRNA expression of markers 

of bone remodeling, including Sp7, Ctsk and Bglap, which encodes osteocalcin (Figure 2N).

Functional iron deficiency in the absence of inflammation increases FGF23 production

Hepcidin is an important molecular mediator of functional iron deficiency. Hepcidin is 

produced by the liver in response to inflammation, and it increases iron sequestration and 

decreases gastrointestinal iron absorption.
35, 36

 To induce a state of functional iron 

deficiency without superimposed inflammation, we administered 1 μg/g exogenous hepcidin 

to wild-type mice. Six hours after hepcidin injection, serum cFGF23 levels and bone 

expression of Fgf23 mRNA increased significantly, whereas iFGF23 levels remained 

unchanged (Supplementary Figure 1). These data suggest that functional iron deficiency 

alone can stimulate FGF23 production and preferentially increase circulating concentrations 

of C-terminal FGF23 fragments that are detected as elevated cFGF23 levels.

Chronic inflammation increases circulating levels of biologically active FGF23

Twelve days after the single Brucella abortus injection, iron levels remained significantly 

decreased compared to control (Figures 3A), and serum ferritin remained significantly 

increased (Figures 3B). At day 12, cFGF23 levels remained markedly increased compared to 

control, and iFGF23 levels were modestly increased (Figure 3C-D), although the result was 

of borderline statistical significance (p=0.051). Femoral expression of intact and cleaved 

FGF23 protein was also increased (Figure 3E).

Four days of daily IL-1β injections significantly decreased serum iron and increased serum 

ferritin levels (Figure 3F-G). At day 4, cFGF23 levels were significantly elevated compared 

to controls, but the absolute values were substantially lower compared to 6 hours after IL-1β 

injection (Figures 3H, 2J) despite persistently high osseous expression of Fgf23 mRNA and 

protein (Figure 3J-K). Serum iFGF23 levels increased significantly (Figure 3I), suggesting 

that chronic inflammation altered the balance of FGF23 production and cleavage, leading to 

higher circulating intact hormone. Analyses of mRNA expression in the major organs 

confirmed that bone continued to be the primary site of FGF23 production (Figure 3K). 

Consistent with increased bioactive FGF23 levels, urinary fractional excretion of phosphate 

and Cyp24a1 mRNA expression were significantly increased, whereas Cyp27b1 and Npt2a 
mRNA expression were significantly decreased (Table 1, Figure 3L). This was associated 

with the significantly decreased serum 1,25(OH)2D and PTH levels (Table 1) that 

characterize chronic inflammation.
37, 38

 In contrast to the acute effects, repeated IL-1β 

administration significantly decreased expression of Sp7 and Bglap, while increasing Ctsk 
(Figure 3L), consistent with the uncoupling of bone formation and bone resorption that 

contributes to bone loss in chronic inflammatory states (Supplementary Figure 2).
32, 39
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Increased FGF23 cleavage maintains near-normal circulating levels of biologically active 
FGF23 during inflammation

To investigate further the mechanism of increased cFGF23 levels during inflammation, we 

first tested the effects of blocking FGF23 cleavage during acute inflammation in vivo and in 

vitro. Pre-treatment of 6-week old wild-type mice with a furin/furin-like protease 

inhibitor 
40

 did not affect the IL1-β-associated increase in Fgf23 mRNA or cFGF23, 

however it significantly increased serum iFGF23 (Figure 4A-C). In the MC3T3 osteoblast-

like cells, furin inhibition also enhanced IL1-β-mediated dose-dependent induction of 

iFGF23 production compared to controls without significantly altering Fgf23 promoter 

activity (Figure 4E-F).

Next, we tested whether an increase in the half-life of FGF23 fragments in circulation could 

explain elevated cFGF23 levels in inflammation. Co-injection of IL-1β and recombinant 

cFGF23 to FGF23ko mice did not increase the half-life of cFGF23 peptides compared to 

injection of cFGF23 alone (t1/2 IL-1β= 48 min vs. t1/2 control= 55 min; p=NS). Collectively, 

these data suggest that increased FGF23 cleavage maintains normal circulating levels of 

biologically active FGF23 in the setting of markedly increased Fgf23 transcription induced 

by inflammation.

Acute inflammation preferentially increases iFGF23 levels in a mouse model of CKD

To investigate whether the FGF23 response to inflammation differs in animals with impaired 

kidney function, we evaluated the effects of a single injection of IL-1β in Col4a3ko mice 

with moderate CKD,
19, 41

 as evidenced by significantly elevated BUN levels compared to 

wild-type (Figure 5A). Six hours after IL-1β injection, kidney function was unchanged 

(Figure 5A), but serum iron levels decreased significantly and ferritin levels increased 

significantly in both Col4a3ko and WT mice. Six hours post-injection, Fgf23 mRNA 

expression and cFGF23 levels were significantly and similarly increased in Col4a3ko and 

WT mice (Figure 5D, F), but IL-1β injection triggered a significantly greater increase in 

iFGF23 levels in the CKD mice compared to the mild elevation observed in wild-type mice 

(Figure 5E). Consistent with their increase in iFGF23 levels, urinary fractional excretion of 

phosphate increased significantly and serum phosphate trended lower in the CKD mice 

(Table 2).

HIF1α is a mediator of inflammation- and iron deficiency-induced FGF23 production

One mechanism of how iron deficiency increases FGF23 expression is stabilization of 

nuclear HIF1α.
24

 To investigate further the cellular mechanisms of how inflammation and 

iron deficiency differentially stimulate bone production of FGF23, we treated MC3T3-E1 

osteoblast-like cells or bone marrow stromal cells (BMSC) with the iron chelator, 

deferoxamine, or IL-1β for 12 hours. Treatment with 50 μM of deferoxamine increased 

Fgf23 mRNA expression in both bone cell lines (Figure 6A) without affecting Hif1α mRNA 

expression (Figure 6B), consistent with stabilization of preexisting HIF1α (Figure 6C), as 

previously reported.
18, 24

 Treatment with 10 μg/mL of IL-1β increased Fgf23 mRNA levels 

in both cell lines (Figure 6A), suggesting that IL-1β directly increases FGF23 production 

independently of systemic iron changes. In contrast to deferoxamine, the IL-1β-induced 
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increases in Fgf23 expression were accompanied by increased cellular expression of Hif1α 

mRNA (Figure 6B) and nuclear HIF1α abundance (Figure 6C).

To determine if the effects of IL-1β on Fgf23 transcription were direct, we stably transfected 

MC3T3-E1 cells with an FGF23 reporter vector carrying a secreted luciferase expression 

cassette under the control of the murine 1.2 kB Fgf23 promoter. IL-1β treatment stimulated 

Fgf23 mRNA expression (data not shown), Fgf23 promoter activity and FGF23 protein in a 

dose-dependent manner (Figure 6 D, E). These effects were partially blocked in a similar 

dose-dependent manner by co-treatment with the HIF1α inhibitor, 2-methoxyestradiol 

(2ME2) (Figure 6D, E). These data are consistent with our observation of increased bone 

expression of Hif1α mRNA in the Brucella abortus- and IL-1β treated mice (Figure 6F), and 

with prior reports that IL-1β potently induces Hif1α expression.
42, 43

In vivo, IL-1β injection in mice pre-treated with the HIF1α inhibitors, 2ME2 and BAY 

87-2243, significantly attenuated inflammation-induced increases in Fgf23 mRNA 

expression and cFGF23 levels (Figure 6G, H). Interestingly, HIF1α inhibition also 

simultaneously resulted in increased iFGF23 (Figure 6I), suggesting that HIF1α may 

contribute to coordinating the concomitant increases in FGF23 production and cleavage 

induced by inflammation. In support of this hypothesis, treatment of mice with the prolyl-

hydroxylase inhibitors, FG-4592 and IOX2, which increase nuclear HIF1α abundance, 

resulted in increased Fgf23 mRNA expression and cFGF23 levels (Figure 6J-K), whereas 

iFGF23 levels rose only with co-administration of furin inhibitors that partially inhibit 

FGF23 cleavage. In aggregate, these data suggest that inflammatory cytokines regulate 

Fgf23 transcription directly by stimulating Hif1α expression, and indirectly by inducing 

functional iron deficiency that stabilizes HIF1α (Figure 7).

Discussion

Osteocytes regulate circulating levels of biologically active FGF23 by controlling 

transcription of FGF23 and intracellular cleavage of newly synthesized FGF23 protein.
44 

Fgf23 transcription can be assessed directly in bone specimens and in cell culture models, 

whereas the relative amounts of FGF23 transcription and cleavage can be indirectly assessed 

in vivo by simultaneously measuring serum FGF23 with cFGF23 and iFGF23 assays in the 

presence and absence of inhibitors of FGF23 cleavage.
11, 45

 Using these tools, we 

demonstrate that acute inflammation markedly increases Fgf23 expression, and that bone is 

the predominant source of increased Fgf23 transcription relative to other organs, including 

the kidney, which may be a secondary source of FGF23 in kidney disease.
46

 In the setting of 

acute inflammation-induced increases in Fgf23 transcription, osteocytes maintain normal 

serum levels of biologically active FGF23 by commensurately increasing FGF23 cleavage. 

This results in marked increases in circulating cFGF23 levels but normal iFGF23 levels.

In contrast to acute inflammation, chronic inflammation also increases biologically active 

iFGF23 levels, albeit to a lesser extent than cFGF23. We can speculate that sustained periods 

of FGF23 overproduction could overwhelm the capacity of the FGF23 cleavage apparatus in 

osteocytes. Alternatively, chronic inflammation may reduce the activity of the FGF23 

cleavage enzymes or enhance post-translational O-glycosylation of FGF23 by GALNT3 that 
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protects FGF23 from cleavage.
47, 48

 Although we did not find any differences in total Galnt3 
or Furin mRNA expression in our acute and chronic inflammation models (data not shown), 

further research is needed to investigate whether the activity of these proteins is altered by 

inflammation.

Our results suggest that increased activity of HIF1α is one mechanism through which 

inflammation stimulates Fgf23 transcription. HIFs are members of the heterodimeric basic 

helix–loop–helix family of transcription factors, and consist of an oxygen-sensitive α-

subunit and a constitutively expressed β-subunit.
49

 HIF heterodimers regulate gene 

expression by binding to hypoxia response elements on the promoters of target genes.
49 

Degradation and activation of HIF1α is iron-dependent. Iron depletion and iron chelators 

stabilize HIF1α,
49

 whereas iron overload shortens HIF1α half-life, even in hypoxic 

conditions.
50

 We confirm prior reports that implicated HIF1α stabilization as a mechanism 

of increased FGF23 production in iron deficiency,
51

 and extend this line of investigation to 

demonstrate that inflammatory stimuli directly increase transcription of Hif1α, independent 

of iron deficiency. Furthermore, we observed in vivo and in vitro that inhibition of HIF1α 

partially attenuates the acute inflammation-induced increases in both FGF23 production and 

FGF23 cleavage. These data suggest that activation of HIF1α may be one mechanism that 

governs the coordinated response within osteocytes that increases both FGF23 production 

and cleavage and results in preferential increases in circulating cFGF23 levels in iron 

deficiency and inflammation.

Why the osteocyte produces FGF23 only to immediately degrade it in specific settings is 

unclear, but we can speculate certain possibilities. Full-length FGF23 is biologically active, 

but the effects of FGF23 fragments are uncertain.
52, 53

 FGF23 fragments may exert 

endocrine or paracrine functions that necessitate increased FGF23 production in order to 

generate adequate amounts of fragments in the settings of iron deficiency and inflammation. 

Alternatively, perhaps continuous FGF23 production and cleavage provide the osteocyte 

with an ability to increase secretion of biologically active FGF23 more rapidly than could be 

supported by increased de novo transcription, for example, by acutely decreasing cleavage. 

This mechanism could contribute to the rapid increase in iFGF23 we previously reported in 

acute kidney injury.
54

 It is also possible that the isolated rapid increase in cFGF23 levels we 

observed only 3 hours after IL-1β injection or even sooner after onset of acute kidney injury 

reflects enhanced cleavage of FGF23 that was already synthesized and stored in osteocytes, 

which we did not study.

In our analyses of 6-week old mice exposed to 3 weeks of a low iron diet, both cFGF23 and 

iFGF23 levels increased. These results are qualitatively similar to those reported in even 

younger iron deficient mice,
24

 but differ from the results we reported in otherwise healthy 

iron deficient women, in whom cFGF23 levels were elevated but iFGF23 was normal. 
45 

Perhaps there are age- or growth-dependent differences in the threshold of FGF23 

production above which the metabolic coupling of FGF23 cleavage can no longer match 

production. Thus, younger mice may be less capable of cleaving the excess FGF23 in the 

setting of markedly increased FGF23 production than fully-grown animals. Whether 

neonates or growing children also demonstrate a differential FGF23 response to iron 

deficiency than adult humans requires further study.
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Reports of intravenous iron-induced hypophosphatemia due to increased iFGF23 levels
55-58 

may appear to contradict our current data and prior studies that demonstrate that iron 

deficiency stimulates FGF23 production.
18, 24, 45

 However, the ability to transiently increase 

iFGF23 levels appears to be a specific effect of certain intravenous iron preparations. For 

example, ferric carboxymaltose lowered cFGF23 in previously iron deficient women, 

consistent with the expected effect of correcting iron deficiency, but raised iFGF23 levels 

temporarily, perhaps because the carbohydrate moiety simultaneously inhibited FGF23 

cleavage to a greater extent than the reduction in FGF23 transcription.
45

 In contrast, iron 

dextran lowered cFGF23 without altering iFGF23 levels. Thus, the seeming paradox appears 

to be a byproduct of the unique effects of specific iron formulations rather than a global 

effect of iron itself.

Our findings suggest novel potential mechanisms of elevated FGF23 levels in CKD. CKD is 

an inflammatory state and higher FGF23 levels are independently associated with higher 

levels of inflammatory markers in patients with CKD.
22, 23

 Our results suggest that direct 

effects of inflammation to raise FGF23 levels may underlie these associations. Furthermore, 

our finding that acute inflammation dramatically increased iFGF23 levels to a much greater 

extent in the Col4a3ko mouse model of CKD versus wild-type mice suggests that FGF23 

cleavage is relatively downregulated or impaired in CKD, as suggested by previous 

studies.
19, 20

 Thus, we propose that a combination of increased FGF23 production and 

relatively decreased FGF23 cleavage contributes to the markedly elevated FGF23 levels 

observed in murine CKD. Further research is needed to investigate the roles of true iron 

deficiency, functional iron deficiency and inflammation in the regulation of FGF23 levels in 

human CKD.

Materials and Methods

Animals

Six-week-old C57Bl6, Col4a3ko and FGF23ko mice were maintained on a standard diet 

(Teklad 7912, 0.82% calcium and 0.53% phosphorus; Harlan Teklad, USA) except when 

otherwise specified. Newly weaned, 3 week-old mice were fed a control diet that contained 

380 ppm Fe or a low iron diet that contained 2-6 ppm Fe for 3 weeks (Harlan Teklad). All 

studies were approved by Institutional Animal Care and Use Committees at the University of 

Miami, Northwestern University and Massachusetts General Hospital.

Experimental procedures

Intra-peritoneal injections included heat-killed Brucella abortus strain 1119-3, 5 × 106 

particles (US Department of Agriculture); recombinant IL1-β, 50 ng/g (Cell Signaling 

Technology, MA, USA); 2-ME2, 25 μg/g; 4 μg/g of BAY87-2243, FG-4592 or IOX2 

(Selleckchem-Pfizer, TX, USA); irreversible furin/furin-like pro-protein convertase inhibitor 

1, 7.5 μg/g (EMD Millipore, MA, USA); hepcidin, 1 μg/g (PLP-4434-s, Peptide 

international); and recombinant human C-terminal FGF23 peptides, 50 ng/g (courtesy of M. 

Mohammadi and R. Goetz).
52
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Biochemistry

Serum samples were collected by tail-bleeding or intracardiac exsanguination, and urine by 

spot collection at sacrifice. FGF23 levels were measured using both an iFGF23 ELISA that 

measure the intact active protein exclusively (Kainos Laboratories, Tokyo, Japan), and a 

murine cFGF23 ELISA that recognizes the full-length protein and its C-terminal cleavage 

fragments (Immutopics, Carlsbad, CA, USA). For other assays, calcium was measured by 

CPC Liquicolor Kit (Stanbio Laboratories, Boerne, TX, USA); phosphate by the 

phosphomolybdylate-ascorbic acid method;
14

 iron, BUN and creatinine using Pointe 

Scientific kits (Canton, MI, USA); ferritin by mouse ELISA (abcam, Cambridge, MA, 

USA); PTH by mouse intact ELISA (Immutopics); and 1,25(OH)2D by immunoassay 

(Immunodiagnostic Systems, Gaithersburg, MD, USA).

RT-PCR

Total RNA was isolated using TRI-reagent, and first-strand cDNA was synthesized from the 

entire femur.
14

 The iCycler iQ real-time PCR detection system and iQ SYBR Green 

supermix (Bio-Rad Laboratories, USA) were used for real-time quantitative PCR analysis. 

Primer pairs are shown in the Supplemental Table. The expression was normalized to 

glyceraldehyde-3-phosphate dehydrogenase in the same sample and expressed as fold-

change versus wild-type.

Cell culture

BMSC cultures were prepared, as previously described.
59, 60

 BMSC were plated at 10 × 104 

cells/well and cultured for 3 weeks in an osteoblast-differentiating medium (αMEM, 10% 

FBS, 10 U/ml penicillin, 100 μg/ml streptomycin, 10 mM β-glycerophosphate, and 50 μg/ml 

ascorbic acid; Sigma-Aldrich). MC3T3-E1 osteoblast precursor cells were cultured 

according to ATCC guidelines.
14

 Briefly, 5 × 104 cells were stably transfected with the 

pLuc-Fgf23 promoter plasmid carrying a secreted luciferase expression cassette under the 

control of the proximal Fgf23 promoter, a secreted alkaline phosphatase (SEALP) under the 

control of the CMV-promoter, and a puromycin resistance cassette (Genecopoeia,, MD, 

USA). Stably transfected cells were plated at a concentration of 10 × 104 cells/well and 

cultured for 12 days in the osteoblast-differentiating medium. Cells and cell-culture media 

were collected after 12 hours during the last day of culture. Luciferase assays were 

performed according to the manufacturer's instructions (Turner Biosystems, USA). Promoter 

activity is represented by RLU normalized to pSEALP-CMV control. All experiments were 

conducted in triplicate.

Protein extraction and immunoblotting

Whole femurs were analyzed as previously described.
12, 59

 Cells were cultured in 75 cm
2 

flasks for 12 days before treatment. 4 mL culture medium was filtered through a 50KDa 

ultra centrifugation column (EMD Millipore) and dried overnight in a Savant SpeedVac 

system (Thermo Fisher Scientific, MA, USA). Whole cell lysates were extracted using T-Per 

lysis buffer containing protease inhibitors cocktail, and nuclear and cytoplasmic extracts 

using NEPER™ Nuclear and Cytoplasmic Extraction kit (Thermo Fisher Scientific). Whole 
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cell extracts and cytoplasmic lysates were filtered through a 50KDa ultra centrifugation size 

exclusion column and dried overnight.

Proteins were fractionated on 4-12 Bis-Tris minigels (Thermo Fisher Scientific), transferred 

on 0.22 PVDF membranes (Bio-Rad Laboratories) and probed with goat polyclonal anti-

FGF23 (Immutopics), rabbit polyclonal MBS854462 anti-FGF23 (MyBioSource, CA, 

USA), rabbit polyclonal ab9485 anti-GAPDH, rabbit polyclonal ab2185 anti-HIF1α, rabbit 

polyclonal ab63766 anti-TATA binding protein TBP, and goat polyclonal ab8229 anti- β-

actin antibodies (abcam). Antigen antibody complexes were visualized by immunoblotting 

using anti-goat and anti-rabbit IR fluorescent antibodies on an ODYSSEY® CLx system 

(LI-COR, NE, USA).

Statistics

Data are presented as mean ± SD or SEM. One-way ANOVA followed by Fisher and t tests 

were used for statistical inference using Statistica software (Statsoft, OK, USA). P values < 

0.05 were considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Effects of diet-induced iron deficiency on FGF23 regulation
Serum levels of iron (A); ferritin (B); cFGF23 (C); iFGF23 (D); bone and renal expression 

of Fgf23 mRNA (E); representative immunoblot of bone FGF23 protein expression (F); and 

bone mRNA expression of the osteoblastic markers, osterix (Sp7) and osteocalcin (Bglap), 

the osteoclastic marker, cathepsin K (Ctsk), and renal mRNA expression of the vitamin D 

metabolizing enzymes, Cyp27b1 and Cyp24a1, and the sodium-phosphate co-transporters, 

Npt2a and Npt2c, in response to low or normal iron diets for 3 weeks (G). Data are 

presented as mean ± SEM, n ≥ 4/group, * p<0.05 vs. control (Ctr).
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Figure 2. Effects of acute inflammation on iron and FGF23 regulation
Acute inflammation was induced by a single injection of Brucella abortus (BA) or IL1-β. 

Serum levels of iron (A); ferritin (B); cFGF23 (C); iFGF23 (D); bone and renal expression 

of Fgf23 mRNA (E); representative immunoblot of bone FGF23 protein expression (F); and 

bone mRNA expression of the osteoblastic markers, osterix (Sp7) and osteocalcin (Bglap), 

the osteoclastic marker, cathepsin K (Ctsk), and renal mRNA expression of the vitamin D 

metabolizing enzymes, Cyp27b1 and Cyp24a1, and the sodium-phosphate co-transporters, 

Npt2a and Npt2c, in response to BA (G). Serum levels of iron (H); ferritin (I); cFGF23 (J); 

iFGF23 (K); bone and renal expression of Fgf23 mRNA (L); representative immunoblot of 

bone FGF23 protein expression (M); and bone mRNA expression of Sp7, Bglap, and Ctsk, 

and renal mRNA expression of Cyp27b1, Cyp24a1, Npt2a and Npt2c in response to IL1-β 

(N). Data are presented as mean ± SEM, n ≥ 5/group, * p<0.05 vs. control (Ctr).
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Figure 3. Effects of chronic inflammation on iron and FGF23 regulation
Serum levels of iron (A); ferritin (B); cFGF23 (C); iFGF23 (D); and representative 

immunoblot of bone FGF23 protein expression (E) 12 days after a single injection of 

Brucella abortus (BA). Data are presented as mean ± SEM, n ≥ 3/group,* p<0.05 vs. control 

(Ctr). Serum levels of iron (F); ferritin (G); cFGF23 (H); iFGF23 (I); representative 

immunoblot of bone FGF23 protein expression (J); organ-specific expression of Fgf23 
mRNA (K); and bone mRNA expression of the osteoblastic markers, osterix (Sp7) and 

osteocalcin (Bglap), and the osteoclastic marker cathepsin K (Ctsk), and renal mRNA 

expression of the vitamin D metabolizing enzymes, Cyp27b1 and Cyp24a1, and the sodium-

phosphate co-transporters, Npt2a and Npt2c, after 4 days of daily IL1-β injections (L). Data 

are presented as mean ± SEM, n ≥ 5/group, * p<0.05 vs. control (Ctr).
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Figure 4. Effects of acute inflammation on FGF23 production and cleavage in vivo and in vitro
Effects of IL1-β administration in mice pre-treated with or without furin inhibitors on bone 

expression of Fgf23 mRNA (A); serum levels of cFGF23 (B) and iFGF23 (C); and 

representative immunoblot of serum FGF23 protein probed with Immutopics (upper panel) 

and MyBiosource (lower panel) antibodies (D). Data are presented as mean ± SEM, n ≥ 3/

group, p<0.05 * vs. untreated control, # vs. 50 ng/g IL1-β treated mice and & vs. furin 

treated mice. Effects of IL1-β on Fgf23 promoter activity (E); and on intracellular and 

extracellular FGF23 protein concentrations (F) in MC3T3-E1 cells in the presence or 

absence of furin inhibitor. Data are presented as mean ± SEM, n ≥ 5/group, p<0.05 * vs. 

untreated control and & vs. furin-treated cells.
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Figure 5. Effects of acute inflammation on FGF23 production and cleavage in the Col4a3ko 

mouse model of CKD
Effects of IL1-β on serum levels of BUN (A); iron (B); ferritin (C); bone expression of 

Fgf23 mRNA (D); and serum cFGF23 (E) and iFGF23 (F) in 6 week-old wild type (WT) 

and Col4a3 knockout (Col4a3ko) mice. Data are presented as mean ± SEM, n ≥ 3/group, 

p<0.05 *vs. age-matched untreated WT, # vs. age-matched IL1-β treated WT and & vs. age-

matched untreated Col4a3ko mice.
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Figure 6. The role of Hif1α in the regulation of FGF23 production and cleavage in vitro and in 
vivo
mRNA expression of Fgf23 (A) and Hif1α (B) and representative immunoblot for nuclear 

HIF1α protein (C) in MC3T3-E1 and BMSC cells that were stimulated to differentiate into 

osteoblasts and treated with IL1-β or deferoxamine (DFO). Effects of IL1-β on Fgf23 
promoter activity in MC3T3-E1 cells in the presence or absence of the HIF1α inhibitor, 

2ME2 (D); and representative immunoblots of nuclear HIF1α, cytoplasmic and secreted 

FGF23 (E). Data are presented as mean ± SEM, n ≥ 3/group, p<0.05 vs. * control (Ctr), 

&vs. IL-1β treated. Bone mRNA expression of Hif1α in response to iron deficiency, 

Brucella abortus (BA) and IL1-β injections (F). Effects of acute inflammation on bone 

mRNA Fgf23 expression (G) and serum levels of cFGF23 (H); iFGF23 (I) in wild-type mice 

injected with IL1-β or pre-treated with HIF inhibitors, 2ME2 and BAY 87-2243. Data are 

presented as mean ± SEM, n ≥ 3/group, p<0.05 * vs. untreated control, # vs. HIF1α inhibitor 

treated mice and & vs. 50 ng/g IL1-β injected mice. Effects of HIF1α induction by 2 prolyl 

hydroxylase inhibitors, FG-4592 and BAY 87-2243, on bone mRNA Fgf23 expression (J); 

serum levels of cFGF23 (K) and iFGF23 (L). Data are presented as mean ± SEM, n ≥ 3/

group, p<0.05 * vs. untreated control, # vs. HIF1α agonist treated mice and & vs. furin 

inhibitor treated mice.
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Figure 7. Schematic representation of FGF23 regulation by inflammation
Inflammation induces functional iron deficiency, which stabilizes HIF1α in osteocytes. 

Inflammatory cytokines also stimulate Hif1α transcription directly, leading to increased 

cytoplasmic HIF1α, which translocates to the nucleus and binds to HIF1β. Binding of HIF1 

heterodimers to hypoxia response elements (HRE) on the Fgf23 promoter stimulates 

transcription, but the excess FGF23 protein is proteolytically cleaved within osteocytes. In 

the serum, physiological coupling of FGF23 production and cleavage during acute 

inflammatory states results in high circulating concentrations of C-terminal FGF23 

fragments that can be detected with C-terminal FGF23 assays, but normal levels of 

biologically active FGF23 levels as demonstrated by intact FGF23 assays. In chronic 

inflammation, cFGF23 levels remain increased compared to baseline, but to a lesser extent 

than in acute inflammation. Sustained FGF23 overproduction during chronic inflammation 

also leads to increased serum levels of biologically active FGF23, perhaps due to saturation 

or partial down regulation of the FGF23 cleavage process within osteocytes.
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Table 2

Serum and urine chemistries of WT and Col4a3ko mice

WT and Col4a3ko mice were induced to develop acute inflammation by treatment with IL-1β or control for 6 

hours.

WT
Ctr

WT
Il1-β

Col4a3ko

Ctr
Col4a3ko

Il1-β

Pi, mg/dL 7.2 ± 1.6 8.4± 0.7 10.1 ± 3.3 9.2 ± 1.8

Ca, mg/dL 9.8 ± 0.8 10.5 ± 0.7 10.7 ± 0.3 11.8 ± 0.5*

FEPi, % 8.8 ± 2.8 12.1 ± 2.6 15.2 ± 4.6 29.3 ± 6.4*

FECa, % 5.2 ± 2.1 4.8 ± 2.3 8.4 ± 3.4 7.5 ± 4.1

Values are mean ± SD.

*
p<0.05 versus the specific experimental time-matched control

Pi, serum phosphate; Ca, serum calcium; FEPi, urinary fractional excretion of phosphate; FECa, urinary fractional excretion of calcium.
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