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Polycomb repressive complex 2 regulates skeletal
growth by suppressing Wnt and TGF-b signalling
Fatemeh Mirzamohammadi1, Garyfallia Papaioannou1, Jennifer B. Inloes1, Erinn B. Rankin2, Huafeng Xie3,

Ernestina Schipani4, Stuart H. Orkin3 & Tatsuya Kobayashi1

Polycomb repressive complex 2 (PRC2) controls maintenance and lineage determination of

stem cells by suppressing genes that regulate cellular differentiation and tissue development.

However, the role of PRC2 in lineage-committed somatic cells is mostly unknown. Here we

show that Eed deficiency in chondrocytes causes severe kyphosis and a growth defect with

decreased chondrocyte proliferation, accelerated hypertrophic differentiation and cell death

with reduced Hif1a expression. Eed deficiency also causes induction of multiple signalling

pathways in chondrocytes. Wnt signalling overactivation is responsible for the accelerated

hypertrophic differentiation and kyphosis, whereas the overactivation of TGF-b signalling is

responsible for the reduced proliferation and growth defect. Thus, our study demonstrates

that PRC2 has an important regulatory role in lineage-committed tissue cells by suppressing

overactivation of multiple signalling pathways.
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M
ost mineralized bone is formed through endochondral
bone formation in which the growth plate, a cartilage
template formed by chondrocytes, is continuously

replaced by mineralized bone. Chondrocytes differentiate
from multi-potent mesenchymal progenitors. After lineage
commitment, growth plate chondrocytes go through multiple
maturation steps to differentiate into post-mitotic hypertrophic
chondrocytes 1,2.

Proliferation and differentiation of growth plate chondrocytes
is tightly controlled by multiple signalling systems3, including
Indian hedgehog, parathyroid hormone-related peptide1,4,
fibroblast growth factor2,5, C-type natriuretic peptide6,
insulin-like growth factor7, bone morphogenetic protein,
transforming growth factor-b (TGF-b)8,9 and Wnt
signalling10,11. These extracellular signalling molecules are
further mediated by specific and common intracellular
signalling pathways, including the mitogen-activated protein
kinase and phosphoinositide 3 kinase pathways.

Multiple epigenetic mechanisms regulate gene expression
and thus control a variety of biological processes12–14. Altering
chromatin structure via histone modification is a major epigenetic
mechanism affected by polycomb group proteins. Polycomb
repressive complex 2 (PRC2), whose core components include
Ezh1/2 (enhancer of zeste homologue1/2), Eed (embryonic
ectoderm development) and Suz12 (suppressor of zeste 12
homologue), catalyses tri-methylation of lysine 27 of histone 3
(H3K27me3), and silences chromatin15. These three components
are essential for the methyltransferase activity of PRC2. PRC2
regulates expression of the key differentiation-related genes to
control differentiation of embryonic stem cells (ESCs)14 and
several tissue-specific stem/progenitor cells including
haematopoietic stem cells16–18, neural stem cells19,20, muscle
stem cells21 and epidermal stem cells22,23. These findings are in
line with the notion that PRC2-mediated chromatin silencing
controls cell fate transition of stem/progenitor cells24. However,
the role of PRC2 in lineage-committed somatic cells is not clear.

Here we delete Eed in lineage-committed chondrocytes to
investigate the role of PRC2 in skeletal development. We show
that PRC2 has an essential role in regulating proliferation and
differentiation of growth plate chondrocytes by suppressing
multiple signalling pathways.

Results
Eed deletion in chondrocytes causes skeletal defects. In order to
investigate the role of PRC2 in skeletal development, we ablated
the Eed gene in chondrocytes using floxed Eed mice and Col2-Cre
transgenic mice in which Cre recombinase is expressed under the
control of a mouse Col2a1 promoter. Eed conditional knockout
(Col2-Cre:Eedfl/fl, cKO) mice were born and survived postnatally,
but showed growth impairment, shortening of long bones and
severe kyphosis, and usually died by 4 weeks (Fig. 1a–c).
The mutant thoracic spine was severely deformed (Fig. 1d). In
addition to vertebral bodies, intervertebral discs that are also
formed by cells derived from Col2a1-positive progenitors showed
a reduction in size in Eed cKO mice (Fig. 1e). Using primary
chondrocytes isolated from ribs, we confirmed efficient
elimination of Eed at the protein and RNA levels and H3K27me3
in Eed cKO chondrocytes (Fig. 1f–h).

PRC2 regulates chondrocyte proliferation and differentiation.
While the overall structure of growth plates is relatively well
preserved, Eed cKO chondrocytes of tibial growth plates and fetal
vertebrae showed significant decreases in cell proliferation
(Fig. 2a–d). This proliferation defect likely led to a reduction in
the number of type X collagen (Col10a1)-expressing hypertrophic

chondrocytes that are differentiated from proliferating
chondrocytes (Fig. 2e). The marker of terminally differentiated
hypertrophic chondrocytes, Spp1, was found beneath the
hypertrophic layer both in control and Eed cKO growth plate;
however, we occasionally observed chondrocytes below the Spp1
domain, suggesting delayed cartilage resorption (Fig. 2e). In order
to investigate the effect of Eed deficiency on chondrocyte
differentiation, we examined the initial appearance of
hypertrophic chondrocytes in the embryonic axial skeleton.
Appearance of Col10a1-expressing hypertrophic chondrocytes
was advanced in Eed cKO mice at multiple developmental
stages (Fig. 2f), demonstrating that Eed deficiency accelerates
hypertrophic differentiation.

Eed deletion decreases Hif1a and induces cell death. We also
found that Eed cKO mice often showed reduced cellular density
in the central area of epiphyseal growth plates at early postnatal
stages (Fig. 3a). TdT-mediated dUTP nick end labelling staining
demonstrated cell death in this region. The growth plate is a
hypoxic tissue where most of the hypoxic chondrocytes are
located in the centre of the columnar proliferating chondrocyte
layer. The functional activity of the hypoxia-inducible
transcription factor 1a (Hif1a) is required to maintain
chondrocyte viability within the central region of the growth
plate25. On the basis of the similarity in the pattern of cell death
between Eed-deficient and Hif1a-deficient growth plates, we
examined expression of Hif1a and the Hif1a downstream target
genes. RNA expression of Hif1a and its known target genes were
downregulated in Eed cKO chondrocytes at the normoxic
condition (Fig. 3b). Protein expression levels of Hif1a and the
Hif1a target, Bnip3, were decreased in cKO primary chondrocytes
both in the normoxic (21% oxygen) and hypoxic (2% oxygen)
conditions (Fig. 3c). Hypoxia-dependent Hif1a protein
stabilization, a major regulatory mechanism of Hif1a
expression, was intact in Eed cKO chondrocytes, since hypoxia
efficiently increased the Hif1a protein level and Hif1a activity in
both control and cKO chondrocytes (Fig. 3c,e). Thus, the
reduction in Hif1a expression in Eed-deficient chondrocytes
appeared to be mainly caused by a decrease in Hif1a mRNA.
These findings suggest that transcriptional regulation of Hif1a by
PRC2 is necessary for chondrocyte viability within the central
region of the growth plate.

PRC2 controls activities of multiple signalling pathways. To
understand the molecular mechanism, first we performed
chromatin immunoprecipitation (ChIP) followed by sequencing
(ChIP-seq) to identify genes that carried the H3K27me3 mark in
chondrocytes (Gene Expression Omnibus (GEO) #GSE67132 and
#GSE76467; Supplementary Data 1). We found that 3,925 genes
were associated with H3K27me3 in chondrocytes (Supplementary
Fig.1a and Supplementary Data 1). As found in ESCs26, genes
encoding transcription factors and signalling molecules were
preferred PRC2 targets in chondrocytes as well. We also
performed gene expression analysis to identify genes whose
expression was altered upon Eed deletion (GEO #GSE66862). We
found that 1,817 annotated genes were upregulated more than
1.25-fold in Eed-null chondrocytes (Supplementary Fig. 1 and
Supplementary Data 2). Among these, 433 genes carried the
H3K27me3 mark, suggesting that the majority of deregulated
genes in Eed-deficient chondrocytes were indirectly regulated by
PRC2 (Supplementary Data 1). The finding that only 433 among
3,925 genes marked with H3K27me3 were derepressed in
Eed-deficient chondrocytes also suggests that a majority of
PRC2 target genes are repressed by other mechanisms.
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Since genes encoding signalling molecules account for a
considerable fraction of H3K27me3-marked genes in
chondrocytes, we determined the basal signalling status of major
signalling pathways in Eed-deficient chondrocytes. We found that
Eed deficiency caused overactivation in multiple signalling
pathways (Fig. 4a–c and Supplementary Fig. 2b). Phosphorylation
of signalling molecules of the extracellular-signal-regulated kinase
(ERK), p38 mitogen-activated protein kinase, phosphoinositide 3
kinase and TGF-b pathways was upregulated. Increases in active
b-catenin and Wnt reporter activity indicated the upregulation of
canonical Wnt signalling in Eed-deficient chondrocytes
(Fig. 4a,b,g). We also found a modest upregulation in retinoic
acid (RA) signalling assessed by a luciferase reporter assay.
As found in the microarray analysis (Supplementary Data 2), we
found upregulation in Wnt10a and Lef1, of which genomic loci
were associated with H3K27me3 (Fig. 4e and Supplementary
Fig. 1b), and the Wnt target gene, Axin2 (Fig. 4d). We also found
upregulation of Wnt receptors, including Fzd6 and Lrp5 (Fig. 4d);
however, these genes did not carry the H3K27me3 mark,
suggesting that PRC2 loss indirectly increased expression of
these genes. With regard to the TGF-b signalling pathway, we
found that Tgfbr2 was upregulated at both mRNA and protein
levels (Fig. 4a,d,f). We did not find significant H3K27me3
modification at the Tgfbr2 gene locus; thus, Tgfbr2 upregulation

in chondrocytes is likely an indirect consequence of the loss of
PRC2 function.

TGF-b suppression rescues proliferation and growth defects.
Because the ERK, p38 and TGF-b pathways, which were
upregulated in Eed cKO chondrocytes, were shown to regulate
endochondral bone growth27–30, we inhibited these signalling
pathways in vivo to test whether upregulation of these signalling
pathways contributed to the skeletal abnormalities of Eed cKO
mice. Whereas inhibition of the ERK or p38 signalling pathway
had no effects on the skeletal defects of Eed cKO mice
(Supplementary Fig. 2c), inhibition of TGF-b signalling using
the TGF-b receptor inhibitor, Ly364947, ameliorated the growth
defect during early postnatal stages (Fig. 5a). Analysis of the
growth plate of Eed cKO mice treated with Ly364947 revealed a
decrease in phospho-Smad2 immunostaining and a significant
increase in chondrocyte proliferation compared with
vehicle-treated Eed cKO mice (Fig. 5b and Supplementary
Fig. 4d). We also assessed the effect of TGF-b signalling
suppression on chondrocyte proliferation in vitro. TGF-b
signalling inhibition using TGF-b receptor inhibitor (Ly364947)
or neutralizing antibody against TGF-b ligands (1D11)
significantly ameliorated proliferation defect of Eed cKO
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Figure 1 | Conditional Eed deletion in chondrocytes causes skeletal defects. (a,b) Whole-mount skeletal preparation of littermate control (Ctrl) and Eed

cKO mice at P11. Both male and female cKO mice show severe kyphosis (Upper) and shortening of long bones of forelimbs (lower left) and hind limbs (lower

right). (c) cKO mice show impaired growth. A majority of cKO mice dies by P21. Male and female mice were combined. n¼ 3–6; *Po0.05 versus Ctrl, error

bars show the s.e.m., unpaired Student’s t-test was used. (d) Sagittal sections of thoracic vertebrae of mice at P28.5. SC, spinal cord. (e) Intervertebral

discs are also affected. Eed cKO mice show reduced size of the annulus fibrosus (AF) and nucleus pulposus (NP). (f) Immunoblot analysis using protein

lysate of primary rib chondrocytes cultured overnight shows an efficient reduction in the Eed protein in cKO chondrocytes. The arrow indicates the signal

specific to Eed. (g) The Eed RNA expression level determined by qPCR in chondrocytes from indicated genotypes. (h) H3K27me3 is absent in primary rib

chondrocytes of cKO mice (Supplementary Fig. 6; the uncropped blot result images). Scale bars, 200 mm.
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chondrocytes in vitro (Fig. 5c,d). Because Tgfbr2 was significantly
upregulated in Eed cKO chondrocytes, to test whether
upregulation of Tgfbr2 was responsible for the proliferation
defect of Eed cKO chondrocytes, we knocked down Tgfbr2 using
retroviruses expressing small hairpin RNAs (shRNAs) in primary
rib chondrocytes in vitro. With B60% infection efficiency, Tgfbr2
expression was reduced by 40–60% (Supplementary Fig. 5a).
Tgfbr2 knockdown in Eed cKO chondrocytes showed a significant
increase in proliferation in vitro (Fig. 5e,f). We also found that the
well-known PRC2 target, Cdkn2a (Ink4a/Arf), encoding negative
cell cycle regulators31 was upregulated in Eed cKO chondrocytes
(Fig. 4d,e). To evaluate the role of Cdkn2a upregulation
in chondrocyte proliferation, we knocked down Cdkn2a in
Eed cKO chondrocytes; Cdkn2a knockdown had little effect
in chondrocytes unlike Tgfbr2 knockdown despite the similar
knockdown efficiencies (Supplementary Fig. 5b,c).

To further investigate the role of the Tgfbr2 upregulation in Eed
cKO mice in vivo, we generated compound conditional mutant
mice missing Eed and one allele of Tgfbr2. Tgfbr2 heterozygosity
significantly improved cellular proliferation and animal growth in
Eed cKO mice (Fig. 5g,h and Supplementary Fig. 5d). These
results demonstrate that the overactivation of TGF-b signalling
because of the upregulation of Tgfbr2 plays a causal role for the
proliferation defect of growth plate chondrocytes and growth
impairment of Eed cKO mice.

Wnt signalling overactivation causes kyphosis. Although TGF-b
inhibition rescued the growth defect, inhibition of the TGF-b,
ERK or p38 signalling pathways did not improve the spinal
deformity (Supplementary Fig. 2c). Because the Wnt pathway,
which was also upregulated in Eed cKO chondrocytes, was shown

to regulate cartilage development by controlling chondrocyte
differentiation11,29,30, we inhibited Wnt signalling using the
porcupine inhibitor, C59. Daily treatment of C59 during fetal and
neonatal stages significantly ameliorated the spinal deformity
(Fig. 6a,b). Analysis of developing vertebrae of Eed cKO mice
treated with C59 revealed significant suppression of premature
hypertrophic differentiation in cKO mice (Fig. 6e). C59 treatment
also rescued the premature closure of the growth plate between
the vertebral body and transverse processes in the Eed cKO spine
(Supplementary Fig. 3a). We confirmed that C59 treatment
efficiently suppressed canonical Wnt signalling in Eed-deficient
chondrocytes in vivo and in vitro (Fig. 6c,d). In long
bones, although Wnt inhibitor treatment rescued premature
hypertrophic differentiation in the secondary ossification centre
of the Eed-deficient tibial epiphysis (Supplementary Fig. 3b), it
did not rescue the growth defect (Supplementary Fig. 3c) or the
cell proliferation defect (Supplementary Fig. 3d).

Discussion
The genome-wide mapping of PRC2-binding sites and H3K27
tri-methylation in ESCs revealed that PRC2 regulate numerous
genes encoding the key developmental regulators, demonstrating
the critical role of PRC2 in developmental and cellular
differentiation processes32–34. While the role of PRC2 in
embryonic and tissue-specific stem/progenitor cells has been
extensively studied14, its role in lineage-committed, differentiated
somatic cells is largely unexplored.

The role of PRC2 in mesenchymal stem/progenitor cells of the
skeletal system has been investigated in multiple models.
Ezh2 deficiency in the early limb mesenchymal stem/progenitor
cells reduces their proliferation, increases cell death and alters
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anteroposterior specification presumably because of the
deregulation of patterning-regulating genes, such as Hox genes35.
Likewise, Ezh2 deletion in neural crest cells causes derepression of
Hox genes, impairs differentiation of osteochondro progenitors
and results in craniofacial defects36. However, specific roles
of PRC2 in lineage-committed, skeletal cells are not demonstrated
by these studies. In this study we show that PRC2 continuously
plays an important role in regulation of cellular function of
chondrocytes after lineage commitment by suppressing multiple
signalling pathways.

Major skeletal phenotypes of Eed cKO mice include a growth
defect and kyphosis. The observation that Wnt inhibitor
treatment significantly ameliorated the accelerated chondrocyte
differentiation and spinal deformity of Eed cKO mice strongly
suggests that premature differentiation into post-mitotic
hypertrophic differentiation plays a causal role for kyphosis.
The acceleration of hypertrophic differentiation likely reduces the
net number of chondrocytes, induces premature ossification and
thus compromises spinal development.

In contrast to Wnt inhibition, while TGF-b inhibitor treatment
did not rescue the spinal deformity, it did rescue the proliferation
defect and the growth defect in Eed cKO mice; thus, suppression
of TGF-b signalling by PRC2 is essential for normal chondrocyte
proliferation and animal growth. This finding is in line with
previous studies in which TGF-b treatment decreases and its
inhibition increases chondrocyte proliferation in vivo27,28. It is
worth pointing out that the effect of TGF-b signalling on
chondrocyte proliferation is likely bitropic, as Tgfbr2 conditional
deletion can also reduce chondrocyte proliferation possibly
depending on the differentiation status37,38. We also found that

treatment of the TGF-b inhibitor at higher concentrations
decreased chondrocyte proliferation as opposed to lower
doses, suggesting a dose-dependent effect of TGF-b signalling
on chondrocyte proliferation (Supplementary Fig. 5e). PRC2 is
known to regulate cell proliferation by suppressing cell cycle
inhibitors, such as Cdkn2a (Ink4a/Arf), and16,18 Cdkn2a deletion
partially rescues phenotypes caused by PRC2 deficiency16,18.
We indeed found that Cdkn2a was upregulated in Eed cKO
chondrocytes. Although we were not able to rescue
the proliferation defect of Eed cKO chondrocytes by shRNA-
mediated Cdkn2a knockdown in vitro, it is still possible
that upregulation of cell cycle inhibitors contributes to the
proliferation defect of Eed cKO chondrocytes in vivo.
Nevertheless, our data demonstrate the central role of the
TGF-b upregulation in the proliferation defect of Eed cKO
chondrocytes.

Another unique phenotype of chondrocyte-specific Eed cKO
mice is the cell death in the central region of the growth plate.
The central region of the growth plate is hypoxic, and hypoxia
adaptation via Hif1a is essential for chondrocyte survival in this
area25. The Hif1a level is mainly controlled at the post-
transcriptional level by oxygen-dependent protein39. Relatively
little is known about transcriptional regulation of Hif1a
expression except that a few signalling pathways, such as RA40,
NF-kB41 and calcineurin/NFATc pathways42, were reported to
regulate Hif1a transcription. We tested the effects of pathway-
specific inhibitors on Hif1a expression in control and Eed cKO
primary chondrocytes (Supplementary Fig. 4a). We were not able
to restore expression of Hif1a or Hif1a target genes by inhibiting
signalling pathways that were upregulated in Eed-deficient
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chondrocytes. Thus, the mechanism by which Eed deficiency
decreases Hif1a transcripts is not clear at the moment. An
association between chondrocyte death and TGF-b signalling was
also reported in mice missing Smad7, a negative regulator of
TGF-b and bone morphogenetic protein signaling, in growth
plates43. However, Smad7 deficiency showed an increase in Hif1a
protein expression, and therefore the cell death in the Smad7-null
growth plate is likely caused by the Hif1a-independent
mechanism. We found that TGF-b inhibition in vivo decreased
the occurrence of cell death in Eed cKO mice (Supplementary
Fig. 5); thus, it is possible that cell death in the Eed cKO
growth plate is caused by a Hif1a-independent, TGF-b signalling-
dependent pathway.

We demonstrate that upregulation of Tgfbr2 expression is, at
least in part, responsible for growth and proliferation defects of
Eed cKO mice. This finding is in line with a recent study
showing that PRC2 targets and suppresses Tgfbr2 to facilitate
mesenchymal–epithelial transition during reprogramming of

fibroblasts into pluripotent stem cells44. However, we found
that the Tgfbr2 gene was not strongly marked with H3K27me3
(Supplementary Data 1); thus, its upregulation is likely indirectly
caused by Eed deficiency in chondrocytes.

Wnt signalling plays an important role during endochondral
development. Ablation of b-catenin (Ctnnb1), a critical mediator
of the canonical Wnt signalling pathway, in growth plate
chondrocytes delays hypertrophic differentiation45, whereas
overexpression of a stable form of Ctnnb1 in chondrocytes
accelerates it11. In this study, we found that inhibition of
Wnt signalling rescued the acceleration of hypertrophic
differentiation and kyphosis in Eed cKO mice, demonstrating
the critical role of PRC2-mediated suppression of Wnt signalling
in regulation of chondrocyte differentiation and normal skeletal
development.

In summary, this work demonstrates that the PRC2
continuously plays an important regulatory role in differentiation
and proliferation of lineage-committed growth plate
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chondrocytes by suppressing Wnt and TGF-b signalling
pathways (Fig. 7).

Methods
Mice. Col2-Cre transgenic mice46, floxed Eed mice18 and floxed Tgfbr2 mice47

were previously described. Mice were in a mixed genetic background. Comparison
between control and cKO mice was always made between littermates.

The MEK1 inhibitor, U0126, the p38 inhibitor, SB203580, the TGF-b receptor
inhibitor, LY364947, and the Wnt inhibitors, C59 and XAV-939, were purchased
from Selleckchem. The RA inhibitors, BMS493 and AGN193109, were purchased
from Santa Cruz Biotechnology Inc. The neutralizing antibody against TGF-b
ligands, 1D11, was purchased from R&D Systems. Inhibitors were first dissolved in
dimethylsulphoxide according to the manufacturer’s instructions, then diluted into
100ml PBS and then injected daily into pregnant as well as nursing mothers
intraperitoneally from E 14.5 through P9.5.

The animal experiments were approved by the Institutional Animal Care and
Use Committee of the Massachusetts General Hospital and performed in
accordance with the regulations and guidelines.

Skeletal preparation and histological analysis. Skeletal preparation48,
histological staining of paraffin-processed samples49 and in situ hybridization50

were performed using standard procedures. Kyphosis was assessed as previously
described51; two lines were drawn from the vertebral body of the first thoracic
vertebra (Th1) to the spinous process of the second cervical vertebra (C2) and that
of Th12; the angle formed by these two lines were measured.

Proliferation and cell death assays. For bromodeoxyuridine (BrdU) or
ethynyldeoxyuridine (EdU) labelling, 50 mg g� 1 body weight of BrdU or 20 mg g� 1

of EdU was injected into mice intraperitoneally 2 h before killing. BrdU or EdU was
detected using the BrdU In Situ Staining Kit or Click-iT EdU Alexa Fluor 488
Imaging Kit (Life Technologies). The BrdU or EdU labelling index was calculated
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as the ratio of BrdU- or EdU-positive nuclei over total nuclei in columnar
proliferating chondrocytes of the growth plate. Cell death was evaluated on sections
using the In Situ Cell Death Detection Kit (Roche) according to the manufacturer’s
instruction. In vitro cell proliferation assay was performed using the PrestoBlue cell
viability reagent (Invitrogen).

Primary chondrocyte isolation and culture. Primary rib chondrocytes were
isolated from neonatal mice by collagenase digestion as previously described52.
After overnight culture in DMEM containing 10% fetal calf serum, cells were
subjected to downstream analysis.

Luciferase reporter assay. For luciferase assay, cells were trypsinized, replated in
96-well culture dishes and transfected with the 0.2 mg of Hif1a reporter
(HRE-luc)53, the Topflash Wnt reporter54 or a RA signalling reporter plasmid
(RARE-luc)55 and 0.02 mg of a renilla control vector using the Attractene
Transfection Reagent (Qiagen). Luciferase and renilla activities were measured
48 h after transfection using the Dual-Luciferase Reporter Assay System (Promega).

Quantitative reverse transcription polymerase chain reaction (qRT–PCR).
RNA was extracted from primary rib chondrocytes that isolated from neonatal
mice using the Direct-zol RNA Mini-Prep Kit (Zymo Research). Quantitative
reverse transcription polymerase chain reaction (qRT–PCR), RNA was reverse-
transcribed using DyNAmo cDNA Synthesis Kit (Life Technologies) and real-time
PCR was performed using the StepOnePlus Real-time PCR system (Life
Technologies) and FirePol EvaGreen qPCR mix (Solis Biodyne). Values were
normalized by Actb. Primer sequences of qRT–PCR primers are as follows: Actb,
50-GCACTGTGTTGGCATAGAGG-30 and 50-GTTCCGATGCCCTGAGGCT
CTT-30; 18S ribosomal RNA, 50-AAACGGCTACCACATCCAAG-30 and
50-CCTCCAATGGATCCTCGTTA-30 ; Hif1a, 50-TCAAGTCAGCAACGTGGA
AG-30 and 50-TATCGAGGCTGTGTCGACTG-30 ; Vegfa, 50-GAGAGAGGC

CGAAGTCCTTT-30 and 50-TTGGAACCGGCATCTTTATC-30 ; Pdk1, 50-GAAG
CAGTTCCTGGACTTCG-30 and 50-CCAACTTTGCACCAGCTGTA-30 ;
Ndufa4l2, 50-TGATTGGCTTCATCTGCTTG-30 and 50-ACTGGTCATTGGGAC
TCAGG-30; Bnip3, 50-GGGTTTTCCCCAAAGGAATA-30 and 50-GAATCCTCAT
CCTGCAAAGC-30 ; Axin2, 50-CTCCCCACCTTGAATGAAGA-30 and
50-ACTGGGTCGCTTCTCTTGAA-30 ; Lef1, 50-TCACTGTCAGGCGACA
CTTC-30 and 50-TGAGGCTTCACGTGCATTAG-30 ; Tgfb1r, 50-ACCTTC
TGATCCATCGGTTG-30 and 50-CCTGTTGGCTGAGTTGTGAC; Tgfbr2, 50-TC
GGATGTGGAAATGGAAG-30 and 50-CTGGCCATGACATCACTGTT-30 ;
Wnt10a, 50-CCACTCCTGGCCTGTCAC-30 and 50-AGCCAGCAGCAGTAGGA
AGA-30 ; Frz3, 50-GGTGTCCCGTGGCCTGAAG-30 and 50-ACGTGCAGAAAGG
AATAGCCAAG-30 ; Frz6, 50-CTTTTTGATGCGGAAAGGAG-30 and 50-TCTTAC
GAGGGGCAGAAGAA-30 ; Lrp4, 50-GAATGTGCTGAGGAGGGGTA-30 and
50-TTGGCAAACAGTAGCACAGG-30 ; Lrp5, 50-CTGTGGCTGTGCTTCACAC
T-30 and 50-CTTGTCCAGCGGGTCATAGT-30 ; Cdkn2a 50-GTACCCCGATTCA
GGTGATG-30 and 50-GGAGAAGGTAGTGGGGTCCT-30 .

Chromatin immunoprecipitation. ChIP was performed using the SimpleChIP
Enzymatic Chromatin IP kit (#9003, Cell Signaling Technology), anti-H3K27me3
antibody (#9733, Cell Signaling Technology) and IgG. ChIP-ed DNA was
quantified with qPCR. PCR primers used for qPCR are as follows: Wnt10a, 50-CC
ACTCCTGGCCTGTCAC-30 and 50-AGCCAGCAGCAGTAGGAAGA-30 ; Lef1,
50-GCGAAAGGGAAGGAAAGAAG-30 and 50-GGATGCTGATTTCGGTGAT
T-30 ; Lrp4, 50-GAATGTGCTGAGGAGGGGTA-30 and 50-TTGGCAAACAGTA
GCACAGG-30 ; Lrp5, 50-GCCGGACGACATGGAAAC-30 and 50-GGGACCAA
GCTGCAGTACA-30; Fzd3, 50-CGGACTTTGCAAGAAGGACT-30 and 50-CCTG
GCGTCCTAGGTGATAG-30 ; Fzd6, 50-GCCAGACTCCCCGAGTTAAT-30 and
50-ACACTTTCCGTTCTGGAAGC-30; Tgfbr1, 50-CCCCTCGAGCAGTTACAA
AG-30 and 50-CCACCAACACGATGAGGAG-30 ; Tgfbr2, 50-CCGGGTAAAGT
TGATGAGTGA-30 and 50-CCTTTACTCCTCGCCCTCTC-30 ; Cdkn2a, 50-ATCT
GGAGCAGCATGGAGTC-30 and 50-GGGGTACGACCGAAAGAGTT-30 .

More information is available in the Supplementary Methods.
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Western blot analysis. Anti-Eed antibody (#09-774, rabbit polyclonal, 1:1,000)
was purchased from Millipore. Anti-H3K27me3 antibody (GTX1121184, rabbit
polyclonal, 1:500) was purchased from GeneTex. Anti-Actin antibody (I-19, rabbit
polyclonal, 1:500) was purchased from Santa Cruz Biotechnology. Anti-Hif1a
antibody (NB100-449, rabbit polyclonal, 1:500) was purchased from Novus
Biologicals. Anti-Bnip3 antibody (ab10433, mouse monoclonal (ANa40),
2 mg ml� 1) was purchased from Abcam. Anti-p-ERK1/2 antibody (#4370, rabbit
monoclonal, 1:1,000), anti-p-MEK1 antibody (#9154, rabbit monoclonal, 1:1,000),
anti-p-cRaf antibody (#9427, rabbit monoclonal, 1:1,000), anti-p-RSK antibody
(#9335, rabbit monoclonal, 1:1,000) and anti-p-p38 antibody (#4511, rabbit
monoclonal, 1:1,000), anti-total ERK antibody (#9102, rabbit polyclonal, 1:1,000),
anti-p-Smad1/5/8antibody (#9511, rabbit polyclonal; 1:1,000), anti-Smad2
antibody (#5339, rabbit monoclonal, 1:1,000), anti-p-Smad2 antibody (#3104,
rabbit polyclonal, 1:1,000), anti-TGF-b receptor II antibody (#3713, rabbit
polyclonal, 1:1,000), anti-p-STAT1 antibody (#9171, rabbit polyclonal, 1:1,000) and
anti-pSTAT3 antibody (#9145, rabbit monoclonal, 1:2,000) were purchased from
Cell Signaling Technology. Western blot analysis was performed according to the
standard procedure.

Immunohistochemistry. Immunohistochemistry was performed on paraffin sections
using Perkin Elmer Tyramide Signal Amplification Kit (# NEL700A001KT) according
to the manufacturer’s instruction. Anti-p-Smad2 (#3104, rabbit polyclonal, 1:200),
anti-Tgfbr2 (#3713, rabbit polyclonal, 1:100) and Non-phospho (Active) b-Catenin
(#D13A1, rabbit monoclonal, 1:500) were purchased from Cell Signalling Technology.

Retrovirus generation and infection. Retroviruses expressing shRNA for Tgrbr2,
and Cdkn2, were constructed using a modified pMSCV vector (Clontech)56.
For shRNA constructs for Tgfbr2 (Tgfbr2-sh1, -sh2 and -sh3) and Cdkn2a
(Cdkn2a-sh1 and -sh2), the following sequences were synthesized and subcloned
into pMSCV-EGFP:

Cdkn2a-sh1, 50-GATGATGATGGGCAACGTTCACTCGAGTGAACGTTGC
CCATCATCATC-30 ; Cdkn2a-sh2, 50-CTAGCGATGCTAGCGTGTCTACTCGA
GTAGACA CGCTAGCATCGCTAG-30 ; Tgfbr2-sh1, 50-TGGCAGAAATTACA
AGTGCATATTTCTCGAGAAATATGCACTTGTAATTTCTGCCA-30 ;
Tgfbr2-sh2, 50-GTGTAAATACGAATAGCTATGTTCT CGAGAACATAGCTA
TTCGTATTTACACAC-30 Tgfbr2-sh3, 50-GTGGAGGAAGAACGACAAGAACA
TTCTCGAGAATGTTCTTGTCGTTCTTCCTCCAC-30 .

Statistical analysis. Values are expressed as means±s.e.m. Statistical significance
between two groups was determined by unpaired Student’s t-test. The effect of the
TGF-b inhibitor on occurrence of cell death in cKO was determined by w2-test.

Data availability. ChIP-seq and microarray data that support the findings of this
study have been deposited in NCBI GEO with the primary accession codes
GSE67132 and GSE66862, respectively.
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