0737. Statins protect the vasculature from excessive angpt-2 production in sepsis

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version

Accessed
January 31, 2018 1:57:50 AM EST

Citable Link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:27822260

Terms of Use
This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

(Article begins on next page)
0737. Statins protect the vasculature from excessive Angpt-2 production in sepsis

K Thamm¹, C Ghosh², JT Kielstein¹, WC Aird², A Santel³, SM Parikh², S David¹*

From ESICM LIVES 2014
Barcelona, Spain. 27 September - 1 October 2014

Introduction
Sepsis is a syndrome of systemic inflammation arising from infection that constitutes a top-ten cause of adult mortality. The recent withdrawal of a specific sepsis therapeutic has diminished pharmaceutical enthusiasm for developing novel drugs in this domain. Angiopoietin-2 (Angpt-2) is an endothelial-derived protein that potentiates vascular inflammation and permeability and may be involved in sepsis pathogenesis.

Objectives
We set out to screen well-established drugs for their Angpt-2 lowering potential to ameliorate sepsis morbidity and to analyse the underlying molecular mechanism.

Methods

In vitro
FDA-approved library screening in human umbilical vein endothelial cells (HUVECs) and confirmation via Angpt-2 ELISA and quantitative RT-PCR.

In vivo
Murine experimental sepsis was induced both by endotoxin (LPS) and cecal ligation and puncture (CLP). Mice were either treated with an Angpt-2 specific siRNA, simvastatin, or both and survival as well as the direct effect on Angpt-2 production was assessed by RT-PCR. In men: We analyzed circulating Angpt-2 levels in a retrospective matched case-control study in critically ill subjects and found that prior statin use was associated with lower circulating Angpt-2.

Results
We found that simvastatin reduced endothelial Angpt-2 release and transcription in a time- and dose dependent manner in HUVECs. This effect required Simvastatin’s HMG-CoA reductase activity. Similarly, in vivo simvastatin reduced the transcription of Angpt-2 murine lungs. In septic mice, specific inhibition of Angpt-2 in the pulmonary endothelium via an RNAi approach improved survival by 50% (p=0.002). Simvastatin equally improved survival, but the combination of Angpt-2 siRNA and simvastatin showed no additive benefit indicating that simvastatin might act via Angpt-2 inhibition. To investigate a potential link between statins and Angpt-2 in humans, we performed a matched case-control study in critically ill subjects and found that prior statin use was associated with lower circulating Angpt-2.

Conclusions
In an unbiased approach Simvastatin was found to inhibit Angpt-2 production in vitro. This observation could be confirmed in vivo in different murine models of the disease. Our data indicate that a potential beneficial effect of prior statin use in septic humans might be promoted via the Angpt-2/Tie2 axis. Therefore, “point of care” screening for circulating Angpt-2 in candidates for a clinical sepsis trial might help to identify those individuals that benefit from a statin treatment.

Grant acknowledgment
SD is supported by the DFG (DA 1209/4-1).

Authors’ details
¹Hannover Medical School, Hannover, Germany. ²Harvard Medical School, Center for Vascular Biology Research, Boston, USA. ³Silence Therapeutics AG, Berlin, Germany.

Published: 26 September 2014

© 2014 Thamm et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.