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Over the last decade, high-throughput genotyping and sequencing technologies have 
contributed to major advancements in genetics research, as these technologies now 
facilitate affordable mapping of the entire genome for large sets of individuals. Given this, 
genome-wide association studies are proving to be powerful tools in identifying genetic 
variants that have the capacity to modify the probability of developing a disease or trait 
of interest. However, when the study’s goal is to evaluate the effect of the presence of 
genetic variants mapping to specific chromosomes regions on a specific phenotype, 
the candidate loci approach is still preferred. Regardless of which approach is taken, 
such a large data set calls for the establishment and development of appropriate ana-
lytical methods in order to translate such knowledge into biological or clinical findings. 
Standard univariate tests often fail to identify informative genetic variants, especially 
when dealing with complex traits, which are more likely to result from a combination of 
rare and common variants and non-genetic determinants. These limitations can partially 
be overcome by multivariate methods, which allow for the identification of informative 
combinations of genetic variants and non-genetic features. Furthermore, such methods 
can help to generate additive genetic scores and risk stratification algorithms that, once 
extensively validated in independent cohorts, could serve as useful tools to assist clini-
cians in decision-making. This review aims to provide readers with an overview of the 
main multivariate methods for genetic data analysis that could be applied to the analysis 
of cardiovascular traits.

Keywords: SnPs, multivariate methods, risk scores, risk stratification, cardiovascular diseases

inTRODUCTiOn

The interaction of several genetic and environmental factors modulates the clinical expression of 
common cardiovascular diseases (CVDs), such as coronary artery disease (CAD), cerebrovascular 
disease, peripheral arterial disease, and stroke. Poor diet, physical inactivity, smoking, and harmful 
use of alcohol have all been established as key risk factors that can affect the clinical expression 
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of many CVDs (1). While predisposition to CVD as indicated 
by the presence of family history suggests that genetic factors 
play a role in the expression of the trait, the characteristics of 
inheritance often do not follow Mendelian patterns. For mul-
tifactorial diseases, this atypical pattern of inheritance impairs 
the elucidation of the genetic underpinnings. Indeed, multiple 
genetic factors with variable effects and effect size have to be 
identified to account for such a complex “polygenic” inheritance. 
On the other hand, the variable expressivity commonly found in 
monogenic cardiac diseases, even among subjects with the same 
genetic defect, represents a major limitation for the definition of 
genotype-based risk stratification algorithms (2).

Over the last decade, genome-wide association studies 
(GWASs) successfully identified more than 1,100 associations 
of genetic markers with cardiovascular traits, such as stroke, 
CAD, peripheral arterial disease, variability of the human elec-
trocardiogram, and monogenic cardiac diseases (3). Although 
providing strong evidence of statistical association with these 
traits (p-value <1  ×  10−8), single genetic variants identified by 
GWASs only explain a small proportion of the disease risk or 
phenotype variability (4–6). As an example, the recently identi-
fied CAD-associated variants reviewed in Ref. (4) induce each 
an average increase in terms of disease risk of ~18% [odds ratio 
(OR)  =  1.18] (5). Further refining in genetic risk prediction 
and resuming multi-markers information in CVD will require 
alternative analytical strategies.

In the following sections, this review will address the main 
multivariate approaches to perform genetic variants selection 
from GWAS or candidate region studies, how the deriving 
findings could be modeled to define specific risk profiles and 
risk stratification algorithms and how to evaluate the prediction 
accuracy of the defined models.

iDenTiFiCATiOn OF inFORMATive 
GeneTiC vARiAnTS

Identifying informative genetic markers among millions of 
 candidates generated by microarrays or next generation 
sequencing (NGS) platforms has historically been a process of 
ranking variants according to their level of statistical association 
with a specific trait. This is first estimated by one-SNP-at-a-time 
testing approaches, and then a subset of these associated vari-
ants is selected based on a defined significance threshold (7). 
More recently, methods have emerged that are better suited for 
large cohorts of individuals deeply characterized by phenotypic 
measurements. Multivariate machine learning methods can be 
applied to identify informative subsets of genetic variants and 
non-genetic factors that jointly contribute to the overall phe-
notype expression (8). Annotating the identified markers could 
then be performed by accessing resources providing informa-
tion on genomic variants previously associated with a trait of 
interest (3, 9, 10) and functional annotation tools (11–15). Once 
validated on independent cohorts of individuals, functional 
studies will allow researchers to translate evidence of statistical 
association and informative predictive models into biologically 
relevant findings (16).

Multivariate Methods for Common 
Genetic variants Selection
Multivariate approaches of feature selection allow researchers 
to identify a subset or a combination of informative common 
genetic variants and non-genetic covariates that underlies the risk 
of developing a trait (17). These approaches offer a method that 
can overcome the limitations of the one-variant-at-a-time testing 
strategy characterizing univariate tests, which are incapable of 
capturing the multifactorial characteristics of many cardiovascu-
lar traits (e.g., additive effects of multiple variants, interactions 
between genetic and non-genetic factors) (18). In general, these 
approaches select informative variables not based on the strength 
of their statistical association with the trait, but rather on the basis 
of their capability to correctly predict the trait value in independ-
ent data.

A distinction has then to be made between multivariate meth-
ods for the analysis of binary traits (i.e., when the dependent vari-
able indicates the presence or absence of a specific condition) and 
methods for quantitative traits analysis (i.e., when the dependent 
variable is characterized by a continuous distribution).

Binary Traits Analysis
The analysis of binary traits offers several alternatives that draw 
from both frequentist and Bayesian methods (Table 1). In order 
to identify informative sets of genetic and non-genetic variables 
expected to jointly affect a disease phenotype, stepwise logistic 
regression is one of the most consolidated approaches. The first 
step of this approach consists in testing simultaneously an initial 
set of SNPs in a logistic regression model as predictors of disease 
status which is represented by the binary-dependent variable. 
Then, different models are subsequently compared with the initial 
model to estimate whether a different set of predictors improved 
the fit, which is measured by goodness of fit metrics such as 
deviance or log-likelihood (19). Identifying the optimal model 
can be performed by a forward search strategy (the selection 
starts with the intercept of the regression, and then sequentially 
adds into the model the predictor that most improves the fit), a 
backward search strategy (it starts by including all variables, and 
sequentially deletes the predictor that has the lowest impact on 
the fit), or a combination of both (19). However, it is important to 
consider that this approach may prove computationally intensive 
when large sets of variables need to be analyzed, making the task 
of feature selection difficult.

The Least Absolute Shrinkage and Selection Operator (LASSO) 
(22) is a shrinkage method that represents a sound alternative to 
stepwise regression for the identification of informative genetic 
variants. The LASSO approach silences non-informative vari-
ables by setting their regression coefficient to 0 through a penalty 
parameter called lambda (λ). The optimal value to be assigned to 
λ can be learned by a resampling strategy performed on the data: 
the value guaranteeing the lowest average classification error on 
the test sets will be applied to the regression model. Vaarhorst and 
colleagues (34) used LASSO to identify predictors of coronary 
heart disease (CHD), starting from a set of candidate variants, 
whereas Hughes and colleagues (35) applied the algorithm to 
the identification of genetic variants to define a risk score for 
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TABLe 1 | Summary of the main multivariate methods for common variants analysis.

Phenotype Method Main software  
packages

Analysis of entire  
GwAS datasets

Advantages Disadvantages

Binary traits
Stepwise 
logistic 
regression (19)

Orange (20), WEKA 
(21), statsa, MASSa

Limited to candidate 
variants

Results can be easily 
interpreted

Results could be negatively influenced 
by collinearity; computationally intensive; 
R implementationsa require advanced 
computer skills

LASSO (22) Orange (20), PLINK 
(23), HyperLASSO 
(24), glmneta, larsa, 
penalizeda, ldlassoa, 
scikit-learnb

Yes (HyperLASSO), 
otherwise the analysis 
is limited to candidate 
variants

Fast computation; internal 
CV to learn the optimal λ 
parameter

Does not necessarily yield good results in 
presence of high collinearity and when the 
number of variants exceeds the number 
of examples; Ra, Pythonb, and PLINK 
implementations require advanced computer 
skills

Elastic net (25) elasticneta, glmneta, 
scikit-learnb

Limited to candidate 
variants

Combines strengths of LASSO 
and Ridge regression (26), 
overcoming issues due to 
collinearity, and unbalanced 
variants/samples ratio

Requires advanced computer skills

BOSS (27) BOSS Limited to candidate 
variants

Works properly also when the 
number of features exceeds the 
number of samples

Computationally intensive; requires advanced 
computer skills 

BoNB (28) BoNB Yes Fast computation; robust to LD 
between variants

Requires advanced computer skills

Classification 
trees (29)

Orange (20), WEKA 
(21), rparta, treea, 
scikit-learnb

Limited to candidate 
variants

Fast computation; easy to 
interpret

May not perform well in the presence of 
complex interactions, overfitting may lead to 
instability; Ra and Pythonb implementations 
require advanced computer skills

Random forest 
(30)

Orange (20), WEKA 
(21), randomForesta, 
randomForestSRCa, 
scikit-learnb, RFF (31)

Yes (RFF) otherwise the 
analysis is limited to 
candidate variants

Robust to noise; fast 
computation

Results are difficult to interpret; Ra, Pythonb 
and RFF implementations require advanced 
computer skills

ABACUS (32) ABACUSa Candidate regions 
mapping to specific 
pathways 

Able to simultaneously consider 
common and rare variants and 
different directions of genotype 
effect

Requires advanced computer skills

Time to event
Stepwise Cox 
proportional 
hazard model

Survivala, MASSa Limited to candidate 
variants

Results can be easily 
interpreted

Results could be negatively influenced 
by collinearity; computationally intensive; 
requires advanced computer skills

LASSO (22) glmneta, penalizeda 
coxneta

Limited to candidate 
variants

Fast computation; internal 
CV to learn the optimal λ 
parameter

Does not necessarily yield good results in 
presence of high collinearity and when the 
number of variants exceeds the number of 
examples; requires advanced computer skills

Elastic net (25) coxneta Limited to candidate 
variants

Combines strengths of LASSO 
and Ridge regression (26), 
overcoming issues due to 
collinearity, and unbalanced 
variants/samples ratio

Requires advanced computer skills

Classification 
(survival) trees 
(29)

rparta Limited to candidate 
variants

Fast computation; easy to 
interpret

May not perform well in the presence of 
complex interactions, overfitting may lead to 
instability; requires advanced computer skills

Random forest 
(30)

randomForestSRCa Limited to candidate 
variants

Robust to noise; fast 
computation

Results are difficult to interpret; requires 
advanced computer skills

Quantitative traits
Stepwise linear 
regression

statsa, MASSa Limited to candidate 
variants

Results can be easily 
interpreted

Results could be negatively influenced 
by collinearity; computationally intensive; 
requires advanced computer skills

LASSO (22) Orange (20), PLINK 
(23), HyperLASSO 
(24), glmneta, larsa, 
penalizeda, ldlassoa, 
scikit-learnb

Yes (HyperLASSO), 
otherwise the analysis 
is limited to candidate 
variants

Fast computation; internal 
CV to learn the optimal λ 
parameter

Does not necessarily yield good results 
in presence of high collinearity and when 
the number of variants exceeds the 
number of examples; Ra, Pythonb, and 
PLINK implementations require advanced 
computer skills

(Continued)
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Phenotype Method Main software  
packages

Analysis of entire  
GwAS datasets

Advantages Disadvantages

Elastic net (25) Elasticneta, glmneta, 
scikit-learnb

Limited to candidate 
variants

Combines strengths of LASSO 
and Ridge regression (26), 
overcoming issues due to 
collinearity, and unbalanced 
variants/samples ratio

Requires advanced computer skills

GUESS (33) GUESS/R2GUESSa Yes Fast parallel computation Requires advanced computer skills
Regression 
trees (29)

Orange (20), rparta, 
treea, scikit-learnb

Limited to candidate 
variants

Fast computation; easy to 
interpret

May not perform well in the presence of 
complex interactions, overfitting may lead to 
instability; Ra and Pythonb implementations 
require advanced computer skills

Random forest 
(30)

Orange (20), 
randomForesta, 
randomForestSRCa, 
scikit-learnb, RFF (31)

Yes (RFF) otherwise the 
analysis is limited to 
candidate variants

Robust to noise; fast 
computation

Results are difficult to interpret; Ra, Pythonb, 
and RFF implementations require advanced 
computer skills

Phenotype, dependent variable’s distribution; method, algorithm or method; main software packages, main softwares, packages, or functions implementing the described method; 
analysis of entire GWAS datasets, indicates whether the method can be applied to whole GWAS data; advantages, advantages of the method; disadvantages, disadvantages of the 
method.
aR package.
bPython package.

TABLe 1 | Continued
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coronary risk prediction. The elastic net (25) is an extension of the 
LASSO that is robust to extreme correlations among predictors, 
which also provides a more efficient, effective system for handling 
the analysis of unbalanced datasets.

Bayesian methods, such as the binary outcome stochastic 
search (BOSS) (27) and bags of naive Bayes (BoNB) (28) algo-
rithms, also provide alternative approaches. BOSS is a feature 
selection approach deriving from the method described in Ref. 
(36) based on a latent variable model that links the observed out-
come to the underlying genetic variants mapping to candidate 
regions of interest. A Markov Chain Monte Carlo approach is 
used for model search and to evaluate the posterior probability 
of each predictor in determining the latent variable profile 
(27). A latent variable profile is defined as a stochastic vector 
of same size of the number of SNPs; the vector may assume 
0/1 values, thus expressing the fact that a marker is considered 
(value equal to 1) or not (value equal to 0) as a predictor of the 
outcome. The model estimates the posterior probability of such 
latent variable; as a consequence, the most likely latent variable 
will determine the set of SNPs with the highest risk prediction 
potential for developing a disease. BoNB (28) is an algorithm 
for genetic biomarkers selection from the simultaneous analysis 
of genome-wide SNP data based on the naive Bayes (NB) (37) 
classification framework. The predictive value (marginal utility) 
of each genetic variant is assessed by a resampling strategy. By 
randomly shuffling the genotypes of an informative variant, 
an overall decrease in terms of classification accuracy will be 
observed, and if an uninformative variant is permuted, no 
substantial loss will be observed. This strategy, coupled with 
appropriate statistical tests, allows BoNB to identify informative 
sets of SNPs. These methods have been tested on real datasets on 
type 1 (28, 38) and type 2 diabetes (27), respectively.

Classification and regression trees (RTs) methods (29) fall 
under the category of decision tree learning. In these tree 
structures, leaves represent the predicted phenotypic outcome, 

whereas nodes and branches represent the set of genetic variants 
and clinical covariates that predict the phenotypic outcome. 
These methods recursively partition data into subsets according 
to the variables’ values: each partition corresponds with a “split” 
based on the set of variables being considered, defining a tree-like 
structure (19). Classification trees (CTs) are designed to analyze 
categorical traits and facilitate the identification of informative 
interactions between variables and stratifications in the data 
starting from a limited numbers of predictors.

Random forests (RFs) (30) are based on CTs, as they aggre-
gate a large collection of de-correlated trees, and then average 
them (19). RFs generate a multivariate ranking of the analyzed 
variables according to their predictive importance with respect 
to the outcome. Even more, they can be easily applied to 
analyze unbalanced datasets, and they are able to account for 
correlation and informative interactions among features. Such 
characteristics make this approach particularly appealing for 
high-dimensional genomic data analysis (39). RFs have been 
applied to identify genetic variants influencing coronary artery 
calcification in hypertensive subjects (40), bicuspid aortic valve 
condition (41), and high-density lipoprotein (HDL) cholesterol 
level (42). Maenner and colleagues (43) applied RFs to identify 
SNPs involved in gene-by-smoking interactions related to the 
early-onset of CHD using the Framingham Heart Study data.

ABACUS is an Algorithm based on a BivAriate CUmulative 
Statistic, which allows identifying combinations of common 
and rare genetic variants associated with a disease by focusing 
on predefined SNPs-sets (e.g., belonging to specific pathways) 
(32). ABACUS calculates a statistic for each pair of SNPs within 
each SNPs set and generates an aggregated score measuring the 
cumulative evidence of association of the SNPs annotated in the 
SNP set. This method has been tested on GWAS on type 1 and 
type 2 diabetes (32).

Specific implementations of LASSO, elastic net, CTs, RFs, and 
stepwise Cox proportional hazard regression (44) have been also 
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proposed for the identification of SNPs associated with time to 
event outcomes (Table 1).

Quantitative Traits Analysis
Many of the feature selection methods for binary traits derive 
from algorithms originally established for quantitative traits 
analyses (Table 1). Linear regression (45) coupled with stepwise 
feature selection is probably one of the most commonly applied 
approaches when dealing with the task of identifying informa-
tive predictors with respect to continuous traits starting from a 
limited set of variables.

The LASSO and the elastic net shrinkage algorithms for 
regression problems work similarly for classification. Warren and 
colleagues (46) used LASSO and HyperLASSO (24) to predict 
low-density lipoprotein (LDL) and HDL cholesterol, two lipid 
traits of clinical relevance. Bottolo and colleagues (33) published 
the results from the validation and implementation of a method 
called Graphical Unit Evolutionary Stochastic Search (GUESS), 
a Bayesian variable selection approach able to analyze single and 
multiple responses, searching for the best combinations of SNPs 
to predict the traits. The authors applied the method to study 
genetic regulation of lipid metabolism in the Gutenberg Health 
Study (GHS), confirming the association of previously identified 
loci for blood lipid phenotypes.

Though largely similar to CTs, RTs differ from CTs in that the 
dependent variable is continuous, and a regression model is fitted 
to each node to perform the task of prediction. Additionally, RFs 
for regression problems are also widely employed and imple-
mented in specific analytical packages.

MULTivARiATe MODeLS FOR DeCiSiOn 
SUPPORT

Demographic, clinical, and genetic risk factors identified by 
the previously described methods or selected based on prior 
knowledge can be combined in order to define specific predictive 
models, which could assist clinicians during the decision make 
steps of the clinical practice (47–49). Such models can be defined 
by making use of the above mentioned methods. For example, 
multilocus genetic risk profiles can be defined by weighting 
genetic variants by the corresponding regression coefficients 
(50, 51). Similarly, tree-based approaches or regression methods 
can be applied to define risk stratification algorithms combining 
genetic and non-genetic information (49, 51).

Multilocus Genetic Risk Profiles
The theory of multifactorial, polygenic liability relies on the 
combined effect of multiple common genetic variants, each 
explaining a small amount of phenotypic variance and possibly 
interacting with environmental factors, all contributing to the 
overall risk (52, 53). Polygenic risk score (PRS) approaches were 
introduced to examine the load of genetic risk associated with 
a given disease by simultaneously testing a broad set of com-
mon variants (54). Essentially, the PRS approach capitalizes on 
the identification of genetic risk variants derived from large, 

mega-, or meta-analyses for specific disorders and generates an 
index of genetic vulnerability associated with the disease (54). 
Affected subjects present higher values of the PRS than not 
affected subjects. The advantage of polygenic modeling is that 
the genetic vulnerability is represented by a larger set of gene-
mapping variants contributing to the risk of the disease, rather 
than a single genetic variant. There are several different ways 
to implement polygenic modeling approaches (55). All methods 
rely on selecting variants on a training set using univariate or 
multivariate approaches or focusing on candidate loci identified 
by previous studies. The risk alleles of the identified sets of genetic 
variants are then used to generate a PRS either by summing the 
number of risk alleles (“un-weighted” approach) or by weighting 
the number of risk alleles by the effect size of the association 
deriving from regression models (“weighted” approach) (50). 
Either way, the PRS is tested for association in a replication 
sample via traditional regression-based statistics and standard 
metrics are used to estimate its predictive power (56).

Polygenic risk score usually explain 1–5% of the variation in 
complex traits, which is already an improvement compared with 
GWAS single genetic variants, which typically yield relatively 
small increment of risk with ORs <1.5-fold, with the exception 
of traits such as height, for which a GWAS identified a SNP 
explaining almost 5% of the phenotypic variance (53, 57). PRS 
have been applied to several CVD studies and are found to be 
a significant predictor of CAD (58, 59), incident cardiovascular 
(60), CHD (61), atrial fibrillation, and stroke (62). Furthermore, 
Pfeufer and colleagues (63) assessed the cumulative effect of 
SNPs modulating the QT interval in the general population. 
For a more comprehensive review of PRS findings in CVD, 
we encourage readers to consider the report by Abraham and 
Inouye (51).

Risk Stratification Algorithms
Risk stratification algorithms are designed to be intuitive tools 
that can assist clinicians in identifying patients at high risk of 
adverse events, thus informing decision-making by following 
a defined set of logical steps (64–66). These algorithms can be 
derived by the integration of genetic information (e.g., single 
SNPs, mutations on causative loci, PRSs) with known clinical 
and behavioral risk factors by appropriate multivariate meth-
ods. When defined by regression methods, they can be inter-
rogated by nomograms, graphical tools that allow interpreting 
the risk of developing a certain trait based on an individual’s 
characteristics (67).

Priori et  al. (47) proposed a risk stratification algorithm to 
identify long QT syndrome (LQTS) patients at high risk of adverse 
cardiac events (defined as occurrence of syncope, cardiac arrest, 
or sudden death before the age of 40  years and in absence of 
therapies). LQTS is a genetic disorder caused by mutations that 
affect ion-channel encoding genes or other genes that indirectly 
modulate the function of ion channels. The algorithm was 
based on the combination of information about the presence of 
genetic variants on one of the three main LQTS genes (KCNQ1, 
KCNH2, and SCN5A defining LQT1, LQT2, and LQT3), gender, 
and QT interval duration (≥500 or <500 ms), which are known 
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FiGURe 1 | rs10494366 common variant on NOS1AP modulates risk of 
events in LQTS (48). The schema reports the combined hazard ratios (HRs) 
from Cox regression by risk categories. The risk stratification schema 
includes the common variant rs10494366 on NOS1AP gene and known risk 
predictors in LQTS, represented by: QTc ≥ 500 ms, gender, and LQTS 
subgroup. Each box shows the combined HR for patients sharing clinical and 
genetic characteristics. The reference category (HR = 1) is represented by 
individuals LQT1, males, QT < 500 ms and homozygote for the common 
allele of NOS1AP rs10494366. Reprinted from the manuscript by Tomás and 
colleagues (48) with permission from Elsevier.
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independent risk predictors in LQTS. Three risk groups were 
identified based on the observed probability of an adverse cardiac 
event: low risk (probability <30%), intermediate risk (30–49%), 
and high risk (≥50%). Based on the published risk stratification 
algorithms for LQT1, LQT2, and LQT3 patients (47, 68), Tomás 
and colleagues (48) investigated whether common variants on 
NOS1AP locus can add additional insights for risk stratification in 
this group of patients. The authors demonstrated that the presence 
of the NOS1AP rs10494366 variant improved event risk stratifica-
tion for previously identified LQT1, LQT2, and LQT3 patients. 
The presence of the GG or GT genotype of NOS1AP rs10494366 
increased the risk of cardiac events compared with homozygotes 
for the T allele in all the subgroups of LQTS patients defined by 
different combinations of gender and genetic locus (Figure 1).

Talmud et al. (69) evaluated whether the inclusion of informa-
tion regarding the genotype of rs10757274 on 9p21.3 locus to the 
risk factors defining the Framingham risk score (FRS) allowed 
increasing the accuracy in identifying patients at risk of CHD in a 
prospective study. Results showed that, although rs10757274 did 
not add substantially to the usefulness of the FRS for predicting 
future events, it did improve reclassification of CHD risk, and 
thus may have clinical utility.

Ripatti et al. (58) tested 13 SNPs – associated with myocardial 
infarction or CAD by previous GWASs – in a case–control design 
including 3,829 CHD cases and 48,897 control participants and 
a prospective cohort design including 30,725 individuals free of 
CVD. In prospective cohort analyses, the weighted PRS defined 
using the set of selected SNPs was significantly associated with a 
first CHD event. Furthermore, when compared with the bottom 
quintile of the PRS distribution, individuals in the top quintile 
shared a 1.66-fold increased covariates-adjusted risk of CHD. 
When focusing on its risk prediction capability, the PRS did 
not improve the C index over clinical risk factors but increased 

slightly the integrated discrimination index (p-value <0.001). 
Similar results were obtained from the case–control analyses.

MODeL ASSeSSMenT STRATeGieS

Once multivariate sets of SNPs, PRSs or risk stratification 
algorithms are defined on an initial cohort (training set), their 
accuracy in predicting the condition of new examples must be 
assessed on independent populations (test set). In the absence of 
independent cohorts, it is possible to rely on resampling strate-
gies like K-Fold Cross Validation (K-Fold CV) (19), holdout (70), 
and bootstrap (71). Several metrics are available to evaluate and 
compare the discriminative power of predictive models on the 
test set, based on the trait’s distribution (72, 73).

COnCLUSiOn

The goal of this review is to provide readers with an overview 
about the main multivariate methods that can be applied to the 
identification of informative genetic variants and to the definition 
of risk prediction tools in the context of CVDs. It is important 
to note that some methods described have been applied to 
intermediate phenotypes that could be considered precursors to 
their manifestation as cardiovascular traits, but these methods 
have not yet been applied to the analysis of cardiovascular traits. 
Their application to large CVD cohorts could lead to interesting 
findings.

Multivariate methods allow the identification of complex 
additive effects due to the presence of multiple genetic variants 
on specific loci or complex interactions among genetic and non-
genetic risk factors able to modulate the probability of developing 
a specific disease or its severity.

Still, the task of identifying informative combinations  of 
genetic variants by multivariate search strategies can be 
extremely computationally intensive due to the high number of 
models to be explored and, in many cases, to the impossibility 
of parallelizing the analyses. Missing values represent a common 
limitation to these approaches, although it could be partially 
solved by resorting to multivariate imputation methods. 
Furthermore, large sets of samples thoroughly characterized in 
terms of phenotype characteristics are needed in order to avoid 
overfitting issues and to increase the probability of defining 
models whose predictive performances can be confirmed in 
independent cohorts.
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